
ABSTRACT.

This paper presents a new procedure for planning mobile robot
trajectories by considering kinematic and dynamic constraints
on the vehicle motion. This approach combines an original
kinematic visibility graph planning method, an efficient path
generation algorithm based on Beta-Spline curves and a cubic
Spline speed profile definition technique. The maximum value
of the curvature can be assured to be smaller than the value given
by the constraints. Furthermore, speeds along the path are
planned subject to the kinematic and dynamic constraints. The
resulting trajectories provide ideal conditions for high precision
path tracking and positioning. In the paper we present the
application of the proposed methods to RAM-1, a mobile robot
designed and built for indoor and outdoor industrial
environment.

1. INTRODUCTION.
The path planning goal is the computation of a obstacle free
route from an initial position to a final position while minimizing
a certain criterion. Usually, the smallest distance measure is used
to calculate the route. Many different approaches can be used to
solve this problem by modelling the robot’s environment and
applying a heuristic search. Configuration space method [7],
visibility graph representation, Voronoi diagram, and cell
decomposition [4] are methods for environment modelling.
None of these methods take into account the physical limitations
of the vehicle to follow the planned route. However, these
limitations have a significant influence for the ability of the path
tracking to execute the route in the vehicle.

A continuous curvature curve can be fitted to the computed route
for solving this problem. The path is obtained by sampling the
fitted curve into a stream of robot postures. This process is
named path generation and uses a planned route as entry. The
emphasis of path generation process is in the geometric
properties of the path to avoid discontinuities in the vehicle’s
steering. Continuous-curvature paths provide good conditions to
be followed by autonomous vehicles. There are several methods
which provide continuous curvature but have the disadvantage
of lacking a closed-form expression to generate the curve
coordinates. Thus, the computer requirements may preclude its
application in real time. β-Spline path generation methods have
proven efficiency to generate smooth continuous curvature paths
with low computational cost [8].

Most of path planning methods assume that the robot executes
the path at a low constant velocity. This assumption means that
the vehicle’s dynamic features do not affect the precision of the
path tracking algorithm when the vehicle is following the path.
However, in many applications a speed profile definition along

the path is necessary (i.e. mobile obstacle avoidance [3]). So, the
combination between a speed profile and a planned path is called
trajectory. In this way, a trajectory is the composition of a spatial
plan (path) with a time plan (speed profile).

In this paper a three-step trajectory planning method is
described: i) route planning, ii) path generation and iii) speed
profile definition. The planned route must keep a set of features
for fitting a curve which provides a path with good kinematic
conditions. These properties are a function of the fitting
algorithm and the planning approach. In this way, the path
generation method is presented in section 2. Section 3 relates the
integration of the previous path generation method with a
visibility graph planning approach. This integration is made in
two steps: expanded environment computation (subsection 3.1)
and kinematic visibility graph construction (subsection 3.2.).
Section 4 deals with velocity planning. The velocities are set
along the path to define a trajectory which satisfy the kinematic
and dynamic constraints of the robot. Section 5 presents the
implementation in the RAM-1 [10] autonomous mobile robot
and real experiments with this vehicle. The final sections are
devoted to conclusions and references.

2. BETA-SPLINE PATH GENERATION METHOD.
Let ω={ω0,ω1,...,ωk} be a route as a set of sparse points
computed by the path planner. Furthermore let (θ0,κ0) and
(θk,κk) be the starting and ending heading-curvature pair. The
path generator builds a curve τ(s) that starts at ω0 with heading
θ0 and curvature κ0, passes though the points ω1,...,ωk-1 and
ends at ωk with a heading of θk and curvature of κk. The path
generator process samples this curve into a set of postures
Q={q1,...,qm}, which are used by the path tracking algorithm for
executing the path. A posture qi is composed of four basic
elements: xi, yi, θi and κi. First two elements are position
components, third is the heading with respect to a global work
frame, and the last one is the curvature component. Moreover, all
postures of Q are evenly spaced.

The path generation method described is based on cubic β-
Spline curves due to their properties for fast computation [2].
Then, the problem is to compute a set of control points of the β-
Spline, in such a way that the curve satisfies a set of
requirements for providing goods conditions for mobile robot
path tracking: i) continuity in position, heading and curvature; ii)
the maximum curvature along the path is limited by the robot
kinematic model; and iii) smoothly curvature variation.

The method is based on two properties of the β-Spline curves
[8]:
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Property 1: Let {V-2,V-1,V0,V1} be a set of control points that
defines a β-Spline curve. If this set lies over a circle with radius
ρ, and the points are separated a distance  over the
perimeter of the circle, then the β-Spline curve defined by these
points is contained in a concentric circle with radius ρ’ defined
by:

(1)

Property 2: It exists one set of values for the control points
 such that β-Spline curve f(λ) proves f(0)=P,

f’(0)=P’ and f”(0)=P”, where P, P’ and P” are the desired point,
first and second derivatives of the curve at the beginning.

(2)

In the same way, there is one set of values of the control points
{V-1,V0,V1} such that f(1)=P, f’(1)=P’ and f”(1)=P”. 

(3)

However, the known parameters are the initial and final heading-
curvature pair. So the relationship between (θ,κ) and (P’,P”)
must be defined. The following expressions provide this
relation:

(4)

The path generation method consists of the following steps:

1.- Building of the reference path (see figure 1).

a)  Build a set of circles over the set ω. These circles have an
initial radius ρi and their centers are in the line Di that
bisects the minor angle between two consecutive segments
defined by (ωi-1,ωi) and (ωi,ωi+1).The radius ρi should be
greater than the minimum turning radius, provided by the
kinematic and dynamic constraints.

b)  Translate each circle Ci from ωi a distance s (given by (1))
along Di, such that the control points over the circle Ci are
computed forcing the β-Spline curve passes through ωi. 

c) Determine the tangent segment Ti between the circles.

d)  These set of actions builds a reference path composed by
arcs and straight lines where the set of control points of the
β-Spline curve will be computed. In figure 1 the reference
path is shown with bold trace.

2.- Fitting the β-Spline curve.

a)  The control points of the β-Spline curve are computed over
the arcs of each Ci and over the tangent segment Ti. These
control points are evenly spaced by a distance δ, in such a
way that δ verifies the property 1.

b)  Compute the phantom points [2] of the β-Spline using
property 2 to impose the starting and the ending conditions
of the path.

c)  Build the β-Spline curve f(λ) with the computed set of
control points.

d)  Sample the β-Spline curve into a stream Q of postures
qi=(xi,yi,θi,κi) evenly spaced. 

Fig. 1. Building the circles over the points of set ω.

3. KINEMATIC VISIBILITY GRAPH PLANNING.
Tangent graphs [5] are an extension of visibility graphs concept,
which supply a geometric point of view of the route planning
problem. The planning algorithms, which works with this
approach, uses a polyhedral two dimensional environment
model and the visibility relationship for graph building [4].
However, the graph is composed of circular arcs and tangent
lines between arcs. Others versions are based on Radius-
Independence graphs [6] for finding the shortest route for any
robot modelled as a circle. None of these methods consider the
vehicle’s kinematic and dynamic features or minimize the
control actions for path tracking. The proposed algorithm
modifies the original tangent graph method in order to keep the
above issues, and integrates the planning approach with the path
generation method presented in the previous section. The
planning action is made in two basic steps which will be
developed in the next two subsections.

3.1.  Expanded environment model computation.
The route planner algorithm finds the optimal obstacle-free route
by using a visibility graph in an environment modelled by a set
of polygons. This first step expands all the obstacles inside the
environment in order to build a free obstacle path for avoiding
the collision with the corners of the environment obstacles. The
expansion factor is a function of the vehicle size, the minimum
turning radius, and a safety distance related to the robot
uncertainty model [9][13]. In figure 2, dotted lines show the
expanded version of the original environment.

This action provides a safety planning with the non-point mobile
robot. Expanded obstacles which share any area of the
environment are considered as a single obstacle.

Fig. 2. Expanded environment model for route planning.
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3.2.  Kinematic visibility graph 
The path generator needs a planned route with specific
properties for making a path with good kinematic conditions.
However, a planned method based on visibility graph
approaches does not support this feature. Therefore, it is
necessary to introduce kinematic information which provides a
guide for planning the shortest route with the best path
generation properties.

A visibility graph is defined by GV=(N,γ), where N is the graph
nodes set {n1,...,nm}, and γ models the visibility relationship
between two graph nodes of N. Thus, γ(ni,nj)=TRUE if the nodes
ni and nj are visible, otherwise the function returns FALSE. A
kinematic visibility graph is determined by (Ba,χ,γ). Ba is the
admissible route segments subset, and it is defined by using the
route segment graph set B. A segment bi of B is composed of the
nodes in1, in2, in3 of N in such a way that confirms the following
expression:

(5)

So, B is the collection of all possible route segment bi of GV.
The function χ(bi) assigns a real positive number to each bi
which defines the Ci turning radius circle attached to the current
segment. A route segment bi belongs to the admissible route
segments subset Ba if it verifies the following conditions:

• The result of the function χ(bi) is equal or greater than the
minimum turning radius ρmin defined by the vehicle
kinematic constraint. Moreover, the turning circle defined
by χ(bi) does not contain the left and right components of
the current route segment and the circle arc used for
reference path definition touches none of the environment
obstacles.

• The obstacle, which touches the middle route segment
node in2 of bi, lies on the convex hull area defined by bi
(see figure 3).

All the route segments of the planned route must belong to the
admissible route segment subset for the best path generation
properties. Therefore, the heuristic graph search only works with
the Ba components.

Fig. 3. Second admissibility condition.

The algorithm V* for kinematic visibility graphs is based on A*

graph exploration. The route segment expansion is made by
using the γ’ function as an extension of the visibility function γ,
and it is defined in the  space:

(6)

The expansion of bi means that V* selects a GV node n which
verifies the following condition:

(7)

Furthermore, V* builds the reference path between bi and the
new branch defined above. This action is made by determining
the tangent segment between the circles defined by the χ
function of bi and (in2,in3,n). The route segment expansion is
shown in figure 4. 

Fig. 4. Route segment expansion in V* algorithm.

The above figure presents the route segment expansion of
(A,B,C) with the node D. The route segment has attached the
turning circle C1 provided by the function χ. A successful
expansion with the node D must prove the following conditions:

• Route segment (A,B,C) and node D comply expressions
(6) and (7).

• Tangent segment line between the turning circles C1 and
C2 touches none of the obstacles.

In this case, the route segment (B,C,D) is considered as a
component of the current planned route.

Thus, the V* search algorithm, which provides the integration of
the path planner and generator, is defined in the next scheme:

Procedure V*(ns,nf)
CLOSED={};
OPEN={bi/bi=(ns,

in2,in3) belong to Ba}
if ns==nf then route found
if nf ∈ bi belong to OPEN then route found
While OPEN is not empty and route not found do

Choose the bi of OPEN with minimum F(bi).
OPEN=OPEN-{bi}; CLOSED=CLOSED ∪ {bi}.
if nf ∈ bi then route found
SUC= .
For each member bj of SUC do

if bj belong to OPEN or CLOSED sets then 
Change the search tree from bj toward bi.

else
Build the associated reference path
if reference path is admissible then

Add the route segment to the current route
Validate the built reference path.
OPEN=OPEN ∪ {bi}

end if
end if

end for
end while
if OPEN is empty then route not found.

End procedure
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The algorithm uses the A* template for the graph exploration and
tries to find a route from the start node ns to the final node nf.
Thus, OPEN and CLOSED sets have the classical definition.
The function F() is the A* heuristic monotonic function form.
Finally, function φ(bi,n) builds a branch as shown at expression
(7).

Further improvement of the kinematic visibility graph is to
translate the original visibility graph nodes at the environment
concavities (figure 5.a) because it increases the Ba set module.
This translation is made in a such way that allows building a
turning circle which does not touch the obstacle over the
translate node as shown in figure 5.b. So, in this figure, the
original route segment (n1,n2,n3) does not belong to Ba because
it does not verify the second admissibility condition shown in
figure 3. However, the new route segment (n1,n2’,n3) confirms
this condition.

Fig. 5. Translation of the nodes at the concavities.

4. TRAJECTORY PLANNING AND 
GENERATION.

In order to convert a path Q into a trajectory  it is necessary
to append a speed component to each posture of the path. In
other words, the trajectory conversion process must turn each
qi=(xi,yi,θi,κi) into =(xi,yi,θi,κi,vi), where vi is the posture
speed component. This transformation is made by the definition
of a parametric arc length speed function V(s). Such a curve is
defined in the space-speed plane [12], in which the upper speed
limit for each posture qi of the path Q is represented. These
constraints are obtained by taking into account kinematic
limitations and dynamic effects on the vehicle [11]. So, the V(s)
specification is made in such a way that it preserves all the
posture speed limits, in order to obtain a trajectory with good
kinematic and dynamic tracking conditions.

Let Fs(t) be a space-time function which defines the path
travelled per time unit. So, the time-speed function V(t) is
defined as follows:

(8)

In this way, if the vehicle needs T time units to travel St space
units along the path, the relationship between these parameters
is given by the expression:

(9)

And the definition of the parametric arc length speed function
V(s) in the space-speed plane is:

(10)

where F-1(s) is the inverse space-time function, which yields the
time spent to travel a distance s along the path.

The computation of a space-speed function which fits all the
speed limits at each posture qi of Q is avoided, in order to reduce
the complexity of Fs(t). Hence, the path is divided into a set
S={S1,..., Sp} of path segments whose curvature can be
approximated by either a linear variation law or a constant value.
An ending speed limit vi+1 and the top acceleration iAt are
computed for the path segment Si by using its curvature variation
law and the kinematic and dynamic constraints of the vehicle.
This operation sets up a speed control set V={v1,...,vp+1} for the
path Q, where v1 (always null) is the starting speed for S1 and the
remaining components vi are speed border conditions between
segments Si-1 and Si. 

A cubic space-time function σi(t) is assigned to each Si.
Therefore, the function Fs(t) is determined by the composition of
these cubic functions.

The space-time function σi(t), which belong to the ith path
segment Si, is defined by the following expression:

(11)

where σi’(t) and σi”(t) are the speed and acceleration functions
respectively. If the vehicle navigates a distance si along this
segment in a time ti, then the following matrix expression arises:

(12)

The only free parameter is ti. Then, the problem is to choose ti in
order to build a safety speed profile σi’(t) for the ith path
segment, in such a way that it keeps the following constraints:

• Starting acceleration σi”(0) inside the interval .

• Ending acceleration σi”(ti) inside the interval .

• Function σ’i(t) inside the range [vi,vi+1].

• Continuity in speed and acceleration between two
consecutive cubic space-time functions.

The computation of suitable parameter values based in the above
constraint requires the application of numerical methods [8].
The proposed method evaluates a safe σi(t) by using a closed
form.

Two new cubic functions 1σi(t) and 2σi(t) can be obtained from
σi(t). Function 1σi(t) covers the first half of the segment and
2σi(t) the second. Let itm be ti/2 and t∈[0,itm]. If the acceleration
is null at the beginning and end of the path segment Si and the
second derivatives of both functions 1σi(t) and 2σi(t)are
continuous at their joints, then, 1σi”(0)=0, 2σi”(itm)=0 and
1σi”(itm)=2σi”(0).

The first function is defined by the set {vi,
ivm,1si,

itm} and the
second one by {ivm,vi+1,2si,

itm} where ivm is the average
between v i and vi+1. The values for the elements of these sets

a) The translation of the nodes.

b) Turning circle definition
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are:

(13)

Thus, the relationship between the starting and ending speeds for
keeping the ith path segment top acceleration constraint is
defined by the following expression:

(14)

The algorithm which verifies the correctness of assigned speeds
by taking into account the acceleration constraints is detailed
bellow:

Procedure SpeedVerification(S)
For each Si belong to S so

iAt=Acceleration constraint for Si
if vi and vi+i not verifies expression (14) then

if vi<vi+1 then vi+1=sqrt(sqr(vi)+
iAt*si)

else vi+1=sqrt(sqr(vi-
iAt*si))

end if
End loop

End procedure

The algorithm, which turns a path into a trajectory, is the
following:

Procedure Path2Trajectory(Q)
={}.

{S}=Divide_path _into_path_segments(Q).
{V}=Compute_Speed_Control_Set(S).
Assign_top_acceleration(S).
SpeedVefification(S)

For each Si belong to S do
Compute 1σi(t) and 2σi(t) by using expression (13).
σi(t)=Composition( 1σi(t), 

2σi(t)).
Vi(s)=σ’i(σi

-1(s)). /* Speed profile for Si */
qini=qj ∈ Si/Si = {qj, qj+1,...,qj+p}.
For each posture qk belong to Si do

d=Arc length from qini to qk.
w=Vi(d).

=(qk,w)

End loop.
End loop.
Return( ).

End procedure.

The performance of this algorithm can be improved by
minimizing the size of the control speed set V. The vi component
of set V is the speed border condition between Si-1 and S i path
segments. If v i is removed from V, these path segments can be
consider as a single one. Therefore, the elimination of one
control speed element reduces in one unit the size of the path
segment set S. This fact decreases the number of iteration at the

main loop in Path2Trajectory algorithm. The question is which
components can be eliminated from V without affect the features
of the space-speed function V(s). 

The set V can be divided into a collection of speed subsets whose
elements follow either increasing, decreasing or constant speed
law. Let Wi={vj,vj+1,...,vj+n} be one of these subsets. Therefore,
its components comply with the relationship either vk<vk+1,
vk>vk+1 or vk=vk+1; for k=j to j+n.

If all components of Wi verify expression (14), then this
relationship is also proved with the first element vj and the last
one vj+n. This means that the space-time function defined by
using all Wi elements has the same features than the curve
obtained by using only the first and last components of Wi. In
this way,only the components vi of V which verify the
expression (15) are considered.

(15)

Where sgn(x) is the signum function and VR the reduced control
speed set. The use of this set in Path2Trajectory algorithm
reduces the S set size and therefore the time needed to plan the
trajectory. Moreover, the speed profile generated by using VR is
smoother than the generated with V.

5. EXPERIMENTS.
The system has been integrated in the intelligent control
architecture of RAM-1[10]. This mobile robot has four wheels
located in the vertices of a rhomb. The front and rear wheels in
the longitudinal axis are steered at the same time by a DC motor
with a rigid link. The two parallel wheels are driven
independently by DC motors. For path tracking the front and rear
wheels are steered, and the parallel wheels are used with
differential drive.

Figures 6, 7 and 8 show actual results of the application of the
proposed integrated trajectory planning-generation method in
RAM-1.

Fig. 6. Planned and generated trajectory and its real execution.

Figure 6 display the shortest path with best curvature properties
in solid line. The solution (A,C,D,E) is not the minimum length
route for travelling from point A to point F. However, this route
keeps the required kinematics features for fitting a β-Spline
curve with the path generation method proposed at section 2.
The V* algorithm return a route with the appropriate properties
for path generation.
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Because of the closeness of the obstacle corner labelled B form
start point A, the route segment (A,B,E) does not belong to Ba
set because does not prove the first admissibility condition
(χ((A,B,E))<ρmin). Therefore, the route (A,B,E,F) is not
accepted for path generation. Moreover, this figure shows the
real execution with RAM-1 mobile robot of the planned-
generated trajectory in dotted line.

Figure 7 shows the curvature produced by the path generation
algorithm with the planned route (solid line). Furthermore, the
curvature is without exception lower than 2 m-1 (ρmin=0.5 m),
which is the value determined from the kinematic, dynamic and
practical experimentation with RAM-1 for the top speed.
Besides the figure presents the real execution in dotted line.

Fig. 7. Generated trajectory curvature and its real execution.

Figure 8 shows the smooth speed profile assigned to the
generated path. This is continuous in acceleration, and its
maximum values never exceed the limits imposed by the
kinematic and dynamic constraints. The anticipative propierties
of the control action, shown in dotted line, are due to the path
tracking algorithm used in this experiment; a pure pursuit
technique [1].

Fig. 8. Generated trajectory speed profile and its real execution.

6. CONCLUSIONS.

Planning optimal trajectories between obstacles, with good
properties to be efficiently tracked by real autonomous vehicles
and mobile robots is a complex problem that normally requires
too much computations to be implemented in real time. This
paper proposes a solution based on the combination of a
kinematic visibility graph path planning algorithm, an efficient
continuous curvature path generation method based on β-Spline
curves and a speed profile generator based on cubic Splines.

The path generator builds a path with good kinematic conditions
because of its continuity in position, heading and curvature.
Moreover the curvature varies lineally and never exceeds the
limits imposed by the kinematics of the vehicle. Speeds along
the path are planned according to the kinematic and dynamic

constraints of the vehicle and the path’s features. Since the speed
profile is made with a cubic spline curve, it has continuous
acceleration and requires little computational time for its
evaluation.

The kinematic visibility graph building is a time-expensive
action (from a few secs needed for planning the example shown
at Fig. 6, to several minutes on complex environment), but it is
made off-line and the graph reconstruction is not necessary as
long as the environment remains static. However, the β-Spline
path generation method and the speed profile generator are able
to produce a 25 m. path in about 34 msecs in a SPARC 2
workstation.
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