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Abstract: In a cellular network, signaling and data messages exchanged between network elements
are an extremely valuable information for network optimization. The consideration of different types
of information allows to improve the optimization results. However, the huge amount of information
has made it very difficult for operators to process all the available information. To cope with this
issue, in this paper, a methodology for processing cell and user connection traces to optimize a live
cellular network is presented. The aim is to generate new performance indicators different from
those supplied by manufacturers, taking advantage of the ability of complex event processing tools to
correlate events of different nature. For illustrative purposes, an example of how a new performance
indicator is created from real traces by complex event processing is given.
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1. Introduction

Mobile communications have experienced an unprecedented evolution that has led to a rapid
increase in the number of mobile users and services. To cope with these changes, new radio access
technologies and network architectures have been developed, which has increased the size and
complexity of mobile networks. As a result, operators demand automated tools that make network
management easier. This demand has stimulated intense research and standardization activity in
Self-Organizing Networks (SON) [1]. SON refers to the capability of network elements to self-configure,
self-optimize and self-heal. With the arrival of 5G systems, it is expected that the complexity of network
management will increase even more [2]. These new networks will bring new challenges that should
be addressed [3,4]. In this context, SON will play a key role to deal with the higher heterogeneity of
network devices and service requirements [5].

Mobile network management entails the use of a vast amount of information in the form of
measurements and control interactions. To properly manage this information, network data is currently
separated into performance counters and events. Counters consist of aggregated statistics of network
performance, such as, for example, the number of active users, active bearers, or successful/failed
HandOver (HO) events. These counters are stored in databases and later used to generate Key
Performance Indicators (KPIs) for network benchmarking and optimization. This information is
complemented by events, including very detailed information of control messages exchanged by
network elements. Such events may be generated by common procedures (e.g., call/session set-up
and release) or advanced network functionalities related to SON (e.g., load balancing). Unfortunately,
the huge amount of information provided by events has made it very difficult for operators to take
advantage of them in network optimization tasks. Current practice is to use events only for identifying
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the source of problems in the network. Thus, event data is seldom collected in current networks [6]. In
the absence of more detailed information, network optimization is currently based on counters. These
counters are the result of a long process of specification and implementation by manufacturers. This
causes that the set of counters is still limited in new and emerging technologies, such as Long Term
Evolution (LTE) and 5G New Radio (NR), which is a major issue for network operators.

To facilitate data gathering, 3GPP has proposed the Minimization of Drive Test (MDT) feature [7].
This functionality allows to collect user measurements more efficiently than by conventional drive tests.
Even if this solution covers measurement collection, the resulting data needs to be processed. With
the latest advances of information technology, it is now possible to process huge data volumes in real
time [8]. This process, known as Big Data Analytics (BDA), aims to uncover hidden patterns, unknown
correlations or market trends. In mobile networks, “big data” refers to configuration parameter sets,
performance counters, alarms, events, charging data records or trouble tickets [9].

To process network data, several tools have appeared on the market based on Complex Event
Processing (CEP). CEP is a data flow management approach operating with data collected continuously,
providing a complete solution for event filtering, correlation and processing in (near) real time. CEP
methodology was first introduced in Reference [10], where it is shown how events can be used for
automatic system management. CEP-based systems allow operators to work with large volumes of
heterogeneous information, linking data stored in different locations, generated by different sources at
different times. Since then, CEP has been applied in different application domains.

The objective of this work is to apply CEP to mobile communications networks in order to improve
the automatic optimization of network performance. Specifically, a methodology is presented for
using CEP to generate new performance counters for recently deployed mobile networks. These new
counters, referred to as synthetic counters, extend the set of counters currently provided by vendors.
Such new counters may combine events and counters generated by different network elements at
different instants. Synthetic counters present several advantages for vendors and operators: (a) they
can be used by vendors to implement temporary counters that can be quickly tested in the field
before integrating them in real equipment and (b) they can be used by companies offering network
optimization services to implement ad-hoc KPIs tailored to the specific needs of an operator or a service
provider. Thus, the main contributions of this work can be summarized as: (a) an agile methodology
for constructing new counters for the radio interface of a mobile network based on CEP, and (b) an
example of how a new counter is generated from different events in a live LTE network.

The rest of the work is organized as follows. Section 2 presents the state of research and technology
in CEP, justifying the novelty of this work. Section 3 outlines the basics of CEP. Section 4 presents the
CEP methodology to generate synthetic counters in a mobile network and Section 5 shows an example
of use in a live LTE network. Finally, Section 6 summarizes the conclusions of this work.

2. Related Work

The basics of CEP are covered in several references. In References [10–12], the CEP methodology is
introduced, showing how events can be used for automatic management without human intervention.
Similarly, Reference [13] describes the event processing technology and capabilities, as well as many
of the current commercial applications for event processing. In References [14–16], a survey of the
event processing tools available on the market is presented. Other references analyze specific event
processing tools, such as Cayuga [17] and Eucalyptus [18].

CEP is increasingly used in different application domains. A first domain where CEP is extensively
used is financial services. Reference [19] presents an overview of CEP applied to business management
and the CEP engine AMiT (Active Middleware Technology). Likewise, References [20,21] show how
CEP can be used to monitor and automate business activities. Another application associated with
financial services is security. Reference [22] describes the design, implementation and evaluation
of a CEP system for detecting credit card fraud, while Reference [23] presents a solution to protect
geographically dispersed organizations of a critical infrastructure from coordinated cyber-attacks.
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Another domain where CEP is applied is service provisioning, such as medical or industrial services.
In Reference [24], a CEP system is applied to real time health care. In Reference [25], the use and
benefits of CEP applied to the industrial domain is discussed.

While BDA and CEP have long attracted the attention of the computing research community [26],
these terms are relatively new in the telecommunications domain. RFID and sensor networks are the
first areas where CEP is applied. In Reference [27], an event processing mechanism for an enterprise
information systems based on RFID is presented. In Reference [28], a RFID middleware prototype
using CEP is described. In Reference [29], a reference architecture for sensor-based networks that
process complex event streams in real-time is proposed. In Reference [30], a CEP-based application
for object tracking and intruder detection in a wireless sensor network is presented. Similarly, CEP
can also be used for data stream processing in Internet of Things (IoT) [31] or match messages from
different web services [32].

In spite of its potential, the mobile industry still does not make extensive use of CEP. In
Reference [33], an architecture for taking advantage of event-based statistics for real-time performance
monitoring and optimization of a Global System for Mobile (GSM) network is described. Later,
Reference [34] highlights the large impact that BDA may have on cellular network operators, increasing
business opportunities. A recent survey of the technical solutions for the different stages of BDA in
large-scale wireless networks is presented in Reference [35], identifying stream data processing as
an open research area. BDA has also been recognized as a key enabling technology for 5G networks
in the context of SON [6,9]. Reference [6] breaks down the huge amount of data generated by
cellular networks that can be used to empower SON algorithms. Likewise, Reference [9] analyzes the
requirements of current SON tools to meet 5G requirements, covering machine learning algorithms
that can be used to transform raw data into a readily useable knowledge base to create end-to-end
intelligence in the network. Moreover, the arrival of 5G networks has brought new scenarios that
can be benefited from CEP and BDA, such as IoT [36–38], network virtualization [39–41] and cloud
computing. In these scenarios, security and privacy issues are key challenges to be addressed [42,43].

The interest on BDA has paved the way for applications of event processing in cellular network
operation. In Reference [44], a real-time analytics system for cellular networks combining stream and
graph processing is presented. The system supports rich and sophisticated analysis tasks based on
time-evolving graphs of traffic. With a more limited scope, References [45–47] present new performance
indicators obtained from events in connection traces for self-tuning and self-healing LTE cellular
networks. Nonetheless, to the authors’ knowledge, none of these studies has applied CEP to improve
the automatic optimization of cellular networks by taking advantage of the flexibility to generate new
performance counters from network data.

3. Complex Event Processing

In this section, a general CEP system architecture is introduced. Then, a brief overview of the CEP
tool used in this work is given.

3.1. Event Processing Architecture

CEP is part of an Event-Driven Architecture (EDA), specifically designed for the production,
detection, consumption and reaction to events temporarily ordered and obtained from multiple sources.
For this purpose, CEP relies on filtering, matching and aggregating event information in real time.

As shown in Figure 1, an event processing system can be separated into three parts: event
handling, processing engine and output.
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Figure 1. Event processing architecture.

3.1.1. Event Handling

Event processing is usually applied on an already existing information system that provides
events as output. An event is anything that happens or is regarded as happening. These events
may come from the outside (e.g., from an external database) or the inside (e.g., an internal enterprise
information system), and be generated in the real world (e.g., a sensor) or virtually (e.g., by a service).

Events in information systems often include data and messages that record activities. Events can
be either simple or complex. A complex event is an event summarizing a set of simple events. For
instance, the handover made by a user from a source cell to a target cell is a complex event consisting
of several simple events (i.e., user measures the power received by the source and target cells, base
station checks if received power from the target cell is better than the power received from the source
cell, source cell notifies the outgoing action to the target cell, etc.). Events can be arranged into either
an event stream or an event cloud. An event stream is a sequence of events that is linearly ordered by
timestamps, denoting the time the event took place [13]. In contrast, an event cloud is a set of event
streams obtained from multiple sources. The former is dealt with traditional Event Stream Processing
(ESP) tools, while CEP tools also deal with the latter, since CEP can combine data from multiple sources
(and hence the term “complex").

In mobile networks, events are collected from many different sources. A source is defined
by a combination of event type (e.g., radio measurement, session establishment, handover, ...),
network element (e.g., base station, site, interface, ...) or protocol layer (e.g., physical, Medium
Access Control—MAC, Internet Protocol—IP, ...). CEP has the ability to combine data from all these
multiple sources.

3.1.2. Event Processing Engine

In both event and cloud streams, an Event Processing Engine (EPE) is in charge of processing
events. Event Processing Agents (EPAs) are responsible for collecting input events. An EPA can filter
duplicate events, rectify errors or match formats [27]. Then, the engine processes events and notifies if
certain pre-defined patterns or rules are matched.

A pattern or rule can be defined in an Event Query Language (EQL), which is a high-level
programming language for defining complex events. EQLs (a.k.a. Event Processing Languages, EPLs)
reduce the effort to develop CEP applications dealing with complicated event patterns in multiple
streams. Three main language styles are found for EQL implementation [48]:

1. Composition operator languages (a.k.a. event pattern languages) define complex events
by composing single events using different logical operators and nesting expressions (e.g.,
ComplexEvent is equal to SingleEvent1 and SingleEvent2).

2. Data stream query languages (a.k.a. event stream analysis languages) define complex events by
converting event data streams into relations, similarly to databases, which are then evaluated by
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standard Structured Query Language (SQL) queries. The resulting relations are converted back to
another data stream.

3. Production rule languages define complex events by specifying the actions to be executed when
certain states are reached. These states are defined by means of “WHEN ... THEN ..." rules (e.g.,
WHEN SingleEvent1 AND SingleEvent2 THEN ComplexEvent).

Nowadays, SQL-based data stream query languages are the most successful approach, since they
can easily be integrated with databases, sharing the common basis of SQL. Nonetheless, some tools
combine the three programming styles to benefit from their strengths.

Retaking the handover example, the EPE can define a set of statements to process not only the
events related to the handover, but also other events received by the base station at the same time
(e.g., signal strength measurements periodically reported by the terminal for the source and target cell,
instantaneous load measurements periodically taken by the serving cell, interference issues reported
asynchronously by neighbor cells, . . . ).

3.1.3. Event Processing Output

Two actions can be triggered from the output of the EPE. On the one hand, the engine can only
notify that a given pattern or rule has been detected, and maybe update some counter. Alternatively,
a new event can be generated. The new event can be a composite or a derived one, depending on
the information to be included in the new event. A composite event is created when the information
is selected from the information in original single events. Instead, a derived event includes new
information, not existing in the previous single events, and specifically collected when the new event
is triggered.

In the handover case, a new event can be generated based on the information included in all
considered events in previous stages. This example is described in more detail in Section 5.

3.2. Cep Software

Table 1 lists some of the most popular CEP tools on the market. These can be classified into
Event Processing Platforms (EPP), Distributed Stream Computing Platforms (DSCP) and CEP libraries
(CEPL) [16]. EPPs are platforms that provide high-level programming models built-in functions for
event filtering, correlation, and abstraction. DSCPs are platforms that provide explicit support for
distribution of computation across multiple nodes in a computing cluster. CEP libraries (a.k.a. as CEP
engines) are isolated lightweight software components focused on detecting complex events, which
can be integrated into EPPs and DSCPs.

Some commercial products (e.g., IBM Operational Decision Manager, IBM InfoSphere Streams,
SAP Event Stream Processor, Tibco BusinessEvents and StreamBase) are runtime software suites
with adapters for dashboard, alerting and administration tools. Other event processing platforms
(e.g., FeedZai Pulse, SQLStream s-Server) are extended with features, such as query, reporting,
interactive analytics or key performance indicators, specifically aiming at operational intelligence
applications. Emerging distributed systems (e.g., Apache Samza, Spark and Storm) are general-purpose
environments without native CEP functions, but offering high scalability and extensibility. The reader
is referred to Reference [16] or Reference [49] for a detailed comparison of their features.

The Esper [50] suite is one of the few open-source software packages for CEP available in the
public domain. Developed in JAVA, Esper can be integrated into different platforms or used as a
standalone container. It combines traditional and complex event processing (i.e., ESP and CEP) and
offers an SQL-based data stream query language, which makes integration with databases easier.
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Table 1. Complex event processing tools available on the market.

Tool Developer Class Type

Apama Software AG EPP Commercial
BusinessEvents Tibco EPP Commercial

StreamBase Tibco EPP Commercial
InfoSphere Streams IBM EPP Commercial

SAP Aleri Streaming Sybase EPP Commercial
SQL Server StreamInsight Microsoft EPP Commercial

Oracle CEP Oracle EPP Commercial
SQLStream SQLStream EPP Commercial

Complex Event Processor WSO2 EPP Free
Kinesis Amazon EPP Free

DataTorrent RTS Apache EPP Free
Stream Explorer Oracle EPP Free

Borealis (Aurora, Medusa) Brandeis University, Brown University and MIT DSCP Free
Storm Apache DSCP Free

Spark Streaming Apache DSCP Free
Samza Apache DSCP Free
Apex Apache DSCP Free
Flink Apache DSCP Free

Active Middleware Technology IBM CEPL Commercial
Esper/NEsper EsperTech CEPL Free

Cayuga Cornell University CEPL Free
Siddhi Cornell University CEPL Free

ruleCore CEP Server Rulecore CEPL Free

4. Complex Event Processing in Mobile Networks

The use of real network data is key to improve network optimization algorithms. In this section, a
CEP-based framework is presented to derive new performance counters suitable for self-optimization
of mobile radio access networks. These synthetic counters are obtained from trace files reported by
base stations (BS), and can be used to enrich the information provided by vendors’ traditional counters.

A general CEP approach for mobile networks consists of three stages: event decoding,
synchronization and correlation. For clarity, the trace collection process in existing mobile networks is
explained first, and the different event processing stages are detailed later.

4.1. Traces

In mobile networks, network management data is distributed across different elements.
Depending on its nature, data in the radio interface can be classified into:

1. Configuration Management (CM) information, reflecting the current value of network parameter
settings (e.g., maximum transmit power of a BS);

2. Performance Management (PM) information, consisting of counters reflecting the number of times
that some event has occurred in a network element (e.g., number of connection establishment
attempts) during a certain period, referred to as Reporting Output Period (ROP); and

3. Data Trace Files (DTFs), containing multiple records (events) with radio related measurements of
a single User Equipment (UE) or a base station when some event occurs (e.g., received signal level
when a connection starts). This information is gathered by MDT function. DTFs can be further
classified into User Equipment Traffic Recording (UETR) and Cell Traffic Recording (CTR) [51].
UETR are used to monitor a specific user, while CTR are used to monitor cell performance by
monitoring multiple and anonymous connections. Note that both UETR and CTR consist of traces
of individual connections. The main difference between UETR and CTR traces is that, in UETR, it
is the operator that decides which UE is tracked, whereas, in CTR, all (or a random subset of) UEs
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in a cell are recorded (i.e., it is not possible to single out a particular user)) [52]. A DTF includes
events from multiple sources, such as UEs or cells.

Events can be classified in two groups, depending on the network entities involved:

1. External events, consisting of signaling messages that BSs exchange with other network elements.
For instance, in LTE, BS (a.k.a., eNodeB, eNBs), store Radio Resource Control (RRC) messages
received from the UE through the LTE-Uu interface, and messages exchanged with other eNBs
through either the X2 or the S1 interface. Therefore, external events can be divided into three
categories depending on the type of message:

(a) RRC events (e.g., Rrc_rrc_connection_request or Rrc_rrc_connection_setup),
(b) S1 events (e.g., S1_initial_context_release or S1_initial_context_setup) or
(c) X2 events (e.g., X2_handover_request or X2_handover_request_acknowledge).

2. Internal events, with information about the performance of some BS. These events are specific to
each BS vendor. Some examples of internal events are:

(a) Periodical events, including information about user or BS performance (e.g., periodic pilot
signal level/quality measurements).

(b) Non-periodical events, triggered by some sporadic reason (e.g., start/end of a connection,
handover).

Both periodical and non-periodical events can be divided into UE or BS events.

The structure of events stored in DTFs is usually made up of a header and a message container that
includes different attributes, referred to as event parameters. The header contains general attributes
associated with the event description, such as timestamp, BS, UE, message type or event length,
whereas the message container includes specific attributes associated with the message type. The
number of attributes in the message container depends on the message type.

Figure 2 represents a high-level view of the architecture for trace reporting [52]. The trace
collection process starts by the operator preparing a Configuration Trace File (CTF). A CTF includes:
(a) the event(s) to be monitored, (b) in the case of UETR, the particular UE(s), and, in the case of CTR,
the cells and the ratio of calls, for which traces are collected, (c) the ROP (typically 15 min), (d) the
maximum number of traces activated simultaneously in the network, and (e) the time period when
trace collection is enabled. After enabling trace collection, UEs transfer their event records to their
serving BS. When ROP is finished, the BS generates CTR and UETR files, which are stored locally. Later,
trace files are periodically sent to the Operations Support System (OSS) or another trace collection
entity owned by the operator. CTF parameters must be configured properly to avoid overloading
network elements, especially when dealing with high-frequency events (e.g., periodic measurements
on a connection basis). Note that DTFs have a limited size. Thus, a CTF activating too many records
in a cell might cause that the maximum DTF size is reached before the ROP ends, causing that some
connections were not traced properly.
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Figure 2. High-level view of trace reporting.

4.2. Event Decoding

Trace files are binary files encoded in ASN.1 format [51]. For computational efficiency, the DTF
from each BS is broken down in as many files as event types. These temporary files are then converted
into a common file format, for example, Comma Separated Values (CSV) file. Such a decoding is
performed by a parsing tool that extracts the information in traces. The output of this stage is one file
per event type, BS and ROP, which is the input to the synchronizer block.

4.3. Event Synchronization

Once traces have been decoded and separated by event type, BS and ROP, data is synchronized
(i.e., ordered by time). Such a process consists of merging all input files into a single file per event
type, and then sorting events by the timestamp attribute. As a result, a file is obtained per event
type including all the events of the same type reported by all BSs during the trace activation period,
sequentially ordered by time.

4.4. Event Correlation

The event correlation process is the core of the analysis. In the proposed framework, the correlation
engine is implemented by Esper [50]. The input to Esper is the set of decoded and synchronized traces
from previous stages, consisting of a file per event type with events sorted by timestamp. Each of these
files represents an event stream. From these files, Esper derive and aggregate information by defining
EPL statements similar to SQL.

In Esper, data is processed in a continuous manner. Once EPL statements are registered, these are
executed as live data streams are introduced into the tool. The output of a statement can be the input
of another statement. This is done by a listener, which propagates query results acting as an internal
input.

Figure 3 shows the structure of a typical EPL statement. The select clause indicates the analyzed
event attributes, while the from clause indicates the analyzed event streams. For ease of use, a short
name can be assigned to event streams or attributes with the operator as. The where clause defines the
event attribute (or combination of them) to search for. The group by clause is used to arrange identical
data into groups. The having clause adds filtering conditions for the group by clause. The output clause
is used to control the rate at which events are supplied by the event correlation engine. The order by
clause sorts data in ascending or descending order. Finally, the limit clause is used together with the
order by and output clauses to limit the query results to those within some specific range. The select and
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from clauses are mandatory, whereas the rest of clauses are optional (expressed in square brackets).
Likewise, the order of clauses must be maintained.

select select_list
from stream_def [as name] [, stream_def [as name]] [, ...]
[where search_conditions]
[group by grouping_expression_list]
[having grouping_search_ conditions]
[output output_specification]
[order by order_by_expression_ list]
[limit num_rows]

Figure 3. EPLstatement.

A valuable feature supplied by EPL statements is the definition of moving event windows. A
window can be defined by a period duration or by a number of times an event occurs (referred to
as logical or physical windows, respectively). A window can also be set as sliding or tumbling. A
sliding window extends the specified interval into the past from the present moment, reporting an
event as it occurs. In contrast, a tumbling window batches events and reports them only when the
window is closed. Consequently, tumbling windows report only at the end of the time period (logical
tumbling windows) or after some event occurs a predetermined number of times (physical tumbling
windows) [50].

5. Use Case

An example of how a synthetic counter is implemented with CEP is presented next. The aim
is to show the ability of trace processing to generate sophisticated indicators for mobile network
optimization. Data in the example is taken from a live LTE network. For clarity, the design of the
synthetic counter is first explained and results are presented later.

5.1. Synthetic Counter Design

The implemented counter computes the average pilot signal level (i.e., Reference Signal Received
Power, RSRP) received by UEs just before a HO, on a per-adjacency basis. This is achieved by
combining information at cell, user and connection level.

The implementation of a counter includes three components: (a) the event streams and attributes
required as an input, (b) the correlation rules between different event streams, and (c) the actions
to be carried out when rules are met. Figure 4 shows the Esper code that implements the proposed
synthetic counter following the structure in Figure 3. The defined structure includes the definition
of the EPL statement with its streams, attributes and rules (lines 1–15 in Figure 4), the creation of
the EPL statement (line 16 in Figure 4), the definition of output actions (line 17 in Figure 4) and the
activation/registration of the EPL statement (line 18 in Figure 4).
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1 expression = “select hs.TIMESTAMP as hsTime, hs.CELL_ID as hsCellId, hs.UE_ID
2 as hsUeId, hs.TARGET_CELL_PCI as hsSelectedTargetPCI,
3 hs.NEW_UE_ID as hsNewUeId, ht.TIMESTAMP as htTime,
4 ht.CELL_ID as htCellId, ht.NEW_UE_ID as htUeId, ht.OLD_UE_ID
5 as htOldUeId, ht.CELL_PCI as htPCI, ueMeas.TIMESTAMP
6 as ueMeasTime, ueMeas.CELL_ID as ueMeasCellId, ueMeas.UE_ID as
7 ueMeasUeId, ueMeas.SERVING_RSRP as ueMeasRsrpValue
8 from X2_HANDOVER_REQUEST_ACKNOWLEDGE(MESSAGE_
9 DIRECTION=0).win:ext_timed(TIMESTAMP, 500 msec) as hs,

10 X2_HANDOVER_REQUEST_ACKNOWLEDGE(MESSAGE_
11 DIRECTION=1).win:ext_timed(TIMESTAMP, 500 msec) as ht,
12 INTERNAL_EVENT_UE_MOBILITY.std:groupwin(UE_ID).win:length(1)
13 as ueMeas
14 where hsCellId != htCellId
15 and hsUeId = htOldUeId
16 and hsNewUeId = htUeId
17 and hsSelectedTargetPCI = htPCI
18 and hsCellId = ueMeasCellId
19 and hsUeId = ueMeasUeId
20 and Math.abs(hsTime - htTime) ≤ 500 msec
21 and Math.abs(hsTime - ueMeasTime) ≤ 500 msec";
22 statement = epService.getEPAdministrator().createEPL(expression);
23 RsrpWhenHoListener rsrpWhenHoListener = new RsrpWhenHoListener();
24 statement.addListener(rsrpWhenHoListener);

Figure 4. Esper code for the synthetic counter AverageRSRPwhenHO.

5.1.1. Event Streams

In the code in Figure 4, the input event streams are defined in the variable “expression” in the
from clause (lines 8–13). Two event streams are invoked: the external X2_HANDOVER_REQUEST
_ACKNOWLEDGE and the internal INTERNAL_EVENT_UE_MOBILITY. Both input streams
consist of a series of records from the eNB. A new record is saved by an eNB in the external
X2_HANDOVER_REQUEST_ACKNOWLEDGE event stream when either an incoming or an
outgoing HO is requested. Likewise, a new record is saved by an eNB in the internal
INTERNAL_EVENT_UE_MOBILITY event stream when a connection is released. In the example,
the from clause consists of three components. The former four (lines 8–11) deal with the
X2_HANDOVER_REQUEST_ACKNOWLEDGE. The first ones (lines 8–9) corresponds to an outgoing
HO request in the source cell (indicated by MESSAGE_DIRECTION=0), while the second ones (lines
10–11) corresponds to an incoming HO request in the target cell (MESSAGE_ DIRECTION=1). These
two components are renamed as hs and ht (for HO events from source and target cells, respectively). In
both, a sliding window is configured by means of the method “win:ext_timed(TIMESTAMP, 500 msec)",
that is similar to the sliding window, but based on the millisecond time value supplied by the
expression. Thus, the from clause is activated when a HO is detected from a source cell to a destination
cell in the last 500 msec. The third one (line 12) deals the INTERNAL_EVENT_UE_MOBILITY
stream, associated with measurements reported by the UE, and hence renamed as ueMeas. In this
stream, the methods “std:groupwin(UE_ID)" and “win:length(1)" are used to single out events from a
particular UE.

5.1.2. Event Attributes

The attributes analyzed in every record in the event streams are listed in expression by the select
clause (lines 1–7). Table 2 gives a detailed description of these attributes.
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Table 2. Event attributes.

Attribute Renamed as Information

hs.TIMESTAMP hsTime Time when record is saved in event
stream of source cell

hs.CELL_ID hsCellId Logical cell identifier of source cell
in event stream of source cell

hs.UE_ID hsUeId UE identifier in source cell in event
stream of source cell

hs.TARGET_CELL_PCI hsSelectedTargetPCI Physical cell identifier of target cell
in event stream of source cell

hs.NEW_UE_ID hsNewUeId UE identifier in target cell in event
stream of source cell

ht.TIMESTAMP htTime Time when record is saved in event
stream of target cell

ht.CELL_ID htCellId Logical cell identifier of target cell
in event stream of target cell

ht.NEW_UE_ID htUeId UE identifier in target cell in event
stream of target cell

ht.OLD_UE_ID htOldUeId UE identifier in source cell in event
stream of target cell

ht.CELL_PCI htPCI Physical cell Identifier of target cell
in event stream of target cell

ueMeas.TIMESTAMP ueMeasTime Time when record is saved in event
stream of UE measurements

ueMeas.CELL_ID ueMeasCellId Logical cell identifier of cell serving
in event stream of UE measurements

ueMeas.UE_ID ueMeasUeId Identifier of UE reporting
measurement in event stream of UE
measurements

ueMeas.SERVING_RSRP ueMeasRsrpValue Reference signal received power level
from serving cell reported by UE
in event stream of UE measurements

5.1.3. Conditions

A set of conditions to be met by the selected attributes of events to trigger an action are given by
the where clause in expression (lines 14–21). Table 3 gives a detailed description of these conditions.

Table 3. Conditions.

Condition Description

hsCellId != htCellId Source and target cells are not the same
hsUeId = htOldUeId and hsNewUeId = htUeId UE triggering outgoing HO in the source

cell is the same as
UE triggering incoming HO to target cell

hsSelectedTargetPCI = htPCI Physical cell identifier of target cell in
outgoing HO is the same as
physical cell identifier in the incoming HO

hsCellId = ueMeasCellId Cell where outgoing HO is triggered is the
same as cell where UE measurements are
reported at the end of the connection

hsUeId = ueMeasUeId UE triggering outgoing HO from source
cell is the same as UE reporting
measurements at the end of its connection

Math.abs(hsTime − htTime) ≤ 500 msec and Absolute time gap between hs and ht and
between hs and ueMeas events

Math.abs(hsTime − ueMeasTime) ≤ 500 msec must be less than 500 ms
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5.1.4. Actions

Once the EPL statement is registered, the framework continuously checks for matches. Every
match triggers plain Java or .Net/C# objects for customized actions. In the example, actions are
defined inside the RsrpWhenHoListener class (line 23). In this case, actions consist of updating two
intermediate counters with the aggregated RSRP level and the number of measurement samples on
a per-adjacency basis. These counters are then used to compute the final synthetic counter with the
average RSRP just before HO for each adjacency, hereafter denoted as AvgRSRPWhenHO.

5.2. Assessment Methodology

The above described Esper code is executed over a trace dataset collected in a live LTE network.
The geographical area covered by the dataset consists of 145 eNBs and 3220 adjacencies, covering
835 km2 of a mixture of urban and residential areas. The dataset includes 580 CTR files collected
from sites every 15 min during the busy hour of a weekday (i.e., 4 ROPs of 15 min per cell, leading to
145× 4 = 580 files). To avoid overloading eNB processors, a limited share of connections is traced per
cell. For this purpose, the CTF is set to monitor 20% of connections. Posteriori, field tests show that
tracing 20% of connections is enough to obtain robust statistics. The total number of traced connections
is 2332961. For operational reasons, the event processing tool is not executed in real time, but after the
CTR files are uploaded in the OSS.

The proposed synthetic counter is compared with the two indicators currently used by operators
to monitor coverage issues—the average RSRP and the 5th percentile of the RSRP distribution per cell,
showing the average (cell center) and worst-case (cell edge) signal strength conditions, respectively [53].
Both indicators are calculated from counters that register the bins of the histogram of the RSRP
distribution per cell, derived by aggregating all users in a cell. These counters are provided by
all vendors.

5.3. Results

As described before, a different value of AvgRSRPWhenHO per adjacency is obtained. Figure 5
presents the histogram (bars) and Cumulative Distribution Function (curve) for the AvgRSRPWhenHO
indicator, computed on an adjacency basis (1 value per adjacency). For clarity, the 10th and 90th
percentiles are marked by a dashed and dotted lines (−111 and −95 dBm, respectively). Some relevant
findings can be drawn from the figure. A preliminary analysis of network settings (not presented here)
showed that the operator set the RSRP threshold to drop a call to −116 dBm for all adjacencies. When
this value is compared with the AvgRSRPWhenHO percentiles shown in Figure 5, it is concluded that,
in 10% of adjacencies in the network, users experience a RSRP value before HO lower than −111 dBm,
which is too close to the call dropping threshold, −116 dBm. Thus, it is concluded that, in that 10% of
adjacencies, handovers are triggered too late. This is normally due to a coverage problem at cell edge,
reflected by the low RSRP before HO in the adjacency. Likewise, the 90th AvgRSRPWhenHO percentile
shows that 10% of adjacencies in the network have a RSRP value before HO larger than −95 dBm.
This threshold can be used to detect adjacencies that might be triggering unnecessary HOs, since UEs
experience good RSRP before HO at the source cell. Such situations might be indicative of excessive
cell overlapping, which would generate high interference due to the target cell radiating the service
area of the source cell with a strong signal level. Moreover, useless handovers unnecessarily increase
network signaling load.

To show need for the synthetic counter, Figure 6 compares the cumulative distribution function of
AvgRSRPWhenHO per adjacency against the average RSRP and 5th percentile of the RSRP distribution
per cell. It is observed that none of the two indicators derived from standard counters can approximate
the signal level received by the user around the handover event. Not shown is the fact that the latter
two are also affected by the granularity of histogram bins, which is not the case for the synthetic
indicator, as it is not computed from histograms. Moreover, note that the latter two can only be
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computed on a cell basis, unlike the synthetic counter, which has been specifically designed to be
computed on an adjacency basis. Thus, the new counter provides directional information that can be
used to steer base station antennas.
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Figure 5. Probability distribution of AvgRSRPWhenHO synthetic counter.

Figure 6. Comparison of AvgRSRPWhenHO, average RSRP (Reference Signal Received Power) and 5th
percentile of RSRP.

5.4. Implementation Issues

Both the event decoding and synchronization stages were developed in C++, while the event
correlation block was developed in JAVA with Esper. The theoretical time complexity of event
processing is O(Nc), where Nc is the number of connections collected per ROP. In practice, event
decoding, synchronization and correlation took 4 min, 10 and 50 s, respectively, for a total execution
time of 5 min, in a laptop with 2.6 GHz frequency clock and 4 GB of RAM, for 1 h of traces.

5.5. Limitations

The proposed approach has two limitations. On the one hand, synthetic counters still rely on the
signaling events provided by vendors. Note that the proposed counter is derived from the combination
of an external (standardized) event and an internal (non-standardized) event. To ensure that different
vendors can reuse the design of a synthetic counter, this should be computed only from data fields in
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external (i.e., vendor-independent) events. This constraint is important when optimization schemes are
executed in multi-vendor scenarios. On the other hand, the proposed synthetic counter is computed
offline in a centralized entity for simplicity. Thus, it is possible to correlate/aggregate events that can
be very distant in space and time. If the value of the counter has to be computed in real time (e.g., for
online monitoring of individual connections), a careful analysis of the different sources of delay (e.g.,
averaging windows, information exchange between network elements, computational load . . . ) has to
be performed to ensure that the result is available in due time.

6. Conclusions

In this work, a generic methodology has been presented for building new performance counters
for monitoring mobile networks by processing events in connection traces in the radio interface.
The resulting indicators, referred to as synthetic counters, enrich the set of counters provided by
vendors. The power of counters generated by CEP lies on the ability to correlate events at cell, user and
connection level, combining information from different network elements and time instants, collected
with different space and time granularity. Equally important, event correlation rules are configured
at run-time, so that counters can easily be modified. As a proof of concept, a CEP-based framework
based on Esper suite has been developed to compute an indicator for the performance of the handover
mechanism in a live LTE network.

The capability of adapting the set of performance counters will be extremely valuable in future
5G systems. It is envisaged that one of the key benefits of 5G will be to reduce time to market for new
functionalities and services [54]. To make it true, a flexible performance monitoring solution that can
be adapted to the different stages in the technology roadmap is crucial. Performance data needed to
verify a product in the lab, or tune a golden cluster in a field trial, differs from the information used for
large scale monitoring in the operational stage, when traffic demand increases and aggregated counters
truly reflect network performance [55]. Likewise, network tuning and troubleshooting tasks, currently
offered as consultancy services or automation features, often require very detailed information not
provided by default counters [6]. These differences call for an agile network monitoring solution
including fast prototyping of new performance counters.

In 5G systems, the isolation of tenants provided by network slicing will be key to cope with
the expected service diversity [56]. For this purpose, network performance counters must reflect
end user experience to ensure that operator policies have the largest impact on subscribers. The
methodology proposed here can be applied to merge information from different radio access
technologies and domains (subscriber, radio, transmission, core network. . . ) to allow end-to-end
performance monitoring of individual users in real time per slice [57]. Moreover, the ability of quickly
redesigning the counter set might help operators to define more specific service level agreements,
which is impossible in legacy systems due to the cost of developing new counters with the traditional
approach. This capability can be extended to tenants (e.g., vertical industries or virtual operators),
who could tailor service measurements to their needs. Ultimately, the availability of analytical tools as
the one proposed will help operators to convert operational data into actionable insights.
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