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ABSTRACT Traffic classification will be a key aspect in the operation of future 5G cellular networks,
where services of very different nature will coexist. Unfortunately, data encryption makes this task very
difficult. To overcome this issue, flow-based schemes have been proposed based on payload-independent
features extracted from the Internet Protocol (IP) traffic flow. However, such an approach relies on the use
of expensive traffic probes in the core network. Alternatively, in this paper, an offline method for encrypted
traffic classification in the radio interface is presented. The method divides connections per service class by
analyzing only features in radio connection traces collected by base stations. For this purpose, it relies
on unsupervised learning, namely agglomerative hierarchical clustering. Thus, it can be applied in the
absence of labeled data (seldom available in operational cellular networks). Likewise, it can also identify
new services launched in the network. Method assessment is performed over a real trace dataset taken from
a live Long Term Evolution (LTE) network. Results show that traffic shares per application class estimated
by the proposed method are similar to those provided by a vendor report.

INDEX TERMS Traffic classification, radio access network, trace, unsupervised learning, clustering.

I. INTRODUCTION

In the last years, the success of smartphones and tables has
opened up a new world of exciting applications for mobile
users. The global mobile application market size was valued
at $106.27 billion in 2018, and projected to reach $407.31
billion by 2026 [1]. This trend will continue with future 5G
systems, whose improved connectivity will be exploited to
create innovative use cases. All these changes have forced
cellular operators to change the way they manage their
systems from a network-centric to a user-centric approach
focused on Quality of Experience (QoE) [2].

For the above purpose, operators need proper tools to
predict, monitor and control the QoE offered to their cus-
tomers [3]. With recent advances in information technologies
and data science, the newest traffic monitoring and analysis
solutions can leverage the huge amount of information from
network elements and interfaces in mobile networks [4].
To make the most of these tools, it is key to identify the
service demanded by the user at all times. In this context,
traffic classification aims to associate network traffic with

the underlying generating application. In current cellular
networks, accurate traffic classification can benefit many
network management tasks, such as capacity planning, traffic
policy and charging, troubleshooting or QoE management.
For this reason, in Long Term Evolution (LTE) systems,
each connection has a Quality-of-service Class Identifier
(QCI), used for prioritizing services [5]. Such information
is registered in measurements collected by radio network
elements. However, even if some QCIs are associated to a
single service, other QCIs comprise services of very different
nature. In particular, QCIs 6, 8 and 9 comprise a mixture of
multimedia, interactive and Transmission Control Protocol
(TCP)-based services, namely instant messaging, streaming,
web surfing or app download. Such a coarse granularity
complicates any application-oriented task. Then, more pre-
cise traffic classification methods are required. In future 5G
networks, identifying the traffic mix will be key to design
fine-grained slices with QoE control, mobile edge/multi-
access computing and network functions optimized per ser-
vice [6].
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In legacy Internet Protocol (IP)-based networks, traffic was
classified in the past by port number [7]. Such an approach
is today unreliable due to the proliferation of new appli-
cations with non-standard or randomly generated ports [8].
As an alternative, payload-based methods (e.g., deep packet
inspection) match the IP packet payload with a set of stored
signatures to classify network traffic [9]. However, such an
approach requires high storage and processing capacity, and
it is useless for encrypted traffic [10]. To solve these limita-
tions, several works tackle traffic classification by analyzing
payload-independent flow characteristics. These techniques
rely on the fact that traffic from different applications typ-
ically have distinct flow patterns (a.k.a., app fingerprints),
which can be detected by Supervised Learning (SL) algo-
rithms [11]. Unfortunately, SL-based classifiers exclusively
consider services included in the training dataset, and are
therefore unable to identify new services arising in the net-
work. Moreover, these methods depend on large quantities of
labeled data, which are difficult to obtain. For these reasons,
the design of semi-supervised [12] or unsupervised [13]
schemes is considered a promising research direction [14].
Nonetheless, in the particular case of mobile networks, both
supervised or unsupervised flow-based traffic classification
require probes that analyze traffic in the core network. In
practice, operators are reluctant to install such probes because
of the high associated costs. As an alternative, it is possible to
process connection traces collected in the radio interface by
means of big data analytics techniques. Such very detailed
information can be used to classify traffic without investing
in network probes.

In this work, an offline method for coarse-grained en-
crypted traffic classification in cellular radio access networks
is presented. The method relies on unsupervised learning to
classify traffic into broad service classes. Unlike classical
approaches, based on IP traffic analysis by probes in the
core network, the proposed method uses traffic descriptors
from connection traces in the radio interface to perform the
classification. Likewise, it can be applied in the absence of
labeled data (seldom available in mobile networks) and iden-
tify new types of services launched in the network. Validation
is performed over a dataset from a live LTE network. The
main contributions of this work are: a) the definition of a
set of traffic descriptors to classify and characterize traffic
in the radio interface, and b) a method for coarse-grained
encrypted traffic classification in absence of labeled data
based on such descriptors. The proposed offline method is
conceived to make the most of existing trace datasets for
QoE-driven network planning and optimization.

The rest of the document is organized as follows. Section II
presents an overview of related work. Section III introduces
some key concepts related to the proposed classification
method, described in section IV. Section V presents the
validation of the method in a live LTE network. Finally,
section VI summarizes the main conclusions.

II. RELATED WORK
Encrypted traffic classification has been extensively covered
in the literature. In fixed networks, several flow-based
methods have been proposed to classify traffic in real time
by using the first packets of the flow (early classifica-
tion) [15] [16] or offline based on the whole flow (late
classification) [9]. These approaches have also been extended
to wireless networks, by leveraging the ability of SL to iden-
tify app fingerprints. In [17], a device-fingerprinting scheme
based on learning traffic patterns of background activities
is proposed. The method uses support vector and k-nearest
neighbors classifiers, trained with data from 20 users with
different combinations of apps connected to a 3G network.
In [18], six types of mobile applications are identified by
analyzing the packet size and transmission direction of the
first 20 packets as input features of a hidden Markov model.
In [11], a framework for fingerprinting and identification
of mobile apps is presented based on decision trees and
support vector classifiers trained with statistical flow features
grouped based on timing and destination IP address/port.
In [19], the same framework is used to assess the degradation
of classification performance due to changes in app finger-
prints. In [20], an ensemble approach combining different
state-of-the-art classifiers is proposed. Four classes of com-
bination techniques are compared, differing in accepted clas-
sifiers’ outputs, training requirements and learning scheme.
Validation on a dataset of real user activity shows higher
accuracy compared to the individual use of the considered
classifiers.

App fingerprints vary significantly with time due to ter-
minal evolution, app updates, user behavior, etc. Thus,
classification models must be retrained with new data
periodically [19]. To overcome this issue, other works pro-
pose classifiers based on deep learning, that work directly on
input data by automatically distilling structured and complex
feature representations at the expense of a higher training
complexity and need for larger datasets [14]. In wireless
networks, this approach has been considered via variational
autoencoder networks [21], convolutional networks [22] or
multi-modal classifiers [6] [23]. Nonetheless, as explained
above, using SL flow-based classifiers in mobile networks
requires a large training dataset and implies installing probes
in the core network, which is undesirable for network opera-
tors. In this work, the former shortcoming is circumvented by
unsupervised learning, already used for traffic classification
in fixed networks [13], but not in mobile networks. For this
purpose, the analysis relies on radio connection traces, which
can be collected in the absence of probes in the core network.

With recent advances in data analytics, several works
have considered the use of connection traces for network
management in the context of self-organizing networks.
Their ability to generate new indicators different from coun-
ters provided by vendors is extremely valuable for opera-
tors [24]. For instance, traces can be used in network planning
to derive spectral efficiency curves required in cellular plan-
ning and simulation [25] or the spatiotemporal distribution of
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radio resources in a live network [26]. Likewise, traces can
be used in the operational stage to tune network parameters
(e.g., link adaptation offset [27], antenna tilt angle [28] or
inter-system handover margin [29]) or find the root cause
of problems (e.g., dropped connections [30]). In this work,
information in radio connection traces is used to characterize
connections from different service classes. To the authors’
knowledge, no traffic classification method based on un-
supervised learning over performance indicators in radio
connection traces has been proposed.

III. KEY CONCEPTS
In this section, some key concepts for the proposed classifi-
cation system are explained, namely radio connection traces
and data encapsulation in LTE.

A. TRACES
Radio connection traces contain signaling events in the radio
interface [31]. An event is a report including measurements
and performance information (e.g., signal level, bit rate, etc.).
Events are grouped in two categories: internal and external
events. Internal events are generated by base stations (e.g.,
evolved Nodes B in LTE) and are specific to each vendor.
In contrast, external events include signaling messages that
the base station exchanges with other network equipment
via standard protocols, such as Radio Resource Control
(RRC) or S1 Application Protocol (S1AP). Events selected
by the network operator are registered in a trace file per cell
generated periodically after each reporting period (currently,
15 min). Such file is then sent to the Operation and Support
System (OSS). Two types of trace files are distinguished:
Cell Traffic Recording (CTR) and User Equipment Traffic
Recording (UETR). While CTRs store events of all users in
the cell anonymously, UETRs store information of a specific
user selected by the operator [32]. In this work, for privacy
reasons, CTRs are used to collect traffic descriptor statistics
for all users in the network.

CTRs are binary files in ASN.1 format. To compute traffic
descriptors for classification purposes, these files must be
first converted into a readable format (e.g., a CSV file). Each
file comprises events from users demanding services in a cell.
An event includes timestamp, user identifier, cell identifier,
QCI and a set of traffic parameters that differ depending on
the event type. For ease of analysis, information in each file
is divided per event type and synchronized. Later, user and
node identifiers are used to build individual connections. A
connection comprises information from a user demanding a
certain service in a particular cell. Each connection includes
user identifier, cell identifier and a set of traffic descriptors
computed from information in events. In this work, the
following traffic descriptors are considered:
• The RRC connection time, TRRC [s]. A RRC connection

starts when a service is requested and lasts until the user
leaves the cell, the connection is closed explicitly or the
user inactivity timer expires. Such a timer often has a
default value of 10 s [33]. Thus, in a RRC connection of

13 s, the user may transmit during the first 3 s and the
inactivity timer expires 10 s later. The connection time
excluding that timer (if that is the cause of connection
release) is here referred to as the effective connection time,
Te f f .

• The total DownLink (DL) traffic volume at the packet data
converge protocol level, VDL [bytes].

• The UpLink (UL) traffic volume ratio, ηUL [%], computed
as

ηUL = 100 ×
VUL

VUL + VDL
. (1)

• The DL traffic volume ratio transmitted in last Transmis-
sion Time Intervals (i.e, TTIs when the transmission buffer
becomes empty), ηlastTT I

DL , computed as

ηlastTT I
DL =

V lastTT I
DL

VDL
. (2)

• The DL activity ratio, τactiveDL , computed as the ratio
between active TTIs (i.e., those with data to transmit) and
the effective duration of the connection,

τactiveDL =
Tactive
DL

Te f f
. (3)

• The DL session throughput, THsession
DL [bps], computed as

the volume transmitted in the DL divided by the effective
duration of the connection,

THsession
DL =

8VDL

Te f f
. (4)

As shown in previous works [34], the above traffic descrip-
tors can easily be computed per connection from information
in common signaling events (e.g., connection setup, connec-
tion release, etc.). All of them are payload-independent, so
they can be collected even if traffic is encrypted at application
level. Moreover, most are ratios, showing similar values
regardless of encryption scheme. Nonetheless, some of these
descriptors are strongly influenced by radio link and network
conditions (e.g., ηlastTT I

DL and τactiveDL depend on spectral
efficiency, cell bandwidth, available user capacity, schedul-
ing algorithm, etc.). Thus, connections of the same service
might have different values of these descriptors. Likewise,
connections of different services might have similar values of
these indicators, making it difficult to isolate services. Hence,
it is advisable to develop new traffic descriptors that are less
dependent on network performance.

B. DATA ENCAPSULATION PROCESS IN LTE
To reduce design complexity, most networks are organized
into protocol layers, each one built upon the one below.
As a result, data generated by applications goes through an
encapsulation process. Each layer adds a header and passes
the data to the next layer, until the lowest layer is reached,
where actual communication occurs through the physical
medium.

Fig. 1 shows an example of the encapsulation scheme in
the user plane of the LTE radio interface. The upper level
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TABLE 1: Traffic descriptors at different protocol layers for 5 different services in LTE.

Measured Theoretical

Service Instant
messaging

Web
(small objects)

Web
(large objects)

Video
streaming

App
download

Full
buffer

Provider WhatsApp Freepik Vimeo YouTube Google Play Store –

Tr
an

sp
or

t

Protocol TCP TCP TCP UDP TCP –
Header [bytes] 32 32 32 8 32 32
Max. DL payload [bytes] 147 1348 1348 1350 1348 1348
Avg. DL packet length [bytes] 71 1139 1396 1189 1391 1348
Max. DL packet length [bytes] 179 1380 1380 1358 1380 1380
DL packets with MSS [%] 0 73 99 86 99 100
No. of DL packets 27 56 2369 1988 30754 Np

No. of UL packets 30 39 1156 313 10991 Np

Ratio DL/UL packets 0.90 1.44 2.05 6.35 2.80 1

IP

Protocol header [bytes 20 20 20 20 20 20
Max. packet length [bytes] 199 1400 1400 1378 1400 1400

PD
C

P Total DL volume [kB] 1.9 63.8 3306.2 2362.9 42770.9 1400 × Np

Total UL volume [kB] 2.5 4.9 61.9 80.08 571.5 52 × Np

ηUL [%] 56.6 7.2 1.8 3.2 1.3 3.58

is the application layer, which contains application-specific
protocols (e.g., Hypertext Transfer Protocol -HTTP-, File
Transfer Protocol -FTP-, etc.). These protocols generate data
packets of very different sizes. Below the application layer
is the transport layer, which is responsible for transferring
data between application peers. The primary two protocols
on this layer are Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). UDP is a stateless and
connectionless option, providing fast, unreliable data trans-
fer, suitable for streaming services. In contrast, TCP is state-
ful and connection-oriented, providing reliable transmission
by guaranteeing in-order data delivery and retransmissions,
suitable for web or file transfer. In both cases, application
data packets are broken into smaller more manageable pieces.
The maximum size of these pieces (a.k.a., Maximum Seg-
ment Size -MSS-) is usually restricted by the maximum trans-
fer unit of the underlying network. In TCP, flow control uses
a sliding window whose size limits how many bytes may be
sent (one or more segments). When a segment is correctly re-
ceived, the receiver sends an acknowledgment packet (ACK)
and informs about how many bytes can still be received.
Below the transport layer is the network layer, responsible
for connecting devices with the Internet Protocol (IP) [35].
In the link layer, the Packet Data Converge Protocol (PDCP)
transports IP datagrams, provides header compression (if
required), ciphering and integrity protection. Below PDCP,
Radio Link Control (RLC) segments and concatenates PDCP
packets to adapt them to the transport block size in the
Medium Access Control (MAC) layer. RLC has three modes
of operation: transparent mode, unacknowledged mode and
acknowledge mode. The latter mode is often used to deliver
packets through dedicated logical channels (i.e., data traf-
fic) [36].

The performance of the above protocols is strongly in-

FIGURE 1: Example of packet encapsulation in the LTE user
plane.

fluenced by the type of service requested by the user.
Different applications have different traffic characteristics
and communication patterns. For instance, app or file down-
loads generate large packets, while messaging services gen-
erate infrequent small packets. To support this statement,
Table 1 breaks down traffic descriptors at different protocol
layers for 4 of the most demanded services in LTE, namely
instant messaging via WhatsApp, web browsing (in two
different webpages), video streaming via YouTube and app
download via Google Play Store. Data in the table is obtained
by analyzing traffic from live applications captured in a
mobile terminal connected to a commercial LTE network. As
expected, WhatsApp reports the lowest TCP packet size, with
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an average packet size of 71 bytes. In fact, no packet fills
the transport MSS. For the rest of services (i.e., data-hungry
services), the percentage of packets that fill the transport
MSS varies. In app download, video streaming and web with
large objects, application data chunks are large enough to fill
payload in most transport packets (≥ 86%). In contrast, in the
case of web browsing in simple webs, only 73% of packets
fill TCP payload, revealing the presence of some application
data chunks with smaller size (e.g., small objects).

Different packet sizes of data-hungry services have an
impact on the value of ηUL descriptor. This indicator reflects
in which direction (i.e., UL, DL or both) data traffic is
transmitted in a connection. Connections with ηUL close to
0%/100% belong to asymmetric download/upload services,
respectively, while connections with ηUL close to 50% cor-
respond to symmetric services. For download connections
(the most frequent in data-hungry services), the value of
ηUL can be approximated analytically by considering a
connection with arbitrarily large application data chunks,
where all transport packets are completely filled (i.e., a full
buffer service). Such an example is included in column ‘Full
Buffer’ in Table 1. VDL at PDCP level is computed as the
maximum TCP payload (i.e., 1348 bytes in LTE, according
to measurements in Table 1) plus 32+20 bytes of TCP and IP
headers. Likewise, VUL is approximated by the size of ACK
packet (52 bytes). Thus, ηUL results in 3.58%. Connections
with ηUL less than that threshold belong to download services
characterized by large data chunks (e.g., app download). In
contrast, connections with a higher ηUL belong to upload
services (e.g., file upload), symmetric services (e.g., video
conference) or download services with smaller data chunk
size (e.g., web browsing with small objects). Such a threshold
is supported by measurements in Table 1. It is observed
that Google Play Store, YouTube and the large web show
ηUL below 3.58%. In contrast, the simple web shows ηUL

above 3.58%, and WhatsApp shows ηUL≈50%, since it is a
symmetric service.

It should be pointed out that, in the analytical bound
obtained for full buffer service, it is assumed that: a) there
is no header compression in PDCP, which is valid for most
data traffic in LTE [36], b) TCP protocol is used in the
transport layer, and c) each TCP packet is acknowledged
by an ACK. The latter assumptions are not always true in
current networks. On the contrary, results for app download
service in Table 1 show that 30,754 packets are sent in the
DL and only 10,991 ACKs are sent in the UL (i.e., 1 UL
ACK message acknowledges 2.8 DL packets on average).
Likewise, YouTube uses UDP protocol. If some of these
conditions do not hold (e.g., there is header compression, less
ACKs are sent, or a different transport protocol is used), a
lower value of ηDL will be obtained. Thus, it can be stated
that connections filling most transport packets cannot have
ηDL higher than 3.58%.

FIGURE 2: Proposed classification method.

IV. CLASSIFICATION METHOD
This section describes the proposed traffic classification
method. The aim of the method is: a) to divide traffic
into broad application groups (e.g., messaging services, web
browsing, streaming services, etc.) using information from
radio connection traces provided by network operators, and
b) to report the main features of each group.

Method structure is shown in Fig. 2. Once traces are
collected and processed, a new set of traffic descriptors
modeling radio connections at burst level is computed per
connection and added to the dataset. Then, the dataset is
broken up into disjoint groups by a 4-step procedure. It
will be shown later that services offered in mobile networks
are unevenly demanded (e.g., instant messaging is more
demanded than file download). Performing clustering over
an imbalanced dataset can lead to the classes with less
members being shadowed by those with more members [37].
A common solution is to re-sample the dataset by under-
sampling the classes with more data points, but this process
requires labeled data, which is seldom available in mobile
networks due to the difficulty of combining data from the ra-
dio access and core domains. To circumvent this problem, the
connection dataset is first split into broad connection classes
based on a priori knowledge. Then, connections in each broad
class, from services with comparable demand, are divided
into clusters by means of unsupervised clustering. Finally,
the obtained groups are labeled manually by analyzing the
properties of each group. A more detailed explanation of each
step is given next.

A. TRAFFIC MODELING IN THE RADIO INTERFACE
Traffic carried during a connection consists of one or more
data chunks sent from/to the network. As explained above,
chunks generated at the application layer can be fragmented
into smaller packets in lower layers. Then, as a result of
packet scheduling, packets belonging to the same data chunk
can be transmitted in several data bursts over the radio
interface, where traces are collected [36]. Thus, a connection
in the radio interface consists of a series of data bursts,
characterized by three parameters: the number of bursts,
Nburst
DL , the duration per burst, Tburst

DL (n), and the volume
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FIGURE 3: Connection model in the radio interface.

per burst, Vburst
DL (n) (where n denotes the burst index, since

burst duration and volume may vary across bursts). Those pa-
rameters strongly depend on the service. For instance, when
downloading a large file, a single data chunk is available at
once at the application layer, so less bursts are likely to be
transmitted than when downloading a web page comprising
many small objects. Thus, the values of the above parameters
can be used to isolate different services in the radio interface.

Unfortunately, radio connection traces do not explicitly
register information at a burst level. As an alternative, burst
level parameters can be estimated per connection from the set
of traffic descriptors described in section III-A by assuming
that all bursts are equal (i.e., have the same burst volume and
duration), as shown in Fig. 3. First, the activity ratio of a
connection k is expressed as

τactiveDL (k) =
Tactive
DL (k)
Te f f (k)

=

Nburst
DL (k) NactiveTT I

burst_DL
(k)

Te f f (k)
=

NactiveTT I
burst_DL

(k)

Tburst
DL (k)

,

(5)

where NactiveTT I
burst_DL

(k) is the average number of active TTIs
per burst in DL in connection k. Likewise, by assuming
that all the NactiveTT I

DL (k) active TTIs in DL in a connection
transmit the same data volume, VTT I

DL (k), the total volume
transmitted in last TTIs in DL in the connection can be
expressed as

V lastTT I
DL (k) = Nburst

DL (k) VTT I
DL (k) =

Nburst
DL (k)

VDL(k)
NactiveTT I
DL (k)

=

Nburst
DL (k)

VDL(k)

Nburst
DL (k) NactiveTT I

burst_DL
(k)
=

VDL(k)

NactiveTT I
burst_DL

(k)
,

(6)

where it has been taken into account that there is only 1 last
TTI per burst, and hence the number of last TTIs in DL in
a connection is Nburst

DL (k). Thus, the share of volume in last

TTIs is given by

ηlastTT I
DL (k) =

V lastTT I
DL (k)
VDL(k)

=

VDL (k)

N act iveTT I
bur st_DL

(k)

VDL(k)
=

1

NactiveTT I
burst_DL

(k)
.

(7)

By replacing (7) in (5), the average burst duration can be
computed as

Tburst
DL (k) =

1
τactiveDL (k) ηlastTT I

DL (k)
. (8)

Then, the number of bursts is estimated as

Nburst
DL (k) =

Te f f (k)

Tburst
DL (k)

, (9)

and finally the average burst size is computed as

Vburst
DL (k) =

VDL(k)
Nburst
DL (k)

. (10)

In the above equations, it is assumed that: a) every burst
has the same number of active TTIs, and b) every active TTI
transmits the same volume. Both statements may not be true
for some connections due to changing radio conditions, TCP
ramp-up or services with varying burst size (e.g., multiple
objects in a web page). Nonetheless, Nburst

DL , Tburst
DL and

Vburst
DL capture the general behavior of the connection, which

should be enough to identify the class of services it belongs
to.

B. SPLIT PER DL VOLUME
The DL volume, VDL , allows to separate data-hungry ser-
vices from non-data-hungry services. Specifically, connec-
tions can be split into 3 blocks:
• High Volume (HV) block, comprising connections with

VDL ≥ 256 kB, belonging to data-hungry services.
Such a threshold is the 5th percentile of web page
size in mobile version according to a comprehensive
analysis of the 400 top web sites in Alexa ranking [38]
performed with the WebPageTest tool [39]. Moreover,
such a threshold it is below the size of the initial data
chunk of any audio or video in major streaming plat-
forms [40] [41].

• Medium Volume (MV) block, comprising connections
with 300 B < VDL < 256 kB. This block contains
connections from applications consuming less data. The
lower 300 bytes threshold is the minimum data volume
exchanged by applications providing instant messaging
service (Telegram, Viber, etc.), which is the less data-
demanding of the most popular services in current mo-
bile networks [42]. Such a threshold is also the maxi-
mum size of push notifications used by mobile applica-
tions to inform users of new events and updates [43].

• Low volume (LV) block, comprising connections with
VDL < 300 B. This block contains traffic from signaling
or push-up notifications.
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C. SPLIT PER TRANSPORT SEGMENT SIZE
Different data-hungry services have different size of data
chunks at the application layer. As explained in section III-B,
such a behavior has an impact on the UL/DL volume ratio.
Thus, ηUL can be used to split connections in HV block in
two sub-blocks: a) HV-LC block, comprising connections
with Heavy data Volume and Large data Chunks that tend
to make the most of payload size at the transport layer, and
b) HV-SC, comprising connections with Heavy data Volume
and some Small data Chunks that may not fill transport
packets. In section III-B, ηUL≈3% was computed as an upper
bound for the former services.

D. AGGLOMERATIVE HIERARCHICAL CLUSTERING
Connections in MV and HV-LC are divided into groups
by means of Agglomerative Hierarchical Clustering
(AHC) [44]. AHC groups data points in clusters based on
their similarity. The algorithm starts by treating each data
point as a singleton cluster. Then, (dis)similarity between
every pair of data points in the dataset is computed with a
given distance metric, and the two closest clusters merged
into a single cluster by means of a linkage function based on
such similarity information. This process is repeated until all
clusters merge into one root cluster. The result is a tree-based
representation of the data, referred to as dendrogram.

Among the existing clustering algorithms, AHC is chosen
because: a) it is able to manage datasets with clusters of
different sizes (remember that, in mobile networks, services
are unevenly demanded) and density (connections from a
service can have very similar traffic descriptors or not), b) it
does not require to specify the number of clusters in advance
(in the considered problem, such information is unknown),
and c) the dendrogram itself is valuable to understand the
data.

Most clustering algorithms do not work effectively in
high dimensional space due to the so-called curse of
dimensionality [45]. Moreover, in clustering algorithms
based on distance such as AHC, as the number of input
features grows, the distances among data points become
all approximately equal, and no meaningful clusters can be
formed [46]. To avoid these undesirable effects, a reduced
subset of the considered traffic descriptors are used as input
features to AHC. Ideally, the selected traffic descriptors must
fulfill that: a) they take different values for different services,
b) they are insensitive to network conditions, and c) they do
not provide redundant information. A preliminary analysis
(not shown here for brevity) reveals that the subset compris-
ing TRRC , Vburst

DL and Nburst
DL fulfills these criteria. Then, only

these 3 traffic descriptors are used as input features to AHC.
AHC assume normally distributed data. A log-

transformation is performed over the 3 input features to
reduce data skewness. Moreover, traffic descriptors show
very different ranges of values. For higher accuracy, data
is normalized so that all variables are comparable. For
this purpose, a feature scaling method is used [47]. The
normalized value of each descriptor, inorm, is computed as

inorm =
i − imin

imax − imin
, (11)

where i is the original value of the descriptor (after log-
transformation) and imax and imin are the maximum and
minimum values of the descriptor in the corresponding block
of connections, respectively.

For robustness, the optimal point to cut the dendrogram
(i.e., the best number of clusters, Nclust ) is found per block
by checking the average silhouette score and the Calin-
ski–Harabasz (CH) score across a wide range of cut points.
Silhouette score assigns a mark between -1 and 1 to each
sample in the dataset. Positive values show that a sample
is well classified, whereas negative values indicate that the
sample is more similar to a different cluster [48]. In contrast,
CH score computes the ratio between the within-cluster
dispersion and the between-cluster dispersion [49]. In both
cases, the higher value, the better.

It should be pointed out that connections in LV block con-
sist on signaling and notifications, which are often neglected
in network dimensioning and QoE management. Likewise,
HV-SC block is expected to include a mix of services whose
traffic patterns are not distinguishable by information in
traces. Thus, AHC is not applied into these blocks.

E. GROUP LABELING
Finally, the services included in each group are deduced by
analyzing the median value of traffic descriptors for connec-
tions in the group.

V. PERFORMANCE ASSESSMENT
The proposed classification method is validated using
connection traces from a live LTE network. For clarity,
assessment methodology is first described and results are
presented later.

A. ASSESSMENT METHODOLOGY
The dataset is generated from anonymous traces collected
from 10 am to 11 am (busy hour) in 145 cells covering
125 km2 in an urban area of a live LTE network. This data
should be representative of the entire network traffic because:
a) the time period represents a significant share of daily
network traffic, and b) the area includes financial, residential
and recreational districts, with different user profiles, which
should reduce the influence of time of day. Events provided
by the vendor in traces are:
• INTERNAL_PROC_INITIAL_CTXT_SETUP. Event re-

porting connection start time.
• INTERNAL_PROC_UE_CTXT_RELEASE. Event re-

porting connection release time and cause.
• INTERNAL_PER_UE_TRAFFIC_REP. Periodic event re-

porting the active number of TTIs in both UL and DL.
• INTERNAL_PER_UE_RB_TRAFFIC_REP. Periodic event

with total data volume in UL and DL and data volume
transmitted in last TTIs.
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From those events, all the considered traffic descriptors can
be computed.

Event decoding is performed by a proprietary tool pro-
vided by the network operator, and then connection building
is carried out in Java for computational efficiency. The
resulting dataset consists of 184,349 connections. It is ex-
pected that most traffic is encrypted by the time the dataset
was collected based on reports published by popular content
providers (e.g., Google [50]). As a consequence, QCI is
the only information available regarding service type. The
dataset comprises 11.5% of connections with QCI 1 (Voice-
over-LTE), 0.1% with QCI 5 (IP Multimedia Subsystem
signaling) and 88.4% with QCIs from 6 to 9 (multimedia and
TCP-based services). The latter class, comprising 162,965
connections, is divided into application groups by the pro-
posed classification method. Such a method, referred to as
Enhanced Agglomerative Hierarchical Clustering (E–AHC),
is compared with a naïve method, referred to as Basic
Agglomerative Hierarchical Clustering B–AHC). In B–AHC,
AHC is applied to the connection dataset directly (i.e., with-
out any previous split per VDL or ηUL). This approach,
considered as a benchmark, may be taken by a practitioner
with no prior knowledge on mobile networks.

AHC is implemented with the Cluster Analysis toolbox in
Matlab [51]. In both B–AHC and E–AHC, a ward linkage
function is used, which minimizes the total within-cluster
variance by merging the pair of clusters with minimum
between-cluster distance at each step. The Euclidean distance
is used as distance metric [52].

In the absence of labeled data, which would require using
network probes, the method is validated by checking that
the groups created are consistent with the typical mobile
traffic mix reported by a vendor the year when traces were
collected [53].

B. RESULTS: B–AHC
Fig. 4 shows the average silhouette score and the CH score
obtained with B–AHC for different cuts in the dendrogram
(i.e., Nclust choices). For a better visualization, values for
each indicator are normalized by their maximum value. It
is observed that, in general, the value of both metrics tend
to decrease as the number of clusters increases. The higher
(i.e., the best) value of CH index is obtained when Nclust=4,
whereas the silhouette value for the same choice is near to
the best value (i.e., the relative value is 0.86). Thus, the
connection dataset is split AHC into 4 service groups.

Table 2 breaks down the results for B-AHC with Nclust=4.
For each group, the following information is provided: a)
the number of connections, b) the median value of traffic
descriptors of connections in the group, and c) the percentage
of DL volume carried by connections in the group. Results
show that connections in groups 1 and 2 present very sim-
ilar characteristics (short connections with reduced volume
transmitted in last TTIs). Thus, all these connections should
have been grouped into a single cluster. Moreover, group
4, comprising long data-intensive connections, has 98.52%

FIGURE 4: B–AHC performance with different number of
clusters.

TABLE 2: Groups in B–AHC method

Group Group 1 Group 2 Group 3 Group 4

No. connections 35488 55224 51782 20471
TRRC [ms] 10618 10537 14148 28460
VDL [bytes] 211 288 6111 243493
ηUL [%] 0.65 0.47 0.36 0.10
ηlastTT I
DL [%] 1 1 1 0.33

τact ive
DL [%] 2.4 2.3 1.2 1.9

TH session
DL [kbps] 2.27 3.41 13.97 132.04

Nbur st
DL 7 9 35 83

T bur st
DL [ms] 132 80 191 114

V bur st
DL [bytes] 36 32 173 2925

% of total DL volume 0.13 0.06 1.29 98.52

of the total carried traffic in the DL. According to [53],
no service had such an amount of traffic by the time the
dataset was collected (nor currently). The large number of
connections in this group (e.g., 12.56% of the total) suggests
that it contain connections from several data-hungry services.
These inconsistencies point out that, as expected, AHC is
not performing well because the number of connections in
some services is extremely large, causing that clustering is
focused only on that particular service. To confirm that bad
results are not due to the AHC algorithm, the experiment is
repeated with other well-known clustering, namely k-means
and DBSCAN [54].

The above shortcomings are solved by the proposed
E–AHC method by dividing the dataset into blocks of con-
nections based on a priori knowledge.

C. RESULTS: E–AHC
In E–AHC, the dataset is first divided into 3 blocks based
on connection data volume in the DL (LV, MV and HV
blocks). This split results in MV block (medium volume)
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TABLE 3: Groups in E—AHC method

Block LV MV HV-LC HV-SC

Group Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

No. connections 48615 52798 37624 13805 834 1205 1052 7032
TRRC [ms] 10458 11248 17890 12337 62555 18279 21404 46335
VDL [bytes] 144 797 11220 8026 11956919 1814067 2106020 97390
ηUL 5 48.9 35.5 25.4 2.3 2.4 2.3 7.2
ηlastTT I
DL 1 1 1 0.40 0.24 0.03 0.17 0.23

τact ive
DL [%] 2.6 1.7 1 2 9.2 10.4 6.7 2.3

TH session
DL [kbps] 2.25 5.44 16.46 37.73 2146.53 2319.8 1480.3 251.1

Nbur st
DL 4 18 54 18 820 24 136 165

T bur st
DL [ms] 127 67 125 144 57 363 80 203

V bur st
DL [bytes] 33 40 199 496 12793 84223 16305 6487

% of DL volume 0.02 0.15 2.57 0.74 41.81 9.21 8.33 37.17

Service Push
notifications

Instant
messaging

Instant
messaging

File
sharing

Streaming Full buffer
services

Web
browsing

Web browsing
and RRSS

with the highest number of connections (104,227 connec-
tions, 63.99% of the total), LV block (low volume) with
48,615 connections and HV block (high volume) with the
lowest number of connections (7,032, a 4.32% of the total).
Then, the latter block is divided according to ηUL value
in 2 blocks: HV-SC (small data chunks), comprising 7,032
connections, and HV-LC (large data chunks), with only 3,091
connections.

Fig. 5 shows the relative average silhouette and CH scores
obtained when cutting the dendrograms of MV and HV-LC
blocks at different Nclust values. The highest values of both
scores are obtained with Nclust=2. However, this solution
is discarded, since it provides a too coarse classification.
For Nclust=4, CH score in MV block has a value of less
than 0.6 compared to the maximum, which is unacceptable.
Likewise, in HV-LC block, a deeper analysis of silhouette
score (not shown here) reveals that the number of samples
with a negative silhouette score value (i.e., which should be
assigned to a different cluster) strongly increases at that point,
which is undesirable. Larger number of clusters lead to worse
performance. Thus, Nclust=3 is selected as the cut point for
both MV and HV-LC blocks.

Table 3 presents the 8 connection groups obtained at the
end of the classification process. For each group, it provides:
a) the block to which the group belongs, b) the number of
connections, c) the median value of traffic descriptors of
connections in the group, d) the percentage of the total DL
volume carried by connections in the group and e) the under-
lying service, guessed by analyzing such values. Groups are
analyzed next.

Connections in LV block (≈30% of the total) make up
group 1. This group consists of very short connections
(TRRC<11 s and, hence, Te f f≈1 s) with few data (≈150 B in
both UL and DL), all transmitted in last TTIs (ηlastTT I

DL =1).
As a consequence of the low transmitted data, session
throughput is very low (≈2 kbps). Such a description fits with
push notifications, consisting of lightweight audio or visual

FIGURE 5: E–AHC performance with different number of
clusters.

cues sent by specific servers (e.g., Google Cloud Messaging
Server) to inform users about unread messages or updates in
applications [43]. This group may also include some radio
connections comprising only a TCP FIN or RESET packet,
appearing when these packets are delayed more than the user
inactivity timer [33]. In this case, a TCP connection is split
in 2 connections over the radio interface (one with the main
TCP data flow and another with the FIN or RESET message).
Note that this group with push notifications is the second
largest in the mobile network under analysis.

MV block is split in groups 2 to 4. Group 2 presents the
highest number of connections (about 33% of the total) with a
short RRC connection time, low traffic volume (≈800 B) and
100% of data transmitted in last TTIs. The fact that TRRC is
very close to the inactivity timer suggests that these connec-
tions consist of a single data chunk at the application layer.
Moreover, ηUL=49%, revealing that connections belong to
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a symmetric service, i.e., users send and receive data. All
these characteristics can be associated to instant messaging
services (e.g., WhatsApp) [42].

Group 3 has less connections than group 2 (23% of the
total) with longer duration (≈8 s without considering the in-
activity timer) and a higher but still limited volume (≈11 kB).
The fact that data is transmitted in last TTIs and the extremely
low activity ratio in the DL (1%) show that data consists
of small data chunks scattered in time (in fact, Nburst

DL =54).
ηUL=35%, showing that a considerable amount of the total
data is transmitted in the UL. Thus, these connections are
likely due to several interactions between user and network.
This behavior is also typical of instant messaging services,
where several messages are received/sent before the inactiv-
ity timer expires, so all those messages are part of the same
connection. Note that connections in groups 2 and 3 make up
56% of samples in the dataset, which is consistent with the
fact that instant messaging services are the most demanded
services in mobile networks nowadays [55].

Connections in group 4 are shorter than those of group
3 (TRRC=12.3 s), with similar DL volume (8 kB) but lower
UL volume ratio (≈25%). The average burst volume is much
higher than in group 3 (Vburst

DL =199 B and 496 B in groups
3 and 4, respectively), showing an increase of data chunk
length. In fact, only 40% of data is transmitted in last TTIs.
This group may be associated with small data files (e.g.,
images, audio recordings, documents, etc.) commonly shared
by e-mail, messaging applications or social networks.

HV-LC block, comprising data-hungry services with large
data chunks at the application layer (i.e., ηDL<3%), is split
in groups 5 to 7. Group 5 presents the lowest number of
connections in the dataset (0.05% of the total) with the
longest length (TRRC≈62 s) and the highest DL data volume
(12 MB), which is transmitted in many bursts. In fact, despite
the reduced number of connections, this group accounts for
41.81% of the total download traffic in the network. The large
duration and DL volume and the presence of bursty traffic
suggest that this group includes connections from audio and
video streaming applications (e.g., YouTube, Netflix, Spotify,
etc.). It is worth noting that the median value of THDL

session
in this group in higher than expected, since 2150 kbps is
approximately the rate of high-definition video [56]. It should
be pointed out that, at the initial phase of a streaming session,
a significant part of the video/audio file (e.g., 40 s) is down-
loaded at full speed to avoid re-buffering events. Then, down-
load speed decreases, approaching the playout rate [40] [41].
Thus, THDL

session for short videos can be considerably higher
than the playout rate. A deeper analysis of data (not shown
here) reveals that THDL

session for connections in this group
tends to decrease as TRRC increases, which is consistent
with the fact that, in longer videos, download speed tends
to playout rate.

Groups 6 and 7 in HV-LC block comprise shorter connec-
tions than group 5 (TRRC≈20 s) with lower VDL (≈2 MB).
The new burst indicators reveal that, in connections in group
6, data is transmitted in a few very long bursts over the air

interface (the heaviest in the dataset). As a consequence, the
activity ratio in the DL and session throughput are the highest
(10.4% and 2.3 Mbps, respectively). These features fit with
full buffer services, such as app download, software update
or large file download via FTP, where the user demands as
many resources as possible until all the data is transmitted. In
contrast, group 7 comprises connections with a large number
of bursts (Nburst

DL = 136 in group 7, compared to 24 in group
6) and lower DL activity ratio (6.7%) and session throughput
(≈1.48 Mbps). The higher ratio of last TTIs (0.17 in group 7,
compared to 0.03 in group 6) points out the presence of small
data bursts, which is confirmed by the lower Vburst

DL (6.5 kB
in group 7, compared to 16.3 kB in group 6). Because of the
presence of bursts with different sizes, and the median value
of VDL , very similar to the median size of mobile web pages
in Alexa ranking, this group is labeled as web browsing.

Finally, connections in HV-SC block make up group 8.
Since ηlastTT I

DL =0.23, it is deduced that connections in this
group have medium size data chunks. The median value of
TRRC is 46 s. The reduced DL activity ratio (2.3%) and
the low session throughput (≈250 kbps) point out that such
a duration is due to several user interactions. This group
may contain a mix of services, such as web browsing (e.g.,
web with many small objects, or multi-page sessions) or
social networks, where a wide range of services (e.g., instant
messaging, file sharing, short video streaming, etc.) can be
demanded in a single connection.

In the absence of labeled data, the classification shown in
Table 3 is validated by comparing the results with mobile
traffic statistics published by a vendor [53]. Table 4 shows the
percentage of traffic per application type carried worldwide
in 2016 [53] (i.e., when traces were collected) and that ob-
tained by E–AHC. According to [53], audio/video streaming
services carry most of the traffic (54.6%) in current networks.
This figure is consistent with results from E–AHC, which as-
cribe 41.8% of traffic to these services (group 5). In [53], 6%
of traffic is assigned to web browsing, whereas the proposed
classification system assigns 8.3% of traffic to this service
(group 7). Software update, application download and file
sharing services comprise 6.9% of traffic in [53], compared
to the 9.2% of traffic assigned to full buffer services (group
6) by E–AHC. Finally, [53] includes two groups called Social
Networks and Others carrying 32.5% of traffic. Both groups
include traffic of a different nature (e.g., instant messaging,
short videos, small file sharing, etc.), equivalent to groups
1,2,3, 4 and 8 in A-EHC, carrying 40.7% of volume in the
DL. Nonetheless, note that the classification performed here
is based on traces from a particular network, and percentages
may slightly differ from those reported worldwide by the
vendor.

VI. CONCLUSIONS
In this work, a novel scheme for coarse-grained encrypted
traffic classification in mobile networks has been proposed.
Unlike previous flow-based approaches, based on expensive
traffic probes in the core network, classification is based on
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TABLE 4: Share of DL traffic volume.

Service Vendor report Proposed method

Streaming 54.6 % 41.8 %
Web browsing 6 % 8.3 %
Full buffer services 6.9 % 9.2 %
Social networks & others 32.5 % 40.7 %

traffic descriptors computed from connection traces collected
on the air interface. To avoid the influence of network condi-
tions, a new set of network-independent indicators describing
typical application burst behavior per connection has been
developed. The model is based on unsupervised learning,
namely agglomerative hierarchical clustering, so that it can
be applied in absence of labeled data.

Validation has been performed with a dataset from a live
LTE network. Results have shown the limitations of classical
clustering algorithms due to the uneven demand of services
in mobile networks, where push notifications and instant
messaging prevail over other services. To circumvent this
problem, it is essential to exploit a priori knowledge before
applying unsupervised clustering for traffic classification.
The classification performed by the proposed method is
consistent with the traffic share reported for current live
networks, showing that traffic classification can be performed
without installing expensive probes in the core network.

With the proposed method, radio optimization teams can
make the most of existing trace datasets to build applica-
tion performance maps for network benchmarking purposes.
Since this task is carried out offline, computational efficiency
is not critical. Moreover, the methodology can easily be
extended to other radio access technologies, and is especially
suitable for future 5G systems, where little knowledge is
available about the type of services to come.
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