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Abstract—Due to the diversity of mobile services and
rising user expectations, mobile network management
has changed its focus from Quality of Service (QoS) to
Quality of Experience (QoE). As a consequence, clas-
sical network optimization procedures must be upda-
ted accordingly. One of these optimization procedures
is Mobility Robustness Optimization (MRO), whose
aim is to improve HandOver (HO) performance by
reducing HO failures. In this work, a novel QoE-aware
MRO algorithm is proposed considering a multi-service
scenario. Unlike previous approaches, whose aim is to
increase successful handover rates, the optimization
aim in this work is two-folded: to improve cell edge
QoE while improving successful handover rates in the
whole network. For this purpose, the handover trigger
point, defined by the pair of HO control parameters
HO margin and Time to Trigger, are tuned on a per-
adjacency basis according to QoE and HO failure mea-
surements. Method assessment is based on a dynamic
system-level simulator implementing a realistic LTE
scenario with multiple services. Results show that the
proposed QoE-aware MRO algorithm improves cell
edge QoE throughout the network while increasing
the percentage of successful handovers compared to
traditional approaches.

Index Terms—Long Term Evolution, self organizing
networks, neural network, Q-learning, quality of expe-
rience.

I. Introduction
The size and complexity of current mobile communica-

tion networks makes it very difficult for cellular operators
to manage their networks. Such a problem will increase in
future 5G systems due to terminal and service diversity.
Thus, network management will remain as one of the more
challenging tasks in cellular networks for the coming years.
To deal with mobile network complexity, Self-Organization
Network (SON) frameworks are developed, which make
the most of network data assets by self-configuration, self-
optimization and self-healing features [1] [2].

One of the most important processes to manage in a
mobile network is the HandOver (HO) procedure. HO
is in charge of providing mobile users with seamless
connectivity while they move across the network. If HO
parameters are not well configured, instabilities arise,
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causing unnecessary HOs (Ping-Pong effect, PP) or Radio
Link Failures (RLF) (i.e., too early/late HOs). To avoid
these issues, Mobility Robustness Optimization (MRO) is
a self-optimization feature that automatically tunes HO
parameters to improve HO performance (i.e., minimize PP
and RLF) [3].

Increased terminal and network capabilities have raised
mobile user expectations. These changes will continue in
the coming years with the deployment of 5G systems,
which will introduce new appealing use cases [4]. Such
changes have forced operators to shift their focus from
network performance to end user opinion (a.k.a. Quality
of Experience, QoE). QoE is defined as the overall satis-
faction of a service as subjectively perceived by the user [5].

With recent advances in information technologies, big
data analytics can be used for automated QoE mana-
gement [6] [7]. In this context, Machine Learning (ML)
algorithms can help to convert network data into acti-
onable insights. Reinforcement Learning (RL) and Ar-
tificial Neural Networks (ANN) are two of the most
popular ML tools used for self-optimization in mobile
networks [8]. With these techniques, legacy reactive self-
tuning algorithms, based on threshold comparison and
simple heuristic rules, can be substituted by intelligent
schemes that autonomously find the best tuning policies
and proactively change network settings to quickly adapt
to changing environments [9]. To this end, ML techniques
have already been applied to MRO [10] [11] [12] [13] [14].
However, even if these advanced schemes can potentially
improve user QoE, to the best of authors’ knowledge, no
MRO algorithm in the literature explicitly takes QoE into
account.

In this work, a novel QoE-aware ML-based MRO al-
gorithm is proposed for LTE systems. This work is a
follow up of [11]. As in [11], the proposed adaptive HO
scheme aims to reduce the number of PP and RLF in the
network by displacing HO trigger location through HO
Margin (HOM) and Time-To-Trigger (TTT) parameter
modifications, widely used in many previous works. Like-
wise, adaptation is achieved by combining well-known RL
and ANN techniques. However, unlike previous works, the
scheme proposed here adds QoE concerns to MRO by also
considering the QoE of cell edge users affected by the HO
process as an input. The resulting scheme is validated in
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a dynamic system-level simulator implementing a realistic
macrocellular LTE scenario.

The rest of the work is organized as follows. Section II
reviews related work. Section III discusses the limitations
of classical MRO schemes in terms of QoE. Section IV
describes the system model used in this work. Section V
describes the proposed QoE MRO algorithm, Section VI
presents algorithm assessment and, finally, Section VII
summarizes the main conclusions.

II. Related work
Previous studies on MRO have proven that HO perfor-

mance can be improved with many different techniques. A
first set of approaches [15] [16] [17] [18] [19] use an ana-
lytical model to find the optimal HO parameter settings
by formulating the tuning problem as a multi-objective
optimization problem, whose objective function includes
the number of HOs per call, the outage probability, the
cell-edge spectral efficiency or RLF rates. A second set
of approaches use self-tuning methods during network
operation to adjust the parameters of an existing HO
scheme based on threshold crossing [20] [21]. Changes are
made by iterative control algorithms driven by heuristic
rules taken from expert knowledge, which can be adapted
to outdoor [20] or indoor [21] environments. Such an
approach can be improved by changing HO parameters
in a proactive manner based on RLF prediction [22].
However, with heuristic rules, it is not guaranteed that
optimal HO settings are reached in steady state. A third
set of approaches redesign the HO scheme that process
instantaneous signal measurements to decide when to trig-
ger a HO for each individual user [13] [11]. These adaptive
HO schemes constantly improve by analyzing their past
behavior, avoiding the need for an expert and becoming
a powerful tool for network optimization. Their main
drawback is that they require updating vendor equipment,
whereas the analytical and self-tuning approaches can still
be used with existing infrastructure.

Several works have included QoE aspects when optimi-
zing cellular network parameters, differing in the decision
variables tuned, performance indicators that drive the
tuning process and/or network models. As an example,
in [23] [24], the authors define a self-tuning algorithm
for a classical multi-service packet scheduler aiming to
balance and optimize QoE across services by re-prioritizing
users in a LTE cell. In [25] a 5G-QoE framework is
proposed in order to adapt UHD (Ultra High Definition)
video flows in a QoE manner. Alternatively, other schemes
aim to improve user QoE through Mobility Load Balance
(MLB) techniques. In [26] and [27] two QoE-based MLB
approaches are proposed. The aim of the former is to reach
cell QoE balance throughout a LTE network using a fuzzy-
based QoE-driven algorithm, while the aim of the latter is
to reach maximum overall system QoE using an ascent gra-
dient algorithm. Likewise, in [28], a novel indicator derived
from connection traces is developed to drive the tuning
of inter-system handover parameters to optimize QoE in
a multi-carrier LTE network. In the context of MRO, it

is clear that a bad configuration of HO parameters not
only degrades global network performance but also indi-
vidual user experience [29]. A survey of machine learning
techniques applied to self-organizing cellular networks is
presented in [8]. MLB is one of the first SON use cases
where machine learning has been applied. A RL algorithm
based on Q-learning (QL) is presented in [30] to adapt a
fuzzy logic controller for adjusting HO margins to balance
the load between cells with heuristic rules by properly
selecting consequents in the fuzzy inference engine. In [31],
QL is used to find the best step for tuning HO margins.
More sophisticated approaches combine RL and ANN with
multiple layers (a.k.a., deep RL) to build adaptive MLB
schemes that find the optimal MLB policy in complex
system states by taking advantage of the generalization
capability of ANN [32] [33]. ML techniques have also been
extensively used for MRO. In [13], QL is used to adaptively
change parameters in a classical HO scheme to reduce
PP and call dropping. Likewise, [12] uses QL to update
fuzzy rules to reduce the number of unsuccessful HOs and
call dropping ratio by adjusting only HOM, while TTT
is fixed. Similarly, an adaptive HO scheme based on QL
is proposed in [11] to reduce RLF and PP by explicitly
including both indicators as inputs to the learning process.
Thus, it is possible to find the best HO settings per cell
depending on user speed in the area. More sophisticated
adaptive HO schemes with MRO are implemented with
ANN. For instance, in [10], the conventional hysteresis rule
is substituted by an ANN that performs received signal
power pattern recognition and decides whether or not
perform HO in the hope that the probability of HO failure
is reduced. In [14], ANN is used to build a network perfor-
mance model relating carried traffic, signal strength, signal
quality and call dropping/blocking ratios, which can then
be used to lead operator actions. However, none of these
ML-based MRO schemes is driven by QoE issues. This
work proposes an evolution of the legacy QL-based MRO
algorithm described in [11]. The latter updates the Q-table
based only on early, late and ping-pong handover counters.
In contrast, a first variant of the algorithm proposed here
explicitly considers QoE as a key handover performance
metric. Moreover, the contribution is enriched with the
proposal of a second variant of the proposed algorithm,
which combines QL with an ANN.

The main contributions of this work are: a) uncovering
the limitations of traditional MRO schemes from a QoE
perspective, b) the inclusion of QoE criteria in an adaptive
HO scheme to increase user QoE at cell edge while decre-
asing RLF and PP by modifying handover margins and
Time To Trigger, and c) the validation of the algorithm
via simulations in a realistic macrocellular LTE scenario.

III. Problem formulation

The HO process ensures a seamless connection between
neighbor cells when the user moves. In the basic scheme,
known as power budget HO, a HO is triggered at time t0
when
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Prx(j)− Prx(i) ≥ HOM(i, j) ∀t ∈ [t0 − TTT (i, j), t0] , (1)

where Prx(j) is the pilot signal level received from neig-
hbor cell j, Prx(i) is the pilot signal level received from the
serving cell i, and HOM(i, j) and TTT (i, j) are the HO
margin and Time-To-Trigger from cell i to j. Both HOM
and TTT are defined on a per-adjacency basis.

A. Handover performance events
If HOM and TTT are not well configured, one of the
following events can occur.

1) RLF Too Late HandOver (LHO): it happens when a
user is moving from a serving cell i to a target cell j,
but HO is triggered too late (or even not triggered
at all). In this case, the pilot signal level from cell
i drops below a certain threshold during a specific
time window and a RLF occurs in cell i. As a result,
the user is disconnected from cell i and reconnected
to cell j some time later.

2) RLF Too Early HandOver (EHO): it takes place
when a user is moving from a serving cell i to a target
cell j, but HO is triggered too early. After HO, the
pilot signal level from cell j drops below a certain
threshold during a specific time window and a RLF
occurs. As a result, the user is disconnected from cell
j and reconnected to cell i (or another cell).

3) Ping-Pong (PP): when a user is moving from a
serving cell i to a target cell j, but HO is triggered
early, the corresponding HO algorithm will try to
hand over the user back to cell i within a particular
time window after the first HO took place. This is an
unnecessary HO causing useless increase in signaling
load.

Please note that time windows for RLFs and PP are
different from TTT (i, j) window. HO-related timers and
thresholds are defined by vendors to classify a HO as a
LHO, EHO or PP [34]. In this work, it is assumed that a
RLF is detected by the user equipment when the Reference
Signal Received Power (RSRP) is below -100 dBm for
200 ms (timer T310 [34]). Likewise, the time window for
considering two consecutive HOs as PP is set to 5000 ms
(timer T311 [34]).

LHO, EHO and PP are mutually exclusive. If a HO is
performed and none of the above occurs, HO is considered
successful (denoted as SHO). Only A3 event-based HOs
are considered in this work [35].

B. Mobility Robustness Optimization
MRO schemes modify HOM and TTT values to max-

imize the ratio of SHO (or, conversely, minimize LHO,
EHO and PP). Ideally, the optimal configuration should
ensure that HO occurs at that point where RSRP from
the serving and target cells are comparable and both
significantly good. This is achieved with low values of
HOM and TTT. In practice, a hysteresis level must be

enforced to avoid instabilities due to rapid fluctuations of
propagation conditions. When tuning HOM and TTT, a
trade-off exists between LHO, EHO and PP. The lower
HOM and TTT, the faster the HO is triggered, ensuring
that the user is always connected to the best cell, but
the more likely that a EHO and PP occurs. In contrast,
the larger HOM and TTT, the longer the HO delayed,
avoiding EHO and PP, but the user remains connected to
the source cell offering worse signal level than the target
cell, which temporarily degrades link performance and
might end up to a LHO.

C. Need for QoE-awareness
The above-mentioned signal impairments may decrease

user throughput and increase packet delay, especially at
cell edge, but these changes may not be perceived by
the user. This fact points out that there is not a direct
relationship between radio link performance and QoE [26].
Thus, minimizing HO failures and PP does not necessarily
lead to an increase in the QoE of handed-over users.
For the same reason, HO settings achieving optimal HO
performance might not lead to the best overall user QoE
at cell edge. Moreover, services are not affected the same
when radio performance is degraded, thus requiring diffe-
rentiated HO settings. Correspondingly, with these as the
main hypotheses, this paper proposes means to learn the
HO settings that are optimal not only for link robustness,
but that concurrently maximize the QoE both before and
after the handover.

IV. System model
This section outlines the traffic and QoE models of the

mobile services covered in this work.

A. Traffic models
Four services have been considered in this work: progres-

sive video streaming (VIDEO), file download service via
File Transfer Protocol (FTP), web browsing (WEB) [36],
and Voice over Internet Protocol (VoIP). Table I shows
their main characteristics [26]. VIDEO, FTP and WEB are
non-guaranteed bit rate (non-GBR) services. In contrast,
VoIP is a guaranteed bit rate (GBR) service with low
data rates. The Video service model (inspired in [37])
corresponds to buffered live video streaming with fixed
quality (720 p) and variable bit rate. For this purpose,
a simple model of the player’s buffer at the client side is
implemented. In live video streaming, content generation
and playback request occur at the same time (unlike video
on demand, where the whole content is available at the
start of the session); thus, the video server starts sending
frames to the client as they are generated, and frames are
stored in the client buffer until reaching a minimum video
content (3 seconds in this work). This is modeled as a fixed
video playback start delay (i.e., initial buffering time).
If the video buffer runs out of content during playback,
the video stops (i.e., a stalling event takes place) and the
player waits until the buffer is re-filled again. Obviously,
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TABLE I: Traffic model parameters [26].

Service Main features

VIDEO H.264/MPEG-4 AVC
VBR (Variable bit rate)

720p resolution,
25 frames per second.

Video duration: uniform distribution between 0
and 540 s. Frame size according to real traces

(avg. 9.2 MB).
Connection dropped when stalling lasts for

twice the video duration. λV IDEO = 4 · 10−3.
FTP File size: log-normal distribution (avg. 20 MB)

[36]. λF T P = 2.5 · 10−3.
WEB Web page size: log-normal distribution (avg. 20

MB).
No. pages per session: log-normal (avg. 4).

Waiting time: exponential distribution (avg. 107
s) [36]. λW EB = 3.7 · 10−3.

VoIP Coding rate 16 kbps
Session time: exponential distribution (avg. 60

s).
Call dropped after 1 s without resources.

λV oIP ' 0.

videos of less than 3 s do not experience stalling. The dura-
tion of the Video sequence follows a uniform distribution
between 0 and 540 s. Frame sizes are taken from a real
H.264 video trace [38]. A video session drop criterion is
also modeled, where the connection is terminated if session
time is more than twice the video content duration. The
other two data services FTP and WEB are best-effort
services. FTP is a file download service and WEB consists
of downloading several web pages with different sizes with
a random reading time between them. VoIP is modeled to
generate 20 bytes of voice every 10 ms, with a bit rate of
16 kbps.

Traffic connections are modeled as data bursts, and,
therefore, new connections follow a Poisson distribution for
any service [39] [40]. The Poisson distribution parameter,
λ is shown in Table I for each service.

B. QoE models
QoE is measured using the Mean Opinion Score (MOS)

scale, ranging from 1 (bad) to 5 (excellent). In the absence
of surveys, QoE can be estimated from QoS measurements.
For this purpose, QoE figures are obtained from QoS
measurements gathered per-session by means of utility
functions [41]. In the context of mobile networks, a utility
function describes the relationship between key objective
QoS performance indicators taken directly from the net-
work and the subjective QoE perceived by the users of
a service. Utility functions are service based (i.e, similar
network performance usually leads to different service’s
quality perception), and provide an estimate of the user
QoE, even if they miss contextual factors (e.g., social
environment, location, time of day, · · · ). Thus, network
operators can estimate user QoE by processing passive me-
asurements of key performance indicators from individual
connections [26].

Different utility functions are defined for each service.
VIDEO utility function is defined as [23]:

QoE(V IDEO) = 4.23− 0.0672Lti − 0.742Lfr − 0.106Ltr ,
(2)

where QoE(V IDEO) is the MOS estimated for the video
connection, Lti denotes the initial buffering time (in se-
conds), Lfr is the average stalling frequency (s−1) (i.e.,
number of times per second that the video player is
paused due to a stalling event), and Ltr is the average
stalling duration (in seconds) for the user connection under
consideration. As observed in (2), the maximum QoE value
for a video connection is upper limited to 4.23.

The utility function for FTP service characterized as [42]

QoE(FTP ) = max(1,min(5, 6.5 · TH − 0.54)) , (3)

where TH is the average user throughput in Mbps.
For WEB service, user QoE can be estimated as [42]

QoE(WEB) = 5− 578
1 + (TH+541.1

45.98 )2 , (4)

where TH is the average user throughput in kbps. Note
that, max(QoE(WEB)) = 5. No dropping of web connecti-
ons is implemented, therefore low MOS values for WEB
are reached when TH is zero (i.e., QoE(WEB) = 1 when
TH ' 0 kbps).

Finally, The utility function for VoIP service is modeled
as [43]

QoE(V oIP ) = 1+0.035R+R(R−60)(100−R)7·10−6 , (5)

where QoE(V oIP ) is the MOS value for a VoIP connection,
and R is a parameter representing the connection quality,
with values from 0 (minimum) to 93 (maximum), that
only depend on the mouth-to-ear delay experienced by
VoIP packets. Note that max(QoE(V oIP )) = 4.4054 (when
R = 93), i.e., MOS never reaches the highest value of 5,
showing that even with the best possible network perfor-
mance, some individuals may not perceive their experience
as excellent. Likewise, QoE is set to the minimum (i.e.,
QoE(V oIP ) = 1) if the connection is dropped.

Note that the above-described QoE models do not
depend on traffic model parameters (e.g., web page size,
file size or video sequence duration) but on connection
performance indicators.

V. QoE-aware MRO algorithm

In this section, a new QL-based QoE-aware MRO algo-
rithm is presented. For clarity, the Q-learning framework
is introduced first. Then, the baseline QL MRO algorithm
only driven by HO performance indicators is explained,
hereafter denoted as Quality-MRO (Q-MRO) [11]. Finally,
the proposed algorithm including QoE criteria, referred to
as Experience MRO (E-MRO), is described.
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A. Q-Learning framework
QL is a model-free RL algorithm to solve learning

problems. It is selected here due to its ability to learn and
improve system performance through experience. A QL
problem is defined by the triplet (X,A, r), where X and
A are the sets of all possible system states and actions,
respectively, and r : X · A → R is the reward function,
representing the reward (i.e., performance improvement)
obtained by executing each action in a given system state.
In this work, a state is defined by the combination of varia-
bles determining the specific radio environment of each HO
event (e.g., user speed, cell load, interference. . . ). Likewise,
an action is a particular setting of HO parameters. Both
states and actions can only take discrete values.

Every time some event n occurs at time tn, a QL
(a.k.a. learning) agent checks the benefit from executing
some action atn ∈ A with the system in state xtn ∈ X
by computing the associated reward, r(xtn , atn). From
these observations, the learning agent aims to choose those
actions that maximize its cumulative rewards over time.
To this end, the learning agent uses a greedy policy π that
will explore all possibilities and find the best action to take
at every moment so as to maximize rewards along time.
For this purpose, a value function, Q(x, a), showing the
expected reward from action a in state x is defined as

Q(x, a) = Eπ [r(xtn , atn)] . (6)

To infer Q(x, a), a Q-table is constructed with as many
rows as states and as many columns as actions. The aim of
Q-table is to store and update Q-values, showing system
performance for every state-action pair (x, a) experienced
across time (i.e., for all events n). Reward values in the Q-
table are updated everytime an event n (i.e., a HO) takes
place at tn by using the Bellman equation, as

Q(n+1)(x, a) = (1− α)Q(n)(x, a) + αr(xtn , atn) , (7)

where α is the learning rate. The learning speed of the Q-
table is controlled byα. A high value of α gives more weight
to instantaneous rewards (i.e., to the recent HO perfor-
mance), which can easily lead to algorithm’s divergence. In
contrast, a low value of α makes QL rely more on previous
cumulative rewards (i.e., aggregated HO performance for
a period of time) than on instantaneous rewards, which
improves system convergence. Note that superscript n
denotes successive versions of the Q-table after every new
event. At the end of the convergence process, the Q-table
is considered as the Q function defined in (6), and the best
action for every state, amax(x), can easily be determined
as

amax(x) = max
a

(
Q(nend)(x, a)

)
, (8)

which is the aim of the QL process. Superscript nend
reflects the last event, when the update process has ended
and no more events are considered.

The QL optimization algorithm is an iterative scheme,
where actions, states and rewards are collected for some
time, and best actions are then selected and applied
onwards. This process is repeated until some convergence
criterion for the best rewards, amax(x), is fulfilled. Such an
iterative scheme requires a time division in slots, hereafter
referred to as Action Intervals (AI). During an AI, (a, x, r)
values are collected for every event and the Q-table is
updated accordingly every time an event takes place. Once
the AI ends, the best action for every state, amax(x), is
selected and used for the next AI. Thus, an AI index, nAI ,
denotes the iteration index. In this work, AI consists of 30
seconds of network time. Note that index n in (7) reflects
events, while nAI indicates the time slot when the best
actions are calculated. Thus, a best action per state can
be defined for every AI, amax(x, nAI).

At the beginning of the optimization process, when just
a few events have happened, network performance may
not be representative of the global system behavior. To
ensure an adequate search trajectory, at the end of each
AI, the learning agent should also explore other actions,
a(x, nAI), even if those do not lead to the maximum
value in the Q-table (i.e., a(x, nAI) 6= amax(x, nAI)).
The dilemma of how much effort to spend on testing
new actions (probably suboptimal) or take those already
explored (getting high reward) is known as the exploration-
exploitation trade-off [44]. Such a trade-off is controlled by
a decaying Epsilon-greedy (ε-greedy) policy that indicates
to the learning agent how much to explore and how much
to exploit, which evolves with time. Figure 1 illustrates
a typical ε evolution with nAI , where an initial explora-
tion stage is configured, and, after a transition time, an
exploitation stage is reached. In this decaying ε-greedy
policy, ε = 1 indicates that the learning agent always
selects new options for the next AI (i.e., amax(x) from
Q-table is not considered at all). This value is used at
the beginning of the optimization process for a certain
number of AIs, Nexplore AIs. After that exploration time,
ε starts decreasing with time, causing that only some
random actions are selected with ε probability. Otherwise,
the amax(x, nAI) actions are selected. This ε decreasing
stage lasts for Ntrain AIs. Finally, in the exploitation
stage, ε = 0 and the learning agent only exploits the best
actions amax(x, nAI) calculated from the Q-table. Such an
exploitation of the best actions, with no further testing of
new actions, can only be done when network conditions
do not change. In a live scenario, ε should never reach 0,
but keep a relatively low value to react to changes in the
network by exploring new actions. In this work, the length
of this stage, Nexploit, is controlled to ensure that enough
measurements are collected to assess the performance of
the tested algorithms.

The basic structure of a generic QL scheme is summa-
rized in Algorithm 1. The main loop represents iteration
across AIs. In each iteration, ε is first updated, following
the strategy shown in Figure 1. Secondly, information (i.e.,
actions and states) from all events in the nAI iteration are
collected and their rewards r(xtn , atn) are calculated. With
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Fig. 1: Evolution of ε parameter in the QL scheme.

Algorithm 1 Structure of Q-MRO algorithm.
Input: states xtn and actions atn ε(nAI)
Output: actions for next iteration a(x, nAI + 1)

For nAI = 1, 2, ...

calculate ε(nAI)
FOR each event n occurring in tn∈nAI

calculate r(xtn , atn ) with (9)
update element in Q-table Q(n+1)(xtn , atn ) with (7)

end

FOR every x∈X

IF rand () > ε(nAI)
a(x, nAI + 1) (8) = amax(x, nAI + 1) (8)
=max

a

(
Q(n)(x, a)

)
else

select a random action a for a(x, nAI + 1) (8)
end

end

nAI = nAI + 1

end

these rewards, Q-table is updated following (7). Finally,
depending on the ε value, actions for the next iteration
are decided. Note that this structure is shared by all MRO
algorithms tested in this work. Algorithms differ in the
definition of the reward function, r, as will be presented
in next sections.

B. Q-MRO algorithm
Q-MRO is a classical implementation of MRO using a

Q-learning scheme as the one explained in Section V-A.
The aim of Q-MRO is to reduce the number of EHO, LHO
and PP by tuning HOM and TTT parameters in the HO
process. This algorithm was already proposed in [11] and
it is used here as a benchmark. The core of the algorithm
is the definition of the reward function, r (i.e., how good
or bad a particular HO event has performed), calculated
as

r(xtn , atn) = −wRLFXEHO(n)− wRLFXLHO(n)
−wPPXPP (n) , (9)

where XEHO(n) = 1 if event n occurring in tn is catego-
rized as an EHO (XEHO(n) = 0, otherwise). Analogously,
XLHO(n) = 1 or XPP (n) = 1 if event n in tn is a
LHO or PP, respectively (0, otherwise). The values of
those variables are obtained by analyzing the behavior of
the connection around the handover event. These binary
variables are weighted by constant coefficients, wRLF and
wPP , to prioritize the reduction of RLF or PP in the para-
meter optimization process. In most cases, wRLF > wPP ,
since RLFs are less desirable than PPs. In this work,
wRLF = 1 and wPP = 0.5. Note that only one binary
variable can be true for the same event n. If none of
the previous alternatives occur (i.e., a successful HO),
XEHO(n) = XLHO(n) = XPP (n) = 0 and r(xtn , atn) = 0.

C. E-MRO algorithm
Unlike Q-MRO, E-MRO scheme not only aims to reduce

RLF and PP, but also to optimize cell-edge user QoE.
For this purpose, HOM and TTT are adjusted on an
adjacency basis with the aim of increasing the average
QoE of cell-edge users. In this work, the time window
for evaluating the QoE of a user experiencing a HO event
comprises 1 second before and after the HO trigger point
(i.e., event). This short time window ensures that user QoE
is only evaluated around cell edge. The resulting value is
denoted as QoE(n) (n for the nth HO event). Note that
event n is associated to the user u experiencing that nth
HO event, so that indexes n and un can be interchanged.

The reward function for E-MRO, differently to Q-MRO,
is computed as the sum of three components as

r(xtn , atn) = rradio(xtn , atn) + rQoEstep
(xtn , atn)

+rQoEprev
(xtn , atn) , (10)

where rradio is a reward related to radio robustness,
rQoEstep

is a reward due to the change in QoE caused by
the HO event, and rQoEprev

is a negative reward (i.e., a
penalty) due to a bad QoE before HO, defined as

rradio(xtn , atn) = −wRLFXEHO(n)− wRLFXLHO(n)
−wPPXPP (n) ,

rQoEstep
(xtn , atn) = max(−1,min(1, (QoEA(un)

−QoEB(un)))) ,

rQoEprev (xtn , atn) = max(−1,min(0, ( QoE
B(un)

QoEB(w, x)

−QoE
B(w, x)

QoEB(w, x)
))).

(11)
The first term, rradio, showing the HO performance from

the radio perspective, is identical to reward r defined in (9)
for Q-MRO. The other two terms, rQoEstep

and rQoEprev
,

are only included in E-MRO. rQoEstep
focuses on maximi-

zing the difference between the QoE experienced by the
used after and before the HO, QoEA(un) and QoEB(un),
respectively. Thus, rQoEstep

rewards HOM andTTT set-
tings causing that QoE(un) in the target cell is better
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than QoE(un) in the serving cell. The QoE difference is
limited to the interval [−1, 1] to ensure that the resulting
reward is in a range similar to rradio. By considering
only rradio and rQoEstep

in (10), E-MRO could lead to
some HO settings obtaining a high r value thanks to a
large QoE step, QoEA(un)-QoEB(un), due to a bad user
performance in the serving cell (i.e., a low QoEB(un)),
and not caused by an improvement of the performance in
the target cell, QoEA(un). The third component rQoEprev

in (10) avoids these wrong HO settings by penalizing
situations when QoE before HO is lower than average,
QoEB(w, x). Specifically, QoEB(w, x) is the average QoE
before HO from any user w performing a HO between any
cell pair in the scenario within the same state x as the
state in the adjacency of user un. In such an average, only
HOs in a time window comprising the initial period of the
optimization process are considered. Thus, rQoEprev

in (10)
penalizes HO settings degrading QoE in the source cell
(i.e., before HO) compared to average user performance
before HO with similar conditions (i.e., state).

Two variants of E-MRO approach are proposed, denoted
as EQ-MRO and EN-MRO. EQ-MRO follows the above-
described process of updating a Q-table with Q-values as
described in (7), with a very conservative value of α to
make subtle changes in Q-table (i.e.,α = 0.005). With such
a small value, it is intended to maximize the Q-value per
state-action pair, Q(x, a), in the long term.

Alternatively, EN-MRO replaces the computation of Q-
values per action in each row of the Q-table (representing
states) by an ANN as function approximator [45]. When
the number of states and actions increase significantly,
dealing with the Q-table is extremely difficult due to the
large number of actions and states to be explored [46].
Replacing the Q-table by an ANN allows to have continu-
ous state and action spaces, since it enables to estimate
Q(x, a, θ) for non-explored state-action pairs. θ represents
the trainable weights of the ANN [45]. This work uses a
shallow ANN 1 with two hidden layers. This ANN is used
to reduce the need for large training datasets and avoid
overfitting. Specifically, a multi-layer perceptron (MLP)
of 2 hidden layers is trained with a backpropagation
algorithm (Levemberg-Marquardt), as a substitute of each
row of the Q-table [46]. Although this technique allows
the exploration of continuous states (i.e., any value for
HOM and TTT parameters), discrete states and actions
are maintained not only to minimize the complexity of the
algorithm, which is aligned to the fact that HOM and
TTT parameters are discretized in vendor equipment.

It is true that simpler reward functions based on sig-
nal quality indicators (e.g., average Signal-to-Interference-
plus-Noise Ratio, SINR, or packet loss ratio) could be used
to update Q-tables in both Q-MRO and E-MRO. However,
valuable information would be missed, as the algorithm
would neglect the fact that a certain parameter setting

1A shallow neural network has up to two hidden layers (opposite
to deep neural networks, comprising multiple hidden layers).

results in EHO, LHO or PP changes, which are ultimately
the main drivers of the optimization process.

D. Algorithmic complexity
The time complexity of the Q-learning algorithm in EQ-

MRO is proportional to the size of the Q-table, which is
given by the product of the number of states, Ns, and
the number of actions, Na. The former is linear with
the number of services. Thus, the theoretical worst-case
time complexity of EQ-MRO is O(Ns, Na). For EN-MRO,
complexity not only depends on the number of states and
actions, but also on the ANN size. The theoretical worst-
case time complexity for the backpropagation algorithm
used to train the ANN in EN-MRO with Ni inputs, 1
output and Nhl hidden layers is O(Ni, Nhl, Ns−hl, Nit),
where Ns−hl is the size of the hidden layers and Nit is
the number of iterations in which the ANN is re-trained.
Note that, from the above explanation, the number of
services considered in the performance assessment scenario
directly impacts on the algorithm complexity (throughNs)
and convergence time (since a higher Ns leads to higher
simulation times to collect a high number of events per
action).

There are various proofs that Q-learning converges to
the optimal Q function, provided that the right explora-
tion policy and learning rate is selected [47]. Exploration
needs to ensure that each state action is performed infi-
nitely often. Likewise, the sum of the learning rates must
tend to infinity (so that any value could be reached) while
the sum of the squares of the learning rates is finite (to
ensure convergence) [48]. Both conditions are ensured by
the proposed learning scheme, which starts with a high
learning rate to allow fast changes and lowers the learning
rate as time progresses.

QL convergence in practice has been thoroughly studied
in [49]. A key aspect to favor convergence is to use initial
optimistic Q-values. Zero has been used as initial Q-
value per state-action pair, which is an optimistic value
since final Q-values are negative, as will be seen later.
Additionally, the larger the number of events collected
per state and action, the faster the convergence, since
the network behavior is better known and, thus, better
actions for the next AI are selected. Hence, a proper
selection of AI duration is needed (30 seconds in this
work). To increase the number of events per action, an
action dropping strategy is followed in this work, which
progressively reduces the space of possible state-action
values, as will be explained in Section VI-C.

VI. Performance analysis
The above-described algorithms are tested in a dynamic

system-level simulator. For clarity, the analysis set-up is
presented first and results are shown later.

A. Experimental methodology
1) Simulation tool: Performance assessment is perfor-

med in a realistic LTE scenario implemented in a dynamic
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TABLE II: Simulation parameters.

Time resolution 20 TTI (20 ms)

Propagation
model

Pathloss COST 231 Okumura-Hata,
slow fading (log-normal σ = 8 dB,

dcorr = 20 m),
fast fading (ETU model)

Base station
model

Tri-sectorized antennas, MIMO 2x2,
BW = 5 MHz (25 PRB),
fcarrier = 1850 MHz,
EIRPmax= 67 dBm.

Traffic model
Spatial traffic distribution and service

mix based on live statistics collected on
a cell basis

Mobility model Random direction, constant speed,
30/70 km/h.

Radio resource
management

model
Scheduler: Classical

exponential/proportional fair [57]
Link adaptation CQI-based

LTE simulator built in Matlab [50]. Table II presents
the configuration of the main simulation parameters. To
reduce the computational load, only the downlink is simu-
lated.

The propagation model includes pathloss, slow fading
and fast fading. Pathloss is computed with COST-231
Hata model [51]. Slow fading is modeled statistically by a
lognormal distribution, with zero mean and standard devi-
ation of 8 dB, typical in urban macrocells [52]. Correlation
distance dcorr quantifies the minimum distance between
two statistically independent (i.e., uncorrelated) points in
the scenario, which is needed for slow fading channel si-
mulations. In this work, dcorr = 20 m, corresponding to an
urban macrocellular environment [53]. Both pathloss and
slow fading are computed with a 50-meter resolution. Fast
fading is computed with a more detailed spatial grid with
multiple realizations of a Wide-sense stationary uncorrela-
ted scattering (WSSUS) channel. To generate that matrix,
a narrow band fading grid is built following Clarke’s model
(i.e., a spatial bidimensional complex Gaussian variable
is filtered by a bidimensional Doppler filter) [54] . Then,
the model is extended by repeating the same procedure
for every path in the power delay profiles corresponding
to the Extended Typical Urban (ETU) channel [55]. Fast
fading is only applied to the serving cell. All these terms
are pre-computed to speed up computations.

From propagation losses, the signal level received by
each user from every base station is computed. It is as-
sumed that intracell interference is negligible, so that only
co-channel intercell interference is considered. Average
interference level is computed by considering neighbor
cell load. Noise power at the terminal receiver is -112.44
dBm per Physical Resource Block (PRB). Then, link
quality is determined by computing SINR, from which to
derive Channel Quality Indicator (CQI). Link adaptation
is modeled by a table mapping CQI to spectral efficiency,
calculated by a truncated Shannon bound [56].

2) States and actions spaces: All the tested algorithms
work over the same set of states and actions. Each state
is modeled as a tuple {s,v,d,l}. Table III illustrates the
meaning and possible values for each parameter.

TABLE III: Parameter defining state space
Parameter Possible values Index
Service s {FTP,VIDEO,WEB} {1,2,3}

User velocity v [km/h] {30,70} {1,2}
Inter-site distance d [km] {≤1.25,>1.25} {1,2}

Target cell load l [%] {≤70,>70} {1,2}

Fig. 2: Simulated scenario [26].

Service s indicates the type of service (i.e., FTP, Video
or Web). Although VoIP traffic is present in the scenario,
live network statistics used to tune the simulator sho-
wed that VoIP traffic is extremely low and scattered in
a few cells. The inclusion of VoIP in the optimization
scheme might cause unreliable RLF and QoE statistics
for this service. For this reason, Q-MRO and E-MRO
are not allowed to change HO settings for VoIP (i.e.,
HOM(i, j, V oIP ) = 0 dB and TTT (i, j, V oIP ) = 40 ms in
all experiments). v denotes user speed, with 30 or 70 km/h
as possible values. These values model users in a city or
in highways. Lower speeds (e.g., pedestrian users) are not
considered in this work since they hardly make HOs, and,
thus, MRO techniques do not have a significant impact on
those users. d is the Inter-Site Distance (ISD), which is
used to differentiate between close and far neighbor cells.
Specifically, a threshold of 1.25 km is used for labeling
an adjacency as close or far. In the realistic scenario
considered, shown in Figure 2, 954 adjacencies are labeled
as close and 10710 as far. Finally, l is the target cell load,
for which a threshold of 70 % is set to differentiate between
congested and non-congested neighbors.

With the above configuration, the number of states is
3·2·2·2 = 24 states. Note that the aim of the optimization
algorithm is to find the optimum HO settings for every
state, for which many HOs are needed per state. A larger
number of values per parameter s, v, d and l would
improve the accuracy when characterizing the scenario,
but it would also imply a significant increase in the number
of HO events needed to learn the optimal system behavior,
requiring a larger evaluation period. For an easier analysis,
Table IV enumerates states with a variable x, ranging from
1 up to 24, together with the corresponding parameter
labels.

For each state, a total of 45 possible actions are con-
sidered, corresponding to the combination of 15 possible
values of HOM (from -7 dB to +7 dB in steps of 1 dB) and
3 values of TTT (40, 100 and 256 ms). For space reasons,
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State x 1 2 3 4 5 6 7 8
s 1 1 1 1 1 1 1 1
v 1 2 1 2 1 2 1 2
d 1 1 2 2 1 1 2 2
l 1 1 1 1 2 2 2 2

State x 9 10 11 12 13 14 15 16
s 2 2 2 2 2 2 2 2
v 1 2 1 2 1 2 1 2
d 1 1 2 2 1 1 2 2
l 1 1 1 1 2 2 2 2

State x 17 18 19 20 21 22 23 24
s 3 3 3 3 3 3 3 3
v 1 2 1 2 1 2 1 2
d 1 1 2 2 1 1 2 2
l 1 1 1 1 2 2 2 2

TABLE IV: State space.

TABLE V: Action space mapping.
Action a 1 2 3 4 5

HOM [dB] -2 -1 0 1 2
TTT [ms] 40 40 40 40 40
Action a 6 7 8 9 10

HOM [dB] -2 -1 0 1 2
TTT [ms] 100 100 100 100 100
Action a 11 12 13 14 15

HOM [dB] -2 -1 0 1 2
TTT [ms] 256 256 256 256 256

Table V only presents a subset of 15 actions, a, with
HOM ∈ {−2,−1, 0, 1, 2} dB and TTT ∈ {40, 100, 256}
ms, which will be used later.

3) Experiments: Three experiments of increasing com-
plexity are carried out. The first experiment intends to
show Q-MRO limitations, i.e., how neglecting QoE issues
in the parameter tuning process leads to bad QoE per-
formance. Then, in the second experiment, the proposed
E-MRO schemes are compared with traditional Q-MRO
in a naive scenario of a single service. Finally, the third
experiment compares the methods in a complete scenario
with all the services.

In the first experiment, a simple experiment is defined
with only one state in the network. The state is characte-
rized by one service (s = FTP) and a fixed user mobility
(v = 30 km/h), while ISD and target cell load are not
classified. The action space A involves only one dimension,
HOM values in the range -7 dB to 7 dB adjusted in
steps of 1 dB. This results in 15 possible action values
and a Q-table as a 1x15 array. This HOM range is chosen
because, in most vendors, users with SINR < -7 dB are
not given radio resources in the scheduling process. TTT
takes a fixed value of 40 ms, which is the minimum non-
zero value according to 3GPP [34]. A low TTT value allows
the system to show the impact of different HOM settings.
To simplify the analysis, users are uniformly distributed
within every cell.

A classical Q-MRO algorithm is used in the first experi-
ment with rewards defined as in (9). The initial exploration
period is set to Nexplore = 100 AIs (50 minutes of network
time) followed by a training phase Ntrain= 360 AIs (3
hours) and an exploitation phase of Nexploit = 240 AIs
(2 hours), long enough to ensure adequate performance
assessment.

Different figures of merit are monitored per AI during
the optimization process. The first metric is the average
cell edge QoE, defined as

QoEedge = 1
2Nu

∑
u

(QoEA(u) +QoEB(u)) , (12)

where Nu is the number of users experiencing a HO event
(i.e, EHO, LHO, PP or SHO) during an AI.

Another important indicator is the average QoE for
all users in the network QoE, considering the whole
connection, and at the end of the optimization process.
QoE is defined as

QoE = 1
Nu

∑
∀u

QoE(u) . (13)

During the optimization process, user QoE, QoE(u),
must be continuously calculated around some slicing tem-
poral window. QoE(u) for FTP and Web services are
calculated as in (3) and (4), which requires estimating
average user throughput during the time window when
QoE is assessed (i.e., 1 second around the HO event).
Average user throughput at every simulation step nsim
in that time window is calculated by an Auto-Regressive
(AR) filter as

THnsim
(u) = (1− β)THnsim−1(u) + β THnsim

(u) , (14)

with β = 0.98.
Additionally to QoE indicators, average user throug-

hput, TH, is also used as a performance indicator, and
defined as

TH = 1
Nu

∑
∀u

TH(u) , (15)

where TH(u) is the average throughput of useru. Note
that index u in (13) and (15) denotes all users in the
scenario, and not only those users experiencing a HO,
as in (12). Thus, TH and QoE are global performance
indicators, while QoEedge assesses cell edge users. Also
note that throughput figures are intermediate indicators,
aiming to understand different algorithms’ performance,
while QoE indicators are defined to quantify final perfor-
mance of MRO techniques.

Other four metrics are introduced. These metrics are
the traditional MRO performance indicators reflecting the
ratio of LHO, EHO, PP and SHO, as

LHO(nAI) [%] = 100 NLHO(nAI)
Nevents(nAI)

, (16)

EHO(nAI) [%] = 100 NEHO(nAI)
Nevents(nAI)

, (17)

PP (nAI) [%] = 100 NPP (nAI)
Nevents(nAI)

, (18)
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SHO(nAI) [%] = 100 NSHO(nAI)
Nevents(nAI)

= 100Nevents(nAI)−
Nevents(nAI)

,

−NLHO(nAI)−NEHO(nAI)−NPP (nAI)
Nevents(nAI)

,

(19)

where NLHO(nAI), NEHO(nAI), NPP (nAI) and
NSHO(nAI) are the number of LHO, EHO, PP and
SHO during the nAI AI, and Nevents is the number of
events (i.e., HOs) during the nAI AI.

As a result for the first experiment, the best actions
(HOM values) found by Q-MRO will be selected as a
reduced action space for the second experiment.

In a second experiment, the aim is to find the best
settings for both HOM and TTT parameters on an
adjacency basis in a simple scenario with a single service.
To this end, the space of states is enlarged by including
all possible values for v, d and l. Yet, only FTP service
is still considered, so that only eight states are simulated
(states from 1 to 8 in Table IV). Likewise, the action space
is limited to 15 possible actions, defined by the 5 best
HOM values in the first experiment and 3 possible TTT
values (i.e., 40, 100 and 256 ms). With these states and
actions, three MRO approaches are compared: Q-MRO,
EQ-MRO and EN-MRO, with Q-MRO considered as a
benchmark [11]. For this second experiment, Nexplore =
150 AIs (75 minutes), Ntrain = 480 AIs (4 hours) and
Nexploit = 960 AIs (8 hours). The larger exploitation time
(8 hours vs 2 hours in the first experiment) is needed
because of the higher number of actions to be tested (15
actions vs 5 actions in the first experiment). EQ-MRO
uses a 8x15 Q-table (states·actions), whereas EN-MRO
replaces the Q-table by a shallow ANN with two hidden
layers of 4 neurons each. The ANN is trained for the first
time after Nexplore AIs and re-trained every 40 AIs (i.e,
every 20 minutes), since the system needs more time to
collect brand new data to learn from. To speed up the
learning process, one action, the one with the lowest Q-
value, is dropped from the learning process every 40 AIs
(20 minutes). This dropping process starts after a certain
time (200 AIs, 200 minutes) in order to collect significant
statistics for the dropping decision, and it is repeated
10 times to eliminate the worst 10 actions during the
learning process. At the end of the learning process, the
best 5 actions will remain. Thus, the outcome of the second
experiment are the best HO settings for every adjacency in
the network considering its peculiarities (e.g., user speed,
inter-site distance, target cell load,. . . ) in a single service
scenario.

In a third experiment, the complete system with all
services (i.e., s = FTP, VIDEO and WEB) is considered.
The optimization algorithm needs estimating user QoE
before and after every HO event, using the same 1-second
time window. Such an estimation is simple for continuous
services (i.e. s = FTP), but not for bursty services (i.e.,
VIDEO and WEB), which alternate periods of information
download and silence. If a HO event occurs when, for

TABLE VI: Traffic indicators.

Indicator Min Avg. Max

Nu(i, V IDEO)/Nu(i) [%] 4.3 33.03 50.7
Nu(i, FTP )/Nu(i) [%] 16.9 29.46 72.25
Nu(i,WEB)/Nu(i) [%] 22.1 37.51 47.62

U(i) [%] 4.72 58.18 95.27

example, a web user is reading (i.e., no information is
being downloaded), the QoE of that user is not taken into
account in the HO optimization process. For video users,
it is assumed that, at most, only one stalling will occur
during the HO time window. As for the user throughput
estimation, the average stalling duration (Ltr) is computed
with an Auto-Regressive (AR) filter as

Ltr,nsim(u) = βLtr,nsim−1(u) + simstep , (20)

where Ltr,nsim is the average stalling duration at simula-
tion step nsim, β = 0.98 and simstep is the duration of the
simulation step (20 ms).

In the third experiment, all services are included, le-
ading to 24 potential states and 15 possible actions per
state, shown in Tables IV and V. Thus, longer simulation
times are needed. Specifically, Nexplore = 300 AIs (150
minutes), Ntrain = 960 AIs (8 hours) and Nexploit =
1320 AIs (11 hours). EQ-MRO uses a 24x15 Q-table to
store the Q-value per state-action pair, whereas EN-MRO
replaces the Q-table by the same shallow ANN described
in the second experiment. The ANN is trained for the first
time after Nchanges and re-trained every 75 AIs (i.e, 37.5
minutes) while ε > 0.75, or every 50 AIs (25 minutes)
otherwise. To speed up the learning process, one action,
the one with the lowest Q-value, is dropped from the
learning process every 75 AIs (37.5 minutes) if ε > 0.75,
or every 50 AIs (25 minutes) otherwise.

Regarding the service traffic distribution, Table VI des-
cribes some cell-level statistics extracted from the live
scenario used for the experiment. The first three rows
show the service mix by presenting the ratio of users
of each service. Nus(i, s) denotes the number of users
demanding service s in cell i andNus(i) is the total number
of users in cell i. The last row shows the average cell
load, U(i), measured as the average PRB utilization in
the cell. Columns represent average and extreme values at
cell level.

B. Experiment 1: Q-MRO limitations
Figure 3 shows the evolution of the different HO metrics

across AIs. Recall that the initial period takes 100 AIs,
while the learning interval takes another 360 AIs. Hence,
the final performance can be extracted after nAI = 460,
approximately. Two curves are superimposed: the solid
one, with high variability, represents the value for each AI,
while the dashed curve is a Simple Moving Average (SMA)
with a window of 100 samples. For comparison purposes,
the first and last values of the SMA process are considered
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TABLE VII: Q-MRO performance (Experiment 1).
Initial End

EHO [%] 1 0.1
LHO [%] 18.52 2
PP [%] 21.6 19
SHO [%] 58.88 78.9

QoEedge [MOS] 1.28 1.48

as the initial and final values of the optimization process,
respectively.

Table VII presents initial and final values for the dif-
ferent metrics in the first experiment. As shown in the
table, LHOs are practically removed at the end of the
optimization process (LHO = 2 %, compared to LHO =
18 % at the beginning). In contrast, EHOs were already
low at the beginning of the process (1 %), due to the
way the HO scheme is designed in the simulation tool.
Nonetheless, EHOs are also reduced at the end of the
process (0.1 %). Regarding PP, higher figures at the
beginning are not significantly reduced at the end of the
process (21.6 and 19 %, respectively). This is due to the
minor weight of the PP metric in the reward function (9).
Ultimately, SHO increase as a result of the improvement
(i.e., decrease) in the other HO events.

Figure 4 illustrates the evolution of the Q-value for
actions HOM = -2 dB, -1 dB, 0 dB, 1 dB and 2 dB.
These are the best 5 actions out of the 15 actions tested in
the experiment. It is observed that HOM≥0 dB performs
better than those actions with HOM< 0 dB, given the
fact that negative HOM values largely increase PP events,
which is the most frequent HO event. These 5 HOM values
are selected for the next experiments.

Finally, Figure 5 shows the evolution of QoEedge during
the optimization process. Note that, in this experiment, no
QoE metric is included in the reward function. Specifically,
the initial and final values of QoEedge are 1.48 and 1.28,
respectively. Thus, the HO performance improvement is
obtained at the expense of deteriorating the QoE of cell
edge users by 0.2 MOS points, in line with the reward
function in (9), which does not take QoE into account.

C. Experiment 2: QoE-aware algorithms (single service)
Table VIII shows the initial and final metrics in the

second experiment. All methods share the same initial
value and the best final value is highlighted for each
metric. Q-MRO manages to reduce LHO (from 18.7 to 4.05
%), but QoE is unaltered (QoEedge = 1.45). In contrast,
EN-MRO halves PP (from 20.65 to 11.44 %), while LHO
is increased (from 18.7 to 21.35 %), resulting in SHO =
66.68 %. EQ-MRO achieves the best SHO by improving
all indicators (from 18.7 to 9.85 % for LHO and 20.65 to
17.84 % in PP). In this second experiment, cell edge QoE
is slightly improved by both E-MRO schemes (from 1.45
up to 1.48 with EQ-MRO and up to 1.52 with EN-MRO).

As for QoEedge, QoE also improves with EQ-MRO and
EN-MRO compared to Q-MRO (4.17 for both EQ-MRO
and EN-MRO against 4.09 for Q-MRO). Likewise, TH
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Fig. 3: Q-MRO performance (Experiment 1).
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Fig. 4: Evolution of Q-value for the best 5 actions (Expe-
riment 1).
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Fig. 5: QoEedge over time.

improves (4.19 for EQ-MRO and 4.29 Mpbs for EN-MRO,
compared to 4 Mbps for Q-MRO). These results show that
E-MRO algorithms not only improve cell edge users, as
it is reflected in the reward function, but also the global
average QoE and throughput figures compared to Q-MRO.

A further analysis is carried out using a new indicator
showing the overall impact of HOs on QoE by comparing
the user QoE before and after the HO as

TABLE VIII: Method performance (Experiment 2).
Initial Q-MRO EQ-MRO EN-MRO

EHO [%] 0.46 1.12 0.47 0.53
LHO [%] 18.7 4.05 9.85 21.35
PP [%] 20.65 25.14 17.84 11.44
SHO [%] 60.19 69.7 71.84 66.68
TH [Mbps] - 4 4.19 4.29
QoE [MOS] - 4.09 4.17 4.17
QoEedge 1.45 1.45 1.48 1.52
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Fig. 6: Evolution of the change in QoE experienced by
handed over users (Experiment 2).

QoEdiff = 1
Nu

∑
(

∀u

QoEA(u)−QoEB(u)) . (21)

Note that this indicator is rQoEdiff in the reward
equation (10). Figure 6 shows the evolution of QoEdiff
for this second experiment. It is observed that QoEdiff
is always positive in all approaches (i.e., QoE after HO is
better than QoE before HO). However, Q-MRO decreases
the QoE difference of handed over users, EQ-MRO keeps
the same QoE difference along the optimization process
and EN-MRO manages to increase QoE difference of users
performing HO.

Table IX details the best action, a, selected per state, x.
As expected, Q-MRO selects those actions with the HOM
setting that triggers the HO when the signal level received
from the serving cell is the same as that from the target cell
(i.e., action a = 3, with HOM = 0 dB and TTT = 40 ms)
for 6 out of the 8 states in this second experiment (states
x = 3 to 8). Only in states x = 1 and 2 (corresponding to
adjacencies with small ISD and unloaded target cell ), HO
is delayed by selecting higher HOM values (actions 4 and
5, with HOM = 1 and 2 dB, respectively). In contrast,
EQ-MRO labels as best actions those delaying the HO
trigger (i.e, action 4 with HOM = 1 dB and TTT = 40
ms, action 5 with HOM = 2 dB and TTT = 40 ms and
action 15 with HOM = 2 dB and TTT = 256 ms) in 6
out of the 8 states. Finally, EN-MRO delays HO trigger
even more, since the best actions in 5 out of the 8 states
show TTT ≥ 100 ms.

A more detailed analysis compares the best actions
selected by EQ-MRO and EN-MRO for states with small
ISD {1, 2, 5, 6} and large ISD {3, 4, 7, 8}. The selected acti-
ons in the former group, comprising adjacencies between
distant cells, delay the HO point (by increasing HOM ,
TTT or both) by a larger amount than the second group,
comprising adjacencies between nearby cells (which choose
lower HOM and/or TTT values). Such a behavior stresses
the importance of considering ISD (i.e., parameter d) when
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TABLE IX: Best actions selected per state (Experiment
2).

State index x
1 2 3 4 5 6 7 8

Q-MRO 4 5 3 3 3 3 3 3
EQ-MRO 15 5 5 8 5 5 4 3
EN-MRO 14 10 9 4 15 13 4 3

TABLE X: Method performance (Experiment 3).
Initial Q-MRO EQ-MRO EN-MRO

EHO [%] 1.27 0.64 0.43 0.43
LHO [%] 19.92 5.08 12.78 12.8
PP [%] 25.87 27.22 13.28 14.75
SHO [%] 52.94 67.06 73.51 72.02
TH [Mbps] - 3.59 3.64 3.69

QoE - 4.08 4.12 4.12
QoEedge 2.04 2.07 2.09 2.14

QoE
(V IDEO)
edge

2.05 2.11 2.1 2.11

QoE
(F T P )
edge

1.58 1.55 1.59 1.66

QoE
(W EB)
edge

2.38 2.43 2.46 2.56
QoEdiff 0.6 0.4 0.75 0.75

selecting optimal HO settings . A similar analysis (not
presented here) shows that EN-MRO tends to suggest
actions with larger TTT values for the lower user speed of
30 km/h (states 1, 3, 5, 7).

D. Experiment 3: QoE-aware algorithms (multiple servi-
ces)

Table X shows the main performance indicators at the
end of the optimization process for all methods. For a more
detailed analysis, QoE figures are broken down by services.

Similarly to Experiment 2, Q-MRO achieves the best
performance in terms of LHO (LHO = 5.08 %) compared
to other algorithms. However, EQ-MRO and EN-MRO
end up with a better SHO ratio (67.06 for Q-MRO vs
73.51 for EQ-MRO and 72.02 for EN-MRO) and better cell
edge QoE. In particular, EN-MRO obtains the best QoE
indicators, both aggregated and per service (i.e., QoEedge,
QoE

(V IDEO)
edge , . . .). Likewise, the overall QoE figure for Q-

MRO (QoE = 4.08) is outperformed by EQ-MRO and
EN-MRO in a similar amount (QoE = 4.12). Finally,
TH is also improved by EQ-MRO and EN-MRO (TH =
3.59 Mbps for Q-MRO, while TH = 3.64 Mbps for EQ-
MRO and 3.69 Mbps for EN-MRO). As expected, Q-MRO
degrades QoEdiff , while EQ-MRO and EN-MRO achieve
similar QoE improvements for cell edge users (∆QoEdiff
≈ 0.35).

For a more detailed analysis of cell edge performance,
Figure 7 shows the cumulative density function for in-
dividual users at the end of the optimization process.
Users are ordered from worst to best QoE (i.e., from 1
to 5). The curves of EQ-MRO and EN-MRO are above
the Q-MRO curve. Thus, both E-MRO methods not only
improve cell edge QoE, but also users with medium/best
QoE values. Specifically, when comparing 70 %-percentile,
Q-MRO obtains 2.87 against 2.93 and 3.13 points for EQ-
MRO and EN-MRO, respectively.

Fig. 7: Cumulative density function of optimized user QoE.

TABLE XI: Best actions per state (Experiment 3).
State index x

1 2 3 4 5 6 7 8
Q-MRO 3 3 3 2 4 3 3 3

EQ-MRO 5 10 4 3 9 10 4 4
EN-MRO 5 4 4 3 10 11 4 4

State index x
9 10 11 12 13 14 15 16

Q-MRO 3 5 3 3 3 4 3 3
EQ-MRO 5 5 3 3 5 12 3 3
EN-MRO 5 5 4 4 4 9 4 3

State index x
17 18 19 20 21 22 23 24

Q-MRO 3 4 3 4 3 3 3 3
EQ-MRO 5 5 5 4 10 5 5 5
EN-MRO 5 4 4 4 10 5 5 5

Table XI breaks down the best actions per state and
algorithm at the end of the optimization process. Recall
that states 1-8 refer to FTP users, states 9-16 refer to
video users and states 17-24 correspond to web users, as
shown in Table (IV). Thus, states x = 1, 9 and 17 show
the same network state except for the service (FTP, video
and web service, respectively). A detailed analysis (not
presented here) shows that the best HOM , and TTT
settings per state are similar to those in Experiment 2,
with low positive values for both parameters.

To check the benefit of selecting different parameter
settings per service, a detailed analysis of the final Q-value
per action and service obtained by EN-MRO is carried
out. Note that 24 Q-values are obtained per action (i.e.,
as much as the number of states). For an easier analysis,
the Q-values of the 8 states corresponding to the same
service are averaged, so that a single value is obtained per
action and service as

Q− value(s)(a) = 1
8
∑
x/s

Q− value(a, x) (22)

where s∈{FTP, V ideo,Web}. The resulting averages (3
per action) are shown in Figure 8. At first glance, it is
observed that the three services show their best (average)
behavior with actions 3 to 5 (i.e., non-negative HOM
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Fig. 8: Average Q-value per action for EN-MRO algorithm.

and minimum TTT, as observed in Table V). However,
the best action for Web service is a = 5 (HOM = 2
dB), while the best for Video and FTP is a = 4 (HOM
= 1 dB). Moreover, the vertical shift between the three
curves (services) shows that rewards are different between
services, which is a clear indication that improvements
are different between services. Specifically, Web service
experiences larger rewards than the other two services.
This is aligned to cell edge QoE values per service reported
in Table X, where it is observed that Web service is the
one with the largest improvement obtained with EQ-MRO
(from 2.38 to 2.56).

E. Discussion on execution concerns
The proposed EQ/EN-MRO algorithms are executed

periodically (every 30 s of network time) until the best
actions have been discovered. In terms of execution time,
the most limiting factor is the large period to collect
enough HO events to train the ANN in EN-MRO. This
time grows linearly with the number of system states.
In this work, EN-MRO is implemented with the Deep
Learning Toolbox in Matlab. With that toolbox, training
an ANN with 2 hidden layers of 4 neurons takes more time
than updating a bidimensional Q-table matrix, even if the
former is shallow (0.07 seconds per training operation).
Specifically, the average execution time of one execution
of EQ-MRO (Q-table) and EN-MRO (ANN) is 0.12 and
0.19 seconds, respectively, in a personal computer with a
3.6-GHz octa-core processor and 24 GB of RAM. Overall,
EQ-MRO and EN-MRO take 2.6 and 4.2 minutes when
11 hours of network time are simulated (1320 executions,
1 per AI).

VII. Conclusions
In this paper, a novel QoE-aware mobility robustness

optimization scheme for adjusting handover trigger points
in a LTE network has been proposed. The aim of the
algorithm is to improve QoE at cell edge while increasing
the percentage of successful HOs. The proposed learning

algorithm changes handover trigger points periodically
(every 30 seconds) based on a Q-learning scheme. Two
variants have been presented, depending on the way the
expected Q-value per state-action pair is obtained: either
with a Q-table or by training a neural network imple-
mented with a multi-layer perceptron. Method assessment
has been carried out in a dynamic system-level LTE
simulator implementing a realistic macrocellular scenario.
The proposed scheme is conceived to be implemented in
the base station.

Results have shown that a legacy MRO optimization
algorithm only driven by radio performance degrades QoE
up to 0.2 MOS points in a simplified scenario with a
single service and medium user speed. In contrast, the
two variants of the proposed QoE-driven algorithm im-
prove cell edge QoE, while also increasing the ratio of
successful handovers. Compared to the legacy method,
both variants improve the successful handover ratio by
more than 5 % in absolute terms, while cell edge QoE of
some services is increased by up to 0.13 MOS points. Web
services experience larger improvements than FTP and
Video users. Moreover, from the analysis of the parameter
settings suggested by the algorithm, it has been deduced
that the handover trigger point should be delayed more in
adjacencies between distant cells and slow moving users.

Future work will consider the extension of the algorithm
to enhanced mobile broadband services, requiring extre-
mely large user throughput, and mission critical services,
requiring ultra-reliable low-latency communications.
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