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On the Improvement of Cellular Coverage Maps
by Filtering MDT Measurements

J. M. Sánchez-Martı́n, M. Toril, V. Wille, C. Gijón and M. Fernández-Navarro

Abstract—Cellular networks are constantly evolving, driven by changes in user behavior and device capabilities. To ensure that
networks adapt to these changes, it is of vital importance for mobile operators to have a good understanding of how well their network
meets subscriber needs. For this purpose, the Minimization of Drive Test (MDT) feature has been standardized, allowing operators the
cost-effective provision of geolocated network performance statistics and radio events. However, in practice, positioning errors severely
limit the potential of MDT measurements. In this paper, an in-depth analysis of a large MDT dataset taken from a commercial
Long-Term Evolution (LTE) network shows for the first time several sources of positioning errors in MDT measurements not previously
reported in the literature. To address these, a novel heuristic filtering algorithm is proposed to discard samples with inaccurate location
data. Method assessment is done by checking the impact of filtering on the coverage map built with a real MDT dataset. Results show
that the proposed filtering method significantly improves the accuracy of coverage maps by eliminating unreliable measurements.

Index Terms—MDT, positioning, LTE, coverage, GPS, tile, map, filter.

✦

1 INTRODUCTION

O VER the past years, cellular traffic has steadily in-
creased driven by the introduction of smartphones and

the increase in the average data volume per subscriber. In
parallel, COVID-19 lockdown restrictions have shifted the
geographical distribution of traffic demand from city centers
to residential areas. As a result, some cells experienced very
large increases in traffic, even when only a moderate traffic
growth was observed across the whole network [1].

To cope with the above changing environment, cellular
operators execute re-planning actions to redistribute traf-
fic between neighbor cells (e.g., load balancing), add new
network capabilities (e.g., large antenna arrays) or upgrade
network resources (e.g., bandwidth extension, new carrier
or new site) [2]. The potential impact of these actions is
evaluated with radio network planning tools that estimate
the expected network coverage and capacity with system
performance models. Unfortunately, the increasing com-
plexity of cellular networks makes it very difficult to capture
system behavior with simple analytic models. In the absence
of precise models, many of these tools use measurements
from the live network to build empirical models.

Two valuable inputs for radio network planning are the
real spatial user distribution and propagation conditions.
Such information can be derived from measurements col-
lected by geolocated user equipment. In the past, conven-
tional drive test with specific test terminals provided pilot
strength measurements, which were used to calibrate prop-
agation models for outdoor and indoor scenarios. However,
drive tests are time consuming, limiting the frequency and
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geographical coverage of these measurement campaigns [3].
To circumvent this limitation, 3GPP Release 10 standardized
the Minimization of Drive Test (MDT) feature in order to
automate measurement collection [4] [5]. MDT leverages
User (i.e., subscriber) Equipment (UE) to collect field mea-
surements combining radio performance and geo-location
information.

Cellular positioning methods can be network-based,
network-assisted, UE-based or UE-assisted approaches. In
current LTE systems, the primary positioning method is As-
sisted GPS (A-GPS) [6], where the UE determines its location
by processing GPS signals. For this purpose, a line-of-sight
connection with several satellites and knowledge of orbital
parameters are needed. Such data is downloaded before the
first position fix, which can take several minutes for the first
time (cold fix). To speed up that process, a network server
can provide assistance data (e.g., accurate timing, satellite
Doppler shift, coarse position of the mobile device or dif-
ferential corrections) for a faster and more reliable GPS fix
(warm fix). When GPS signal is not available (e.g., in urban
or indoor environments), fallback positioning methods are
used. In Enhanced Cell Identifier (ECID) [7] [8] [9], the UE
reports the serving cell identifier, the radio link timing ad-
vance and serving/neighbor pilot signal level, from which a
server approximates UE location. Alternatively, in Observed
Time Difference of Arrival (O-TDOA) [10] the UE measures
the time of arrival of positioning reference signals from
multiple cells, from which a server derives user position by
multilateration [11]. Moreover, the use of barometric sensors
has recently been standardized for determining the floor
level indoors [12]. The above techniques are complemented
by other positioning schemes integrated in mobile operating
systems such as fingerprinting/scene analysis [13], prox-
imity sensing [14] and inertial sensors [15]. The reader is
referred to recent surveys for a performance comparison
of the different location techniques in indoor and outdoor
scenarios [16].
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In parallel, mobile positioning techniques have im-
proved, pushed by the success of location-based ser-
vices [17]. Nowadays, mobile user location can be deter-
mined with a resolution of a few meters by combining
legacy network-based schemes (e.g., cell identifier) with UE-
based schemes relying on Global Navigation Satellite Sys-
tems (e.g., Global Positioning System, GPS) [11]. However,
a major drawback of GPS receivers is their high energy con-
sumption (up to 100 mW) [18] [19]. For this reason, modern
mobile operating systems (e.g., Android and iOS) imple-
ment working modes that find the best trade-off between
positioning accuracy and battery consumption [20] [21]. As
a result, mobile devices only update their position when
requested by an application or a significant change in lo-
cation occurs [22]. As will be shown later, this behavior
causes that location information in MDT measurements is
inaccurate most of the time, which limits the value of these
measurements for network operators.

In this work, a simple heuristic algorithm for filtering out
MDT measurements with inaccurate (or outdated) location
information is proposed. Firstly, a preliminary analysis of
real MDT traces proves that energy saving schemes in hand-
sets cause that the GPS receiver is only switched on intermit-
tently. This fact leads in-accurate geo-location information
in MDT reports. From the observation of real traces, a set
of rules is derived to isolate those samples guaranteeing an
adequate positioning accuracy. The input to the algorithm
are common data fields in MDT reports. Method assessment
is carried out with a large MDT measurement dataset taken
from a commercial Long Term Evolution (LTE) network, by
comparing the coverage map built with the original and the
filtered samples.

The rest of the paper is structured as follows. Section 2
presents related work to highlight the contribution of this
work. Section 3 introduces MDT measurements and de-
scribes the considered dataset. Section 4 formulates the
problem of filtering MDT measurements. To this end, a
preliminary analysis is carried out to unveil sources of
inaccuracies in location information in MDT measurements.
Section 5 outlines the proposed filtering algorithm for de-
tecting MDT measurements with reliable location. Section 6
presents method assessment. Finally, Section 7 summarizes
the main conclusions of the work.

2 RELATED WORK

Several works report the use of MDT measurements to build
radio environment maps for cellular network optimiza-
tion [23]. The concept was first introduced in [24], where a
function is presented to process geolocated measurements
reported by users to build radio performance maps (re-
ferred to as X-map). Later studies present direct methods
that apply advanced interpolation techniques (e.g., inverse
distance weighted [25] [26], nearest neighbors (NN) [27],
splines [28] [25] or kriging [25] [29]) to build coverage,
interference or signal quality maps from sparse MDT data
reported by location-aware mobiles. Alternatively, indirect
methods make use of regression techniques based on esti-
mated or known parameters of the transmitter and radio
propagation modeling (e.g., transmit power [30] or trans-
mitter location [31]).

In all approaches, user position estimates are affected
by the inaccuracies introduced by the wireless channel
(e.g., non-line of sight, shadowing, multipath, etc.). Thus,
several studies aim to characterize uncertainty due to these
processes. In [32] [33], an analytical model is presented to
estimate the impact of inaccurate user positioning due to
GPS noise on cell edge and cell center coverage estimation.
In [34], the impact of aggregating signal level measurements
per map tile is evaluated. Then, an algorithm is proposed
to estimate the optimal tile size for a given positioning
accuracy and user density. In [35], an MDT database is used
to characterize the geographical distribution of multipath
effects and Doppler shift in cellular propagation channels.
To reduce the impact of positioning errors, data filtering
algorithms can be used, namely exponential smoothing,
least-square methods [11], Bayesian filtering (e.g., Kalman
filter [36] or particle filter [37]) and machine learning [38].
Some of these algorithms include dead reckoning tech-
niques to predict the current position from past measure-
ments of user direction/speed and elapsed time [15].

Most of the above-mentioned schemes to build coverage
maps with MDT data were validated with simulated data,
which might not reflect the true mechanisms behind MDT
measurements. In the last years, handset vendors have
introduced many functionalities to reduce battery consump-
tion and keep user data privacy. It is known that these
functionalities negatively affect the accuracy of positioning
accuracy [39] [40]. However, to the authors’ knowledge, no
previous work has checked the impact of these functions
on the accuracy of coverage maps built with MDT datasets.
Likewise, no work has checked how widespread is the use
of these features in real networks, in the absence of an
official statement from vendors or a priori knowledge of
how users set their terminals.

2.1 Contributions

In this work, a heuristic data filtering algorithm is proposed
to discard samples with inaccurate location data measure-
ments. Unlike the current practice in cellular network plan-
ning of treating each MDT measurement independently, the
proposed filtering method relies on the construction of MDT
traces. Moreover, unlike classical data filtering algorithms,
the aim is not to reduce location errors due to GPS noise,
but to detect abnormal states of the UE positioning system
associated to energy saving and privacy modes. The main
contributions of this work are: a) the disclosure of limita-
tions on user location information in MDT data currently
reported by handsets in different environments, b) a simple
heuristic algorithm to filter out MDT measurements whose
location information is not accurate and up-to-date due to
abnormal UE positioning states, and c) an analysis of the
impact of the above inaccuracies on the construction of
coverage maps by direct methods over a recent MDT dataset
taken from a live network.

3 MDT MEASUREMENTS AND DATASET

In this section, an introduction to MDT measurements is
first presented. Then, the MDT dataset used in this work is
described.
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3.1 MDT measurements
Two MDT modes of operation can be configured in LTE: im-
mediate and logged. The active mode is set on a per-tracking
area basis. In immediate mode, MDT measurements are
uploaded to the MDT server on the fly as long as a radio
connection between the UE and the eNode B (eNB) is active.
In logged mode, MDT information is measured and stored
in the UE periodically (even in IDLE mode) during a certain
logging duration, and data is then uploaded to the MDT
server as 1 or more consecutive MDT reports when the
UE switches to CONNECTED mode. The logging period is
the maximum reported time that a UE can store location
measurements and is typically set to 2 hours by network
operators [41]. A longer collection window can be defined
by combining measurement from multiple logging periods.
Furthermore, the logging interval is defined as the time
between samples that each UE stores in the scenario, often
set to 1.28 seconds. Logging period and interval determine
the amount of data reported per device on the network.
The longer logging period and shorter interval, the larger
number of measurements, and hence the higher location
accuracy for moving users. The downside is a higher traffic
volume in the radio interface caused by the MDT feature
and higher computational load in network management
tools.

Each MDT sample consists of about 70 predefined met-
rics, namely user and cell identifier, radio channel infor-
mation (e.g., reference signal received power/quality), posi-
tioning information (e.g., latitude, longitude, altitude) or po-
sitioning accuracy (e.g., uncertainty ellipsoid, confidence),
among others [42]. In logged mode, the large number of
reported MDT samples (around 2 600 000 samples per UE
and day) poses a storage and data processing problem (1 GB
of data per day and cell in a suburban environment). To
circumvent this issue, only a subset of relevant metrics is
stored in the database.

3.2 Dataset
The MDT dataset considered in this work is obtained from
a live LTE network. The dataset features are summarized
in the table 1. In it, a site with three tri-sectorized cells is
configured to store MDT reports in logged mode. Since UEs
can store MDT measurements for up to 2 hours (in case the
UE does not switch to connected mode for that time), some
reports might include samples with serving cell different
from the 3 cells collecting measurements if the user is highly
mobile. For simplicity, the considered scenario is focused on
the area covered by the main tri-sectorized eNB and the two
nearest eNBs, covering 11.5 km2 in a suburban area with
10 000 inhabitants. The carrier frequency of cells in the main
eNB is 1 800 MHz, while neighbor eNBs use both 800 MHz
and 1 800 MHz.

In the above described scenario, MDT reports are col-
lected during 7 days. Thus, the dataset is consists of 7 files
with a total of 15 069 214 samples from the selected eNBs
(164 380 samples in the 800 MHz band and 14 904 834 in
the 1 800 MHz band). For simplicity, the study is carried out
over data from the 1 800 MHz band. To ease data storage
and processing, the following features, reported on a per-
measurement basis, have been stored for each MDT report:

LTE band 800 MHz / 1 800 MHz
MDT mode Logged
Logging period 7 200 seconds
Logging interval 1.28 second
Area 11.5 km2

Environment Suburban/Rural
Duration 7 days
Number of samples 164 380 (800 MHz) / 14 904 834 (1 800 MHz)

TABLE 1: Features of the MDT dataset used in this work.

Fig. 1: Cumulative distribution function of MDT traces
duration (61 327 traces).

1) MDT cell: cell where the MDT report is uploaded.
2) MDT upload time: timestamp of MDT report upload

to the MDT server. The combination of upload time
and C-RNTI is used to identify a MDT report from
a specific UE univocally.

3) Serving cell: cell serving the UE when each mea-
surement was taken.

4) Cell Radio Network Temporary Identifier (C-RNTI):
temporary identifier used by an UE to upload data
to the MDT server. C-RNTI is assigned at the end of
the random access procedure and reassigned when
the UE is inactive for a complete System Frame
Number (SFN) cycle (i.e., 10.24 seconds) [43].

5) MDT time: timestamp indicating when each mea-
surement in the MDT report was taken by the UE.

6) Longitude and latitude as position information.
7) Positioning accuracy, given by uncertainty and con-

fidence [44]. Uncertainty is the length of the semi-
major axis of the ellipsoid quantifying the location
error. Confidence is paired with uncertainty and
represents the probability with which a point is in-
cluded within the error ellipsoid. For brevity, these
features are hereafter referred to as uncertainty and
confidence.

8) Reference Signal Received Power (RSRP) as a mea-
sure of radio channel conditions from the serving
cell and its closest neighbor (if any).

From the complete dataset, 61 327 user mobility traces
(hereafter referred to as MDT traces) are built by merging
MDT reports with the same C-RNTI and serving cell in a
temporal window of 2 hour maximum. By joining several
consecutive reports from the same UE it is to obtain larger
traces. Fig. 1 shows the resulting cumulative density func-
tion of trace length. It is observed that 6.5 % of traces are
longer than 1 754 seconds (≈ 30 minutes) comprising 47.5 %
of the database due to huge amount of reports.
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4 PROBLEM FORMULATION

In this section, a preliminary analysis over real traces is
carried out to unveil sources of inaccuracies in location
information in MDT measurements. Then, some design
criteria for the filtering process are discussed.

4.1 Analysis of abnormal events in MDT traces
MDT traces allow checking the spatio-temporal evolution
of UEs in the network. A comprehensive analysis has been
carried out manually to detect abnormal events in MDT
traces based on the above-described subset of features. The
origin and impact of such events are discussed next.

4.1.1 Duplicate MDT reports
Some terminals upload the same information block to the
MDT database twice. Fig. 2–(a) shows an example of du-
plicate blocks uploaded from the same UE with a short
time difference. The first and third columns represent date
and time for upload and measurements. In the first two
columns, it is observed that the same UE (identified by
C-NRTI) uploads the two blocks (highlighted in different
colors) with a 434 ms difference. Specifically, the first block
(green background) comprises information collected during
19 s (from 17:54:29 to 17:54:48) and uploaded at 19:20:26.597,
whereas the second block (red background) comprises the
same block of information but uploaded at 19:20:27.031.
A more comprehensive analysis reflects that approximately
15% of samples in the dataset contain duplicate information.
These duplicate reports from specific users unnecessarily
increase the computational load and introduce bias on cov-
erage statistics both at tile and network level.

4.1.2 Latitude rounding error
Some samples in MDT traces show the latitude field
rounded to the lower sexagesimal degree. Such a rounding
operation (only present in latitude) might be introduced
by an obfuscation scheme due to the lack of permissions
to access user location [45]. As a result, position is shifted
tens of kilometers South/North, while longitude is still
correct. To illustrate this phenomenon, Fig. 2–(b) represents
the spatio-temporal evolution of positions in the trace of a
static UE with rounded latitude error. Only latitude values
are depicted for privacy reasons. By analyzing time values,
it is observed that the trace consists of 5 consecutive periods
where UE location switches between two distant points. A
closer analysis shows that the latitude value of the point
on the South has been rounded down to the lower integer.
Such an undesirable effect, in this specific case, causes
abrupt changes in user position of 25 km. These errors can
be detected by checking decimals in the reported latitude
value.

4.1.3 Defective positions
Detecting wrong samples without knowing the real UE
position is a challenging task. Nonetheless, some reported
positions show non-feasible mobility patterns far beyond
the scope of the network. Such events appear in the trace
shown in Fig. 2–(c), where some isolated positions spread
around the globe are reported, whereas data come from
users located in a European country. These outliers can

easily be detected and eliminated by defining a bounding
box based on coordinates of the country served by the
network.

4.1.4 Dead reckoning
In high mobility traces, originated by UEs traveling in a
vehicle (e.g., car or train), valid samples should be located
on a road or railway track. However, mapping traces shows
that the vehicle often follows a straight path finishing off
the roads. Fig. 2–(d) shows a trace example of a UE in-
side a car on a motorway. It can be observed that, after
some time on the road, the UE starts to describe a straight
path for a few seconds. This event indicates signal loss or
deactivation of positioning systems. Dead reckoning (a.k.a.
inertial navigation) [46] is a relative positioning scheme that
complements absolute positioning schemes when location
reference signals are lost (e.g., indoors). It consists of in-
ferring a new location/heading based on knowledge about
movement speed and direction from a known starting point.
In modern smartphones, movement is estimated by inertial
sensors (e.g., accelerometer).

4.1.5 Intermittent reporting of positioning accuracy
The analysis of MDT traces shows that some UEs do not
report any location accuracy information. As a result, 91.12%
of MDT reports do not include any location accuracy infor-
mation. This might be due to a reduced capability of GPS
chipset. More interestingly, some UEs report location accu-
racy intermittently. For instance, Fig. 2–(e) shows the evolu-
tion of data in a trace from a quasi-static Android terminal.
The light blue and red markers present the reported value
of uncertainty and confidence, respectively. The deep blue
markers depict the distance to the first location reported in
the trace, computed using the Haversine formula (1)

d[n] = 2r ∗ arcsin
(√

sin2(ϕ[n]−ϕ0

2 ) + cosϕ0cosϕ[n]sin
2(λ[n]−λ0

2 )

)
(1)

where r is the Earth radius, λ0 y ϕ0 are the reference latitude
and longitude respectively and, λ[n] and ϕ[n] denote the
latitude and longitude reported in sample n. Gaps in the
distance curve point out the absence of location data for
more than one second. After one minute, uncertainty and
confidence data stop and a fixed location is reported until
the next cycle. As will be discussed later, this behavior is
due to energy saving modes in current mobile operating
systems, where GPS is switched off most of the time to
increase battery life. In particular, Android devices with
Google Location Services enabled periodically report user
location to Google servers [47]. Likewise, iOS devices main-
tain GPS off until apps request user location [22]).

4.2 Design principles
The above-described problems justify the need for filtering
MDT measurements. Such a filtering can be formulated
as a classification problem whose aim is to identify MDT
samples with correct location data. The number of mea-
surements in logged MDT databases is extremely large,
since UEs are idle most of the time and measurements are
registered on a second basis. Moreover, users tend to be
static, causing MDT measurements to be highly redundant.
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(a) Duplicate reports in the original MDT database. (b) Apparent changes in user latitude due to rounding errors.

(c) User position offset due to dead reckoning. (d) Defective positions reported by a single UE.

(e) Intermittent reporting of positioning accuracy information
and convergence of uncertainty value.

Fig. 2: Abnormal positioning events detected in the preliminary analysis of MDT traces.
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(a) Static device with rounded latitude and intermittent posi-
tioning accuracy event.

(b) Dynamic device traveling inside a car with intermittent
positioning accuracy and dead reckoning event.

Fig. 3: Evolution of distance from the initial point (blue squares) and relevant events in two real MDT traces.

This property can be used to design restrictive filtering
algorithms that strengthen the criteria fulfilled by a location
measurement to be tagged as accurate. Thus, algorithms
might discard correct measurements, as long as they discard
incorrect ones. Yet, the number of output measurements
must be large enough to ensure that important regions of
the map are covered properly. This requirement is satisfied
when the number of measurements per map tile is enough
to ensure robust performance estimates. Thus, an important
figure of merit of any MDT filtering algorithm is the average
number of output samples per map tile and the size of
confidence intervals for indicators derived per tile from
MDT measurements.

Another important figure of merit is the computational
load. Current filtering approaches are based on processing
individual MDT measurements for simplicity. However, the
number of samples discarded by these methods is small.
More sophisticated algorithms can exploit the time depen-
dence between features in user mobility traces to identify
correct location measurements. However, complex opera-
tions with location data should be avoided for the sake of
efficiency.

5 HEURISTIC FILTERING ALGORITHM

In this section, a novel algorithm is presented to detect MDT
measurements with correct positioning data. Unlike current
approaches that treat data on a sample-by-sample basis, the
proposed algorithm relies on user mobility traces to infer
states of the UE positioning system. Filtering principles are
derived from rules aiming to identify the different stages
of the handsets. For this reason, trace analysis is first pre-
sented to illustrate the rationale of the algorithm. Then, the
workflow of the algorithm is outlined.

5.1 Rationale of the algorithm

The proposed algorithm tackles the problem of classifying
MDT measurements with heuristic rules derived from the

analysis of real MDT traces. The analysis of these traces
shows a cyclical pattern in many of them.

Fig. 3–(a) presents a long trace from a static UE. The
analyzed MDT report, comprising 2 hours of measurements,
is uploaded at 17:27:07, when the mobile identified by
C-RNTI 49546 enters connected mode. In the idle period
from 13:33:47 to 15:33:15, it is observed that uncertainty
and confidence tends to be reported periodically every 10
minutes. As stated above, this behavior is due to energy
saving mode. In particular, the trace comprises 9 measure-
ment cycles. In most of them, the device reports uncertainty
and confidence for 1 minute and then stops for the next 9
minutes. This is explained by the fact that Android devices
with Google Location Services report user location every 10
minutes, which coincides with the period observed in Fig. 3–
(a). A closer inspection of Fig. 2–(e) shows that uncertainty
data, when reported, shows a convergence period, where
its value progressively decreases. Such a period lasts for 1
minute, which is the typical time-to-first-fix in a warm start
with A-GPS [48]. For this reason, this period is hereafter
referred to as GPS acquisition period.

From the large distance values observed in the upper
part of Fig. 3–(a), it can be inferred that latitude reported
by the UE at the acquisition period is rounded to the nearest
integer for privacy reasons. This behavior has been observed
in many UEs. Immediately after, a valid position is reported,
which is maintained for the next 9 minutes, reducing the
number of valid measurements. Note that, even if a different
valid position is reported in each measurement cycle, the
distance between the reported locations is small. This fact
suggests that the user might be static and those differences
might be due to GPS location errors.

To confirm the cyclical pattern observed in static UEs, the
analysis is now focused on dynamic UEs, that travel several
kilometers within an information block. Fig. 3–(b), depicts
an MDT trace of a dynamic UE traveling 33.68 km in 38 min-
utes. The trace comprises 4 cycles with the above-described
stages. Every 10 minutes, the device reports uncertainty and
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(a) Dynamic trace reporting up-to-date position and dead reck-
oning effect.

(b) Orthophoto.

Fig. 4: Graphical representation of a moving user (dynamic
trace) including up-to-date position and dead reckoning
effect.

confidence data for 1 minute approximately. During this
period reported positions follow the road. Then, a straight
path is observed due to dead reckoning. Dead reckoning
works for some time (typically 30 seconds), after which
the reported location remains fixed (in most cases off the
road). Finally, the cycle starts again 8.5 minutes later with
valid positions on top of the road. A closer analysis reveals
that the start of dead reckoning, in most cases, coincides
with the interruption of uncertainty/confidence reporting.
Fig. 4 present a relevant example of this phenomenon.
Fig. 4–(a) presents a trace from a user traveling at high
speed (referred to in the text as dynamic trace). Fig. 4–(a)
shows the values of distance (measured from the initial
point, defined by the first valid location reported in the
trace), uncertainty and confidence evolving with time. It
can be noticed that the UE first reports the uncertainty and
confidence values (hence, his/her handset has a GPS chipset
that provides that information) and then stops doing so.
Fig. 4–(b) shows the orthophoto of the trace. Blue markers
represent samples reporting uncertainty and confidence,

while green markers represent the remaining ones. By look-
ing at green markers, it seems that the UE leaves the road
following a straight path. Such a behavior suggests that
the UE is in a period of dead reckoning. This effect of
reporting uncertainty/confidence and then going through
a dead reckoning state has been observed in many traces
from dynamic users in the dataset. it is demonstrated the
start of the dead-reckoning effect is usually derived from
the end of report of the accuracy position measurements.
This suggests that GPS is deactivated at the end of the
acquisition period. However, in traces where GPS acqui-
sition is shorter than 1 minute, it has also been observed
that the next reported positions (until 1 minute) still follow
the road accurately. This fact suggests that, in UEs with a
cyclical reporting pattern, GPS is activated for at least 1
minute, even if uncertainty/confidence may be reported for
a shorter interval if GPS acquisition takes less time. These
samples shortly after the GPS acquisition period, obtained
while GPS is in tracking mode, provide the most accurate
location information. It has also been confirmed that every
cycle has at least 1 correct sample at the end of the GPS
acquisition period.

The above-described examples are representative of the
typical behavior of MDT traces. From those findings, it
can be concluded that: a) location data in MDT measure-
ments is outdated (=inaccurate) most of the time, and b)
uncertainty/confidence data can be used to isolate accurate
location samples. Both principles are used in the algorithm
proposed next.

5.2 Algorithm outline
The algorithm consists of three stages: data pre-processing,
trace construction and sample classification.

5.2.1 Data pre-processing
The process starts by eliminating duplicate MDT reports
by identifying samples with the same serving cell, C-RNTI
and upload time. Likewise, MDT samples with defective
position are detected and discarded by defining a bound-
ing box based on the expected geographical area covered
by the network. Then, the subset of features described in
section 3.2 is selected to reduce storage and computational
requirements.

5.2.2 Trace construction
Individual MDT traces are built by merging consecutive
MDT reports uploaded in the same cell with the same
C-RNTI. As a result, the time period covered by a trace can
span from a few seconds up to several hours, depending on
the last time the UE entered connected mode.

5.2.3 Sample classification
Fig. 5 shows the workflow of the algorithm. It is observed
that each sample is classified into one of the following
groups, based on reporting events and stages described in
section 4.1:

1) Rounded: samples with rounded (i.e., wrong) lati-
tude value.

2) Non-convergent acquisition: samples including ac-
curacy information, but with uncertainty value
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Fig. 5: Workflow of the proposed filtering algorithm, including internal classification rules and output labels.

larger than the above threshold. Position reported in
these samples is considered to have an unacceptable
error. This condition could be relaxed (e.g., by in-
creasing the threshold) in an attempt to repopulate
tiles without samples at the expense of a lower
accuracy.

3) Convergent acquisition: samples including position-
ing accuracy information where uncertainty is be-
low a certain threshold (in this work, 20 m). Position
reported in these samples is considered to have an
acceptable error.

4) Tracking: samples reported at the end of the acqui-
sition stage (identified by the interruption of un-
certainty/confidence measurements), which should
report valid positioning information.

5) Unknown: this group includes a) samples not be-
longing to any of the previous groups in traces
that include uncertainty/confidence measurements,
and b) samples in MDT traces that do not include
uncertainty/confidence measurements, where it is
not possible to identify the acquisition and tracking
stages of the GPS receiver.

6) Dead reckoning: samples describing a straight path
during a minimum of 30 s. Position reported in these
samples is considered to be invalid, as it cannot be
guaranteed to be up to date for high mobility users.

7) Deactivated: contiguous samples when position re-
mains fixed for a long period (e.g., 9 minutes),
suggesting that GPS receiver is disconnected.

To classify samples, the algorithm analyzes each MDT
trace sequentially. All samples are initialized to unknown.
To start with, the algorithm searches for the first sam-
ple either with rounded latitude or including positioning
accuracy information. Both conditions indicate the start

of the GPS acquisition period in mobiles with a cyclical
reporting pattern (rounded latitude for mobiles unable to
report positioning accuracy due to privacy issues, start of
confidence/uncertainty for mobiles with chipsets that can
provide that information). In case of rounded latitude, the
following samples with rounded latitude are also labeled
as rounded, until the first sample with normal latitude
is detected. In case of first uncertainty/confidence value,
the following samples with that information are classified
as convergent acquisition if uncertainty is below the pre-
defined threshold, and non-convergent acquisition otherwise.
This process follows until the first sample with no accuracy
information is detected (end of GPS acquisition). If that
sample is more than 1 minute after the start of the cycle,
it is assumed that GPS is deactivated at the end of the GPS
acquisition period, and only this sample is classified as track-
ing. In contrast, if that sample is more than 1 minute after the
initial sample of the cycle, and the previous sample is tagged
as convergent, the next samples until 1 minute are classified
as tracking, to reflect the longer GPS tracking period. Once
GPS deactivation is identified, the algorithm searches for a
sufficiently long period (at least, 40 seconds) when location
is fixed. Once detected, the algorithm processes the trace
backwards, to check if the preceding samples in the last 30
seconds reflect any dead reckoning effect. For this purpose,
the instantaneous UE speed is estimated from distance and
time between consecutive samples. Successive samples with
the same speed in this 30-second period are classified as dead
reckoning. Then, following samples with exactly the same
position are classified as Deactivated.

Only samples belonging to convergent acquisition and
tracking groups are considered valid. Thus, once classifi-
cation is performed, data samples classified as unknown,
rounded latitude, non-convergent acquisition, dead-reckoning are
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discarded, whereas samples classified as convergent acquisi-
tion and tracking are accepted.

6 PERFORMANCE ASSESSMENT

This section presents the results obtained by the proposed
filtering algorithm over the dataset described in section 3.2.
Analysis set-up is described first and results are presented
later.

6.1 Experimental set-up
For computational efficiency, the proposed algorithm is im-
plemented in different programming languages. Data pre-
processing is carried out in Python with Pandas [49] and
Numpy [50] libraries, used for data manipulation and nu-
merical calculation, respectively. Then, measurement clas-
sification and filtering and the representation of traces in
maps is carried out in MATLAB environment using the
Mapping Toolbox [51].

It should be pointed out that building ground truth data
would require a comprehensive measurement campaign
with different handsets available in the market, as posi-
tioning reporting schemes largely vary between vendors.
Such an approach would not reflect the actual share of
different operative systems, terminals and user settings in
the network. For this reason, in the absence of ground truth,
method assessment is done by checking the consistency of
the original and filtered coverage maps on a dataset taken
from a commercial network.

Preliminary analysis breaks down the execution of the
algorithm over 2 MDT traces. This experiment aims to
analyze the filtering performed by the proposed algorithm
on 2 MDT traces. Trace 1 is shown in Fig. 3–(b), belonging to
a high-mobility user. Specifically, a 10-minute period of the
trace is analyzed in this experiment, comprising 424 samples
from the complete trace of 1625 samples. Trace 2 is shown
in Fig. 3–(a), belonging to a static UE. In this case, the whole
trace is analyzed, including 4374 samples collected during
120 min. Results are analyzed by representing positioning
data on the globe via orthophotos.

Subsequently, a comprehensive analysis is performed to
show the benefit of the proposed filtering algorithm in the
automated construction of coverage maps. To this end, the
algorithm is applied over a complete dataset of 61 327 MDT
traces, comprising 18 363 186 measurement samples. Focus-
ing on the studied area, a total of 15 069 214 samples are
obtained from the original dataset. A preliminary analysis
(not included here) shows that RSRP measurements in a tile
tend to be Student’s T distributed both before and after the
filtering process.

The impact of filtering is analyzed by constructing 3
different maps for the original and filtered datasets:

1) Density map: map showing the number of samples
per tile, this is used to detect the most crowded
areas.

2) Coverage map: map representing the average RSRP
of all MDT samples positioned in each tile of the
scenario, used by operators to detect coverage holes.

3) Error margin map: map showing the error margin
of the average RSRP computed per tile, used to

check the robustness of coverage level estimates.
The error margin is computed per tile for a Student’s
T-distribution and 90% confidence level as

CIT−distribution = RSRP ± tn−1
σ√
n
, (2)

where RSRP is the average RSRP estimated per tile, σ is
the standard deviation of RSRP measurements in the tile,
n is the number of samples per tile, n−1 are the degrees
of freedom and t is the value of Student’s T-distribution
depending on n and confidence level (90 % in this work).

The above-described maps are generated for the initial
dataset (after removing duplicate MDT reports) and the
filtered dataset containing only samples with valid posi-
tioning information. Maps are constructed with a 20-meter
resolution. A 20*20m tile size is large enough to ensure that a
significant share of tiles in populated areas have many MDT
measurements, which reduces the uncertainty of signal level
estimates derived by averaging samples per tile. At the same
time, memory requirements are kept within reasonable lim-
its when covering large geographical areas. Likewise, tile
size is small enough to reduce spatial quantization error so
as to capture large structures like blocks of building and
motorways. Location accuracy threshold is fixed to the tile
resolution (20 meters). For robustness, only tiles with more
than 10 samples are considered in the analysis.

6.2 Results

6.2.1 Experiment 1 - Proof of concept

Fig. 6–(a) illustrates how the proposed algorithm classifies
samples in trace 1 (dynamic UE). It is observed that the algo-
rithm identifies 4 types of samples. First samples including
accuracy information are classified as convergent acquisition.
Then, the tracking phase is detected for the next minute.
After that, thirty seconds of dead-reckoning starts, followed
by a fixed location until confidence/uncertainty is reported
again and the cycle restarts. As a result of filtering, 192 out
of 1625 samples (i.e., 11.82 %) are defined as valid. Fig. 6–(b)
maps the trace over an orthophoto. Markers are colored as
in the legend of Fig. 6–(a). It is observed that all samples
classified as convergent acquisition and tracking (blue and
red markers) fall on the road, and are most likely valid.
In contrast, dead reckoning and fixed samples fall outside
the road, showing that those measurements are incorrectly
located.

Fig. 7–(a) depicts the classification performed by the
proposed algorithm in trace 2 (static UE). The figure shows
how, after each period of rounded latitude, the algorithm
classifies samples as tracking until completing a 1-minute
interval. Then, it classifies samples as deactivated when no
movement is detected, until movement is detected or a
new period of rounded latitude or positioning accuracy
reporting is detected. In this trace, only 125 out of 4375
samples are considered valid (i.e., a 2.86 %). Fig. 7–(b) maps
the trace onto an orthophoto. It is observed that filtering
has discarded many samples (grey markers) outside and
inside the building, making it easier to determine the correct
location of the UE.
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(a) Internal classification of the algorithm.

(b) Orthophoto.

Fig. 6: Graphical representation of the trace generated by
a user traveling by car in a single period of 10 minutes
(experiment 1 – dynamic UE).

6.2.2 Experiment 2: Comparison of original and filtered
maps

The proposed algorithm detects 1 207 908 valid samples in
the dataset (8.02 % of the samples available after removing
duplicate MDT reports). To check the impact of filtering,
Fig. 8–(a) and (b) show the density maps created with the
original and filtered dataset, respectively. The number of
samples is expressed in logarithmic units. It is observed that
the aggressive filtering causes a significant decrease in the
number of samples in most tiles. Specifically, the average
number of samples per tile in the original and filtered maps
is 519.38 and 41.72, respectively. Likewise, the number of
tiles with more than 10 measurements in the original and
filtered maps is 6437 and 2751, respectively. The impact on
the latter indicators is clearly visible in the lower part of the
figure, where it is observed how filtering eliminates many
samples that fell out of the road in the original dataset.

Fig. 9–(a) and (b) depict the coverage maps obtained

(a) Internal classification of the algorithm.

(b) Orthophoto (deleting rounded latitude positions).

Fig. 7: Graphical representation of the trace generated by a
user inside an office building in the entire MDT report (ex-
periment 2 – static UE).

with the original and filtered dataset, respectively. For clar-
ity, a georeferenced map of the scenario is overlapped.
Triangular markers represent eNB positions and antenna
azimuth, with the southernmost eNB being the one col-
lecting MDT reports. By comparing RSRP levels in both
maps, it is confirmed that the overall spatial distribution
of coverage levels remains the same after filtering. Note that
tiles with less than 10 samples after filtering are not rep-
resented in Fig. 9–(b). However, in the filtered dataset, the
shape of roads and buildings can clearly be distinguished
by suppressing samples in nearby green fields, where the
probability of finding users is very low.

For a more detailed analysis, Fig. 10–(a) and (b) show
a zoom of the coverage map in an area near the eNB
collecting MDT traces before and after filtering, respectively.
The figures cover an area of 4,4 ha with a mixture of indoor
and outdoor zones, including a roundabout on the right and
a set of buildings on the left, located a few hundred meters
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(a) Original dataset. (b) Filtered dataset.

Fig. 8: Density maps showing the number of samples per tile in logarithmic scale.

(a) Original dataset. (b) Filtered dataset.

Fig. 9: Coverage maps constructed by direct method (average RSRP per tile).

(a) Original dataset (b) Filtered dataset

Fig. 10: Coverage map in a zoomed area including indoor and outdoor environments.
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Fig. 11: Zoomed area of the scenario showing dead reckon-
ing on roads and roundabouts (outdoor environment).

away from the eNB in line-of-sight conditions. Fig. 10–(a)
shows that RSRP levels in the outdoor area surrounding
the building (green area and road highlighted with a black
square) range from -108 to -100 dBm, which are too low for
the line-of-sight conditions and small distance to the eNB.
Moreover, on the roundabout, contiguous tiles with abrupt
changes in RSRP are observed (e.g., -82 dBm vs. -105 dBm).
In contrast, in Fig. 10–(b), RSRP values in outdoor areas
around the building are significantly higher (between -98
and -91 dBm), which are more consistent with the favorable
propagation conditions. Furthermore, the above-mentioned
abrupt changes of RSRP are smoothed out, showing more
consistent results. A closer analysis shows that inconsis-
tencies in the original map are mainly originated by dead
reckoning periods, where UE trajectories are extrapolated
in wrong directions (e.g., fast moving car inside a building)
and static periods when a fixed latitude is reported for a
moving user (e.g., user moving from indoors to outdoor or
viceversa). Fig. 11 presents data samples belonging to sev-
eral MDT traces collected near a roundabout. Blue stars and
red circles represent location measurements before and after
filtering, respectively. Original samples describe straights
paths, suggesting that UEs in cars enter green fields (which
has no sense). Such an undesirable effect is reduced after
filtering.

To better check the consistency of coverage maps, an
MDT trace is collected in an outdoor walk using a smart-
phone with GPS enabled to ensure that GPS is always in
tracking mode. As the path runs through an open area,
GPS noise should be much smaller than tile resolution (20
meters). Thus, the coverage map built with this trace can
be considered as ground truth. RSRP values registered in
the trace, depicted in Fig. 12, are compared to those in the
same tiles in the original and filtered coverage maps. It is
observed that values in the trace are closer to those in the
map created with the filtered dataset (Fig. 10–(b)) than those
in the original map (Fig. 10–(a)). Specifically, an average
difference of 5 dB is computed in the former case, whereas
a difference of 10 dB is computed in the latter case.

By filtering out inconsistencies, signal level deviations

Fig. 12: Coverage map from MDT trace of a device under
controlled test.

in each tile should be lower, resulting in more robust esti-
mates of the average RSRP per tile. To check this statement,
confidence intervals are calculated per tile with (2). Again,
only those tiles with more than 10 samples are considered.
Fig. 13–(a) present the cumulative density function of the
standard deviation of RSRP per tile in the original and
filtered map. Note that the filtered map has less tiles with
measurements than the original map. For a fair comparison,
both figures also break down the cumulative density func-
tion of the original map for tiles discarded and accepted
by the filtering process (denoted as common and discarded
tiles, respectively). From Fig. 13–(a), it can be inferred that
the 3686 tiles in the original map left unpopulated by the
filtering algorithm tend to have a larger standard deviation,
as a result of wrongly located measurements. Moreover,
the remaining 2751 tiles (common tiles) also show lower
standard deviation in the filtered map.

The reduction in the number of samples per tile by
filtering might jeopardize the reduction in standard devi-
ation when computing RSRP averages per tile. Fig. 13–(b)
presents the cumulative density function of the confidence
margin per tile with the same break down as in Fig. 13–(a). It
is observed that discarded tiles in the original map tend to
have a large confidence margin, due to a larger standard
deviation from incorrectly located measurements. Such a
map clearance is one of the main benefits of the proposed
algorithms. This is achieved at the expense of increasing
confidence margins in the remaining tiles due to the lower
number of samples. As a result, the 99th percentile of the
confidence margin distribution is 1.1 dB lower after filtering
(5.8 dB in the original dataset vs 4.7 dB in the filtered
dataset). Thus, it can be concluded that filtering reduces
large errors when estimating the average signal level per
tile.

For a deeper analysis, Fig. 14 depicts a scatter plot of the
90% confidence margins in the original and filtered map.
Each point in the figure represents a tile. Red and blue mark-
ers correspond to tiles in the original and filtered coverage
map, respectively. It is observed that average confidence
margins are consistently smaller in the filtered map, even
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Pre-
processing

Data filtering Maps
creation

Total

10.47 s 5.3 s 0.4 s 16.17 s

TABLE 2: Execution time of different stages in the algorithm
(for 10 000 MDT reports).

when the latter has a lower number of samples per tile, n.
From this observation, it is deduced that σ decreases due to
the discarding of incorrectly geolocated measurements.

6.3 Computational efficiency

The proposed filtering algorithm requires pre-processing
MDT reports and applying filtering rules. Its computational
complexity grows linear with the number of reports in the
dataset. Table 2 presents execution times of these stages in a
laptop computer with an Intel i7-7700HQ CPU, 4 cores with
8 threads, a clock frequency of 2.8 GHz and 16 GB of RAM,
when the algorithm is applied to the dataset described in
Section 3.2. The time required to build coverage maps is also
included, since it is one of the main uses of the algorithm.
To ease comparison, run times are averages per 10 000 MDT
reports. The total execution time takes 16.17 seconds per
each 10 000 samples. The most time-consuming task is data
pre-processing, comprising 65 % of the total execution time.
The complexity of this task grows linear with the amount of
available MDT samples. In the subsequent filtering phase,
the main computational issue is to evaluate rules analyzing
samples in a time window (i.e., detection of dead reck-
oning). The complexity of this task grows linear with the
number of events (i.e., stages) per trace.

It should be pointed out that, the proposed filtering
algorithm has to be executed whenever a new coverage map
is derived, which is an infrequent task. Thus, execution time
is not a critical issue. For other applications with real-time
constraints, execution time can be reduced by restricting
the temporal/spatial window of MDT data collection or
parallelizing MDT trace filtering.

7 CONCLUSION

In current cellular systems, network replanning is one of
the most critical task to avoid performance issues affecting
user experience. For this purpose, MDT functionality pro-
vides geolocated information from UEs that can be used
to create realistic and up-to-date coverage maps. A pre-
vious analysis of the dataset has allow to show with real
measurements that positioning errors due to battery saving
schemes severely limit the potential of MDT measurements
for a wide range of scenarios. To circumvent this problem, a
heuristic filtering algorithm has been proposed with generic
and restrictive rules to discard samples with inaccurate
location data. Method assessment has been carried out by
checking the impact of filtering on the coverage map built
with a real MDT dataset taken from a live LTE network in a
suburban scenario. Results show that the proposed filtering
method significantly improves the accuracy of coverage
maps by eliminating unreliable measurements. Specifically,
large errors margins are reduced by 1.1 dB, even if only 8%
of samples are considered as valid.

The dataset used in this work comprises an MDT set
collected in the network of a European tier-1 operator. The
analyzed area is large enough to cover UEs with different
mobility patterns (static, quasi-static and dynamic users),
environments (indoor and outdoor) and land uses (roads,
open areas, offices, residential, industrial, etc.). MDT fea-
tures used as an input are defined by the 3GPP standard
37.320 [41], so current user equipment should be able to
report them. Likewise, rules in the proposed filtering algo-
rithm are generic, as they have been deduced by massive
analysis of traces taken from a live network. For all these
reasons, it is expected that the observations presented here
can be extended to any cellular system. Nonetheless, it
would be interesting to compare the behavior of different
terminals (e.g., Android vs iOS) under different location
settings (e.g., GPS-only vs WiFi-based). Obviously, termi-
nals activating energy-saving modes less frequently will
provide more accurate location information at the risk of
introducing redundant information per tile. Unfortunately,
such a detailed analysis requires information that can only
be obtained by identifying users in massive datasets (which
cannot be done for privacy reasons) or performing trials
with selected terminals (which will never cover all the
different situations in the live network). Note that the latter
approach is complex, since not all handsets include MDT
functionality (older models) and finding a particular user in
an MDT dataset is extremely difficult (as C-RNTI changes).
Future work will also check the impact of filtering in dense
urban environments and higher frequency bands, where
location accuracy is worse and propagation fluctuations are
larger. It is envisaged that the benefit of filtering might be
larger for these scenarios.
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