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Abstract—In 5G systems, Network Slicing (NS) feature allows
to deploy several logical networks customized for specific verticals
over a common physical infrastructure. To make the most of
this feature, cellular operators need models reflecting cell and
slice performance for re-dimensioning the Radio Access Network
(RAN). For enhanced Mobility BroadBand (eMBB) services,
throughput is regarded as a key performance metric since
it strongly influences user experience. This work presents the
first comprehensive analysis tackling cell and slice throughput
estimation in the downlink of RAN-sliced networks through
Supervised Learning (SL), based on information collected in the
operations support system. Different well-known SL algorithms
are tested in two NS scenarios with single-service or multi-
service slices serving eMBB users. To this end, several synthetic
datasets are generated with a system-level simulator emulating
the activity of a sliced RAN. Results show that NS alters the
correlation between network performance indicators and cell
throughput compared to legacy RANs, thus being required a
separate analysis for NS scenarios. Moreover, the best model to
estimate throughput at cell/slice level may depend on the scenario
(single-service vs multi-service slices). In all cases, the best models
have shown an estimation error below 10 %.

Index Terms—Network slicing, radio access network, super-
vised learning, throughput, enhanced mobility broadband.

I. INTRODUCTION

5G technology has been conceived to expand the business
model of cellular operators by providing vertical industries
with enhanced Mobile BroadBand (eMBB), ultra-Reliable
Low Latency Communications (URLLC) and massive Ma-
chine Type Communications (mMTC) services [1]. Such a
trend will continue in beyond 5G and 6G networks offering
new services, such as holographic teleoperation, internet-of-
everything or extended reality [2]. To fulfill stringent 5G
and 6G requirements, features such as network virtualization,
cloudification, edge computing or Network Slicing (NS) have
been proposed [3]. The latter is considered a very promising
solution to guarantee the highly diverging Quality of Service
(QoS) requirements of different services (e.g., large bandwidth
for eMBB or reduced latency for uRLLC) [4].

NS consists in deploying multiple logical networks on a
common physical network infrastructure [5]. This functionality
provides the flexibility and scalability required to accommo-
date the diverse devices, use cases and service types co-
existing in 5G networks. Slices are self-contained and logically
isolated, which increases robustness (i.e., faults in one slice
have no effect on other slices) and security (i.e., an attack to
a slice will not affect other slices) and reduces time-to-market

(i.e., there are few dependencies on external network functions
–NFs–). Moreover, slice NFs and resources are tailored to
meet the requirements of a specific type of business or service
in terms of performance, security, mobility and availability.
As a consequence, NS maximizes revenues for infrastructure
owners due to the efficient usage of network assets while
opening up new go-to-market models for verticals [6].

An end-to-end slice comprises a collection of NFs and
hardware, software and radio resources customized for a
specific business model associated with a particular application
and/or tenant (e.g., on-the-top service providers or virtual
operators) [5]. In the Radio Access Network (RAN), NS en-
tails implementing new Radio Resource Management (RRM)
NFs to efficiently create, (de)activate and operate slices whilst
guaranteeing slice isolation (e.g., radio capacity brokers or
slice admission and congestion control policies). To support
RRM NFs, radio network performance indicators must be
monitored on a slice basis to guarantee the fulfillment of
Service Level Agreements (SLAs) and operate the business
associated to each slice [7].

The slice life cycle comprises the preparation, commission-
ing, operation and decommissioning phases [8]. In the prepa-
ration phase, the SLA is defined. Then, in the commissioning
phase, the capacity conformance NF estimates the amount
of resources to be assigned to the slice per cell in order to
fulfill performance requirements in the SLA while maximizing
network profits [9]. For this purpose, in the RAN, slice-level
models are used to map specific slice characteristics (e.g.,
traffic type and demand, bandwidth, spectral efficiency...) to
performance metrics. These slice-level models are also con-
tinuously exploited during the slice operation phase to check
when spectrum sharing has to be reconfigured to meet the
SLA while minimizing resource over-provisioning [10]. Thus,
the development of accurate slice-level performance models
has gained interest for Mobile network Operators (MNOs).
For slices serving eMBB traffic, throughput is often the
most highly-demanding performance requirement among those
included in SLAs (e.g., end-to-end latency, reliability. . . [11]),
while having a large impact on user experience.

In parallel, NS poses additional challenges to infrastructure
owners when re-planning their RAN. Radio planning tools
compare traffic forecasts with estimated network capacity to
detect bottlenecks in advance and execute re-planning actions
if necessary [12]. For this purpose, cell-level performance
models are used to estimate cell capacity under the expected
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future conditions (i.e., traffic demand, radio channel quality,
cell configuration. . . ). Cell capacity is usually measured as
aggregated cell throughput in high load conditions [13] [14].
However, performance models used in legacy networks may
fail in a NS scenario due to: a) the coexistence in the
same geographical area of multiple slices with very different
behaviors over the spatial and temporal domains, and b) the
split of radio resources among slices, which may prevent the
efficient use of cell bandwidth. Thus, it is necessary to check
if cell-level performance models used in non-NS networks are
still valid in RAN-sliced scenarios.

With the latest advances in information technology, it is
possible to create performance models with Big Data An-
alytics (BDA) techniques that take advantage of massive
data collected in the Operations Support System (OSS). The
most advanced data-driven management tools rely on Machine
Learning (ML) techniques, considered key for managing the
upcoming cellular networks [15]. This ML-based approach can
be used to estimate slice and cell performance in complex
RAN-sliced networks, since it allows to create models adapted
to each particular scenario by considering the specific RRM
algorithms (e.g., capacity broker), NS framework (e.g., single-
service slices or multi-service slices) and service mix (e.g.,
cloud gaming, web browsing, autonomous driving. . . ) [16].

In this work, we present the first comprehensive analysis to
compare the performance of several well-known SL algorithms
to estimate cell and slice throughput in the Down Link (DL) in
a RAN-sliced network from information collected in the OSS.
The analysis focuses on eMBB services, for which throughput
is key to guarantee user satisfaction. The SL approach allows
to capture the impact of a specific network configuration (i.e.,
NS set-up, capacity broker. . . ) on DL throughput, which is
critical for an effective network re-dimensioning in live RAN-
sliced networks (e.g., for predicting cell capacity bottlenecks
in the presence of slices and re-configuring resources for
a particular slice). For this purpose, synthetic measurement
datasets have been created with a dynamic system-level sim-
ulator emulating the activity of a real cellular network.

The rest of the document is organized as follows. Sec-
tion II revises related work. Section III outlines the problem
of estimating radio throughput performance from statistical
measurements in RAN-sliced scenarios. Section IV describes
the dynamic system-level simulator used as a system model.
Section V details the considered methodology for estimating
throughput at a cell and slice level. Section VI presents
model assessment. Finally, section VII summarizes the main
conclusions.

II. RELATED WORK

In this section, the literature related to this work if first re-
viewed, and then the motivation and contributions are exposed.

A. State of the art

In the literature, several radio throughput performance mod-
els tuned with real network statistics have been proposed
for re-planning purposes. In [17], an analytical performance
model of dynamic packet scheduling in Long Term Evolution

(LTE) is presented to estimate radio user throughput in a
multi-service scenario. Model parameters are adjusted with
information from radio connection traces to reflect a particular
scenario. Alternatively, a simpler approach is to estimate cell
performance with regression models based on data collected
in the OSS. Preliminary works relied on Multiple Linear Re-
gression (MLR). In [18], a performance model based on MLR
is derived to estimate DL cell throughput in the busy hour in
High Speed Downlink Packet Access (HSDPA) from network
performance counters and configuration settings collected on
a cell basis. In [19], this approach is extended to estimate
the same metric in a LTE network from propagation, channel
quality and delay information for a specific cell. In [13], it is
shown with real data that MLR can estimate cell throughput
reasonably well in a multi-service LTE network, but not packet
delay statistics of Voice over Internet Protocol (VoIP) users.
Recent works use more complex SL methods to capture non-
linear dependencies among input and output features. In [14],
different SL algorithms are used to estimate cell and average
user throughput in HSDPA and LTE DL. The most relevant
features per algorithm, radio access technology and metric
are identified through a sequential feature selection process,
resulting in simplified models with estimation errors below
10 %.

In 5G systems, assessing network performance becomes
more complicated with NS. End-to-end (E2E) NS entails
deploying several logical networks over a common physical
infrastructure in the core, transport and radio access domains,
managed by a Management and Orchestration (MANO) sys-
tem. In [20], different architectures to provide E2E NS relying
on software-defined networks, NF virtualization and cloud/fog
computing are surveyed. The information model required for
NS in RAN, core and transport network domains is described
in [21]. Other works focus on MANO, defining slice manage-
ment policies for tasks such as slice admission control [22]
or resource allocation [23]. In RAN, NS management is more
challenging due to the inherently limited and shared nature
of spectrum. In [24], four different strategies to split radio
resources among slices are compared in terms of spatial,
temporal and frequency granularity of assignment, traffic and
radio isolation, and customization. Several capacity brokers
have been proposed following these strategies, sometimes
joining spectrum split and access control tasks [25].

Due to the complexity of RAN slicing mechanisms, cellular
operators need new performance models at cell and slice level
for (re)dimensioning their networks. In [26], an analytical
model is presented to estimate user blocking probability in
a cell serving guaranteed-bit-rate slices from channel quality
information. The model is based on a multi-dimensional
Erlang-B system, insensitive to session duration distribution.
An analytical approach is also considered in [27] to estimate
the required capacity per slice on a cell and pixel basis
for re-dimensioning purposes. The model is fed with cell
configuration, channel quality information, and traffic density
and volume per active slice.

In parallel, BDA has been identified as a key enabler for
automatic network management to cope with the complexity,
diversity and dynamicity of current 5G (and future 6G) sys-
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tems [2]. Examples of network management issues solved by
BDA are capacity and coverage optimization [28], mobility
load balancing [29], network dimensioning [30] or alarm
prioritization [31]. A comprehensive survey of ML methods
used in self-organizing cellular networks can be found in [32].
In future 6G systems, ML will be integrated in many different
network entities to allow advanced radio interfaces, optimal
traffic control, intelligent orchestration and reliable network
security [33].

In NS scenarios, ML-based solutions have been proposed
for resource split among slices [25] [34], slice admission con-
trol [25], user-centric slice design [35] or slice classification
per service type [36], among other tasks. Closer to the work
presented here, in [37], SL is used to estimate application-level
video requirements from low-layer network measurements to
improve the slice negotiation phase. In [38], a digital twin
network model relying on graph neural networks is used
to predict end-to-end packet latency in three different NS
scenarios, capturing intertwined relationships among slices.

B. Motivation and contributions
Previous works like [19] [29] state the interest of mobile

network operators on SL-based cell-level throughput esti-
mation models. As explained in the related work section,
contributions in the literature focus on legacy (i.e., non-
sliced) networks. However, slicing the RAN implies significant
changes in the network (e.g., a slice can only use a subset
of radio resources) that, as shown later in this work, alter
the correlation between network indicators and throughput.
Thus, cell throughput estimation in NS scenarios requires a
separate analysis. Moreover, new network functions arise when
enabling NS (e.g., capacity brokers), which require slice-level
throughput estimation models for assigning spectrum to slices
guaranteeing SLA fulfillment and an efficient use of system
bandwidth. To the authors’ knowledge, the performance of
SL models to estimate cell or slice throughput in RAN-
sliced networks has not been assessed yet. These problems
are tackled in this work.

Network operators are reluctant to use complex deep learn-
ing models with thousands of hyperparameters in their net-
work management tools, since these models are difficult to
interpret and prone to overfitting if not trained with very large
datasets (i.e., hundreds of thousands of samples). Under this
premise, this work focuses on checking if simpler classical
SL algorithms suffice to solve the considered problem. All
SL and feature selection techniques considered here are well-
established schemes included in most data analytics packages.
Hence, the main novelty here is the assessment of these
classical methods for the new problem of estimating cell
and slice throughput in sliced RANs. Specifically, the main
contributions of this work are:
• Presenting the first study assessing the performance of

well-known SL models to estimate DL slice through-
put in RAN-sliced networks from information in the
OSS. The considered approaches include classical neural
networks, ensemble models, distance-based models and
vector-based models that have never been used for slice
performance estimation.

• Assessing the performance of these algorithms to estimate
DL cell throughput in RAN-sliced networks. We added
two ensemble models (adaptive boosting and extreme gra-
dient boosting) to the algorithms tested in [14] in legacy
scenarios. To justify the need for this contribution, we
present an analysis of the impact of enabling NS on the
correlation between network indicators and throughput.

• Extending the comparative analysis to two different NS
scenarios, comprising single-service and multi-service
slices serving eMBB users.

• Identifying a minimal set of key network performance
indicators to be stored in the OSS to estimate throughput
in RAN-sliced networks. The novelty here is the inclusion
of features derived from radio connection traces. This
source of data was not considered in [14], where input
features only considered performance management (PM)
and configuration management (CM) data.

III. PROBLEM OUTLINE

The aim of this work is to develop models to estimate
cell/slice throughput in the DL at a given time C from infor-
mation (real or hypothetical) on network state at time t. These
models are key for efficient network re-dimensioning, since
they allow: a) to analyze a worst-case scenario for the current
network set-up, and b) to assess the impact of re-dimensioning
actions (e.g., cell/slice bandwidth extension/reduction, deploy-
ment/temporal switch-off of a cell. . . ) on cell and slice per-
formance. To capture network peculiarities, models are built
from information collected in the OSS.

The estimation of DL throughput of an entity : (i.e., cell
or slice) of a cellular network in the RAN, )� (:), from
information collected in the OSS can be tackled as a regression
problem. Throughput depends on many factors related to radio
channel conditions (e.g., indoor/outdoor environment, inter-
site distance...), network configuration (e.g., packet scheduling
algorithm, radio resource utilization threshold...) and user
profile (e.g., traffic mix, terminal capabilities...). As a con-
sequence, complex regression models with dozens of input
features (predictors) can be derived. In the simplest model,
DL throughput estimation problem is formulated as

)̂� (:) = 5 (� (:),%�DC8; (:), (� (:)) . (1)

where � (:) denotes capacity of entity : , %�DC8; (:) is the
amount of used capacity, and (� (:) is spectral efficiency,
reflecting how much data can be transmitted per capacity unit
with radio link conditions experienced in the DL of entity : .

The activation of NS functionality can have a strong impact
on network performance. Cell bandwidth, Physical Resource
Block (PRB) utilization ratio in the Physical Downlink Shared
Channel (PDSCH) and average Channel Quality Indicator
(CQI) are often considered as capacity, used capacity and
spectral efficiency indicators, respectively, when estimating
DL cell throughout. In live networks, cell bandwidth deter-
mines the maximum achievable cell throughput, no matter if
NS is enabled or not. In legacy networks without NS, all users
share the spectrum, leading to a high PRB utilization ratio in
peaks periods in the presence of users demanding data-hungry

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3208336

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on September 26,2022 at 14:51:37 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXX 2020 4

services. As a consequence, for a specific cell bandwidth, DL
cell throughput strongly depends on spectral efficiency (i.e.,
CQI reported by UEs), which determines the amount of bits
that can be transmitted per PRB. In contrast, in NS scenarios,
the split of radio resources among slices may prevent the
packet scheduler to make the most of cell bandwidth. If this
is the case (as will be shown later in this work), the PRB
utilization ratio becomes a relevant indicator to estimate DL
cell throughput. Such differences suggest that new cell-level
performance models must be derived for NS scenarios.

Apart from cell-level models, in RAN-sliced networks,
some advanced RRM tasks require estimating system perfor-
mance with a finer resolution. For instance, slice management
policies guaranteeing SLA fulfillment need a model to estimate
DL throughput per slice. For this purpose, the number of
PRBs per slice may be used as a slice capacity indicator
in (1), whereas PRB utilization and CQI statistics per slice can
be used as metrics of used capacity and spectral efficiency.
Note that slices can be set to serve only a type of service
(e.g., videostreaming slice) or a mix of services (e.g., all
traffic belonging to a virtual MNO). To make it easier for
operators to select the best slice set-up, it is convenient to study
the impact of service mix when estimating slice performance
by comparing results from scenarios with single-service and
multi-service slices.

In 5G systems, the increase of bursty data from services
with small packet size (e.g., mMTC services) may alter
the correlation between network indicators (e.g., number of
simultaneous users) and DL slice throughput. Previous cell
performance models have been developed using data from live
3G or 4G networks, where most connections belong to data-
hungry services [39]. To deal with service diversity, it could
be necessary to include features reflecting the traffic mix in
network performance models at cell and slice level.

Note that, in the RAN, several important aspects affecting
slice definition are up to MNOs. For instance, depending on
the selected slicing approach, radio resource split among slices
might be flexible (i.e., slices share resources) or dynamic (e.g.,
on a minute or slot basis), resulting in different radio-electrical
and traffic isolation between slices [24]. Likewise, RRM algo-
rithms (e.g., packet scheduling or access control) can be cus-
tomized per tenant, leading to different slice behavior. Thus,
when estimating cell or slice performance, it is convenient to
derive empirical models based on SL algorithms to capture
non-linear relationships among features and peculiarities of
each specific NS scenario (i.e., capacity broker function, slices
offering one service or a mix of services...).

IV. SYSTEM MODEL

Since large-scale datasets from operational networks with
NS are not available yet, datasets used in this work have been
created with a dynamic system-level simulator emulating the
activity of a real cellular network. In this section, the main
characteristics of the simulator are first described. Then, the
considered NS implementation is detailed. Finally, the differ-
ent NS scenarios configured in the simulator are introduced.

Fig. 1: Simulated scenario [40].

TABLE I: Simulation parameters.

Parameter Description
Time resolution 10 ms
Carrier frequency 2.1 GHz
Transmission mode FDD
System bandwidth 5 MHz / 10 MHz
5G numerology (`) 0
Propagation model Path loss: Hata COST-231

Slow-fading: log-normal f = 8 dB, 32 = 40 m
Fast fading: ETU model

Base station model Tri-sectorized antennas, MIMO 2x2, transmit power 49
dBm, no beamforming

Packet scheduler Classical exponential/proportional fair [44]
Link adaptation CQI-based, MCS selected to guarantee BLER≤0.1
Traffic model Non-uniform spatial UE distribution and traffic mix

Ratio of UEs per service in a cell: uniform [0.02, 0.7]
VoIP model Coding rate: 16 kbps, duration: exponential (avg. 60 s),

call dropped after 1 s without resources
Video model Packet arrival process and file size from H.264/MPEG-

4 AVC real traces, resolution: 720p, duration: uniform
[30,540] s

File download model FTP, file size: log-normal (avg. 10 MB)
Web browsing model HTTP, no. pages per session: log-normal (avg. 4), read-

ing time: exponential (avg. 30 s)
UE speed 3 km/h (30 % of UEs), 0 km/h (70 % of UEs)
Handover (HO) set-up Power budget HO. HO margin of 3 dB and time to

trigger of 512 ms for every adjacency

A. General description

NS functionality has been integrated into an existing LTE-
Advanced simulator that emulates the activity of the RAN
in a live network [29] [40]. Whenever possible, simulation
set-up follows New Radio (NR) specifications. The simulated
scenario, illustrated in Fig. 1, consists of 108 irregular cells
located in urban and sub-urban areas covering 11×23 km2.
Table I breaks down the main simulation parameters. Cells
work at 2.1 GHz. As specified in NR standards for this
frequency band, the network operates in Frequency Division
Duplexing (FDD) mode [41]. Different bandwidths in [41]
are considered in different simulations, as explained later. A
subcarrier spacing of 15 kHz (i.e., 5G numerology with ` = 0)
is selected. Modulation and Coding Schemes (MCS) used
are those in the 4-bits CQI table in [42]. A link abstraction
model maps Signal to Noise and Interference Ratio (SINR) to
Block Error Rate (BLER) on a certain MCS [43]. For each
User Equipment (UE), the more efficient MCS guaranteeing
BLER≤0.1 is selected. For computational efficiency, only the
DL is simulated with a time resolution of 10 ms

User distribution in the scenario is non-uniform and based
on that from the live network. In a cell 2, new UEs appear
following a Poisson process with _(2). The generated UEs
demand 4 services: VoIP, progressive video streaming, file
download via File Transfer Protocol (FTP) and web browsing
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via HyperText Transfer Protocol (HTTP). Whilst VoIP is a
delay-sensitive service with low code rate, the remaining
services are data-hungry and mainly throughput sensitive (i.e.,
as eMBB). Table I includes the main service parameters
regarding traffic model and connection duration. As shown
in the table, service mix also varies per cell. Regarding UE
speed, 70 % of UEs are static (e.g., indoor users), whereas the
remaining 30 % are pedestrians. For more details of service
implementation and propagation model in the simulator, the
reader is referred to [40].

B. Network slicing implementation

As in [27], the SLA is defined in terms of capacity re-
quirements for the expected traffic in a given area. In the
preparation phase, a tenant applying for a slice 8 provides the
operator an Individual Slice Template (IST), including a) the
slice operation area, b) the expected service spatial distribution
and traffic intensity (i.e., UEs) in peak periods and c) the
required average session throughput per service B offered in
the slice, )��%% (8, B), defined at application layer. For VoIP
service, )��%% (8, +>�%)=16 kbps (i.e., the coding rate). For
the remaining services, target throughput is set by the tenant
to guarantee a good QoE for all services according to Mean
Opinion Score (MOS) models in [29] (i.e., MOS between 4
and 5).

In the planning phase, the capacity conformance NF uses an
analytical model to determine the spectrum allocation needed
to fulfill the SLA. The number of PRBs required by slice 8
in cell 2, #%'� (2, 8), is the aggregation of PRBs required to
schedule UEs demanding all services B offered in the slice,
#B4A E (8),

#%'� (2, 8) =
#B4AE (8)∑
B=1

#%'� (2, 8, B) . (2)

For a given service B, #%'� (2, 8, B) can be estimated as

�#%'� (2, 8, B) = #*� (2, 8, B) �#%'� *� (2, 8, B) , (3)

where #*� (2, 8, B) is the expected average number of simul-
taneous RRC connected UEs from slice 8 demanding service
B in cell 2 and �#%'� *� (2, 8, B) is the estimated number of
PRBs required by each individual UE in cell 2 to fulfill service
requirements in the SLA. The former term can be computed
straightforward from traffic information in the SLA, whereas
the latter term can be estimated as

�#%'� *� (2, 8, B) =
)�%�. (8, B)
)�%'� (2)

, (4)

where )�%�. (8, B) is the throughput required at physical
layer to achieve the target )��%% (8, B) and )�%'� (2) is the
DL throughput per PRB experienced by an UE with average
SINR in the service area of cell 2. For VoIP (i.e., small data
chunks), headers are considered to compute )�%�. (8, B). In
contrast, for the remaining considered services, header size is
negligible compared to data chunk size, and thus it is assumed
that )�%�. (8, B) ≈ )��%% (8, B). To avoid underestimating

required capacity in cells with low traffic, a minimum value
of #%'� (2, 8)=3 is set for every cell and slice.

In the operation phase, as in [34], the capacity broker NF
periodically adjusts #%'� (2, 8) per cell and active slice by
re-assigning underutilized PRBs to slices whose capacity re-
quirements have been underestimated. This process is repeated
every 5 minutes until a steady state is reached. To make
the most of spectrum capacity, the minimum slice chunk is
reduced to 2 PRBs.

The above-described spectrum sharing scheme is well
aligned with previous proposals in the literature [24]. Intra-
cell traffic isolation is ensured, since the packet scheduling
function of a slice can only use PRBs assigned to that slice,
thus preventing a high-load period in a slice from affecting
other slices. However, since PRB assignment may be different
in adjacent cells, inter-cell traffic isolation is not guaranteed.
Nonetheless, spectrum splitting is performed by minimizing
the probability of assigning a certain PRB ? to different
slices in neighbor cells so as to reduce inter-cell inter-slice
interference.

C. Scenarios

The following three scenarios are considered:
• Scenario with NS and single-service slices (NS SS): in

this scenario, all cells in the network allocate 4 slices,
which remain active for the whole simulation. Each slice
exclusively offers a single service (i.e., VoIP, video, file
download or web browsing). This scenario is representa-
tive of a system where the MNO creates slices optimized
to fulfill certain service requirements of specific clients
or those of OTT service providers.

• Scenario with NS and multi-service slices (NS MS): in
this scenario, there are also 4 slices whose operation areas
cover the whole network. However, unlike the previous
case, all slices offer all services, emulating a network
with 4 virtual MNOs operating on different slices over
the same infrastructure.

• Scenario without NS (noNS): a legacy network scenario,
where all UEs share the available bandwidth.

V. THROUGHPUT ESTIMATION METHOD

This section explains the methodology used to estimate cell
and slice throughput. The process consists of four steps. First,
cell-level and slice-level datasets are collected. Second, data
is pre-processed to scale input features and create training
and test datasets. Then, performance models are created by
applying SL to the corresponding training dataset. Finally,
model performance is assessed on test datasets. These steps
are detailed next.

A. Data collection

Tables II and III break down the set of features considered
as candidate inputs for estimating DL cell throughput and
DL slice throughput, respectively. Features in both tables are
similar, but aggregated on a different basis (i.e., a datapoint
per cell in Table II, a datapoint per cell and slice in Table III).
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TABLE II: Candidate features for cell throughput estimation.

Feature name Description

Q
ua

lit
y 0E6 �&� Average of DL CQI distribution in the cell

<4380= �&� Median of DL CQI distribution in the cell
?5 �&� 5Cℎ-tile of DL CQI distribution in the cell

Tr
af

fic

0E6 02C*� Avg. no. of active UEs per Transmission Time
Interval (TTI) in the DL of the cell

%'�DC8; A0C PRB utilization ratio in PDSCH in the cell
B *� A0C ∀B ∈ {+ >� %,
E834>, 5 C ?, F41}

Ratio of UEs in the cell demanding each service
B offered in the network

C
M

s 24;; �, [MHz] Cell bandwidth
=%'� 8 ∀8 = 1, 2...#B;824B No. of PRBs allocated per slice in the cell in the

DL (only for NS scenarios)

TABLE III: Candidate features for slice throughput estimation.

Feature name Description

Q
ua

lit
y

0E6 �&� B;824 Avg. of DL CQI distribution in the cell for UEs
in the slice

<4380= �&� B;824 Median of DL CQI distribution in the cell for
UEs in the slice

?5 �&� B;824 5Cℎ-tile of DL CQI distribution in the cell for
UEs in the slice

Tr
af

fic

0E6 02C*� B;824 Avg. no. of active UEs per TTI in the DL of the
the cell that are served by the slice

%'�DC8; A0C B;824 PRB utilization ratio in PDSCH considering
only those PRBs allocated to the slice

B *� A0C B;824 ∀B ∈
{+ >� %, E834>, 5 C ?, F41}

Ratio of UEs in the cell served by the slice
demanding each service B offered in the network

C
M

s 24;; �, [MHz] Cell bandwidth
=%'� B;824 No. of PRBs allocated to the slice in the cell

The considered features include a) general configuration pa-
rameters (i.e., cell bandwidth), b) for NS scenarios, NS-related
configuration parameters (i.e., number of PRBs allocated per
slice), c) performance metrics related to spectral efficiency
(i.e., CQI indicators) and d) traffic indicators (i.e., traffic
mix and number of active UEs). All these features can be
computed from cell-level or cell-slice-level CMs/PMs except
to traffic mix features, which must be computed by aggregating
information in UE-level connection traces on a cell or cell-slice
basis. In live networks, PMs, CMs and traces are stored in the
OSS after every Reporting Output Period (ROP, typically 15
min [29] [31]).

B. Data pre-processing

To ensure high accuracy and faster convergence of SL
algorithms, data must be scaled, so that all input features have
similar ranges. For this purpose, a Z-score standardization
method is used [45]. The scaled value of a certain feature,
denoted as 5scaled, is computed as

5scaled =
5 − `
f

, (5)

where 5 is the original feature value, and ` and f are the
average and standard deviation, respectively, for feature 5 in
all datapoints in the dataset. Next, data is split into training and
test subsets by creating a random partition, so that the training
set comprises 70 % of samples and the test set includes the
remaining 30 %.

C. Model creation
The following paragraphs detail the selected regression

algorithms, the dimensionality reduction scheme and the hy-
perparameter optimization policy.

1) Regression algorithms: Seven well-known SL algo-
rithms are compared, namely Support Vector Regression
(SVR), k-Nearest Neighbors (KNN), three ensemble meth-
ods based on Decision Trees (DTs) and 2 Artificial Neural
Networks (ANNs) based on Multi-Layer Perceptrons (MLPs).
Some of these algorithms have not been used to estimate
throughput even in legacy cellular networks.

SVR captures non-linear relationships between features
by mapping inputs into a higher dimensional feature space
with a kernel function. Unlike classical MLR, SVR neglects
deviations below an error tolerance, n , when finding the best
regression hyperplane. To avoid overfitting, the absolute value
of regression coefficients is restricted by the regularization
parameter, � [46].

KNN is a distance-based method which estimates the re-
sponse variable of an observation by computing the averaging
(often weighted) of the : nearest neighbors datapoints in the
training dataset according to some previously defined distance
metric (e.g., Euclidean distance). It is a fast and easy-to-adjust
algorithm [46].

Ensemble methods combine the output of several weak
learners to perform a more robust regression. Such learners
are commonly DTs, representing a flow-chart model that
infer simple decision rules from the training dataset. To
avoid overfitting, DTs are pruned. Three ensemble methods
based on DTs are considered in this work: Random Forest
(RF), Adaptive Boosting (AdaBoost) and eXtreme-Gradient
Boosting (XGBoost). In RF, independent DTs are trained
with different subsets of input features (a.k.a., bagging) and
datapoints (a.k.a., bootstrapping), and then the output of all
DTs are averaged. In contrast, in AdaBoost and XGBoost, DTs
are created sequentially, so that DT8 tries to improve model
performance obtained with the combined method including
DT1 to DT8−1 (a.k.a., boosting). For this purpose, AdaBoost
increases the weight of samples with high error, and decreases
the weight of samples with low error. Alternatively, in XG-
Boost, the gradient descent optimization algorithm is used to
minimize a differentiable loss function. In both AdaBosst and
XGBoost, the final output is the weighted sum of all DTs [47].

Finally, ANNs are statistical learning structures where
neurons grouped in layers perform non-linear computations
through activation functions [48]. Feed-forward ANNs (i.e.,
without memory) based on MLPs are commonly used for
regression problems [49]. In this work, two MLPs are con-
sidering, differing in the number of hidden layers. The first
one, denoted as Shallow MLP (SMLP), has a single hidden
layer, whereas the second one, denoted as Deep MLP (DMLP),
has 2 hidden layers.

Each SL algorithm is used for two purposes: a) to derive a
single model to estimate DL cell throughput in any cell of the
scenario, and b) to derive a single model to estimate DL slice
throughput per cell in any slice of the scenario. Two options
are considered for each SL algorithm and output feature (i.e.,
DL cell or slice throughput): a) a full model with all the
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candidate input features introduced in section V-A, and b) a
model with a representative subset of input features selected
with a wrapper method.

2) Dimensionality reduction: SL algorithms may under-
perform when input features are strongly correlated or are
not relevant for the output variable. Likewise, when it comes
to cellular networks, it is convenient to gather only useful
information in the OSS to avoid a) congestion problems in
the backhaul due to the flow of information sent from base
stations, b) unnecessary investment in large databases, and c)
large data pre-processing and model training times, which can
be critical for real-time applications [14]. Additionally, in NS
scenarios, gathering some information (e.g., connection traces)
may require an agreement between tenants and infrastructure
owner. As a consequence, dimensionality reduction is critical
in this work. This task is performed through feature selection,
which eliminates the need for gathering irrelevant indicators
in the OSS (note that this issue is not solved by feature
extraction) [50]. Specifically, a wrapper method denoted as
Recursive Feature Elimination (RFE) is used [51]. RFE starts
with a model including all the candidate input attributes, and
sequentially removes the least relevant feature according to
a predefined loss function. This process is repeated until an
empty model is created.

In this work, RFE is performed independently per scenario,
output variable and SL algorithm. The loss function is the
Mean Absolute Error, "�� , defined as

"�� =
1
#B

#B∑
8=1
| Ĥ(8) − H(8) | , (6)

where #B is the number of samples in the dataset, and H(B)
and Ĥ(8) are the measured and estimated values of the output
feature in sample 8, respectively.

3) Hyperparameter optimization: An adequate configura-
tion os hpermarameters is key to make the most of SL
models. However, a fine-grained parameter tuning increase
training time exponentially. To save time, in this work, those
hyperparameters showing a stable optimum value in some
preliminary tests have been fixed. In contrast, those changing
their optimum values with different scenarios, output variable
and/or during the RFE process are set through a grid search
in the parameter space [52]. Specifically, for each model, the
best hyperparameter tuple is that minimizing the "�� in the
training dataset. Table IV breaks down the main hyperparame-
ters per SL algorithm and the fixed values or parameter space
considered.

D. Performance evaluation

Three Figures of Merit (FoMs) are used to assess model
performance. Two FoMs aim to evaluate model accuracy. The
first is the median value of Absolute Percentage Error, <�%� ,
computed as

<�%� [%] = median
(
100 ·

���� Ĥ(8) − H(8)H(8)

����) ∀8 ∈ [1, #B] . (7)

TABLE IV: Hyperparameter tuning.

Hyperparameter name Parameter space

SV
R

Sensitivity, n [0.1,0.4]
Regularization, � [10,200]
Kernel function {linear, radial basis,

polynomial}

K
N

N No. neighbors [5,20]
Distance metric Euclidean (fixed)

X
G

B
oo

st

No. trees [50,200]
Maximum depth [5,10]
No. features per tree # 5 (fixed)
Loss function Squared error (fixed)
Learning rate [0.01,0.1]
U, _, W [0.01, 100]

A
da

B
oo

st No. trees [10,50]
Maximum depth [5,10]
Loss function {linear, square, exponential}
Learning rate [0.1 0.7]

R
F

No. trees [30,100]
Maximum depth [10,50]
Bootstrapping Enabled (fixed)
No. of features per tree {

√
# 5 40C , # 5 40C }

SM
L

P
an

d
D

M
L

P

No. layers (SMLP) 3 (fixed)
No. layers (DMLP) 4 (fixed)
No. neurons per hidden lay-
ers

[5,10]

Activation function in hidden
layers

{Rectified Linear Unit (ReLU), hy-
perbolic tangent, linear, sigmoid}

Activation function in ouput
layer

ReLU (fixed)

Optimization algorithm Adaptative moment (fixed)
Loss function "�� (fixed)
No. iterations 1000 (fixed)
Batch size 64 (fixed)
Train / validation split 70 % / 30 % (fixed)
Early stopping condition Accuracy in the validation dataset

does not improve in 3 epochs

The median (and not the mean) operation has been performed
to avoid that insignificant errors in absolute terms in datapoints
with very low throughput lead to very high and misleading
percentage errors. The second FoM is the Mean Absolute
Error Normalized to the maximum theoretical throughput in
the cell/slice, "�#� , defined as

"�#� [%] = 1
#B

#B∑
8=1

(
100 ·

���� Ĥ(8) − H(8))�<0G (:8)

����) , (8)

where )�<0G (:8) is the maximum achievable throughput in
entity : (i.e., cell/slice) to which datapoint 8 belongs, :8 . In
this work, )�<0G (:8) is computed assuming that all PRBs
in a cell or slice are allocated to UEs with the maximum
CQI (i.e., 15). With the MCSs considered in the simulator,
the peak throughput is 1 Mbps per PRB [42]. Under this
assumption, )�<0G (:8) can be computed from 24;; �, for
cells, and from = %'� B for slices. Note that datapoints in
the considered datasets have different bandwidth values, given
by 24;; �, and = %'� B;824 values in cell-level and slice-
level datasets, respectively. These features limit the capacity
of the entity (i.e., cell or cell-slice), and, thus, figures of merit
relying on absolute error (e.g., mean absolute error) would
be dominated by datapoints from entities with the highest
capacity, which is undesirable. The normalization performed
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in "�#� circumvents this issue. As shown in (8), "�#�
is expressed as a percentage for an easier interpretation.

The third FoM is the number of input features per model,
as a proxy of required storage capacity in the OSS and load
in the backhaul due to data exchange.

VI. PERFORMANCE ASSESSMENT

This section details the assessment of SL algorithms to
estimate DL cell/slice throughput. For clarity, datasets are first
introduced. Then, the assessment methodology is described.
Next, results are presented. Finally, computational complexity
is discussed.

A. Dataset creation

Five datasets are generated with the simulator described in
section IV considering noNS, NS SS and NS MS scenarios.
For this purpose, 8 simulations with different traffic loads have
been performed for each scenario and for two different system
bandwidths (5 and 10 MHz), for a total of 48 simulations
(16 simulations per scenario). Relative UE spatial distribution
and traffic mix per cell remain constant across simulations,
whereas the UE generation rate per cell is altered. Specifically,
in simulation 8, _8 (2) ′ = :8_(2) ∀2, with :8 > 0.

A single simulation reflects 15 minutes of network activity
(i.e., typical ROP). To avoid the transient effects of a cold
start, a longer period is simulated and statistic collection starts
once the adaptive capacity broker has reached steady state. The
uneven cell service area, traffic density and service mix across
the scenario result in each cell having different characteristics,
providing realistic datasets that support the significance of
results. As an example of the diverse network conditions
considered, Fig. 2 shows the Cumulative Distribution Function
(CDF) of 0E6 02C8E4*� obtained per simulation in NS SS
scenario with a 10 MHz bandwidth. Each line comprises 108
points reflecting the average number of UEs per cell during
15 minutes of network time. It is clearly observed that cells
are unevenly loaded.

Connection traces, CMs and PMs are collected during simu-
lations. CMs and PMs are collected on a cell basis (i.e. a value
per cell) in all scenarios, and on a slice basis (i.e., a value per
cell and slice) in NS scenarios. All the information is grouped
in five datasets depending on the scenario and if information
is saved on a cell or slice basis. These datasets are denoted
as NS SS cell, NS MS cell, noNS cell, NS SS slice and
NS MS slice, where the prefix denotes the scenario (i.e.,
noNS, NS SS or NS MS) and the suffix indicates if the dataset
contains cell-level or slice-level information.

Each cell-level dataset contains 1,728 datapoints (i.e., 2
BWs · 8 simulations · 108 cells) with the following infor-
mation:

1) Simulation index.
2) Cell identifier (24;; ��).
3) The set of 14 features shown in Table II, as candidate

predictors for DL cell throughput.
4) The average DL cell throughput, )�24;; , defined as the

total data volume transmitted per second at the Packet

Fig. 2: CDF of number of active UEs across simulations –
NS SS scenario.

Data Convergence Protocol (PDCP) layer in active peri-
ods in the DL of a cell, expressed in kbps.

Likewise, each slice-level dataset is made of 6,912 data-
points (i.e., 2 BWs · 8 simulations · 108 cells · 4 slices)
including the following information:

1) Simulation index.
2) Cell identifier (24;; ��).
3) Slice identifier (B;824 ��).
4) The set of 10 features presented in Table III, as candidate

predictors for DL slice throughput.
5) The average DL slice throughput in a certain cell,
)�B;824, defined as the total data volume transmitted per
second at the PDCP layer in active periods in the DL of
a cell in PRBs assigned to a specific slice, expressed in
kbps.

The main statistics per dataset are presented in the ap-
pendixof this manuscript (i.e., Tables XII and XIII).

B. Assessment methodology

Three experiments are carried out.
1) Experiment 1 – preliminary correlation analysis: the aim

of this experiment is to justify the need for deriving specific
models to estimate DL cell throughput in NS scenarios. For
this purpose, the average Spearman’s rank correlation value, d,
among several candidate input features (specifically 24;; �, ,
%'�DC8; A0C, 0E6 �&� and =%'� B;824) and )�24;; in
noNS cell, NS SS cell and NS MS cell datasets is compared
(obviously, =%'� B;824 feature is considered only in NS
scenarios). d assesses the strength and direction of monotonic
association (whether linear or not) between 2 variables [53].

2) Experiment 2 – estimation of )�24;; in NS scenarios:
the goal of this experiment is to assess the performance of SL
algorithms to estimate )�24;; from input features in Table II in
the two considered NS scenarios (i.e., single-service and multi-
service slices). For this purpose, NS SS cell and NS MS cell
datasets are used. As explained in section V-C, two models
are created for each SL algorithm (i.e., RF, KNN, SVR...)
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corresponding to each NS scenario (i.e., NS SS and NS MS):
a) a full model with all input features (hereafter, FULL model)
and b) a simplified model with input features selected by a
RFE method (hereafter, RFE model).

3) Experiment 3 (estimation of )�B;824 in NS scenarios: this
experiment is similar to experiment 2, but the aim here is to
estimate slice throughput from features in slice-level datasets
(i.e., NS SS slice and NS MS slice). In each scenario, the
slice-level model is trained with datapoints from all slices in all
cells (i.e., single output model). This model is then exploited
on a cell and slice basis.

SL algorithms are implemented with scikit-learn, XGBoost
and Keras, three machine learning libraries for Python ex-
tensively used in many fields. For further information, the
reader is referred to [54] [55] [56]. A total of 56 models
(=7 algorithms · 2 outputs · 2 scenarios · 2 feature sets) are
tested (considering the RFE process as a single model). To
prevent overfitting, a 5-fold cross validation is performed over
the training dataset when tuning hyperparameters, and over the
whole dataset at each step of the RFE process [46]. In the RFE
process, the best number of features in the simplified model,
#
>?C

5
, for a given SL algorithm is the minimum number of

predictors achieving similar performance to the most accurate
model (i.e., difference of both <�%� and "�#� lower than
2 % in absolute terms).

A model is considered acceptable to estimate cell/slice
throughput if <�%�<10% and "�#�<10%. These val-
ues provide a trade-off between model complexity and ac-
curacy [14][19]. A higher accuracy implies using complex
models requiring large datasets and higher training times.
On the contrary, a too relaxed threshold could lead to SLA
violations if performance is overestimated, or to unnecessary
actions (e.g., spectrum re-distribution among slices, bandwidth
extension . . . ) if performance us underestimated. In live net-
works, accuracy threshold is up to the MNO. No matter the
set value, the worst case is not detecting problems due to
overestimating cell / slice performance, since user experience
may be degraded. To avoid such an issue, it is key to set
parameters of re-dimensioning NFs (e.g., thresholds to trigger
minor, major or critical alarms) taking into consideration the
expected model error to ensure that all potential problems are
detected.

For robustness, the best model for each output feature is
selected as follows. First, models providing "�#� similar to
the most accurate model (i.e., difference lower than 1 % in
absolute terms) are selected as candidates. Then, models with
a difference in <�%� higher than 1 % compared to the best
<�%� among candidates are discarded. Finally, the model
with the lowest number of features among the remaining
candidates is selected as best model. If several models satisfy
this condition, the best model is that providing the best results
for the worst samples (i.e., lowest 90-th error percentile). This
process guarantees that the choice of the best model does not
rely exclusively on "�#� or <�%� , that may be dominated
by datapoints with large/small output values, respectively.

TABLE V: Correlation between input features and DL cell
throughput in different scenarios.

KPI noNS NS SS NS MS
24;; �, 0.59 0.69 0.70

%'�DC8; A0C 0.04 0.32 0.36
0E6 �&� 0.66 0.14 0.12
=%'� 1 – 0.66 0.67
=%'� 2 – 0.48 0.69
=%'� 3 – 0.55 0.68
=%'� 4 – 0.67 0.70

C. Results – Experiment 1 (correlation analysis)

Table V shows the average value of Spearman’s correla-
tion coefficient, computed between 24;; �, , %'�DC8; A0C
and 0E6 �&� and )�24;; in noNS cell, NS SS cell and
NS cell datasets (e.g., average correlation between 24;; �,

and )�24;; in noNS cell dataset is 0.59). Test significance has
been checked for every feature and scenario. Those features
provide information about cell resources, radio resource uti-
lization and spectral efficiency, respectively. For NS scenarios,
the correlation between the number of PRBs allocated per
slice, =%'� B: ∀ : ∈ [1, 4], and )�24;; is also included as
a metric of spectrum split. It is observed that 24;; �, is
significantly correlated with cell throughout in all scenarios
(i.e., d≥0.59). In contrast, the correlation of %'�DC8; A0C is
much higher in NS scenarios than in non-NS scenario (i.e.,
d=0.32 and 0.36 in NS SS and NS MS scenarios, respec-
tively, against 0.04 in noNS scenario). Likewise, 0E6 �&� is
correlated with cell throughput in noNS scenario (i.e., d=0.66),
but not in NS SS and NS MS scenarios (d=0.12 and 0.12,
respectively). These differences point out that enabling the NS
feature changes the relationships among network indicators,
as anticipated in section III, revealing the need to create new
performance models for NS scenarios.

It is also remarkable that similar correlation values are
obtained in both NS scenarios for all features but =%'� : .
This feature presents similar correlation values in all slices in
NS MS scenario (slices offering a service mix), but not in
NS SS scenario (slices offering a single service). To capture
these peculiarities, specific performance models are derived
per scenario in experiments 2 and 3.

D. Results – Experiment 2 (cell throughput)

Tables VI and VII break down results obtained when esti-
mating )�24;; in NS SS and NS MS scenarios, respectively.
Performance from FULL models is first analyzed. For a given
scenario, KNN is the worst algorithm, with unacceptable
<�%� values. XGBoost is the best ensemble method, whereas
both ANNs (SMLP and DMLP) perform similarly. In NS SS
scenario, XGBoost and ANNs are the best FULL models,
with <�%� < 7% and "�#� < 2%. In contrast, in
NS MS scenario, ANNs outperform the rest of algorithms,
with <�%� < 5% and "�#� < 1.5%. Comparing scenarios,
similar performance (i.e., differences smaller than 2 % in
absolute terms) can be obtained to estimate )�24;; in NS SS
and NS MS scenarios with ANNs.
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TABLE VI: Model performance for estimating cell throughput
in single-service NS scenario (NS SS).

Model FULL RFE
FoM <�%� "�#� #

>?C

5
<�%� "�#�

SVR 8.97 2.33 3 8.02 1.96
KNN 15.06 3.88 3 7.74 2.01
XGBoost 6.30 1.86 3 7.83 2.32
AdaBoost 8.91 2.14 4 8.34 2.15
RF 8.75 2.23 4 7.61 2.01
SMLP 6.47 1.71 3 7.96 1.89
DMLP 6.62 1.72 3 7.63 1.96

TABLE VII: Model performance for estimating cell through-
put in multi-service NS scenario (NS MS).

Model FULL RFE
FoM <�%� "�#� #

>?C

5
<�%� "�#�

SVR 6.94 1.97 8 6.41 1.85
KNN 14.19 4.23 4 6.83 2.06
XGBoost 6.65 1.92 4 6.41 1.80
AdaBoost 7.03 2.07 9 7.03 1,96
RF 7.04 2.02 5 6.30 1.84
SMLP 4.93 1.40 4 5.00 1.38
DMLP 4.88 1.35 5 5.41 1.57

Fig. 3 and 4 show "�#� obtained across the feature
selection process carried out to obtain RFE models in NS SS
and NS MS scenarios, respectively. For a better visualization,
only SVR, KNN and the best ANN and ensemble method
are included. <�%� evolution, not shown here for brevity, is
very similar. As expected, for most algorithms, the larger the
number of input features, the better accuracy, until adding a
new feature does not improve model performance significantly.
It is remarkable that, in both scenarios, KNN performance
degrades when the model is trained with more than 3 features.
This behavior reveals that KNN is suffering the so called curse
of dimensionality, since it requires all neighbor datapoints to
be close in all dimensions of the data space, which becomes
more difficult as the input feature space grows [57]. Such a
phenomenon is also observed in SVR for # 5 ∈ {3, . . . , 7} in
Fig. 4.

The last three columns in Table VI summarize FoMs with
the best RFE model for all tested algorithms in NS SS sce-
nario. #>?C

5
is selected with the convergence criteria described

above, resulting #>?C
5

= 3 for all algorithms but AdaBoost and
RF, with #

>?C

5
= 4. RFE models requiring 3 input features

(i.e., all but AdaBoost and RF) are considered as potential
candidates to estimate )�24;; . Since accuracy of both ANNs is
similar and SMLP is faster to train and less prone to overfitting
than DMLP, DMLP is discarded. For a deeper analysis, Fig. 5
shows the Cumulative Function Distribution (CDF) of �#�
obtained with the remaining candidate models. All algorithms
perform similar in the lower part of the CDF, whereas SMLP
performs best in the upper part (lowest errors). Thus, RFE–
SMLP is considered the best model. The selected input fea-
tures (ranked by relevance) are %'�DC8; A0C, 0E6 �&� and
24;; �, .

Similarly, the last three columns in Table VII summarize
FoMs obtained with the best RFE models in NS MS scenario.

Fig. 3: "�#� evolution across RFE process when estimating
cell throughput in single service NS scenario (NS SS).

Fig. 4: "�#� evolution across RFE process when estimating
cell throughput in multi-service NS scenario (NS MS).

Unlike in NS SS scenario, the algorithms now have com-
pletely different #>?C

5
, ranging from 4 to 9. The best model is

RFE–SMLP, with the highest accuracy (i.e., <�%� = 5% and
"�#� = 1.38%) and the lowest number of input features
(i.e., #>?C

5
= 4). Not shown in the table is the fact that

some of the relevant input features are also different, with
%'�DC8; A0C, <4380= �&�, 24;; �, and ?5 �&� (listed by
relevance). The significant decrease in "�#� for SMLP from
# 5 =3 to # 5 =4 observed in Fig 4 confirms that, in NS MS
scenario, the inclusion of spectral efficiency of cell-edge UEs
through ?5 �&� improves SMLP performance. Such an effect
may be due to joint packet scheduling for UEs demanding
different services in each slice, which favors cell-edge UEs
from services with strict delay requirements (e.g., VoIP) at the
expense of UEs with better channel conditions from services
with loose delay constraints, decreasing cell throughput even
with a high %'�DC8; A0C.

From the above results, it can be concluded that SMLP
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Fig. 5: Distribution of error metrics for best models when esti-
mating cell throughput in single-service NS scenario (NS SS).

is an adequate SL algorithm to estimate cell throughput in
both NS scenarios, providing acceptable accuracy with models
requiring few input features. With an adequate feature selec-
tion, similar accuracy can be obtained for estimating )�24;; in
NS scenarios with single-service or multi-service slices, with
an error lower than 2% of the achievable cell throughput.
It should be pointed out that, in both scenarios, the input
features to RFE–SMLP model are similar to those in classical
models, shown in (1). Those features can be computed from
PMs/CMs stored in the OSS for most network operators. Thus,
it is not necessary to store additional NS-specific information
or to collect connection traces to estimate cell throughput in
NS scenarios. A deeper analysis of data shows that, in both
scenarios, the worst datapoints (i.e., those with highest �#�)
correspond to underutilized cells with high spectral efficiency
(i.e., %'�DC8; A0C < 40%, 0E6 �&� ≥ 10), where )�24;;
tends to be underestimated.

E. Results – Experiment 3 (slice throughput)

Tables VIII and IX summarize results when estimating
)�B;824 in NS SS and NS MS scenarios, respectively. Like-
wise, Fig. 6 and 7 present the evolution of "�#� across
RFE for all algorithms in these scenarios (DMLP lines have
been omitted for a better visualization, since they overlap with
SMLP).

For FULL models in both scenarios, only algorithms based
on DTs and ANNs fulfill the accuracy threshold of 10 % for
both <�%� and "�#� . RF provides the best FULL model
in NS SS scenario (<�%�=5.53 % and "�#�=2.57 %),
whereas both ANNs get the best results in NS MS scenario
(<�%�≈8.85 % and "�#�≈5.15 %). When comparing
FULL and RFE models for each scenario, it is observed
that, again, for a given algorithm, similar performance can
be obtained with simpler models with less input variables.

Regarding RFE, Fig. 6 and 7 reveal that KNN is again suf-
fering the curse of dimensionality, since accuracy diminishes
when increasing the number of features above # 5 = 3. It

TABLE VIII: Model performance for estimating slice through-
put in single-service NS scenario (NS SS).

Model FULL RFE

FoM <�%� "�#� #
>?C

5
<�%� "�#�

SVR 14.40 8.30 10 12.64 7.81
KNN 14.56 9.84 3 8.92 3.96
XGBoost 7.37 2.87 4 8.16 3.05
AdaBoost 6.44 2.86 7 8.15 3.21
RF 5.53 2.57 5 6.26 2.75
SMLP 7.70 3.27 4 7.80 2.97
DMLP 6.78 2.83 5 9.63 4.46

TABLE IX: Model performance for estimating slice through-
put in multi-service NS scenario (NS MS).

Model FULL RFE

FoM <�%� "�#� #
>?C

5
<�%� "�#�

SVR 12.47 7.32 4 12.51 7.22
KNN 16.30 9.73 3 12.08 6.99
XGBoost 9.64 5.58 6 9.46 5.53
AdaBoost 10.24 5.77 8 9.86 5.53
RF 9.34 5.48 6 9.16 5.70
SMLP 8.82 5.10 5 8.78 5.25
DMLP 8.87 5.17 5 9.23 5.45

is also remarkable that the evolution of SVR performance in
NS MS scenario, with #

>?C

5
= 4, differs significantly from

NS SS scenario, where only one feature can be extracted for
an acceptable model performance (i.e., "�#� increases sig-
nificantly below # 5 =10). Nonetheless, unlike when predicting
)�24;; , SVR is not competitive with other SL algorithms.

When considering a trade-off between accuracy and in-
put size, RFE–RF is the best model in NS SS scenario
(<�%�=6.26% and "�#�=2.75% with #

>?C

5
=5), followed

by RFE–SMLP. In NS MS scenario, RFE models built
with ANNs show the best accuracy (i.e., <�%�≈9% and
"�#�≈5.35%) and required information (#>?C

5
= 5).

Fig. 8 represents �#� CDFs obtained with these mod-
els. RFE–XGBoost model (i.e., the next model with better
"�#�) is also included. A significant improvement of ANNs
over XGBoost is observed for the largest error percentiles.
Among ANNs, RFE–SMLP is the best option (lines are
shifted to the left compared to RFE—DMLP). The input
features in the best models (i.e., RFE–RF for NS SS sce-
nario and RFE–SMLP for NS-MS scenario) are 24;; �, ,
=%'� B;824, %'�DC8; A0C B;824, <4380= �&� B;824 and
E>8? *� A0C B;824 in both scenarios.

Table X shows the results for the best models broken down
per slice. Recall that, in NS SS scenario, slices 1 to 4 serve
UEs demanding VoIP, video, file download and web browsing,
respectively. In contrast, in NS MS scenario, slices serve a
service mix changing with cell and tenant. It can be noticed
that differences among slices are larger in NS SS than in
NS MS scenario. For a more detailed analysis, Fig. 9 and 10
show the probability density function of %'�DC8; A0C B;824
and B;824 �� for 5 % of samples with the largest error
(i.e., highest "�#�) for the best models in NS SS and
NS MS scenarios. In NS SS scenario, B;824 �� distribution
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Fig. 6: "�#� evolution across RFE process when estimating
slice throughput in single-service scenario (NS SS).

Fig. 7: "�#� evolution across RFE process when estimating
slice throughput in multi-service NS scenario (NS MS).

reveals that more than 80 % of worst samples are from
slice 3 to 4. Thus, RFE–RF provides the lowest accuracy
when estimating throughput from slices serving web and file
download users. This behavior is observed in most of the
tested SL algorithms. Note that the data rate of users of these
best effort services adapts to instantaneous slice capacity (i.e.,
PRBs allocated) and traffic (i.e., UEs to schedule) in the cell
and is thus prone to fluctuate, being more difficult to estimate.
This problem may be solved by creating per-service slice-
level models at the expense of having less training datapoints
per model. In NS MS scenario, worst offenders for RFE–
SMLP are evenly distributed among slices. However, it is
remarkable that 70 % of these datapoints belong to slices with
%'�DC8; A0C B;824 ≤ 20%. Thus, it can be concluded that
RFE–SMLP is less accurate when predicting the aggregate
throughput of underutilized slices, no matter the slice service

Fig. 8: Distribution of absolute normalized error for best
models when estimating slice throughput in multi-service NS
scenario (NS MS).

TABLE X: Performance per slice when estimating slice
throughput with the best model.

Scenario NS SS NS MS

FoM <�%� "�#� <�%� "�#�

Slice 1 14.43 0.38 9.99 5.19
Slice 2 4.82 3.09 9.41 5.34
Slice 3 4.74 3.49 6.97 5.35
Slice 4 5.51 3.86 8.92 5.25

mix.
From the above results, it can be concluded that the best

SL algorithm to estimate slice throughput depends on the
NS scenario. Moreover, it is worth noting that, unlike when
estimating cell throughput, accuracy obtained with the best
model is lower in NS MS scenario ("�#�=5.25%) than in
NS SS scenario ("�#�=2.75%). This may be due to the
coexistence of users with services with very different traffic
patterns, which makes throughput calculations more complex.
Likewise, the RFE process shows that it is convenient to
use information about the service mix to estimate )�B;824.
Specifically, E>8? *� A0C B;824 has been selected as key
feature in this work. Note that VoIP is the service with the
lowest data rate in the considered scenario. Thus, this feature
provides information about the ratio of data-hungry UEs in the
slice. This information may be useful to estimate throughput
since bursty traffic degrades network spectral efficiency due
to last transmission time interval data and outer loop link
adaptation [58]. In NS SS scenarios, slice service mix is
simple (i.e., no mix), whereas in NS MS scenarios it can
be obtained by applying a traffic classification algorithm over
radio connection traces, even if traffic is encrypted [59].

F. Computational complexity

The implementation of SL models for estimating throughput
in radio planning tools or RRM NFs entails: a) collecting and
pre-processing data in the OSS, b) selecting the best model
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Fig. 9: Values of features in samples with the largest error
when estimating slice throughput with RFE–RF (NS SS sce-
nario).

Fig. 10: Values of features in samples with the largest error
when estimating slice throughput with RFE–SMLP (NS MS
scenario).

(i.e., combination of SL algorithm and set of input features)
for the specific network, c) exploiting the model and d) re-
training the model when necessary.

Data used to compute the considered input features (i.e.,
PMs/CMs/traces) is often collected by network operators for
network management purposes. Processing radio connection
traces can be a time-consuming task. According to the results
in this work, this task has to be performed only for slice-level
performance models in multi-service slice scenarios. In this
case, parallelization can be used to speed up trace processing.

Finding the best model implies to carry out the RFE process
for one or several candidate SL algorithms. The reader is
referred to [60] and [14] for the analytical worst-case time
complexity of XGBoost and the remaining tested algorithms,
respectively. For instance, Table XI shows training time for the
FULL models when estimating )�B;824 in NS SS scenario
(i.e., the case with the largest number of datapoints) in a
personal computer with Intel Core i7-8700 processor working
at 3.2 GHz with a RAM of 16 GB. Training times range from
few seconds to near 9 min. Differences are due to algorithm
complexity and specially to the varying number of hyperpa-
rameters tested per algorithm. Training time decreases signif-
icantly with RFE models. Nonetheless, in case of strict time
constrains, hyperparameter optimization can be accelerated via
parallelization or relaxed (e.g., running less folds of data).
Since the latter option may degrade model performance, the
former alternative is preferred when necessary. Once the best

TABLE XI: Time complexity of FULL models when estimat-
ing slice throughput in single-service NS scenario.

Algorithm Training time [s]

SVR 114
KNN 0.6
XGBoost 458
AdaBoost 13
RF 27
SMLP 164
DMLP 864

SL scheme is selected, exploiting the models is immediate.
Specifically, in this work, prediction time per datapoint is
approximately 0.5 ms. Such a time meets the requirements
even of the most stringent slice re-dimensioning NFs, typically
working on a second or millisecond timescale.

Both slice and cell level models must be executed again after
any significant change affecting input variables (e.g., change
in traffic demand, traffic mix, radio channel conditions or cell
bandwidth). Moreover, slice-level estimates must be updated
if PRB split among slices varies due to SLA violation, SLA
re-definition or slice activation/de-activation. Likewise, models
must be retrained if an event changing the relationship between
predictors and the output variable happens in the network (e.
g., an update of packet scheduling or capacity broker policy,
the launch of new services or the introduction of new terminal
and base station capabilities). New models must also be trained
for a different network.

VII. CONCLUSIONS

In 5G radio access networks, the introduction of the
Network Slicing (NS) makes legacy network performance
models vary significantly. In this new scenario, slice-level
and cell-level throughput estimates are required for network
management purposes, such as cell re-planning or spectrum
sharing among slices. To this end, supervised learning is a
promising solution to derive performance models tailored to
specific network architectures and NS implementations. In
this work, a comprehensive analysis has been carried out to
assess the performance of 7 well-known SL algorithms for
estimating cell and slice throughput in the DL from radio
network performance counters and connection traces collected
in the OSS. Performance assessment has been carried out
over cell-level and slice-level datasets built with a system-level
simulator. This tool a) is dynamic (i.e., a simulation consists of
a set of correlated snapshots emulating network activity along
time on a 10-ms resolution), b) includes realistic traffic models
from 4 different services, c) implements real RRM algorithms
from vendors and d) considers a realistic scenario comprising
108 cells with uneven cell service area, traffic density and
service mix. All these characteristics allow to provide realistic
datasets that support the significance of results. Two different
NS scenarios are considered, with single-service slices and
multi-service slices. The proposed models are conceived to be
used in centralized solutions running in the OSS, where data
from all cells is available.
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Results show that, with the adequate feature selection pro-
cess, all the tested algorithms achieve acceptable performance
(i.e., "�#� and <�%� lower than 10%) when estimating
cell throughput in NS scenarios, using similar information to
models in non-NS scenarios. Moreover, all algorithms perform
similarly in scenarios with single-service and multi-service
slices. When considering the trade-off between accuracy and
storage capacity, SMLP has shown the best results in both
scenarios, with "�#�=2% and <�%�¡8%. The optimum
models have at most 4 input features related to bandwidth,
radio resource utilization and spectral efficiency. Such features
can be computed from PMs/CMs collected on a cell basis in
the OSS.

However, when estimating slice throughput, only ensemble
methods and ANNs achieve acceptable accuracy. Moreover,
model accuracy is worse in multi-service slices, where users
demand services with highly differing traffic patterns. RFE–
RF has shown the best accuracy in single-service NS scenario
(<�%� = 6.6.26%, "�#� = 2.75%), whereas RFE–SMLP
has performed best in multi-service NS scenario (<�%� =

8.78%, "�#� = 5.25%). In both cases, the 5 input features
to these models not only include indicators computed from
PMs/CMs at cell level, but also indicators computed at slice
level and information about the service mix per slice derived
from connection traces.

Throughput models proposed in this work can be used to
detect resource overprovisioning, capacity problems or SLA
violations in network (re)dimensioning. For instance, cell /
slice performance in the worst conditions can be checked by
setting input features to their worst value (e.g., highest allowed
RB utilization). Moreover, future throughput performance can
be predicted by feeding the models with forecasts of input
features. It should be pointed out that models do not directly
provide the specific re-dimensioning action to be taken to solve
the detected problem (e.g., bandwidth extension/reduction,
deployment of a new carrier. . . ). Nonetheless, models can still
be used to assess the impact of candidate re-planning actions
on network performance.

As future work, we propose to reproduce the presented
analysis over real data when available. Then, more complex
models based on DNN may be tested, which would have
overfitted with the size of the simulated datasets. Additionally,
we will consider the use of transfer learning [61] to leverage
pre-trained models derived for slices with different RRM algo-
rithms (e.g., slices managed by VMNOs with different packet
scheduler). Likewise, the use of multitask ANNs [62] will
be explored to jointly estimate the performance of multiple
slices in a cell and its neighbors. Another promising research
direction is including uRLLC and mMTC services to a) assess
the impact on throughput modelling and b) model other perfor-
mance metrics (e.g., latency-reliability for uRLLC). Note that
emulating uRLLC traffic accurately implies analyzing network
activity with a 1-ms time resolution. Likewise, mMTC services
are characterized by an extremely high number of devices
connected simultaneously to the network. These requirements
would increase simulation time by more than 10 times, making
unfeasible to run the 48 simulations used in this work. Thus,
this study have focused on eMBB use case.
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APPENDIX

Tables XII and XIII present a statistical summary of the
3 cell-level datasets and 2 slice-level datasets used in this
work, respectively. For each dataset, the following information
is provided: a) number of samples and b) mean, standard
deviation, maximum value and minimum value of the input
and output features.
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0E6 02C*� 8.24 24.03 0.26 55.63 12.00 25.18 0.48 58.76 14.32 25.40 0.65 62.42
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comprehensive survey on the E2E 5G network slicing model,” IEEE
Transactions on Network and Service Management, vol. 18, no. 1,
pp. 49–62, 2020.

[22] M. O. Ojijo and O. E. Falowo, “A survey on slice admission control
strategies and optimization schemes in 5G network,” IEEE Access,
vol. 8, pp. 14977–14990, 2020.

[23] R. Su, D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, F. Jiang, and
Z. Zhu, “Resource allocation for network slicing in 5G telecommuni-
cation networks: A survey of principles and models,” IEEE Network,
vol. 33, no. 6, pp. 172–179, 2019.

[24] O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti, “On radio access
network slicing from a radio resource management perspective,” IEEE
Wireless Communications, vol. 24, no. 5, pp. 166–174, 2017.

[25] B. Han and H. D. Schotten, “Machine learning for network slic-
ing resource management: a comprehensive survey,” arXiv preprint
arXiv:2001.07974, 2020.

[26] O. Adamuz-Hinojosa, P. Ameigeiras, P. Munoz, and J. M. Lopez-Soler,
“Analytical Model for the UE Blocking Probability in an OFDMA Cell
providing GBR Slices,” in 2021 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1–7, IEEE, 2021.
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[34] I. Vilà, J. Pérez-Romero, O. Sallent, and A. Umbert, “A Novel Approach
for Dynamic Capacity Sharing in Multi-tenant Scenarios,” in 2020 IEEE
31st Annual International Symposium on Personal, Indoor and Mobile
Radio Communications, pp. 1–6, 2020.

[35] S. Matoussi, I. Fajjari, N. Aitsaadi, and R. Langar, “Deep Learning based
User Slice Allocation in 5G Radio Access Networks,” in 2020 IEEE 45th
Conference on Local Computer Networks (LCN), pp. 286–296, IEEE,
2020.

[36] M. H. Abidi, H. Alkhalefah, K. Moiduddin, M. Alazab, M. K. Mo-
hammed, W. Ameen, and T. R. Gadekallu, “Optimal 5g network

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3208336

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on September 26,2022 at 14:51:37 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXX 2020 16

slicing using machine learning and deep learning concepts,” Computer
Standards & Interfaces, vol. 76, p. 103518, 2021.

[37] C. Baena, S. Fortes, E. Baena, and R. Barco, “Estimation of video
streaming KQIs for radio access negotiation in network slicing scenar-
ios,” IEEE Communications Letters, vol. 24, no. 6, pp. 1304–1307, 2020.

[38] H. Wang, Y. Wu, G. Min, and W. Miao, “A graph neural network-based
digital twin for network slicing management,” IEEE Transactions on
Industrial Informatics, 2020.

[39] Ericsson, “Ericsson Mobility Report,” Jun. 2020.
[40] M. L. Marı́-Altozano, S. S. Mwanje, S. Luna-Ramı́rez, M. Toril, H. San-

neck, and C. Gijón, “A service-centric Q-learning algorithm for mobility
robustness optimization in LTE,” IEEE Transactions on Network and
Service Management, 2021.

[41] 3rd Generation Parthnership Project, “New Radio (NR); User Equipment
(UE) radio transmission and reception; Part 1: Range 1 Standalone,” in
TS 38.101-1, version 17.2.0, 2021.

[42] 3rd Generation Parthnership Project, “New Radio (NR); Physical Layer
procedures for data,” in TS 38.214, version 16.6.0, 2021.

[43] K. Brueninghaus, D. Astely, T. Salzer, S. Visuri, A. Alexiou, S. Karger,
and G.-A. Seraji, “Link performance models for system level simulations
of broadband radio access systems,” in 16th International Symposium on
Personal, Indoor and Mobile Radio Communications, vol. 4, pp. 2306–
2311, IEEE, 2005.

[44] J.-H. Rhee, J. M. Holtzman, and D.-K. Kim, “Scheduling of real/non-
real time services: adaptive EXP/PF algorithm,” in The 57th IEEE
Semiannual Vehicular Technology Conference, 2003 (VTC-2003-Spring),
vol. 1, pp. 462–466, 2003.

[45] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[46] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, The elements
of statistical learning: data mining, inference and prediction, Second
edition. Springer series in statistics, 2001.

[47] L. Rokach, “Ensemble methods in supervised learning,” in Data mining
and knowledge discovery handbook, pp. 959–979, Springer, 2009.

[48] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in 13th International Conference
on Artificial Intelligence and Statistics, pp. 249–256, 2010.

[49] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1994.

[50] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and
feature extraction techniques in machine learning,” in 2014 science and
information conference, pp. 372–378, IEEE, 2014.

[51] I. Guyon and A. Elisseeff, “An introduction to variable and feature selec-
tion,” Journal of machine learning research, vol. 3 (March), pp. 1157–
1182, 2003.

[52] M. Claesen and B. De Moor, “Hyperparameter search in machine
learning,” arXiv preprint arXiv:1502.02127, 2015.

[53] P. Sedgwick, “Pearson’s correlation coefficient,” Bmj, vol. 345, 2012.
[54] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[55] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”

in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 785–794, ACM, 2016.

[56] F. Chollet et al., “Keras: Deep learning library for theano and tensor-
flow.” Available in: https://keras.io. Online. Accessed: Jun 12, 2020.

[57] J. Grus, Data science from scratch: first principles with python. O’Reilly
Media, 2019.

[58] V. Buenestado, J. M. Ruiz-Aviles, M. Toril, S. Luna-Ramı́rez, and
A. Mendo, “Analysis of throughput performance statistics for bench-
marking lte networks,” IEEE Communications letters, vol. 18, no. 9,
pp. 1607–1610, 2014.

[59] C. Gijón, M. Toril, M. Solera, S. Luna-Ramı́rez, and L. R. Jiménez,
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