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Abstract—Network dimensioning is a critical task for cellular
operators to avoid degraded user experience and unnecessary
upgrades of network resources with changing mobile traffic
patterns. For this purpose, smart network planning tools require
accurate cell and user capacity estimates. In these tools, through-
put is often used as a capacity metric due to its close relationship
with user satisfaction. In this work, a comprehensive analysis is
carried out to compare different well-known Supervised Learning
(SL) algorithms for estimating cell and user throughput in the
DownLink in busy hours from radio measurements collected on a
cell basis in the Operation Support System (OSS). The considered
SL approaches include random forest, shallow multi-layer per-
ceptron, support vector regression and k-nearest neighbors. Such
algorithms are compared with classical multiple linear regression
and deep learning approaches considered in previous works. All
these algorithms are tested in two radio access technologies:
High Speed DownLink Packet Access (HSDPA) and Long Term
Evolution (LTE). To this end, two datasets with the most relevant
performance indicators per technology are collected from live
cellular networks. Results show that non-deep SL algorithms
are the most appropriate option for applications with storage
constraints, such as network planning tools, since they provide
a higher accuracy with reduced datasets.

Index Terms—Cellular network, supervised learning, pole
capacity, user throughput, network measurements.

I. INTRODUCTION

Network (re)dimensioning is a key process in current
cellular networks due to the constantly changing spatiotem-
poral distribution of mobile traffic [1] [2]. As a consequence,
operators have to revise and constantly update their capacity
plans to detect capacity bottlenecks in advance. Then, different
re-planning actions can be executed in the short-term (e.g., a
more efficient voice coding scheme [3], new handover margin
settings for traffic sharing between adjacent cells [4], etc.) or
in the long-term (e.g., bandwidth extension [5] or deployment
of new carriers/co-sited cells) before capacity problems occur
and user experience is degraded. Such changes can have a
strong impact on cell and user capacity. Thus, it is essential
to predict cell/user capacity in the new network conditions
to guarantee that the expected traffic will be carried without
any capacity bottleneck or user experience degradation. To
reduce the workload of these tasks, the most advanced capacity
planning tools are developed in a Self-Organizing Networks
(SON) framework, where these checks are performed auto-
matically [6] [7].

In current mobile networks, cell capacity is often measured
as cell throughput in the DownLink (DL) in high load con-
ditions. Since throughput depends on many additional factors
(e.g., traffic mix, terminal capabilities, etc.), it is extremely

difficult to isolate the impact of the above re-planning actions
on that metric. Alternatively, the impact of these actions
on lower-level radio network performance indicators (e.g.,
bandwidth, channel quality indicator distribution, power, etc.)
can more easily be predicted, and then such predictions can
be used as inputs to a capacity estimation model.

In the literature, several works have proposed capacity
estimation models from network performance and configura-
tion data collected in the Operation Support System (OSS),
so that the peculiarities of each cell can be taken into
account [8] [9] [10]. Nonetheless, the constant change in
network capabilities requires updating legacy models. With
the increase of service diversity and the raise of user expec-
tations, operators have been forced to change their network
management procedures from a network-centric approach
based on network performance to a user-centric approach
focused on user satisfaction (Quality of Experience, QoE).
Such a trend will continue in 5G systems, where services
of very different nature (e.g., enhanced Mobile Broadband,
eMBB, or Ultra Reliable Low Latency Communications,
uRLCC) will coexist [2]. To this end, network performance
indicators (e.g., cell capacity) have to be complemented by
other indicators that better reflect the end user experience
(e.g., user capacity). In this context, user throughput in the
DL (hereafter, DL user throughput) is often regarded as a
significant QoE metric for eMBB services [11] [12], and can
therefore be considered in network management procedures
such as network dimensioning or network slicing provisioning.
It is expected that the higher DL user throughput experienced
by users in a cell/slice in congestion scenarios, the higher QoE
level can be guaranteed for eMBB services in such a cell/slice.

In this work, a comprehensive analysis is carried out to
compare the performance of different supervised learning (SL)
algorithms for cell and user throughput estimation in the DL
in busy hours from network measurements collected in the
OSS in two radio access technologies, namely HSDPA and
LTE. For this purpose, two datasets with the most relevant
performance indicators per technology are collected from a
live HSDPA and a live LTE network, respectively.

The rest of the document is organized as follows. Section II
presents related work and highlights the main contributions of
this work. Section III describes the two considered datasets
(one per technology). Section IV explains the method used
to estimate capacity indicators. Section V presents the results.
Finally, Section VI summarizes the main conclusions.
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II. RELATED WORK AND CONTRIBUTIONS

Cell capacity estimation has been extensively covered in
the literature. Different metrics have been considered as ca-
pacity indicators. In [13], the authors present an admission
control policy driven by an analytical model based on a
multidimensional continuous-time Markov chain to estimate
the varying capacity of cells in LTE caused by user mobility
in terms of session blocking probability. In [14], the available
bandwidth (i.e., channel spare capacity) is estimated from
measurements taken in drive tests in MONROE 3G/4G testbed,
and the relationship between available bandwidth and achiev-
able throughput is analyzed. MONROE platform is also used
in [15] to characterize capacity offered per cell by 11 operators
in 4 different countries, measured as cell maximum throughput
at the application layer. In [16], cell capacity for Voice over
LTE (VoLTE) service is measured as the maximum number
of simultaneous active users (i.e., users with data to transmit)
that can be served by a cell. Then, an analytical model is
proposed to estimate cell capacity in areas of the cell where
users report different channel quality information. In [17], a
model based on linear regression is proposed to measure the
maximum allowed traffic in Erlangs in a multi-service HSDPA
network for different transmit powers and quality of service
requirements from network performance indicators.

A common approach is to measure cell capacity as DL
cell throughput in high load conditions. Several analytical
models have been developed to estimate cell throughput
considering different Multiple-Input Multiple-Output (MIMO)
antenna schemes [18], scheduling algorithms [19] and traffic
classes [20]. However, the capacity of a live cell is highly de-
pendent of multiple factors, such as service mix, terminal capa-
bilities or propagation environment (e.g., indoor, outdoor. . . ),
which change with time and location. To deal with this di-
versity, in some studies cell throughput is estimated by means
of simulations in GPRS [21] or HSDPA [22]. Nonetheless, it
is virtually impossible to simulate all possible combinations
of the above-mentioned factors. Alternatively, some works
estimate cell throughput from network performance counters
and configuration data collected in the OSS. In [8], the
authors propose a model based on multiple linear regression
to estimate DL cell throughput in the busy hour in HSDPA
from code-related, quality-related and power-related indicators
collected on a cell basis. In [9], a similar methodology is
used to estimate the same metric in a multi-service live LTE
network. In [10], delay in connection setup is also considered
as an input to the linear model.

Regarding DL user throughput estimation, in [23], SL
algorithms are applied over data collected in a crowdsourced
speed test. Such tests collect terminal- and network-related
data through a large number of over-the-air transmissions. As
a consequence, they can overload the radio interface and drain
user limited data plans. Alternatively, in [24], an analytical
model is proposed to estimate DL user throughput using drive
test data collected by a radio frequency scanner. However,
drive tests are time-consuming and imply high operational
costs, since they must be performed periodically to adapt to
events in the area (e.g., new buildings) or in the network (e.g.,

new cells) affecting radio frequency measurements [25].
An efficient approach for operators is to estimate cell and

user throughput from the same set of network measurements
gathered in the OSS during normal network operation [26].
Unfortunately, these measurements are often aggregated per
cell, and thus do not reflect the performance of individual
connections. Moreover, unlike cell capacity metrics, user ca-
pacity may not be linearly related to cell-level indicators,
causing that models based on linear regression do not perform
well. To tackle this non-linearity issue, SL algorithms can be
used, since they are able to capture non-linear dependencies
among variables [27]. Closer to the work presented here,
in [26], DL cell/user throughput in LTE is estimated with
a Deep Neural Network (DNN) from a labeled dataset. The
authors consider a set of 13 configuration parameters and
performance indicators, collected in a live network hourly
during 2 months to train their model. However, most network
operators are not familiar with machine learning, and are thus
reluctant to use complex models (e.g., deep learning models)
with hundreds of hyperparameters and internal parameters,
which are difficult to configure and interpret. Moreover, deep
learning algorithms require very large training datasets (tens
of thousands of samples) to perform well; otherwise, they are
prone to overfitting. This is an issue for network operators,
since collecting such an amount of data in the OSS implies
deploying large databases and makes data pre-processing
extremely time-consuming [28]. For these reasons, operators
prefer simpler SL algorithms for their network planning tools.

In this work, these shortcomings associated to method
complexity are addressed by solving DL cell/user throughput
estimation via non-deep SL algorithms, which, as shown
later, work accurately with reduced datasets. Moreover, feature
selection is applied over the initial set of candidate features to
select a minimal subset of metrics to be stored in the OSS for
capacity estimation purposes. Likewise, we extend our study to
consider not only LTE, but also HSDPA radio access technol-
ogy. All SL techniques considered here are included in most
data analytics packages and have already been used in several
fields. Hence, the main novelty here is the assessment of well-
established SL methods for cell/user throughput estimations
in busy hours from measurements in different radio access
networks. Specifically, the main contributions of this work are:
• Presenting the first comparison of non-deep SL schemes

performance for DL cell/user throughput estimation in
busy hours from network measurements in LTE. The
considered approaches include random forest, multi-layer
perceptron, support vector regression and k-nearest neigh-
bors. These algorithms are compared with deep learning
and linear regression techniques proposed in previous
works [9] [26] [10].

• Extending the analysis to HSDPA, where the use of
SL for cell/user throughput estimation from network
measurements has not been covered yet. This is the
first attempt to estimate user throughput from cell-level
indicators in HSDPA, as previous works only covered cell
throughput estimation with multiple linear regression [8].

• Identifying a minimal set of key network performance
indicators to be stored in the OSS to estimate throughput
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indicators in both technologies.

III. DATASETS

In this work, cell and user throughput estimations are
evaluated in two different radio technologies. For this purpose,
two datasets are collected from a live HSDPA and a live LTE
network, respectively. This section describes such networks
and how datasets are built.

A. Dataset A – HSDPA
Data is collected in a live 3G network serving an entire

country (approximately 10,000 km2), comprising 12,318 cells
of very different sizes and environments. Two carrier frequen-
cies are deployed per cell. A first carrier is used for Adaptive
Multi-Rate Circuit-Switched (AMR CS) calls and non-HSDPA
packet-switched traffic, while a second carrier is used for
HSDPA traffic and AMR CS calls when the first carrier is
full. The analysis is focused on the second carrier (i.e., HSDPA
capacity).

Performance measurements are collected on a cell and
hourly basis for a complete day in the OSS. The maximum
cell/user capacity is defined as the average cell/user through-
put in the DL when the Transmission Time Interval (TTI)
utilization ratio, %)) �DC8;�! , is near the maximum threshold
commonly set by the operator to avoid congestion problems
(typically, %)) �DC8;�!,Cℎ=70%) [29]. Thus, only data from
highly loaded cells is considered to obtain reliable estimates
of the actual cell/user capacity. The selection of such cells is
implemented through the observation of the cell busy hour,
defined as the hour with the largest average number of active
users (i.e., with data to transmit) over HSDPA. Analysis is
restricted to those cells with %)) �DC8;�! > 50% during such
busy hour. This filter results in a dataset comprising 1,095
samples with the following features:

1) Cell identifier.
2) Date (format DD/MM/YYYY HH:HH).
3) %)) �DC8;�! in HSDPA, as a measure of cell load.
4) A set of 12 network performance indicators, shown in Ta-

ble I, as candidate input features for capacity estimation.
To allow the comparison with previous approaches, the
considered input features are those already selected in [8],
including code-related indicators (e.g., no. of codes used
in HSDPA), traffic-related indicators (e.g., no. of active
users), power-related indicators (e.g., avg. DL transmit
power for HSDPA) quality-related indicators (e.g., me-
dian CQI). Table II presents the minimum, maximum
and average value and the standard deviation of such
parameters in the dataset.

5) The average cell throughput in the HSDPA DL,
)ℎ�4;;�(�%�, defined as the total Packet Data Con-
vergence Protocol (PDCP) data volume transmitted per
second in active periods in the HSDPA DL of a cell, as
a measure of cell capacity [30].

6) The average user throughput in the HSDPA DL,
)ℎ*B4A�(�%�, defined as the average PDCP data
volume transmitted per second in the DL to an ac-
tive HSDPA user, excluding TTIs emptying the transmit
buffer, as a measure of user capacity [30] [31].

TABLE I: Candidate features in HSDPA.

Name Description

Po
w

er

�E6 '99 �! ?>F4A

[mW]
Avg. DL transmit power for Data
Channel (DCH)

�E6 �(�%� �! ?>F4A

[mW]
Avg. DL transmit power for HSDPA

Tr
af

fic �E6 02C8E4*� �! Avg. no. of HSDPA active users per
TTI in the DL

C
od

e

�E6 2>34B DB43 �(�%� Avg. no. of codes used in HSDPA
�E6 (�16 2>34B �(�%� Avg. no. of codes with spreading

factor 16 reserved for HSDPA
�E6 2>34B �(�%� *� Avg. no. of codes used per HSDPA

user
�>34 ;>03 [%] Percentage of channelization codes

used in both DCH and HSDPA

Q
ua

lit
y

�&� 2;0BB ?50 Median Channel Quality Indicator
(CQI) value

�&� 2;0BB ?80 80Cℎ-tile of CQI distribution
16&�" DB064 [%] Usage of 16QAM modulation (as

opposed to QPSK)
'!� A4C G A0C8> �! Ratio of Radio Link Control (RLC)

retransmissions in the DL
%�*656 DB064 [%] Percentage of Packet Data Units with

size 656 B (as opposed to 310 B)

TABLE II: Statistics of dataset A (HSDPA scenario).

Indicator Min. Max. Mean Std. deviation

�E6 '99 �! ?>F4A [mW] 2014 15777 7512 1844
�E6 �(�%� �! ?>F4A [mW] 1200 16060 5684 1368
�E6 02C8E4*� �! 0.85 62.68 20.43 10.85
�E6 2>34B DB43 �(�%� 1.10 9.20 4.30 1.10
�E6 (�16 2>34B �(�%� 5 14 9.48 1.93
�E6 2>34B �(�%� *� 7.15 11.40 9.29 0.67
�>34 ;>03 [%] 47.62 96.66 88.16 3.59
�&� 2;0BB ?50 6 22 15.06 1.90
�&� 2;0BB ?80 9 26 19.47 1.86
16&�" DB064 [%] 0.10 89.20 22.09 14.41
'!� A4C G A0C8> �! 0.02 1.34 0.14 0.07
%�*656 DB064 [%] 0 135.80 32.82 26.02

B. Dataset B – LTE

The second dataset is collected in a live LTE network com-
prising 656 cells covering urban and residential areas. In this
network, two carriers are deployed at 700 MHz and 2100 MHz
with a system bandwidth of 10 MHz and 5 MHz, respectively.
In this case, the analysis includes both carriers. To obtain the
dataset, configuration and performance data is gathered on an
hourly and cell basis for 6 days, resulting in 24·6·656 = 94, 464
samples (note that the lower size of the network allowed a
longer data collection period compared to the HSDPA case).
Again, to obtain reliable estimates, the analysis is restricted
to those cells/hours where %)) �DC8;�! > 50%. This filter
results in a dataset with 2,141 samples including the following
information:

1) Cell identifier.
2) Date (format DD/MM/YYYY HH:HH).
3) %)) �DC8;�! , as a measure of cell load.
4) A set of 10 network indicators, shown in Table III, as
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TABLE III: Candidate features in LTE.

Name Description

Q
ua

lit
y

�E6 �&� Avg. DL CQI
f�&� Standard deviation of CQI distribution
�&� 2;0BB ?5 5Cℎ-tile of CQI distribution
�&� 2;0BB ?10 10Cℎ-tile of CQI distribution
��'& 5 08; A0C8> �! Hybrid Automatic Repeat request failure

ratio in the DL
'!� A4C G A0C8> �! Ratio of RLC retransmissions in the DL
�! 0BB86= �2: Ratio of correct resource assignments in

the DL control channel

Tr
af

fic �E6 02C8E4*� �! Avg. no. of active users per TTI in the
DL

C
M

s �, [MHz] LTE system bandwidth
%*��� (' DB4AB Max. no. of users allowed to send

Scheduling Request in UL

TABLE IV: Statistics of dataset B (LTE scenario).

Indicator Min. Max. Mean Std. deviation

�E6 �&� 5.50 12.21 7.81 0.95
f�&� 0.29 3.13 0.85 0.19
�&� 2;0BB ?5 1.31 7.12 3.48 0.68
�&� 2;0BB ?10 1.69 8.29 4.17 0.74
��'& 5 08; A0C8> �! 0.05 0.11 0.07 7.3·10−3

'!� A4C G A0C8> �! 1.2·10−5 0.05 7.2·10−4 1.6·10−3

�! 0BB86= �2: 0.26 0.99 0.96 0.07
�E6 02C8E4*� �! 0.30 16.97 1.69 1.06
�, [MHz] 5 10 9.44 1.57
%*��� (' DB4AB 560 730 646.35 34.06

candidate input features. These include network settings
(e.g., system bandwidth), quality-related statistics (e.g.,
average CQI) and traffic-related statistics (e.g., no. of
active users) provided by most vendors and used in
previous studies for capacity estimation in LTE [9].
Table IV presents the minimum, maximum and average
value and the standard deviation of such parameters in
the dataset.

5) The average cell throughput in the DL, )ℎ�4;;!) � , as a
measure of cell capacity.

6) The average user throughput in the DL, )ℎ*B4A!) � , as
a measure of user capacity.

From the comparison of Tables I and III, it is observed that
some of the considered indicators provide similar information
in both technologies (e.g., no. of active users, RLC retransmis-
sions, CQI, etc.), and, thus, both analysis rely on similar initial
information. Nonetheless, other indicators are distinctive of the
technology (e.g., code-related indicators in HSDPA), so that
specific technology information is also taken into account. For
a deeper analysis, Fig. 1 shows the Cumulative Distribution
Function (CDF) of �E6 02C8E4*� �! and �&� 2;0BB ?50
indicators in dataset A (solid lines) and �E6 02C8E4*� �!

and �E6 �& indicators in dataset B (dashed lines). It is
remarkable that, although only high-load cells are considered
in both technologies, �E6 02C8E4*� �! in LTE is lower
than in HSDPA, revealing that users in LTE demand more
data-consuming services. Likewise, the highest value of rep-
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Fig. 1: Cumulative distribution function of performance indi-
cators.

resentative CQI measured per cell (i.e., 22 in HSDPA scenario
and 12 in LTE scenario) are under the maximum CQI value
defined in such technologies (i.e., 30 in HSDPA and 15 in
LTE [32]).

The two datasets used in this work (i.e., datasets A and B)
combine a large geographical area (hundreds of cells) with an
adequate time resolution (hour), similarly to those used by op-
erators for capacity estimation purposes. This fact guarantees
the reliability and significance of results. Note that, because
of the busy hour and TTI utilization ratio filtering, these
datasets have a reduced number of samples. This property
increases the interest of assessing the performance of non-deep
SL algorithms for cell/user capacity estimation, since these
algorithms are less prone to overfitting than deep learning
approaches when trained with reduced datasets.

IV. CAPACITY ESTIMATION METHOD

Fig. 2 illustrates the procedure followed to carry out the
data analysis. Such a process is identical for HSDPA and LTE
technologies. First, network parameters and measurements
are collected from the live network to build the dataset
as described in Section III. Then, data is pre-processed to
normalize the values of each variable and create training
and test datasets. Next, performance models are created sepa-
rately to estimate each of the considered output features (i.e.,
)ℎ�4;;�(�%�/!) � and )ℎ*B4A�(�%�/!) � ). For this pur-
pose, hyperparameters of the different SL algorithms must first
be configured. Then, for each algorithm, three different models
are trained. A first model, referred as to full model (FULL),
considers all the collected indicators as input features, whereas
the remaining two models, referred to as Feature Selection
(FS) models, select a representative subset of indicators as
input features based on two different criteria. Finally, model
performance is assessed on the corresponding test dataset. A
more detailed explanation of each step is given next.
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Fig. 2: Flow diagram for cell/user capacity estimation.

A. Data pre-processing

Different input features show very different ranges (e.g.,
�E6 �&� in Table IV varies from 5.50 up to 12.21, while
��'& 5 08; A0C8> �! varies between 0.05 and 0.11). To
guarantee a good accuracy and faster convergence of SL algo-
rithms, it is convenient to normalize data, so that all variables
are comparable. In this work, a Z-score normalization method
is used [33]. The normalized value of a certain indicator,
denoted as 8norm, is computed as

8norm =
8 − `
f

, (1)

where 8 is the original value of the indicator and ` and f are
the average and standard deviation, respectively, considering
all values available in the dataset for indicator 8.

After data normalization, the #B samples in the dataset
are split into training and test subsets by creating a random
partition, so that the training set comprises 80% of samples
and the test set includes the remaining 20%.

B. Model creation

1) Overview of estimation algorithms: Since DL cell/user
throughput can be computed offline from information collected
in the OSS, creating a labeled dataset is not an issue for
network operators. For this reason, this work considers SL
approach. Six well-known SL regression algorithms are com-
pared: Multiple Linear Regression (MLR), Support Vector
Regression (SVR), Random Forest (RF), k-Nearest Neighbors
(KNN) and shallow/deep artificial Neural Networks (ANN).
A high-level description of these techniques is provided
next [27]:
• MLR captures the relationship between a response vari-

able and multiple explanatory variables by fitting a line
through a multi-dimensional space of samples. The opti-
mal solution is reached by linear least squares fitting,
which minimizes the sum of squares of residuals be-
tween estimates and ground-truth data. This approach is
considered in [8] [9] [10] for cell capacity estimation,
and here it is used as a benchmark.

• SVR maps a set of inputs into a higher dimensional
feature space to find the regression hyperplane that best

fits every sample in the dataset. For this purpose, a
linear or non-linear (a.k.a., kernel) mapping function is
used. Unlike MLR, SVR neglects all deviations below
an error sensitivity parameter, n . Moreover, the regu-
larization parameter, �, restricts the absolute value of
regression coefficients. Both parameters control the trade-
off between regression accuracy and model complexity
(i.e., the smaller n and larger �, the better the model fits
the training data, but overfitting is more likely).

• RF is an ensemble learning method where several deci-
sion trees are created by considering different subsets of
the training data (a.k.a. bootstrap aggregating or bagging).
To avoid model overfitting, trees are pruned. To reduce
the correlation among trees, a different random subset of
input attributes is selected at each candidate split in the
learning process (feature bagging) [34]. Then, estimations
obtained from different trees are averaged to perform a
robust regression.

• KNN is a distance-based algorithm that relies on the fact
that observations with similar characteristics tend to have
similar outcomes. To estimate the response variable of
a new observation, KNN identifies the : nearest neigh-
bors of the sample in the training dataset according to
some previously defined distance metric (e.g., Euclidean
distance) and then computes the outcome based on the
averaging (sometimes weighted) of such neighbors.

• ANN is a statistical learning method inspired by the
structure of a human brain. In ANN, entities called nodes
act as neurons, performing non-linear computations by
means of activation functions [35]. Two feed-forward
ANNs (i.e., without memory) are considered in this
work [36]. Both are Multi-Layer Perceptrons (MLPs),
differing in the number of hidden layers. The first one,
denoted as MLP–SNN, has a single hidden layer (i.e.,
is a shallow neural network). The second one, denoted
as MLP–DNN, is a deep neural network based on that
tested in [26] to estimate cell and user throughput in LTE.
The architectures of such networks (number of layers,
number of neurons per layer, activation functions, etc.)
are detailed later.

2) Hyperparameter tuning: Hyperparameters are internal
model parameters controlling the learning process in machine
learning algorithms. SL algorithms often have dozens (or
even hundreds) of hyperparameters, some of which have
a strong impact on model performance. The best setting
strongly depends on the problem. Hence, in this work,
hyperparameters are tuned separately for each output fea-
ture (i.e., )ℎ�4;;�(�%�, )ℎ*B4A�(�%�, )ℎ�4;;!) � and
)ℎ*B4A!) � ).

For simplicity, the less influential parameters for each
algorithm are fixed, and only the most influential parameters
are tuned. Based on previous works [37] and on our own
experience, the following parameters are tuned: a) the kernel
function, n and � in SVR, b) the number of trees, the distance
metric and the pruning criterion in RF, c) the distance metric
and the number of neighbors in KNN and d) the activation
function, the number of neurons, the optimization algorithm,
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the number of iterations and the number of layers in MLP–
SNN and MLP–DNN (the latter parameter is only adjusted
in MLP–DNN). Such parameters are fixed by a grid search
in the parameter space [38]. For each algorithm, the best
hyperparameter value (or tuple) is that minimizing the Mean
Absolute Percentage Error ("�%�) in the training dataset,
computed as

"�%� =
1
#B

#B∑
B=1

����100 · Ĥ(B) − H(B)
H(B)

���� , (2)

where #B is the number of samples in the dataset, and H(B)
and Ĥ(B) are the measured and estimated values of the output
feature in sample B, respectively.

3) Feature selection: For most algorithms, it is expected
that the larger the number of input features (i.e., network
indicators), the better estimation of the output feature (i.e.,
cell/user throughput). However, when it comes to SON tools
for cellular networks, additional factors must be considered.
Note that cell/user capacity estimation is performed by a cen-
tralized network planning tool running in the OSS. Collecting
measurements in the OSS poses a storage problem for op-
erators, since large databases must be deployed to gather
a continuous stream of information coming from thousands
of cells along the network [28]. Likewise, sending informa-
tion from base stations to the OSS might cause congestion
problems in the backhaul and node processor. Moreover, data
pre-processing becomes extremely time-consuming when the
number of indicators grows, requiring expensive processing
platforms with a large computational power. As a consequence,
operators are reluctant to collect more than 5 or 6 indicators in
their network planning tools. Hence, dimensionality reduction
a key aspect in this work.

Dimensionality reduction can be tackled through Feature
Selection (FS) or Feature Extraction (FE) [39]. FS consists
on identifying the subset of features that are more relevant
according to a certain criterion. In contrast, in FE, a new (and
reduced) set of features is built by combining the features from
the original set. As explained above, the main motivation to
perform dimensionality reduction in this work is to reduce the
number of network key indicators collected in the OSS. Thus,
FS is performed, since it allows to disable the monitoring of
non-relevant indicators (which may not be possible with FE).

FS comprises filtering, wrapper and ensemble methods.
In filtering methods, features are selected according to their
correlation with the outcome variable. These methods are very
efficient and can be used as a pre-processing step, since they
are independent of the SL algorithm. However, they might fail
to find the optimal subset of features. Wrapper methods select
subsets of variables according to their usefulness for a given
SL algorithm. Although they are computationally expensive,
and make the model more prone to overfitting, they provide the
best subset of features. Finally, ensemble methods implement
a combination of filtering and wrapper methods [40].

In this work, two different FS methods are considered. A
first method, denoted as FS-COR, is a simple filtering method
that considers as relevant those features whose linear corre-
lation, d, with the response variable is high, i.e., |d | > 0.5.

A second method, denoted as FS–SFS (Sequential Forward
Selection), is a wrapper method. It starts with an empty model,
where the most relevant features are sequentially added until
adding an additional feature does not lead to a significant
improvement in a predefined loss function. In this work, the
"�%� is selected as loss function, and the stop condition
is when the decrease in "�%� after adding a new feature
is lower than 1% (provided that a target "�%� threshold
is fulfilled). To prevent overfitting in FS–SFS, a 5-fold cross
validation is performed over the dataset [27].

Note that the set of candidate features differs in HSDPA
and LTE. Moreover, for a given technology, some features can
be relevant for estimating cell capacity, but negligible for user
capacity (or vice versa). Thus, FS-COR must be performed per
technology and output feature, and FS–SFS must be performed
per technology, output feature and SL algorithm.

C. Performance evaluation

The main figure of merit used to assess models is the
"�%� , defined in (2). Additionally, the execution time is
also considered as a measure of computational load.

V. PERFORMANCE ASSESSMENT

In this section, the performance of the different capacity
estimation algorithms is compared over the two datasets pre-
sented in Section III. The assessment methodology is described
first and results are presented later. For clarity, results are
broken down per radio technology.

A. Analysis set-up

The six regression algorithms described in Section IV
are implemented with scikit-learn and Keras, two machine
learning libraries for Python extensively used in several
fields [41] [42]. Table V describes the hyperparameter settings
when estimating cell and user throughput in HSDPA and
LTE. Only the parameters configured through the grid search
process are included in the tables, together with the parameter
space tested. The reader is referred to [41] [42] for further
information about the (fixed) configuration of the other hyper-
parameters.

As explained in Section IV, three models are derived with
each regression algorithm: a full model with all predictors
(FULL), a simplified model with predictors selected by a
filtering method (FS-COR) and a simplified model with pre-
dictors selected by a wrapper method (FS–SFS). Thus, 18
regression models are tested.

A model (i.e., combination of SL regression algorithm and
FS scheme) is considered acceptable to estimate cell/user
throughput if "�%�<10%. Such value has been considered
as an acceptable error in previous works [10] and provides a
trade-off between model complexity and required accuracy.
A too restrictive "�%� threshold (e.g., 5%) can only be
achieved by complex models, which require large datasets
to be trained. In network planning tools, such an increase
in complexity does not pay off, since operators have to take
the same re-planning actions whether capacity problems are
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TABLE V: Hyperparameter settings.

Hyperparameter name Value for
) ℎ�4;;�(�%�

Value for
) ℎ*B4A�(�%�

Value for
) ℎ�4;;!)�

Value for
) ℎ*B4A!)�

Parameter Space
SV

R

Sensitivity, n 0.1 0.1 0.1 0.1 [0.05,1]
Regularization, � 12 40 80 100 [1,150]
Kernel function Linear Radial Basis

Function (RBF)
RBF RBF {Lineal, sigmoid,

polynomial, RBF}

R
F

No. trees 30 40 30 40 [5,50]
Maximum depth 20 20 20 20 [5,50]
Distance metric MAE MAE MAE MAE {MAE, MSE}

K
N

N

No. neighbors 5 5 5 5 [4,20]
Distance metric Euclidean Euclidean Euclidean Euclidean {Euclidean, Manhattan,

Chebyshev}

M
L

P–
SN

N

No. layers 3 3 3 3 Fixed
No. neurons in hidden layer 5 6 13 19 [2,100]
Activation function inn
hidden layer

Rectified Linear
Unit (ReLU)

ReLU Hyperbolic tangent ReLU {Identity, logistic, ReLU,
hyperbolic tangent}

Optimization algorithm LBFGS LBFGS LBFGS LBFGS {SGD, Adam,
LBFGS}

No. iterations 1000 1000 1000 1000 [100,10000]

M
L

P–
D

N
N

No. layers 5 5 6 6 [4,10]
No. neurons in hidden layers # 5 40C # 5 40C # 5 40C # 5 40C Fixed, based on [26]
Activation function inn
hidden layers

ReLU ReLU Hyperbolic tangent ReLU {Identity, logistic, ReLU,
hyperbolic tangent}

Optimization algorithm Adam Adam Adam Adam {SGD, Adam,
FTRL, RMSprop}

No. iterations 1000 1000 750 750 [100,10000]

detected with a "�%� of 5% or 10%. In contrast, a too
relaxed threshold (e.g., 15%) can lead to significant errors
in capacity estimations. Note that underestimating cell/user
capacity can lead to unnecessary investments (e.g., bandwidth
extension licenses), whereas overestimating such metrics can
cause capacity bottlenecks (e.g., underprovision of radio re-
sources), leading to user experience degradation. The best
model for each output feature is selected as a trade-off between
an acceptable "�%� (i.e., high accuracy) and a reduced
number of input features, # 5 40C (i.e., low storage capacity
requirements in the OSS).

B. Results – HSDPA

Table VI breaks down the results obtained for the considered
regression algorithms when estimating )ℎ�4;;�(�%� and
)ℎ*B4A�(�%� with the FULL, FS-COR and FS–SFS models.
)ℎ�4;;�(�%� results are analyzed first and )ℎ*B4A�(�%�
is considered later.

Results from FULL models show that, as stated in [8],
classical MLR achieves a high accuracy (i.e., "�%�=7.37%)
when estimating )ℎ�4;;�(�%�. This result gives clear
evidence that some input features have a strong linear rela-
tionship with the output variable. RF, MLP–SNN and MLP–
DNN improve MLR accuracy, with a "�%� of 6.69%,
5.60% and 5.81%, respectively. KNN shows the worst re-
sults, although its "�%� (=10.03%) is still acceptable.
An analysis of the Pearson correlation coefficients (not
shown here) reveals that �&� 2;0BB ?50, �&� 2;0BB ?80,
�E6 2>34B DB43 �(�%� and 16&�" DB064 features are
linearly correlated with )ℎ�4;;�(�%� (i.e., |d | > 0.5). This

is reinforced by the fact that FS-COR models, which use
only those 4 indicators as input features, achieve a "�%�

below 10% for all algorithms. Fig. 3 shows the evolution of
the "�%� obtained across FS–SFS process. As expected, in
general, the larger number of features, the higher accuracy.
However, KNN performance degrades progressively when the
number of features grows above # 5 40C=5. This unexpected
behavior is due to the fact that KNN is an algorithm based on
distance. As the number of input features grows, distances
among data points become all approximately equal, which
can degrade model performance. MLP–SNN and RF perform
similarly, providing the best results with a low number of
input features (# 5 40C ≥ 3). Table VI includes, in FS–SFS
column, the "�%� value obtained for each algorithm with
the # 5 40C value selected with the pre-defined convergence
criterion. "�%� values show that FS–SFS models reduce the
required storage capacity compared to the FULL models at
the expense of a negligible degradation in "�%� (/ 1% in
absolute terms for all algorithms). In KNN, FS–SFS model is
more accurate than the FULL model (i.e., "�%� = 10.03%
with FULL model, and 8.27% for FS–SFS model) for the
above explained reasons. Overall, the best model is MLP–SNN
with FS–SFS, since it achieves a "�%� very close to the best
model (6.80%) with only 4 input features (�&� 2;0BB ?50,
�E6 (�16 2>34B �(�%�, �E6 2>34B DB43 �(�%� and
16&�" DB064). Nonetheless, Fig. 3 shows that an acceptable
"�%� (i.e., < 10%) can be achieved with all non-deep SL
algorithms by selecting a subset of only 2 features (specifically,
�E6 2>34B DB43 �(�%� and 16&�" DB064). Hence, it
can be concluded that MLR is competitive with more so-
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Fig. 3: "�%� evolution – )ℎ�4;;�(�%� estimation.

phisticated SL algorithms when estimating busy-hour cell
throughput in HSDPA.

It is remarkable that the subset of features in the best option
(MLP–SNN with # 5 40C=4) differs in number of features and
in some of the selected features from the subset in [8], where
)ℎ�4;;�(�%� is estimated via MLR and feature selection
is performed based on ?-values. In that work, the authors
propose a model with 5 input features: �&� 2;0BB ?50,
�E6 2>34B DB43 �(�%�, 16&�" DB064,
%�*656 DB064 and �E6 �(�%� �! ?>F4A . Thus,
it can be concluded that, when estimating cell capacity, not
only how many features, but also which features must be
stored in the OSS, depend on the model and feature selection
approach selected.

When it comes to user throughput estimation, MLR does not
perform well. Specifically, a "�%� of 43.41% is achieved
by MLR with the FULL model. This poor performance
suggests that there is a non-linear relationship between the
input features and the output variable, )ℎ*B4A�(�%� (e.g.,
)ℎ*B4A�(�%� is not linearly dependent on the number of
simultaneous active users, �E6 02C8E4*� �!). All other
algorithms outperform MLR, with "�%� values below
18%, but only MLP–DNN achieves a "�%� below the
10% threshold (8.79%). FS-COR models strongly degrade
their accuracy for all regression algorithms. For instance, in
MLP–SNN, "�%� grows from 10.64% to 21.68% when
comparing FULL and FS-COR models (i.e., an increase of
103% in relative terms). These numbers are consistent with
the above statement about the non-linear relationship among
input and output features, since FS-COR is a FS process
based on linearity. Fig. 4 shows the evolution of "�%�

across FS–SFS process. In this case, even for algorithms not
based on distance, such as MLP–SNN, the larger number
of features does not necessarily lead to a higher accuracy,
revealing that some of the considered input features are
irrelevant for estimating )ℎ*B4A�(�%� or provide redundant
information. MLP–SNN achieves the best results when # 5 40C
is between 4 and 10, whereas MLR clearly shows the worst

Fig. 4: "�%� evolution – )ℎ*B4A�(�%� estimation.

performance at every point. Again, the best point is # 5 40C≤5
for all algorithms but MLP–DNN, whose best performance is
with # 5 40C=10. "�%� obtained over the test dataset at those
points are shown in Table VI. Results show that, unexpectedly,
most FS–SFS models outperform FULL models (e.g., in
KNN, "�%� decreases from 17.09% to 12.33%). Overall,
the best results are obtained with the combination MLP–
SNN+FS–SFS, being the only one achieving a "�%� lower
than 10% (9.23%) with a reduced subset of input features.
The features selected in that model are 16&�" DB064,
�E6 2>34B DB43 �(�%�, �E6 (�16 2>34B �(�%�,
�E6 '99 �! ?>F4A and �E6 02C8E4*� �!.

C. Results – LTE

Table VII summarizes the results obtained for the considered
algorithms when estimating )ℎ�4;;!) � and )ℎ*B4A!) � with
the FULL, FS-COR and FS–SFS models in the LTE dataset.
Again, MLR provides acceptable accuracy with FULL model
when estimating )ℎ�4;;!) � ("�%�=9.09%), but not when
estimating )ℎ*B4A!) � ("�%�=17.79%). All other algo-
rithms outperform MLR in both cell and user throughput
estimations. When estimating )ℎ�4;;!) � with FULL model,
SL algorithms perform very similar ("�%� ≈7%). However,
when estimating )ℎ*B4A!) � , only MLP–SNN and MLP–
DNN fulfill the 10% threshold ("�%� ≈ 8% and 9%,
respectively). FS-COR models degrade accuracy significantly,
showing that the most relevant features do not have a strong
linear relation to the output variables. In fact, an analysis of
Pearson correlation coefficients (not shown here) reveals that
only ��'& 5 08; A0C8> �! has a significant linear correla-
tion with )ℎ�4;;!) � , and only ��'& 5 08; A0C8> �! and
�E6 02C8E4*� �! have a significant linear correlation with
)ℎ*B4A!) � .

Fig. 5 and 6 show the "�%� evolution across FS–SFS
process when estimating )ℎ�4;;!) � and )ℎ*B4A!) � ,
respectively. In general, the larger number of features, the
higher accuracy. The best option for estimating each indicator
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TABLE VI: "�%� performance in HSDPA.

) ℎ�4;;�(�%� ) ℎ*B4A�(�%�

Model FULL FS–COR FS–SFS FULL FS–COR FS–SFS

# 5 40C 12 4 — 12 4 —

MLR 7.37 9.39 8.13 (# 5 40C = 4) 43.11 49.15 41.24 (# 5 40C = 4)
SVR 7.36 9.34 8.17 (# 5 40C = 4) 13.31 21.75 11.03 (# 5 40C = 4)
RF 6.69 9.06 7.04 (# 5 40C = 4) 13.42 22.44 12.11 (# 5 40C = 4)
KNN 10.03 8.46 8.27 (# 5 40C = 3) 17.09 22.52 12.33 (# 5 40C = 4)
MLP–SNN 5.60 9.33 6.80 (# 5 40C = 4) 10.64 21.68 9.23 (# 5 40C = 5)
MLP–DNN 5.81 8.99 7.13 (# 5 40C = 4) 8.79 20.95 10.26 (# 5 40C = 10)

TABLE VII: "�%� performance in LTE.

) ℎ�4;;!)� ) ℎ*B4A!)�

Model FULL FS–COR FS–SFS FULL FS–COR FS–SFS

# 5 40C 10 1 — 10 2 —

MLR 9.09 14.12 9.84 (# 5 40C = 5) 17.79 23.09 18.03 (# 5 40C = 5)
SVR 7.36 13.72 8.32 (# 5 40C = 5) 12.36 17.33 12.14 (# 5 40C = 5)
RF 7.25 16.29 7.36.21 (# 5 40C = 5) 10.04 16.72 10.04 (# 5 40C = 6)
KNN 7.64 15.58 8.86 (# 5 40C = 4) 10.13 16.59 9.62 (# 5 40C = 5)
MLP–SNN 6.96 13.93 8.98 (# 5 40C = 8) 7.95 15.17 8.86 (# 5 40C = 9)
MLP–DNN 6.86 14.11 8.34 (# 5 40C = 5) 8.86 17.73 8.73 (# 5 40C = 9)

Fig. 5: "�%� evolution – )ℎ�4;;!) � estimation.

depends on storage constraints (e.g., when estimating
)ℎ*B4A!) � , "�%�≈9% for MLP–SNN and MLP–DNN
with # 5 40C=9, but "�%�=9.62% for KNN with # 5 40C=5).
Table VII includes, in FS–SFS columns, the "�%� of each
method with the selected value of # 5 40C . When considering
the trade-off between "�%� and # 5 40C values, KNN is the
best option for estimating both )ℎ�4;;!) � ("�%�=8.86%
when # 5 40C=4) and )ℎ*B4A!) � ("�%�=9.62% when
# 5 40C=5). The most relevant input features for estimating
cell throughput are �E6 �&�, �! 0BB86= �� , �, and
��'& 5 08; A0C8> �!. Unlike [9], �! 0BB86= �� is
selected instead of �E6 02C8E4*� �!. Likewise, most
relevant input features for estimating user throughput
are �&� 2;0BB ?10, �E6 �&�, �E6 02C8E4*� �!,

Fig. 6: "�%� evolution – )ℎ*B4A!) � estimation.

%*��� (' DB4AB and �! 0BB86= �� .
It should be pointed out that, among the considered

regression algorithms, MLP approaches have the largest num-
ber of hyperparameters. The optimal value of these hyper-
parameters may vary at each step of the sequential feature
selection (SFS) process. In this work, for efficiency, only
the most relevant parameters have been tuned (as network
operators do). At the same time, MLP models also have a
larger number of internal parameters (e.g., up to 700 for FULL
MLP-DNN model), which makes them prone to overfitting
with reduced datasets (e.g., with few input features). These
are probably the reasons for the unstable behavior of MLP
approaches across SFS, translated into peaks in MAPE (e.g.,
MLP–SNN with # 5 40C=6 in Fig. 5 and # 5 40C=5 in Fig. 6)



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXX 2020 10

and severe performance degradation below a certain number of
features (e.g., MLP-DNN with # 5 40C≤2 in Fig. 3 and Fig. 4,
or # 5 40C≤3 in Fig. 6).

D. Computational complexity

The time to perform throughput estimation comprises the
time of building the datasets, pre-processing data, training and
testing the models. The most time-consuming task is model
training (note that, for FS–SFS models, the model has to be
trained # 5 40C times).

For MLR, training time grows linearly with the number
of input features, # 5 40C , and the number of samples in
the dataset, #B . Thus, the worst-case time complexity is
O(#B ×# 5 40C ). The back propagation algorithm used to train
a MLP with # 5 40C inputs, 1 output and 3 layers, has a
worst-case time complexity of O(#B × # 5 40C × #; × #8),
where #; is the size of the hidden layer and #8 is the
number of iterations. Time complexity of sequential minimal
optimization used to train SVR is quadratic with the training
set size, O(#2

B ). Likewise, the worst-case time complexity
of RF is given by the time of building a complete decision
tree, O(# 5 40C × #B × log#B). Finally, for KNN, the worst-
case complexity is given by O(# 5 40C × #B × :)., where : is
the number of neighbors.

Table VIII summarizes the time taken to train the models
in a centralized server with Intel Xenon octa-core processor,
clock frequency of 2.4 GHz and 64 GB of RAM. For clarity,
only the FULL models are tested. Results show that model
training in HSDPA is faster than in LTE, maybe due to
the highest number of data points in dataset B. For a given
technology and regression algorithm, training is faster when
estimating cell throughput than when estimating user through-
put. MLP–DNN takes the highest execution time for every
technology and output feature, whereas MLR and KNN take
the lowest execution times. Nonetheless, even in the worst case
(i.e., training a MLP–DNN model to estimate )ℎ*B4A�! , the
obtained execution time is less than one minute (specifically,
33 s). Such time is negligible in network planning tools, where
new cell/user capacity models must be created only when
significant changes in terminal and base station capabilities
are introduced (e.g., change of release). For other applications
with real-time constraints, specialized hardware (e.g., field-
programmable gate arrays or application-specific integrated
circuits) can be used to reduce execution times.

VI. CONCLUSIONS

Accurate cell and user capacity estimation is crucial for
network dimensioning in current cellular networks. Moreover,
the diversity of services and terminals expected in upcoming
5G networks will boost the importance of capacity estimates
for the dynamic provisioning and monitoring of network
slices [43]. Throughput is considered an adequate metric for
cell/user capacity, since it is closely related to user satisfaction.
In this work, a comparative study has been carried out to assess
the performance of different supervised learning algorithms to
estimate cell and user throughput in the DL in busy hours
from network measurements collected in the OSS. Analysis

TABLE VIII: Execution times (seconds).

HSDPA LTE

) ℎ�4;; ) ℎ*B4A ) ℎ�4;; ) ℎ*B4A

MLR <0.01 <0.01 0.02 <0.01
SVR 0.05 0.09 0.84 0.17
RF 1.14 2.53 3.02 3.89
KNN <0.01 <0.01 <0.01 <0.01
MLP–SNN 0.23 0.71 0.66 0.95
MLP–DNN 22.92 23.72 32.47 33.28

has been carried out with two datasets taken from live HSDPA
and LTE networks. Four no-deep supervised learning methods
have been compared with classical multiple linear regression
and deep learning approaches considered in previous works.

Results show that classical MLR performs well when
estimating cell throughput in both HSDPA and LTE
("�%�=7.37% and 9.09%, respectively), but not when es-
timating user throughput ("�%�=41.14% and 17.79%, re-
spectively), probably due to the non-linear relationship be-
tween cell-level indicators and user-level metrics. Nonethe-
less, the other approaches outperform MLR in terms of
accuracy in both cell and user throughput estimation prob-
lems. Deep learning approach achieves adequate accuracy
(i.e., "�%�<10%) in all cases when a full set of network
indicators is available. However, its performance strongly
degrades when the number of features decreases, and is thus
not suitable for applications with storage constraints, such as
network planning tools Alternatively, with non-deep super-
vised learning, it is possible to estimate cell/user throughput
with similar accuracy by means of reduced datasets (less than
2,000 samples and collection of 5 or 6 indicators in the OSS).
To achieve this goal, a feature selection process must be
performed by wrapper methods.

When considering the trade-off between accuracy and
storage capacity, MLP–SNN has shown the best results in
HSDPA, with "�%�=6.80% with 4 input features when
estimating cell throughput, and "�%�=9.23% with 5 in-
put features for user throughput. In contrast, in LTE, KNN
algorithm has shown the best trade-off between accuracy
and storage capacity, with "�%�=8.86% with 4 features
for cell throughput, and "�%�=9.62% with 5 features for
user throughput. Future work will focus on 5G system by
extending the analysis to the up link, which will have a
strong influence on enhanced mobile broadband services (e.g.,
live video upload) and massive machine-type communications
(e.g., sensor networks), and other capacity indicators more
significant for delay-sensitive services (e.g., mission critical
services).
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[23] K. Kousias, Ö. Alay, A. Argyriou, A. Lutu, and M. Riegler, “Estimating
downlink throughput from end-user measurements in mobile broadband
networks,” in IEEE 20th International Symposium on” A World of
Wireless, Mobile and Multimedia Networks”(WoWMoM), pp. 1–10,
2019.

[24] K. Chang and R. P. Wicaksono, “Estimation of network load and
downlink throughput using RF scanner data for LTE networks,” in 2017
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), pp. 1–8, 2017.

[25] P. J. M. Johansson and Y.-S. Chen, “Location for minimization of drive
test in lte systems,” 2014. US Patent 8,903,420.

[26] T. ur Rehman, M. A. I. Baig, and A. Ahmad, “LTE downlink throughput
modeling using neural networks,” in IEEE 8th Annual Ubiquitous Com-
puting, Electronics and Mobile Communication Conference (UEMCON),
pp. 265–270, 2017.

[27] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, The elements
of statistical learning: data mining, inference and prediction, Second
edition. Springer series in statistics, 2001.

[28] D. Palacios, S. Fortes, I. de-la Bandera, and R. Barco, “Self-healing
framework for next-generation networks through dimensionality reduc-
tion,” IEEE Communications Magazine, vol. 56, no. 7, pp. 170–176,
2018.

[29] R. Kwan, R. Arnott, R. Paterson, R. Trivisonno, and M. Kubota, “On
mobility load balancing for LTE systems,” in IEEE 72nd Vehicular
Technology Conference Fall (VTC-2010-Fall), pp. 1–5, 2010.

[30] V. Buenestado, J. M. Ruiz-Aviles, M. Toril, S. Luna-Ramı́rez, and
A. Mendo, “Analysis of throughput performance statistics for bench-
marking lte networks,” IEEE Communications letters, vol. 18, no. 9,
pp. 1607–1610, 2014.

[31] 3rd Generation Parthnership Project, “Key Performance Indicators (KPI)
for Evolved Universal Terrestrial Radio Access Network (E UTRAN):
Definitions,” in TS 32.450, version 9.1.0, 2018.

[32] S. Sesia, M. Baker, and I. Toufik, LTE - the UMTS long term evolution:
from theory to practice. John Wiley & Sons, 2011.

[33] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[34] B. Efron, “Bootstrap methods: another look at the jackknife,” in Break-
throughs in statistics, pp. 569–593, Springer, 1992.

[35] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in 13th International Conference
on Artificial Intelligence and Statistics, pp. 249–256, 2010.

[36] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1994.

[37] J. Moysen, L. Giupponi, and J. Mangues-Bafalluy, “On the potential of
ensemble regression techniques for future mobile network planning,” in
IEEE Symposium on Computers and Communication (ISCC), pp. 477–
483, 2016.

[38] M. Claesen and B. De Moor, “Hyperparameter search in machine
learning,” arXiv preprint arXiv:1502.02127, 2015.

[39] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and
feature extraction techniques in machine learning,” in 2014 Science and
Information Conference, pp. 372–378, 2014.

[40] I. Guyon and A. Elisseeff, “An introduction to variable and feature selec-
tion,” Journal of machine learning research, vol. 3 (March), pp. 1157–
1182, 2003.

[41] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[42] F. Chollet et al., “Keras: Deep learning library for theano and tensor-
flow.” Available in: https://keras.io. Online. Accessed: Jun 12, 2020.

[43] 4G Americas, “Network slicing for 5G networks and services,” 2016.

Carolina Gijón received her B.Sc. degree in
Telecommunication Systems Engineering and her
M.Sc. Degree in Telecommunication Engineering
from the University of Málaga, Spain, in 2016 and
2018, respectively. Currently, she is working towards
the Ph.D. degree. Her research interests include self-
organizing networks, machine learning and radio
resource management.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXX 2020 12

Matı́as Toril received his M.S in Telecommunica-
tion Engineering and the Ph.D degrees from the
University of Málaga, Spain, in 1995 and 2007
respectively. Since 1997, he is Lecturer in the Com-
munications Engineering Department, University of
Málaga, where he is currently Full Professor. He has
co-authored more than 130 publications in leading
conferences and journals and 8 patents owned by
Nokia or Ericsson. His current research interests in-
clude self-organizing networks, radio resource man-
agement and data analytics.

Salvador Luna-Ramı́rez received his M.S in
Telecommunication Engineering and the Ph.D de-
grees from the University of Málaga, Spain, in
2000 and 2010, respectively.Since 2000, he has been
with the department of Communications Engineer-
ing, University of Málaga, where he is currently
Associate Professor. His research interests include
self-optimization of mobile radio access networks
and radio resource management.

Juan L. Bejarano-Luque received the B.S. degree
in telecommunications engineering and the M.S.
degree in acoustic engineering from the University
of Málaga, Málaga, Spain, in 2015 and 2016, re-
spectively. He is currently pursuing the Ph.D. degree
in telecommunications engineering at the same uni-
versity. His research interests include optimization
of radio resource management for mobile networks,
location-based services and management and data
analytics.

Marı́a Luisa Marı́-Altozano received her M.S.
degree in Telecommunication Engineering from the
University of Málaga, Spain, in 2012. From 2013
to 2016, she was with Ericsson in a collaborative
project with the University of Málaga. Since 2017,
she has been working toward the Ph.D with the
Communication Engineering Department, Univer-
sity of Málaga. Her interests are focused on self-
optimization of mobile radio access networks based
on quality of experience.




