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Abstract—In 5G and beyond wireless systems, Network Slicing
(NS) feature will enable the coexistence of extremely different
services by splitting the physical infrastructure into several logical
slices tailored for a specific tenant or application. In sliced Radio
Access Networks (RANs), an optimal traffic sharing among cells
is key to guarantee Service Level Agreement (SLA) compliance
while minimizing operation costs. The configuration of network
functions leading to that optimal point may depend on the
slice, claiming for slice-aware traffic steering strategies. This
work presents the first data-driven algorithm for slice-aware
traffic steering by tuning handover margins (a.k.a. mobility
load balancing) per slice and adjacency with a proportional
controller based on SLA criteria. The tuning process is driven
by a novel indicator, derived from connection traces, showing
the imbalance of SLA compliance among neighbor cells per
slice. Performance assessment is carried out with a system-level
simulator implementing a realistic sliced RAN offering services
with different throughput, latency and reliability requirements.
Results show that the proposed algorithm improves the overall
SLA compliance by 9% in only 15 minutes of network activity
compared to the case of not steering traffic, outperforming two
legacy mobility load balancing approaches not driven by SLA.

Index Terms—B5G, network slicing, self-optimization, traffic
steering, service level agreement.

I. INTRODUCTION

5G and beyond networks are envisioned to pave the way
for a fully-connected world by supporting new applications
in vertical industries, such as augmented and virtual reality,
unmanned aerial vehicles, e-health or fully autonomous dri-
ving [1]. As a consequence, these Next-Generation Networks
(NGNs) will serve different type of end-users (humans or ma-
chines), devices (e.g., smartphones, vehicles, wearables, sen-
sors...) and services with highly diverging Quality-of-Service
(QoS) requirements (e.g., energy efficiency, End-to-End –
E2E– latency, peak data rate...) [2]. In this context, Network
Slicing (NS) feature has been recognized as a key enabler
to meet the performance, scalability, security and reliabi-
lity requirements of such diversified applications in complex
NGNs [3].

NS consists in building separate logical networks tailored
for specific purposes on top of a common physical infras-
tructure [4]. An End-to-End (E2E) slice instance comprises
hardware, software and radio resources together with a set of
Virtualized Network Functions (VNFs). Such assets provide
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storage, processing and networking capabilities required to
comply QoS, security, mobility and availability conditions
specified in the Service Level Agreement (SLA) during slice
operation [5]. A central MANager and Orchestrator (MANO)
manages all slices operating in a network. Among other
tasks, the MANO splits resources among slices, decides which
VNFs (e.g., access control, HandOver –HO–...) are common
to all/multiple slices and which VNFs are tailored or even
omitted per slice, and sets up VNF parameters [6].

Cellular network conditions often change due to events in
the network infrastructure (e.g., deployment of new cells) or
in the area (e.g., social events). In Self-Organized Networks
(SON), self-optimization solutions automatically tune Network
Function (NF) parameters to guarantee optimal network per-
formance in this changing environment [7]. A well-known
self-optimization use case is load balancing (a.k.a. traffic
steering), which aims to alleviate congestion problems by
offloading traffic from congested to underutilized cells. Tra-
ffic steering in the Radio Access Network (RAN) can be
addressed by adjusting antenna parameters such as transmit
power or tilt angle [8] [9]. However, this approach may
create coverage holes. Alternatively, most works tackle load
balancing by optimizing mobility NFs (a.k.a. Mobility Load
Balancing, MLB), driven by logical parameters than can
be cost-effectively and immediately tuned [10]. Cutting-edge
MLB algorithms perform traffic steering in non-sliced net-
works from a service-centric perspective through heuristic con-
trollers [11] [12], analytical models [13], optimization algo-
rithms [14] or Reinforcement Learning (RL) agents [15] [16]
driven by data (e.g., traces, performance counters...) gathered
in the Operations and Support System (OSS).

In NGNs, NS makes network management extremely com-
plex, calling for slice-aware self-optimization solutions that
ensure SLA compliance in each slice with different resource
allocation and performance targets [17]. Several aspects must
be considered when designing slice-aware MLB algorithms,
such as: a) the possibility of tailoring NFs per slice, allowing
to set a different optimal configuration per slice, b) the need
for SLA-based solutions driven by indicators reflecting end-
user performance (e.g., E2E latency, throughput...), which
can be derived from connection traces, and c) the increase
in network dynamism due to the activation, deactivation or
redimensioning of slice instances, demanding a fast MLB
operation [3]. To the author knowledge, slice-aware MLB
schemes considering these aspects have not been proposed yet.

This work contributes to the design of slice-aware MLB
solutions by showing the poor operation of legacy MLB
schemes in NS scenarios. Then, the first slice-aware MLB
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algorithm is proposed. The algorithm aims to increase the
percentage of users meeting SLA. For this purpose, traffic is
steered by self-tuning intra-frequency HO Margins (HOMs)
in a slice-aware HO scheme. The tuning process is driven by
a novel indicator, derived from connection traces, reflecting
the imbalance in SLA compliance per slice between neighbor
cells. Moreover, the algorithm operates on a time resolution
finer than the legacy 15-min Reporting Output Period (ROP)
to deal with the high dynamism expected in B5G scenarios.
Two versions of the algorithm are tested, differing in the
frequency of parameter tuning per adjacency and the number
of simultaneously optimized adjacencies.

The rest of the document is organized as follows. Section II
outlines related work and details the main contributions of
this work. Section III formulates the problem of performing
slice-aware MLB. Section IV presents a novel slice-aware
traffic steering algorithm, assessed via simulation in section V.
Finally, section VI summarizes the main conclusions and
proposes future research directions. To ease readability, Table I
describes notation used in this work.

II. RELATED WORK AND CONTRIBUTIONS

In the literature, several algorithms have been proposed
for MLB through HOM tuning in cellular RANs. Most con-
tributions tackle HOM optimization as a control problem,
for which different types of controllers have been proposed.
The earliest works relied on proportional controllers driven
by heuristic rules to perform intra-frequency MLB in ma-
crocellular scenarios. In [18], an incremental controller tunes
HOMs in fixed steps when the load difference of adjacent
cells exceeds a threshold. Cell load is measured considering
Physical Resource Block (PRB) utilization ratio and QoS
requirements. In [19], the controller estimates the impact of
changing HOMs on network performance with an analytical
model, and tunes HOMs to maintain all cells under a preset
load threshold. A similar approach is proposed for small-cell
scenarios in [20], where an adaptive load threshold is con-
sidered, so that MLB can also act in non-congested cells
with unevenly loaded cell boundaries. In [21], HOMs in a
femtocell scenario are tuned with a Fuzzy Logic Controller
(FLC) fed by current HOM values and blocking statistics to
equalize the blocking ratio among cells. All these approa-
ches have been extended to tackle inter-frequency [22] or
inter-radio-access-technology [23] MLB.

With the latest advances in information technology,
cutting-edge load balancing solutions rely on artificial intel-
ligence. [10] surveys machine-learning-based load balancing
schemes. Although some works are based on supervised lear-
ning (e.g., multiple linear regression [24]), most MLB schemes
rely on RL. Initially, RL was used to enhance the ability
of classical controllers to adapt to changing environments.
For instance, [25] improves the solution proposed in [21]
for femtocell scenarios by using a Q-learning agent that
customizes IF-THEN rules of the FLC driven by information
from trial-and-error interactions with the network. In [26], this
fuzzy Q-learning approach is tested in macrocellular scenarios,
revealing the potential of readjusting FLC rules with constant

TABLE I: Table of notation.

Notation Definition
#D No. users in a network
D User index
S Set of slices operating in a network
#B No. slices operating in a network
B Slice index
BD Slice serving user D
C Set of cells in a network
#2 No. cells in a network
2 Cell index
8, 9 Cell indexes of cells in an adjacency
'('%D (2) RSRP received by user D from cell 2 [dBm]
�$" (8, 9) HOM from cell 8 to cell 9 [dB]
�$" (8, 9 , BD) HOM from cell 8 to cell 9 for slice BD [dB]
#= No. relevant neighbors per cell
A Set of relevant adjacencies in a network
N(2) Set of relevant neighbors of cell 2
G Set of adjacency groups
#6 No. adjacency groups in G
6: Adjacency group index
#0 (6: ) No. adjacencies belonging to group 6:
#D (2, ) No. users with relevant DL activity in cell 2
#D (2, B) No. users from slice B with relevant activity in the

DL of cell 2
(!�(D, 2) Level of SLA compliance for user D belonging to

slice B in cell 2
# %� (BD) No. KPIs included in the SLA for slice BD
F? (BD) Factor weighting importance of KPI ? for slice BD
(!�? (D, 2) Level of SLA compliance regarding KPI ? for user

D served by cell 2
 %�? (D, 2) Performance of KPI ? for user D in cell 2
 %�

C6C
? (BD) Performance target for KPI ? in the SLA of slice BD

(!�<0G Maximum level of SLA compliance
(!�dif (8, 9 , B) SLA compliance imbalance between cells 8 and 9

for slice B
) � Thourghput [kbps]
!' Latency-reliability commitment
+�! (D) Data volume transmitted to user D in the DL at

PDCP layer [kbits]
CB4BB8>= (D) Session duration [s]
? (D) No. packets in the session of user D
?BD22 (D) No. packets in the session of user D fulfilling

target E2E latency
+�! (D, 2, ) � ) DL data volume transmitted to user D in cell 2

during TI ) � [kbits]
C) � (D, 2) Period of ) � where user D is served by cell 2 [s]
? (D, 2, ) � ) No. packets transmitted from cell 2 to user D

during TI ) �
?BD22 (D, 2, ) � ) No. packets transmitted from cell 2 to user D

during TI ) � fulfilling target E2E latency
(!�6;>10; Global percentage of users complying SLA [%]
(!�18= (D) Binary level of SLA compliance per user D
(!�=>A<

6;>10;
Binary level of SLA compliance per user D norma-
lized to baseline

(!�8 Global percentage of users demanding service 8
complying SLA

%'�DC8; Final avg. PRB utilization across cells [%]
|X�$" (=) | (B) Avg. absolute HOM deviation per slice from initial

settings in optimization loop =
=�$=>A< Ratio between number of HOs in a simulation com-

pared to the baseline

exploration and exploitation to capture changes in network
conditions. As an alternative, RL can also be used to drive the
control process. For instance, in [27], a Q-learning agent takes
decisions per adjacency to equalize cell load from information
about PRB utilization and cell-edge users.

All the above traffic steering algorithms are driven by simple
performance indicators obtained from the aggregation of all
connections in a cell. In legacy networks, where voice calls
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were the predominant service, these approaches achieved the
best user performance. However, field trial results in [28] point
out that balancing cell load in Long Term Evolution (LTE)
networks and beyond supporting services of very different
requirements does not guarantee the best overall end-user
Quality of Experience (QoE). As an alternative, more recent
works tackle MLB from a QoE perspective. In [12], the
QoE of neighbor cells in a single-layer macrocellular scenario
is balanced by tuning service-specific HOMs with a FLC.
Other QoE-based works rely on optimization instead of using
heuristic control rules. For instance, in [13], the impact of
tuning HOM on system QoE is estimated with an analytical
model adjusted with network data, and optimality is ensured
with a gradient ascent scheme. In [14], an algorithm based
on dynamic particle swarm optimization is centrally applied,
which optimizes the overall QoE and reduces the number of
users with poor QoE. QoE aspects have also been considered
in RL-based MLB solutions as part of state [29] and/or
reward [15] [16].

Additionally to the need for service-oriented traffic steering,
in NGNs, NS makes network management more complex,
requiring novel self-optimization solutions to guarantee both
tenant and end-user satisfaction in slices with different radio
capacity and performance targets [17]. [30] showed the poten-
tial of slice-aware self-optimization to improve network perfor-
mance, focusing on mobility robustness optimization. To this
end, an algorithm tunes HOMs per slice with an actor-critic
agent based on twin delayed deep deterministic policy gradient
to improve service- and mobility-related performance metrics.
Nonetheless, in the literature, most contributions on slice man-
agement focus on designing policies for new network functions
such as slicing provisioning or slice admission control. To au-
tomate resource management in these processes, machine lear-
ning algorithms are often used [31]. Recent contributions pro-
pose traffic forecasting and classification with deep supervised
learning to anticipate future resource needs per slice [32] [33],
admission control with Deep RL (DRL) to grant access to new
slices/users [34] [35] or dynamic slice provisioning with DRL
for fine-grained resource allocation [36] [37] [38]. However,
unexpected temporary changes in the spatial traffic distribution
of certain slices in localized areas can lead to SLA violations.
Although these issues could be solved by redimensioning the
degraded slice, redistributing spectrum among tenants may
degrade other slices and/or lead to an inefficient use of network
resources. Alternatively, traffic served from a specific slice can
be redistributed among cells (i.e., slice-aware traffic steering)
to make the most of slice assets, leaving slice dimensioning
for extreme cases where optimal slice traffic sharing among
cells does not warrant SLA compliance.

The above-mentioned legacy traffic steering schemes are
not suitable for sliced B5G RANs since: a) they lack of
slice awareness, and b) they do not take into account SLA
compliance in the tuning process. To the authors’ knowledge,
the task of performing slice-aware MLB has not been covered
yet. Such a problem is addressed in this work. Specifically,
the main contributions are:

a) Proving that legacy (i.e., slice-unaware) traffic steering
schemes degrade SLA compliance in a realistic network

slicing scenario offering enhanced Mobility BroadBand
(eMBB) and ultra-Reliable Low-Latency (uRLLC) ser-
vices, thus justifying the need for novel slice-aware
solutions.This contribution aims to warn operators that
enabling legacy self-optimization algorithms in sliced
RANs will potentially lead to SLA violations.

b) Showing the potential of steering traffic per slice to
improve SLA compliance for different slices based on
their traffic patterns and performance requirements for
the first time. Whereas dynamic slice spectrum allocation
optimizes resource allocation in a given cell, slice-aware
traffic steering takes advantage of underutilized cells to
deal with non-uniform traffic distributions across the
network.

c) Presenting a novel SLA-driven slice-aware MLB algo-
rithm. The main contribution here is a novel driver
indicator, derived from connection traces, reflecting the
imbalance on SLA compliance between neighbor cells.
This indicator is suitable for any slice definition in
terms of performance indicators or target values for those
indicators. Consequently, it can be used as a driver for
other use cases requiring comparing the performance of
different slices (e.g., dynamic slice capacity brokers), no
matter the considered optimization policy (e.g., heuristic
rules, RL. . . ).

d) Analyzing the impact of key settings in the MLB process,
such as time resolution (i.e., frequency of parameter
changes per adjacency) or parallelization (i.e., simul-
taneous parameter changes in several adjacencies), on
system performance. These aspects have a strong impact
on network performance and determine the computational
capacity required to run the algorithm on a live network.
The latter aspect is critical for optimization schemes
running on a second time horizon, such as the proposed
MLB solution.

III. PROBLEM FORMULATION

Consider a cellular network with NS where a set of #B
slices, denoted as S, operate simultaneously. In the RAN,
the network comprises #2 cells, denoted as C, working at
the same frequency band, so that every cell 2 ∈ C may
serve users from all active slices B ∈ S. As typical in
live networks, intra-frequency mobility is handled through
power-budget HOs [11]. Thus, the HO of a user D from serving
cell 8 to a neighbor cell 9 is triggered by HO event A3 based
on Reference Signal Received Power (RSRP), i.e.,

'('%D ( 9) ≥ '('%D (8) + �$" (8, 9) , (1)

where where '('%D (8) and '('%D ( 9) are pilot signal levels
received by user D from the serving cell 8 and neighbor cell
9 , respectively, and �$" (8, 9) is the intra-frequency HOM,
defined on a per-adjacency basis.

In this scenario, a legacy MLB algorithm would adjust
�$" (8, 9) to steer traffic from congested to underutilized
cells so that cell load is balanced. With the above HO scheme,
parameter self-tuning can be performed on a per-adjacency
basis. However, note that a certain HO set-up in a given
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Fig. 1: Operation of proposed MLB algorithm.

adjacency may not lead to the same performance for all
slices due to: a) the different traffic characteristics (e.g., user
spatial distribution, mobility, performance requirements in
SLA...) among slices, and b) the capacity broker, which may
underestimate/overestimate resources required by a particular
slice in a particular cell (or area), but not for others. This
fact suggests the need for slice-aware MLB algorithms. For
this purpose, a slice-aware HO scheme must be set first. The
triggering equation for slice-aware RSRP-based HO event A3
can be expressed as

'('%D ( 9) ≥ '('%D (8) + �$" (8, 9 , BD) , (2)

where BD is the slice to which user D belongs. With this new
HO scheme, HOM tuning can be performed per adjacency and
slice.

The aim of slice-aware MLB algorithms must be guaran-
teeing SLA compliance (and thus both tenant and end-user
satisfaction) for all slices. However, as stated in [28], an
evenly loaded scenario does not ensure that all cells offer the
same performance (e.g., due to different radio link conditions).
This behavior is expected to worsen in sliced RANs. In these
networks, equalizing global load of neighbor cells can have a
negligible (or even negative) impact on SLA compliance for
slices offering services with low rate, whose performance is
jeopardized by eMBB slices with a larger radio resource allo-
cation. Moreover, even for eMBB slices, each slice may access
to a different amount of PRBs in each cell. Consequently, the
difference in spare PRBs per slice among neighbor cells may
be different from the global load imbalance. To capture these
differences, slice-aware MLB strategies must be SLA-driven
(and not load-driven, as legacy solutions).

When designing slice-aware SLA-driven MLB algorithms,
it should be taken into account that optimizing network
performance globally sometimes compromises cell-edge users
(i.e., those with the highest risk of violating SLA). Such an
issue is circumvented by approaches that equalize performance
among cells, as that presented in [12]. Likewise, a high
dynamism is expected in sliced 5G networks due to slice
activation, deactivation and resource reallocation [39]. As a
consequence, slice-aware traffic steering must operate in a time
resolution finer than legacy schemes, where HOMs are tuned

based on performance counters updated every 15 minutes at
most. Due to such dynamism, indicators driving the MLB
process must reflect slice performance in the last few seconds,
which can only be obtained by processing connection traces.
All these aspects are considered by the slice-aware MLB
algorithm proposed here.

IV. TRAFFIC STEERING STRATEGY

In this section, a novel slice-aware MLB algorithm is
presented. The algorithm aims to equalize the level of SLA
compliance (i.e., the percentage of users meeting SLA) per
slice across the scenario by steering traffic among cells work-
ing at the same frequency band. For this purpose, �$" (8, 9 , B)
in the slice-aware HO scheme presented in (2) is iteratively
self-tuned on a per-adjacency-and-slice basis.

Fig. 1 illustrates the MLB process in a given iteration. The
self-tuning algorithm, run by the Access Network Slice Sub-
set Management Function (ANSSMF), implements a specific
proportional controller per slice and adjacency. Each controller
is fed by a novel indicator reflecting the imbalance of SLA
compliance per slice in neighbor cells. Such an indicator is
computed in the Multi-Access Edge Computing (MEC) unit
by processing connection traces collected by the gNBs of the
adjacency since the previous optimization iteration.

When enabling the slice-aware intra-frequency HO scheme
in (2), an initial value of �$" (8, 9 , B)=3 dB is set ∀ 8, 9 , B,
as starting point for traffic steering. To prevent ineffective
parameter changes, the MLB algorithm operates on a subset
of adjacencies denoted as A, comprising a limited number of
relevant adjacencies per cell. Moreover, to avoid that changing
several HOMs for a cell simultaneously leads to excessive
reduction/increase of cell area for a slice, HOM tuning is not
performed simultaneously for all adjacencies in A.

For clarity, the adjacency selection and clustering strategy
is first detailed, the self-tuning algorithm is presented later and
the computational complexity is finally discussed.

A. Stage 1. Adjacency selection and clustering

The subset of adjacencies in the whole network where MLB
will operate, A, is created as follows. For every cell 2 in the
scenario, a fixed number of relevant neighbors cells, #=, is
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Algorithm 1 Adjacency clustering algorithm.
Input: a set of adjacencies A
Output: a set of adjacency groups G
function groupAdjacencies(A)
G ← {}
: ← 1
while A ≠ {} do
6: ← {}
for all adjacencies 0 = (8 ↔ 9) ∈ A do

if none adjacency 0′ ∈ 6: contains cell 8 or 9 then
Add adjacency 0 to group 6:
Remove adjacency 0 from A

end if
end for
Add group 6: to G
: ← :+1

end while
return G

selected. That set of #= neighbors per cell 2, denoted as N(2),
includes: a) all co-sited cells, and b) the most interfering cells
in the Down Link (DL) from nearby sites. Then, bidirectional
adjacencies (2 ↔ 9) ∀ 9 ∈ N (2) are included in A. After
repeating this process for all cells in the scenario, the number
of adjacencies in A is #2 × #=. Then, duplicated adjacencies
in A (if any) are removed.

Next, adjacencies in A are divided into a set of disjoint
groups, G. Clustering is performed with the heuristic scheme
presented in Algorithm 1, inspired in [40]. Groups are created
sequentially. For each group 6: , a random adjacency from A
is first selected as seed and removed from A. Then, another
adjacency in A is randomly selected to be added to group
6: if it does not include any cell in the adjacency previously
added to group 6: . More adjacencies are sequentially added to
group 6: until no adjacency in A comprises disjoint cells with
all adjacencies already in the group. Then, a new group 6:+1
is created. This process is repeated until A becomes empty.

The subsequent MLB iteratively tunes HOMs. In each
iteration : , only HOMs from adjacencies in group 6: are
modified. As a consequence, the number of groups in G,
#6, determines how often parameters change per adjacency.
Since #6 grows with #=, to ensure fast and optimal conver-
gence, #= must have the lowest value allowing to include
all relevant adjacencies per cell in A. Nonetheless, #6 may
vary in different executions if the random seed changes. It
is recommended to perform multiple runs of the clustering
algorithm with different seeds before optimization starts, and
select the solution providing the lowest #6.

It should be pointed out that HOM tuning reshapes cell
serving area, and thus DL interference may change once
the tuning process begins (e.g., due to cell load changes).
However, it is strongly recommended to perform the above
adjacency clustering process with a stable HOM set-up and
redefine it only after a significant event altering radio link
performance in the network (e.g., deployment of a new cell).

B. Stage 2. SLA-driven HOM tuning

Once adjacency groups have been created, a slice-aware
self-tuning algorithm is executed. For clarity, the indicator
driving the tuning process is described first and the control
algorithm is presented later.

a) Description of the driver: The average level of SLA
compliance for slice B in the DL of a given cell 2 during a
certain period of time can be expressed as

(!�(2, B) = 1
#D (2, B)

#D (2,B)∑
D=1

(!�(D, 2) , (3)

In the equation above, #D (2, B) is the number of users from
slice B with relevant activity in the DL of cell 2, i.e., those
with data to be transmitted in at least 5% of transmission
time intervals during the considered time period (in [41],
all services similar to those considered here showed higher
DL activity ratios). Likewise, (!�(D, 2) is the level of SLA
compliance for user D belonging to slice B in cell 2. (!�(D, 2)
is computed as

(!�(D, 2) =
# %� (BD)∑
?=1

F? (BD)(!�? (D, 2) , (4)

where # %� (BD) is the number of Key Performance Indicators
(KPIs) included in the SLA for slice BD to which user
D belongs, F? (BD) is a weight factor showing the relative
importance of KPI ? for the performance of slice BD , and
(!�? (D, 2) is the level of SLA compliance related to KPI ?
for user D served by cell 2. F? (BD) ranges from 0 to 1, so that∑# %� (B)
?=1 F? (B) = 1 ∀ B. Besides, (!�? (D, 2) is calculated as

(!�? (D, 2) = min

(
 %�? (D, 2)
 %�

C6C
? (BD)

, (!�<0G

)
, (5)

where  %�? (D, 2) denotes performance of KPI ? for user D
in cell 2,  %� C6C? (BD) is the performance target for KPI ? in
the SLA of slice BD , and (!�<0G is a maximum level of SLA
compliance to avoid that users exceeding the SLA conceal
those with worse performance in (3).

The indicator driving HOM tuning is the difference of SLA
compliance levels for slice B in the two cells 8 and 9 of an
adjacency, (!�dif (8, 9 , B), defined as

(!�dif (8, 9 , B) = (!�( 9 , B) − (!�(8, B) . (6)

A negative value of (!�dif (8, 9 , B) indicates that, on average,
the level of SLA compliance for slice B is better in cell 8 than
in cell 9 , whereas a positive value of (!�dif (8, 9 , B) indicates
the opposite. The HO point for a balanced scenario is given
by the condition (!�dif (8, 9 , B)=0. At that point, on average,
the level of SLA compliance for slice B is similar in both cells
8 and 9 .

b) Control algorithm: Algorithm 2 outlines the operation
of the self-tuning algorithm, designed as a set of proportional
controllers (one per adjacency and slice) that iteratively modify
�$" (8, 9 , B) based on the value of (!�dif (8, 9 , B) indicator.
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The algorithm is executed a predetermined number of
optimization loops. A loop comprises #6 iterations. The inter-
iteration time (hereafter referred to as Tuning Interval, TI)
must be short enough to reflect the current (and not past)
network state, but long enough to get reliable computations
of SLA compliance for services with bursty traffic (e.g., in
this work, TI=5 s). In each iteration : , the HOM value
for adjacencies in group 6: is tuned incrementally on a
per-adjacency-and-slice basis as illustrated in Fig. 2. Specif-
ically, the increment/decrement in HOM, Δ�$" (8, 9 , B), is
computed from the value of (!�dif (8, 9 , B) as

Δ�$" (8, 9 , B) =


2 (!�dif (8, 9 , B) < U1 ,

0 U1 ≤ (!�dif (8, 9 , B) ≤ U2 ,

−2 (!�dif (8, 9 , B) > U2 ,

(7)

where U1 and U2 are thresholds for triggering HOM changes so
as to eliminate random actions due to small fluctuations of the
driver indicator. These parameters must be set to provide an
adequate trade-off between optimality and convergence speed
(in this work, U2 = −U1 = 0.05). Larger absolute values reduce
the number of optimization loops required to reach equilibrium
at the expense of deteriorating network performance slightly,
since the algorithm converges before (!�dif (8, 9 , B) = 0.

Then, the new value of �$" (8, 9 , B) is computed as

�$" (:+1) (8, 9 , B) = �$" (:) (8, 9 , B) + Δ�$" (:) (8, 9 , B) .
(8)

To guarantee adequate HO performance, �$" (8, 9 , B) va-
lues are limited to the range [−6, 12] dB. Finally, to avoid
ping-pong effect, in all cases, a 6-dB hysteresis area is main-
tained by jointly setting HOMs in both directions of an adja-
cency so that �$" (8, 9 , B) + �$" ( 9 , 8, B)=6 dB.Calculating
Δ�$" (8, 9 , B) has negligible computational complexity.

Note that (!�(2, B) for empty cells (i.e., #D (2, B)=0) must
be set to a value higher than (!�<0G + max( |U1 |, |U2 |) to
ensure that traffic is offloaded to the empty cell. It is also re-
markable that a step larger than typical 0.5-dB HOM resolution
has been chosen since user density decreases when considering
only traffic from a slice, and hence a higher change in HOM
is required in slice-aware HO schemes to offload traffic from
congested cells.

Thanks to U1 and U2 parameters, as optimization progresses,
HOMs are modified only in those adjacencies with the highest
initial SLA compliance imbalance. The algorithm converges
when no HOM changes are performed in any adjacency and
slice. To guarantee convergence, a large number of optimiza-
tion loops must be executed.

This MLB algorithm follows a fixed policy consisting of
tuning HOMs iteratively (+/- 2 dB) according to rules in (7)
until equilibrium is reached (i.e., (!�dif (8, 9 , B)≈0). Since
the controller does not rely on supervised learning, model
training (or retraining) is not required. Additionally, as the
controlled system (RAN) is non-linear, providing a detailed
theoretical convergence analysis is not trivial. Thus, there is
no guarantee that the system converges in a limited number

Algorithm 2 SLA-driven slice-aware self-tuning algorithm.
Inputs: a set of adjacencies A, a set of current HOM values
in these adjacencies H , and a set of adjacency groups G
Output: Updated H
function tuneHOM(A,G,H )

repeat
for all adjacency groups 6: ∈ G do

Wait for TI
Collect connection traces
for all slices B ∈ S do

for all adjacencies 0 = (8 ↔ 9) ∈ 6: do
Compute (!�dif (8, 9 , B)
if (!�dif (8, 9 , B) < U1 then
Δ�$" (8, 9 , B) ← 2

else if (!�dif (8, 9 , B) > U2 then
Δ�$" (8, 9 , B) ← -2

else
Δ�$" (8, 9 , B) ← 0

end if
�$" (8, 9 , B) ← �$" (8, 9 , B) + Δ�$" (8, 9 , B)
�$" ( 9 , 8, B) ← �$" ( 9 , 8, B) − Δ�$" (8, 9 , B)

end for
end for

end for
until a predefined no. of optimization loops is reached

Fig. 2: Proportional controller.

of iterations. In practice, to guarantee convergence, a large
number of optimization loops must be executed. Thanks to
U1 and U2 parameters, HOMs are modified only in those
adjacencies with significant SLA compliance imbalance in
each loop. Convergence is reached when no HOM changes are
introduced in any adjacency and slice. A faster convergence
can be achieved by increasing the gain of the feedback loop at
the expense of potential instabilities. Alternatively, U1 and U2
can be increased to enlarge the range of (!�dif (8, 9 , B) values
where the output of the proportional controller is zero (no
change).

C. Computational complexity

The proposed traffic steering strategy comprises two stages:
a) creating adjacency groups, and b) executing the slice-aware
MLB process. The time required for adjacency clustering
(Algorithm 1) depends on the number of adjacencies where
optimization will be carried out, given by the number of cells
in the network and the number of relevant adjacencies per
cell considered, i.e., O{#2 × #=}. Recall that this process
is executed before parameter tuning starts and repeated only
after events altering radio link performance in the network
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significantly (e.g., deployment of a new cell), which are
rare events. Thus, its contribution to the total computational
complexity is negligible.

Regarding MLB process (Algorithm 2), the execution time
for a given adjacency comprises the time to process connec-
tion traces from cells 8 and 9 , calculate (!�dif (8, 9 , B) in-
dicator driving the tuning process per slice, and compute
HOM increment per slice, Δ�$" (8, 9 , B). Trace processing
entails decoding events, creating connections and computing
traffic descriptors. In live networks, this process is the most
time-consuming task, with O{#D (8) + #D ( 9)}, where #D (2) is
the number of active users in cell 2 during the tuning interval.
The time to compute (!�dif (8, 9 , B) indicator grows linearly
with the number of active users in the slice in cells 8 and
9 , #D (8, B)+#D ( 9 , B). Finally, the MLB algorithm relies on
a set of simple proportional controllers, and hence calculat-
ing Δ�$" (8, 9 , B) has negligible computational complexity.
In each tuning interval : , this process must be performed
for all slices in the #0 (6: ) adjacencies belonging to ad-
jacency group 6: . Thus, the total worst-case complexity is
O{#0 (6: ) × (#D (8) +#D ( 9) +#B× (#D (8, B) +#D ( 9 , B)))} for a
centralized implementation (for a distributed implementation,
#0 (6: ) term can be omitted).

V. PERFORMANCE ASSESSMENT

This section presents the validation of the proposed
slice-aware MLB algorithm. In the absence of commercial
5G networks with NS, method assessment is carried out
via simulation. For clarity, the considered simulation tool is
introduced first. Then, assessment methodology is detailed and
results are presented later. Finally, execution time is outlined.

A. Simulation tool
Experiments are carried out with the dynamic system-level

simulator used in [42], which emulates the DL activity of a
realistic LTE-Advanced network with NS functionality. The
main parameters and NS implementation in the simulator are
briefly introduced next.

1) General description: Table II presents the main simula-
tion parameters. The scenario, illustrated in Fig. 3, consists of
108 irregular cells located in urban and sub-urban areas cove-
ring 11×23 km2. Cells work at 2.1 GHz in frequency division
duplexing mode with a 10-MHz bandwidth. 5G numerology
with ` = 0 is set. Modulation and Coding Schemes (MCSs)
in the 4-bits Channel Quality Indicator (CQI) table in [43] are
used. A link abstraction model maps radio link performance
to Block Error Rate (BLER) on a certain MCS [44]. For each
user, the most efficient MCS guaranteeing a service-specific
BLER is selected. The simulation tool models latency in
data transmission due to packet scheduling (for computational
efficiency, a 10-ms time resolution is considered). However,
additional delays in the decision-making process of the pro-
posed traffic steering strategy (e.g., those from transferring and
processing traces) are not considered. The reader is referred
to [45] for more information on simulation parameters.

Network users demand four services, namely file download
via FTP (FTP), live video streaming (VIDEO), haptic commu-
nications (HAPTIC) and autonomous driving (DRIVING). The

Fig. 3: Simulated scenario [45].

TABLE II: Main simulation parameters.

Parameter Description

Time resolution 10 ms
Cell bandwidth 10 Mhz
Transmission mode Frequency division duplexing
5G numerology (`) 0
Propagation model Path loss: Hata, COST-231 [46]

Slow fading: log-normal f(�=8 dB,
32=50 m
Fast fading: ETU model [47]

Base station model Tri-sectorized antennas, MIMO 2x2,
transmit power from real base stations
([47.8-49] dBm), no beamforming

Packet scheduler Classical exponential/proportional fair [48]
Link adaptation CQI-based, MCS selected to guarantee a

target BLER defined per service
Service model FTP, VIDEO, HAPTIC and DRIVING
Traffic distribution Non-uniform spatial user distribution and

service mix
User mobility Constant speed at 0 km/s (static), 3 km/s

(pedestrian) or 50 km/h (car) and constant
random direction

HO set-up Intra-frequency HO triggered by
RSRP-driven event A3
�$" (8, 9 , B)=3 dB and time-to-trigger of
256 ms for all adjacencies and slices

NS implementation Slicing at packet scheduling level, adaptive
capacity broker

combination of these four traffic profiles could represent a
typical automated driving scenario, with infotainment and map
update services. Table III describes traffic models for these
services. As in live networks, users can be static or move
with a speed set per service.

2) Network slicing implementation: NS implementation in
the simulation tool is thoroughly described in [42]. The
RAN is sliced at packet scheduling level, i.e., each slice has
exclusive access to a set of PRBs that may differ in number
and PRB index per cell [51]. The set of PRBs allocated to
each slice is determined by an adaptive capacity broker. Thus,
intra-cell slice isolation is guaranteed, but not inter-cell slice
isolation.

The contracted SLA is defined in terms of performance tar-
gets for the expected traffic in a given area. Two performance
KPIs are considered, computed on a session level. The first
KPI is DL session throughput, )�, defined as
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TABLE III: Traffic models in simulation tool.

Service Traffic model

FTP File size: log-normal (avg. [15, 85] MB)
VIDEO Packet arrival process and file size from

H.264/MPEG-4 AVC real trace with 720p reso-
lution
Call duration: uniform [30, 300] s
Chunk size: 5 s of video content (initial burst),
2 s of video content (rest)

HAPTIC Multi-point haptic traffic model in [49]
Three components: globe, position tracker and
actuators
Packet size per component: fixed (min. 72 B,
max. 442 B)
Inter-packet time per component: Gaussian (avg.
[10.87, 12.95] ms, std. dev. [1.98, 2.49] ms)
Call duration: uniform [300, 600] s

DRIVING Packet size=201 B
Inter-packet arrival time of 100 ms (derived from
lane merge use case data [50])
Call duration: uniform [300, 600] s

)� (D) = +�! (D)
CB4BB8>= (D)

, (9)

where +�! (D) is the total data volume transmitted to user
D in the DL at packet data convergence protocol layer,
and CB4BB8>= (D) is session duration. The second KPI is
latency-reliability commitment, !', defined as the ratio of
packets transmitted in a session with an E2E latency below
a predefined threshold [52], i.e.,

!'(D) = ?BD22 (D)
?(D) , (10)

where ?(D) is the total number of packets in the transmission
buffer during the session of user D and ?BD22 (D) is the number
of those packets fulfilling target E2E latency for the slice to
which user D belongs. In the simulation tool, it is assumed that:
a) a packet is a block of information to be transmitted, and b)
E2E latency is the time from the packet arrives to transmission
buffer until it is scheduled.

During experiments, the level of SLA compliance per user
is computed in two different ways: a) per session, as a Figure
of Merit (FoM) to assess algorithm performance, and b)
per session, cell and TI, to calculate (!�dif (8, 9 , B) indicator
driving the HOM tuning process. In the latter case, with the
above SLA definition, equation (4) can be particularized as

(!�(D, 2) = F) � (BD)(!�) � (D, 2) +
F!' (BD)(!�!' (D, 2) .

(11)

Note that (!�) � (D, 2) and (!�!' (D, 2) must reflect SLA
compliance in terms of )� and !' per user, cell and TI. In
(!�) � (D, 2) calculation, )� (D, 2) is computed as

TABLE IV: Simulation set-up for assessing MLB strategies.

Slice Service Speed ) � C6C (B) !'C6C (B)

1
FTP 3 km/h

1 Mbps 1 s for 90% of packets
VIDEO Static

2 HAPTIC Static 400 kbps 10 ms for 99.9% of packets

3 DRIVING 30 km/h 16 kbps 10 ms for 99.9% of packets

)� (D, 2) = +�! (D, 2, ) �)
C) � (D, 2)

, (12)

where +�! (D, 2, ) �) is the DL data volume transmitted to user
D in cell 2 during the corresponding TI, ) �, and C) � (D, 2)
is the time period of ) � where user D is served by cell
2. Similarly, when computing (!�!' (D, 2), !'(D, 2) only
considers packets that arrive to the transmission buffer and
are sent or dropped within ) �, i.e.,

!'(D, 2) = ?BD22 (D, 2, ) �)
?(D, 2, ) �) . (13)

For the above calculations, radio connection traces should be
processed in a live environment.

B. Assessment methodology

Table IV summarizes NS set-up for method assessment.
Three slices operate simultaneously in the network. Slice 1
serves FTP and VIDEO users, with the highest )� re-
quirement ()�C6C (1)=1 Mbps), but a relaxed target !'

(!'C6C (1)=1 s for 90% of packets). FTP users are pedestrians
moving at 3 km/h, whereas VIDEO users are static. Slice 2
serves HAPTIC traffic, generated from static users demanding
a moderate )� (400 kbps) with stringent !' requirements
(10 ms for 99.9% of packets). Finally, slice 3 serves DRIVING
users moving at 30 km/h demanding a low rate (16 kbps), but
with the same stringent !' requirements as HAPTIC users.

The proposed traffic steering algorithm, referred to
as SLA-driven MLB over Slice-Aware HO scheme
(SAHO+SLA) is compared with other three MLB strategies.
Since no RL-based slice-aware traffic steering algorithm
has been proposed yet, all tested solutions rely on heuristic
rule-based controllers, but differing on the driver indicator,
slice awareness and/or operation mode (i.e., parallel vs.
sequential tuning in all adjacencies). The first, referred to
as Load Balancing over Legacy HO scheme (LHO+LB), is
a classical MLB algorithm that tunes HOMs per adjacency
on a legacy (i.e., slice-unaware) HO scheme, whose aim
is to balance PRB utilization across cells. The second,
referred to as Load Balancing over Slice-Aware HO scheme
(SAHO+LB), steers traffic on a per-adjacency-and-slice basis
to balance PRB utilization of those PRBs assigned to each
slice between adjacent cells. To justify the need for adjacency
clustering in SAHO+SLA, a third strategy referred to as
SLA-driven MLB with fast convergence over Slice-Aware
HO scheme (SAHO+SLAfast) is considered, which applies
the proposed slice-aware self-tuning algorithm, but omitting
adjacency clustering (i.e., HOMs for all adjacencies in A are
tuned every TI). A simulation without MLB, referred to as
No MLB, is also run as a benchmark.
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For each of the above MLB strategies, 14 optimization loops
(a total of 15 minutes of network activity) are simulated. In
the starting point (i.e., TI=0), the adaptive capacity broker has
already reached steady state. Therefore, resource allocation
per slice remains fixed during the optimization process. The
number of relevant neighbors per cell, #=, is set to 6, with a
total of 427 adjacencies (8 ↔ 9) in the network to be optimized
per slice. The adjacency clustering algorithm results in #6=13
groups of adjacencies. TI is set to 5 s. Recall that, in LHO+LB
and SAHO+LB and SAHO+SLA, HOM is tuned once per
optimization loop for each adjacency. With the above set-up,
a loop lasts for 5×13=65 s, which is a reasonable time to adapt
to rapid changes in network conditions. Finally, (!�<0G=1.2
and F) � (B) = F!' (B) = 0.5 ∀ B ∈ S.

The main FoM to assess algorithm performance is the
percentage of users complying SLA in terms of both )� and
!', (!�6;>10; , computed as

(!�6;>10; =
100
#D

∑
D

(!�18= (D) [%] , (14)

where #D is the number of users in the scenario and
(!�18= (D) is a binary variable that equals ’1’ if slice-specific
)� and !' targets are fulfilled for user D, and ‘0’ otherwise.
(!�18= (D) is computed from information in connection traces
(i.e., numerical performance metrics per user) as

(!�18= (D) = H
(
)� (D)

)�C6C (BD)

)
· H

(
!'(D)

!'C6C (BD)

)
, (15)

where H(·) denotes Heaviside function. (!�6;>10; is cons-
trained to the range [0, 100] to ease the interpretation of
results.

From an operator perspective, maximizing (!�6;>10; im-
plies improving SLA compliance for all tenants, which is
the final objective of the self-tuning process. As a counter-
part, optimal network spectral efficiency (bits/Hz) cannot be
guaranteed since the performance of the best users may be
degraded (although still complying SLA) in favor of cell-edge
users. This FoM is analyzed in absolute terms ((!�6;>10;)
and relative to that obtained with the benchmark ((!�=>A<

6;>10;
),

i.e.,

(!�=>A<6;>10; =
(!�6;>10;

(!�6;>10; 10B4;8=4
. (16)

The overall SLA compliance per service, (!�8
∀ 8 ∈ {�)%,+ ���$, ��%)��, �'�+ �#�} is similarly
computed.

Five secondary FoMs are also considered. The first is the
final (!�dif (8, 9 , B) averaged for all the tuned adjacencies,
showing the capacity of MLB strategies to balance SLA
compliance among neighbor cells. The second is the final PRB
utilization ratio across cells in the scenario, %'�DC8; , as a
proxy of resource usage. The third is the average absolute
HOM deviation per slice from initial settings in the tuned
adjacencies, |X�$" (=) | (B), computed as

|X�$" (=) | (B) = 1
#0

∑
(8, 9) ∈A

|X�$" (=) (8, 9 , B) | =

1
#0

∑
(8, 9) ∈A

|�$" (=) (8, 9 , B) − �$" (0) (8, 9 ,B) | ,
(17)

where = denotes optimization loop index, #0 is the num-
ber of adjacencies in A, and �$" (0) (8, 9 , B) is the initial
intra-frequency HOM value (i.e., in TI=0). Finally, the ratio
between the number of HOs in a simulation compared to the
baseline, =�$=>A<, is also considered as a measure of the
increase in signaling load caused by MLB.

C. Results

To analyze algorithm convergence, Fig. 4.a)–c) show the
evolution of |X�$" (=) | (B) per slice across the optimization
process obtained for all the tested MLB strategies. The (al-
most) stable level observed in the last optimization loops in
all curves confirms that all algorithms converge for all slices.
As expected, SAHO+SLAfast shows the fastest convergence,
since it tunes HOMs for all adjacencies in A simultaneously
every TI (i.e., 5 s). It should also be pointed out that, since
LBO+LB relies on a slice-unaware HO scheme, red curves
in Fig. 4.a) to c) are identical. For the remaining approaches,
the evolution of HOM settings significantly differs per slice.
This observation suggests that, at the beginning of the tuning
process, performance (i.e., load for SAHO+LB, and SLA
compliance for SAHO+SLA and SAHO+SLAfast) in neighbor
cells varies per slice. This phenomenon may be due to: a)
the different spatial traffic distribution per slice, or b) a poor
capacity broker performance for some slices in certain cells.

Fig. 4.a)–c) also give insight into how the tested algorithms
operate in different slices. It is observed that slice 1 presents
the most similar final HOM settings across algorithms. In
this slice, eMBB traffic requires a high PRB allocation per
cell. Hence, slice 1 performance strongly impacts cell PRB
utilization ratio. As a consequence, LHO+LB may perform
similarly to SAHO+LB. Moreover, since !' target for this
slice is not too tight, the level of SLA compliance mainly
depends on )� performance. As throughput is related to PRB
utilization, load-based and SLA-based slice-aware approaches
tend to tune HOMs in the same direction. Nonetheless, HOM
set-up per strategy varies in many adjacencies, leading to
different (!��) % and (!�+ ���$ FoMs, as will be shown
later.

To illustrate the impact of MLB on network performance,
Fig. 5 shows the evolution of (!�=>A<

6;>10;
for all the tested algo-

rithms. It can be observed that, surprisingly, legacy LHO+LB
algorithm presents the worst level of SLA compliance, even
below the baseline case (i.e., (!�=>A<

6;>10;
<1). In contrast to

LHO+LB, all the remaining algorithms (i.e., SAHO+LB,
SAHO+SLA and SAHO+SLAfast) outperform the baseline
case in terms of (!�=>A<

6;>10;
across the whole tuning process

(i.e., curves over 1 in Fig. 5). This behavior confirms the poten-
tial of slice-aware MLB schemes to improve SLA compliance
in NS scenarios. It is remarkable that SAHO+SLA approach
presents unstable (!�=>A<

6;>10;
evolution, with the best initial
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(a) Slice 1 (FTP + VIDEO).

(b) Slice 2 (HAPTIC).

(c) Slice 3 (DRIVING).

Fig. 4: Evolution of absolute HO margin deviation from default
values in tuned adjacencies per slice.

results due to fast HOM tuning followed by an undesirable
strong performance degradation, compensated later.

For a deeper analysis, Table V summarizes the value of
all the considered FoMs at the end of the tuning process
(i.e., average FoM values in TIs belonging to the last op-

Fig. 5: Evolution of the overall SLA compliance in the
scenario.

timization loop), computed globally and broken down per
slice. SLA FoMs per slice reveal that LHO+LB has very poor
performance in slice 3 (DRIVING), with a (!��'�+ � #�
degradation of 12.24% in absolute terms compared to No
MLB. Note that the low target )� for DRIVING users leads to
a reduced PRB allocation per cell to slice 3, which therefore
has a negligible impact on cell PRB utilization that drives
the tuning process in LHO+LB. In contrast, for slices 1
(FTP+VIDEO) and 2 (HAPTIC), with a higher PRB allocation
per cell, LHO+LB outperforms the baseline, with (!��) % ,
(!�+ ���$ and (!���%) �� higher than those of No MLB.
Thus, it can be stated that balancing cell load in NS scenarios
offloads congested cells only for slices accessing a significant
number of PRBs. Even so, LHO+LB performance for slices 1
and 2 is still the worst among the tested MLB schemes.

Regarding slice-aware algorithms, PRB utilization values in
Table V reveal that the improvement in (!�=>A<

6;>10;
shown in

Fig. 5 comes along with a higher usage of radio resources
due to the fact that traffic is offloaded from congested to
underutilized cells. SAHO+SLA shows the best (!�6;>10; ,
with a final improvement of 8.78% in relative terms com-
pared to No MLB (i.e., 72.61% vs. 66.75%), followed by
SAHO+SLAfast, with a (!�6;>10; improvement of 7.34%
compared to No MLB. These results prove that (!�dif (8, 9 , B)
indicator is more powerful than PRB utilization ratio as a
driver for MLB in sliced networks. Per-service SLA FoMs
show that SAHO+LB is competitive to SAHO+SLA only for
HAPTIC users served by slice 2, with (!���%) ��≈79%.
Although the tested algorithms provide significantly different
HOM settings for this slice (shown in |X�$" (14) | (2) values),
the high )� and !' requirements lead to moderate SLA
improvements in all cases, with a maximum (!���%) ��
increase of 2% in absolute terms compared to No MLB.

To understand how SLA-driven algorithms obtain the above
results, Fig. 6 shows the Cumulative Distribution Function
(CDF) of the final SLA compliance per cell in slice 1 for
SAHO+SLA (solid line) and SAHO+SLAfast (dashed line),
compared to No MLB (dotted line). Both MLB schemes show
better SLA compliance in the worst cells at the expense
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TABLE V: Performance comparison of MLB strategies in a NS scenario.

Slice FoM No MLB LHO+LB SAHO+LB SAHO+SLA SAHO+SLAfast

Global
(!�6;>10; [%] 66.75 63.54 70.43 72.61 71.65
%'�DC8; [%] 56.25 59.71 62.07 62.28 63.71
=�$=>A< 1 3.32 3.39 2.41 3.82

Slice 1 (FTP+VIDEO)

(!��) % [%] 39.16 45.41 50.95 57.37 59.07
(!�+ ���$ [%] 56.52 58.87 65.71 68.09 67.95
Avg. (!�dif (8, 9 , 1) 0.39 0.36 0.29 0.25 0.25

|X�$" (14) | (1) [dB] 0 6.67 6.24 6.37 7.20

Slice 2 (HAPTIC)
(!���%) �� [%] 77.67 78.80 79.02 79.04 79.76
Avg. (!�dif (8, 9 , 2) 0.29 0.29 0.26 0.25 0.25

|X�$" (14) | (2) [dB] 0 6.67 6.86 3.74 5.15

Slice 3 (DRIVING)
(!��'�+ �#� [%] 74.84 62.60 73.33 76.18 73.02
Avg. (!�dif (8, 9 , 3) 0.23 0.30 0.18 0.17 0.16

|X�$" (14) | (3) [dB] 0 6.67 6.88 4.94 7.34

Fig. 6: Cumulative distribution of final SLA compliance per
cell for slice 1 (FTP + VIDEO).

of a slight performance degradation in the best cells. This
behavior, also present in slices 2 and 3, is typical on self-
tuning algorithms that balance a FoM across the scenario. In
fact, according to average (!�dif (8, 9 , B) figures in Table V,
SAHO+SLA and SAHO+SLAfast provide the best equilibrium
of SLA compliance in neighbor cells, with a relative reduction
of 35.9%, 10.4% and 26.1% in (!�dif (8, 9 , B) compared to
No MLB for slices 1 to 3, respectively. Thus, balancing SLA
compliance among cells on a per-adjacency-and-slice basis
improves the overall system SLA compliance in NS scenarios.

When comparing SAHO+SLA and SAHO+SLAfast results
in Table V, it is observed that HOM deviations reached
at the end of the tuning process are significantly different,
even if both schemes have the same goal (i.e., equalizing
SLA compliance per slice between neighbor cells). The
highest variation appears in slice 3, with a difference of
2.4 dB in |X�$" (14) | (3) obtained with SAHO+SLAfast
and SAHO+SLA. For a deeper analysis, Fig. 7 depicts the
CDF of final absolute HOM deviation per adjacency in slice
3, |X�$" (14) | (8, 9 , 3), in the tuned adjacencies for all the
tested algorithms. It is observed that SAHO+SLA follows
the most conservative tuning, leaving 20% of HOMs with

Fig. 7: Cumulative distribution of final HOM deviation from
initial setting in tuned adjacencies for slice 3 (DRIVING).

the initial value. In contrast, SAHO+SLAfast performs the
most aggressive HOM changes, with extreme HOM values
in approximately 60% of adjacencies. According to Table V,
the conservative strategy followed by SAHO+SLA turns
into the lowest increment in HOs triggered due to traffic
steering, with =�$=>A<=2.41 (for all the remaining strategies,
=�$=>A<>3). Thus, SAHO+SLA causes the lowest signaling
overload and likelihood of dropped connections due to failures
in the HO process.

The distinct HOM set-up of SAHO+SLA and
SAHO+SLAfast lead to a different final performance.
SAHO+SLAfast only outperforms SAHO+SLA in more
than 1% in absolute terms for FTP users, with (!��) % of
57.37% vs. 59.07% for SAHO+SLA and SAHO+SLAfast,
respectively. Not shown in Table V is the fact that
SAHO+SLAfast dramatically increases the number of
HOs for slice 1 (=�$=>A<=27.16), which does not pay off.
On the contrary, SAHO+SLA outperforms SAHO+SLAfast
in slice 3, with (!��'�+ � #� of 76.18% vs. 73.02%
for SAHO+SLA and SAHO+SLAfast, respectively. More
importantly, SAHO+SLAfast degrades performance for this
slice compared to No MLB case. Actually, SAHO+SLA is
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the only strategy outperforming the baseline for slice 3. The
poor LHO+LB performance, due to a reduced PRB allocation
per cell, has been discussed above. This problem should
be solved by SAHO+LB, taking into account slice-specific
PRB utilization measurements. However, DRIVING users
have a bursty traffic profile consisting of small data chunks
sent periodically that must be scheduled immediately. For a
given cell-slice bandwidth, if data must be simultaneously
transmitted to all DRIVING users, !' SLA may be violated
even if PRB utilization remains low, since no data arrives to
the transmission buffer until the next period. In contrast, if
data bursts for DRIVING users in a cell must be transmitted
at different time instants, average PRB utilization will be
higher, but !' SLA is more likely be complied. Hence,
PRB utilization is not representative of SLA compliance for
slices with low )� but stringent !' requirements. Finally, to
understand the bad performance of SAHO+SLAfast in slice 3,
note that DRIVING users move fast during long connections
(unlike the other considered services). Due to the larger
distance traveled, their radio conditions are subject to a wider
range of variability. Consequently, for these users, aggressive
cell area changes caused by the simultaneous modification of
several HOMs in SAHO+SLAfast can lead to very poor radio
conditions that temporarily prevent data transmission. For
services with high latency and reliability requirement such as
DRIVING, not transmitting a single packet strongly impacts
the level of SLA compliance.

The above results confirm that the slice-aware MLB al-
gorithm with adjacency clustering proposed in this work
(SAHO+SLA) is the best option to enhance the level of SLA
compliance while equalizing end-user satisfaction across the
scenario and keeping a low increase in the number of HOs
due to traffic steering.

D. Execution time

In this work, experiments have been performed on a per-
sonal computer with Intel Core i7-8700 processor working at
3.2 GHz with a RAM of 16 GB. The simulation tool runs in
Matlab 2022a. For the considered scenario (i.e., #2=108 cells
and #==6 relevant neighbors per cell), adjacency clustering
takes 43.5 ms. Likewise, on average, the MLB process (ex-
cluding trace processing, not required in simulations) takes
4.8 ms per adjacency. These times are negligible for the
proposed application, where decisions are taken on a second-
scale resolution. In a live network, the time required to
process connection traces and exchange data between network
equipment must also be considered. To reduce delay, the
computation of (!�(8, B) and (!�( 9 , B) (and the associated
trace processing) can be parallelized.

VI. CONCLUSIONS

In 5G and beyond systems with network slicing, new slice-
aware self-optimization solutions are required to guarantee
SLA compliance. In this work, a novel slice-aware MLB al-
gorithm has been proposed to adjust intra-frequency handover
margins on an adjacency and slice basis with SLA criteria.
Performance assessment has been carried out in a realistic

simulator with slices serving traffic from eMBB and uRLLC
services.

Results have shown the poor performance of slice-unaware
MLB techniques in NS scenarios, especially for slices de-
livering services with a low data rate, neglected by legacy
load balancing schemes. Moreover, the proposed algorithm has
outperformed a slice-aware load-driven MLB scheme, showing
the potential of the novel SLA-based indicator to drive the
tuning process. Additionally, it has been proved that, even with
the proper driver indicator, tuning parameters too often (every
5 s) and in many adjacencies simultaneously dramatically
increases the number of HOs, leading to signaling overload
and possible dropped calls. In 15 minutes of network activity,
the proposed algorithm has improved the overall SLA com-
pliance by up to 8% compared to the case of not performing
any optimization. This improvement has been obtained with a
significantly different final HOM set-up per slice.

The solution proposed in this paper improves SLA com-
pliance by equalizing slice performance among cells. Results
have shown good performance for different slice types in a
realistic environment. However, the optimal handover settings
from a SLA perspective may be different for some adjacencies
and/or slices, which can be learned by a DRL agent. Moreover,
such agents can be retrained to adapt to changes in the network
affecting slice performance (e.g., change in capacity broker),
leading to a faster (and maybe better) convergence. Thus, the
design of DRL-based slice-aware traffic steering solutions is
a promising research line. An interesting option is using a
collaborative multi-agent approach, as done in [53] for the
capacity broker, capturing slice peculiarities and inter-slice
performance relationships. Nonetheless, in the DRL approach,
some practical limitations must also be addressed that do not
affect the algorithm proposed here, such as: a) the reluctance
of network operators to randomly tune parameters by DRL,
which may lead to unsafe network states during exploration
stage, b) time complexity required for agent training and
inference, determining the minimum tuning interval, and c)
data privacy issues preventing tenants from sharing data with
other tenants and/or with the central MANO. These issues may
be alleviated by using federated learning [54].
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