
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2998918, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Context-Aware Data-Driven Algorithm
for Small Cell Site Selection in Cellular
Networks
J.L. BEJARANO-LUQUE1, M. TORIL1, M. FERNÁNDEZ-NAVARRO1, A.J. GARCÍA1 AND S.
LUNA-RAMÍREZ1.
1Department of Communication Engineering, University of Málaga, Málaga, 29010, Spain (e-mail: jlbl@ic.uma.es, mtoril@ic.uma.es, mariano@ic.uma.es,
ajgp@ic.uma.es, sluna@ic.uma.es)

Corresponding author: J.L. Bejarano-Luque (e-mail: jlbl@ic.uma.es).

This work has been performed in the framework of the Horizon 2020 project LOCUS (grant agreement n. 871249), receiving funds from
the European Union and by the Spanish Ministry of Economy and Competitiveness (RTI2018-099148-B-I00).

ABSTRACT In mobile networks, detecting and eliminating areas with poor performance is key to optimize
end-user experience. In spite of the vast set of measurements provided by current mobile networks, cellular
operators have problems to pinpoint problematic locations because the origin of such measurements (i.e.,
user location) is not registered in most cases. At the same time, social networks generate a huge amount of
data that can be used to infer population density. In this paper, a data-driven methodology is proposed to
detect the best sites for new small cells to improve network performance based on attributes of connections,
such as radio link throughput or data volume, in the radio interface. Unlike state-of-the-art approaches, based
on data from only one source (e.g., radio signal level measurements or social media), the proposed method
combines data from radio connection traces stored in the network management system and geolocated
posts from social networks. This information is enriched with user context information inferred from traffic
attributes. The method is tested with a large trace dataset from a live Long Term Evolution (LTE) network
and a database of geotagged messages from two social networks (Twitter and Flickr).

INDEX TERMS Small cell, social network, Twitter, traces, site selection.

I. INTRODUCTION

IN the last years, mobile networks have experienced
a continuous growth in the amount of users and

services [1]. Likewise, the development of 5G system
will increase drastically the number and heterogeneity of
connected devices [2]. As a result, network complexity
will make it very difficult for operators to manage their
networks. For this reason, automation of mobile networks
has become a field of interest for the industry and academia,
giving rise to Self-Organizing Networks (SON) [3]. SON
methods are classified into self-configuration, self-tuning and
self-healing, depending on their use for network planning,
optimization or problem solving.

At the same time, network providers have started to
think in terms of users experience when managing their
networks. Traditionally, network management followed a
network-centric approach based on Quality of Service (QoS)
criteria. This legacy approach has been replaced by a more
user-centric approach based on how the user perceives

the service, known as Quality of Experience (QoE) [4].
Parameterizing user experience for the different services
provided by the network helps to increase the impact of
network management on the end user. Thus, Customer
Experience Management (i.e. CEM) is today one of the main
procedures that stand out operators from their competitors
[5]. Unfortunately, establishing the relationship between
network performance and user opinion is a difficult task due
to the large number of factors influencing user experience [6].

The communication context (e.g., terminal type,
indoor/outdoor location, time of day, geolocation. . . ) is
one of the most influential factors on service perception
[7] [8]. Thus, the most sophisticated QoE models take
user context (e.g., time of day or user location) into
account. To recognize user activity, service providers can
use active measurements from on-body sensors through
ensemble learning [9]. Alternative, network operators can
infer user context by leveraging signaling events registered
by the network on a per-connection basis [10]. In particular,
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indoor/outdoor detection can be performed based on signal
level measurements [11] or traffic descriptors registered in
connection traces [12]. Then, this information can be used to
develop context-aware SON algorithms [13]–[15] [16].

To fulfill the stringent constraints of new use cases, 5G
operators will take network performance to the next level
by combining multiple techniques. Network densification
has been recognized as an efficient way to provide
higher network capacity and enhanced coverage [17]. In
densely populated areas, densification is best achieved by
combining macrocellular infrastructure with small cell (SC)
deployments. In such heterogeneous networks, consisting of
macrocells and small cells, discovering the best locations for
SCs is key to making the most of the new infrastructure.
However, most current site selection approaches only take
simple network coverage and signal quality indicators due
to the difficulty of modeling dynamic packet scheduling
with users of multiple services and different radio link
conditions in a radio network planning tool. In the absence of
such a performance model, the Minimization of Drive Tests
(MDT) feature [17], [18] allows the collection of geolocated
measurements that can be used to build precise network
performance maps (Radio Environment Map, REM). Such
maps can then be used to detect coverage holes [19].
Unfortunately, MDT is rarely activated in live networks due
to the workload of processing these measurements. Thus,
network re-planning and optimization tasks often has to be
done based on measurements only positioned by cell identity
and time advance statistics. Such an approach leads to large
location errors, which prevent estimating user context.

With recent advances in information technology, the
interest in data science has grown in the last years. As a
result, many open data initiatives have been launched around
the world. Open data portals now offer direct and automated
access to valuable assets that may be used to improve cellular
network management. Some companies (e.g., OpenSignal
[20] or WeFi [20]) provide real crowdsourced measurements
collected by anonymous users, which can be used to assess
current deployments [21]. Social networks are another source
of information for understanding user behavior. Social media
activity can be used to predict cellular traffic, regardless
of radio access technologies or network providers [22]. At
the same time, information on social events obtained from
browser results or open data repositories can be used to
explain abnormal network behavior during troubleshooting
procedures [23]. Likewise, areas of poor signal coverage
or service performance (i.e., blackspots) can be detected
by processing geotagged text messages in social networks
[24]. However, to the authors’ knowledge, few works have
considered the fusion of geolocated information from social
networks and mobile networks.

In this work, a new data-driven site selection method for
SCs is presented. The aim is to detect (and rank) small
space regions (both indoors and outdoors) with lack of
coverage or capacity with the largest benefit in terms of
expected recovered data volume. Unlike legacy approaches,

based solely on REMs derived with telecom data, the
proposed method enriches this information with geotagged
posts publicly available from social networks. Moreover,
the method takes advantage of user context to refine
user positioning. The main benefit is an improved spatial
resolution in detecting inadequately served hotspots. Method
assessment is performed with a real dataset consisting of a
large set of open maps, connection traces from a live Long
Term Evolution (LTE) network and geotagged posts obtained
from Twitter [25] and Flickr [26]. The rest of this paper is
structured as follows. Section II reviews the current state of
research to clarify the contribution of this work. Section III
describes the proposed SC site selection method. Section IV
shows the results of the method in a live scenario. Finally,
section V summarizes the main conclusions of the work.

II. SITE SELECTION RELATED WORK
The antenna placement problem (APP) can be formulated as
a classical optimization problem. The design variables are
the base station coordinates, often restricted to a limited set
of candidate locations, and the objective function may be
any combination of global network performance indicators.
For computational reasons, this combinatorial optimization
problem is often solved by heuristic approaches. Previous
works can be classified by type of environment, design
criteria and solution algorithm.

In terms of radio environment, a first group of works
deal with macrocellular and microcellular outdoor scenarios.
In [27], simulated annealing is used to solve the APP
in a TDMA/FDMA microcell environment based on
signal-to-interference-plus-noise ratio (SINR) and path loss
indicators. In [28], APP in WCDMA is formulated as an
integer linear programming problem, solved by tabu search.
In [29], the APP is formulated so as to find the minimum
number of antennas for a desired coverage level. In [30], the
aim of the APP is to maximize coverage in GSM while still
satisfying a minimum SINR requirement, which is achieved
by genetic algorithms. In [31] and [32], a sensitivity analysis
is carried out to check the impact of site location and antenna
tilt angles on the pole capacity in a WCDMA network with
uneven traffic distribution. In [33], randomized local search
and tabu search are used to solve the APP in order to jointly
optimize installation costs, signal quality and traffic coverage
in WCDMA.

A second group of works extend the previous methods to
indoor scenarios. In some of them, the APP is formulated
to minimize path loss (or maximize coverage) with a
general-purpose optimization algorithm (e.g., genetic [34],
direct search [35], simulated annealing [36] or heuristic [37]).
Similarly to [29], [38] proposes binary integer programming
to find the minimum number of access points guaranteeing
a minimum SINR in the scenario. In [39], a heuristic
method is proposed to place indoor access points in
WCDMA with constraints on uplink (UL) and downlink
(DL) SINR. Later studies focus on SINR optimization by
different methods (e.g., brute force enumeration in WCDMA
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FIGURE 1. Block diagram of the proposed Trace and Social Method (TSM) for small-cell site selection.

[40] and LTE [41], particle swarm in WCDMA [42] and
reduction approximation in WCDMA [43]). In [44], a
method for femtocell placement is proposed to minimize
transmit power of mobile users. In [45], a methodology
for locating enterprise femtocells in a building is proposed
to maximize the effectiveness of mobility load balancing
schemes. Alternatively, in [46], [47], the aim is to find
the best location for Wi-Fi access point for optimal user
positioning in indoor environments. More recently, an
overview of SC deployment strategies for Internet of Things
(IoT) 5G environments is presented in [48].

Social networks can provide valuable information for
the APP. In [22], it is shown that social media activity
aggregated at a district level can be used to predict cellular
traffic at a spatiotemporal resolution higher than current
approaches based on census data. Equally important, social
media data reflects the overall traffic demand across radio
access technologies or network providers. Similarly, cell
loads can be estimated by a queuing model adjusted with
the distribution of geotagged messages from Twitter [49].
Nonetheless, it is still to be checked whether data from social
networks can be used to predict traffic at a lower scale (e.g.,
at a building level).

The main contributions of the method proposed here are: a)
to combine cellular network measurements with user context
and social media data to detect blackspots at a building level,
and b) to quantify the expected performance benefit of each
new SC based on observed user behavior.

III. METHODOLOGY
The aim of the method is to detect areas in a live cellular
network where traffic demand can be increased by improving
radio link conditions. For this purpose, a deep knowledge of
the most influential factors affecting traffic demand is needed,
namely: a) radio network performance per location, b) spatial
user distribution and c) context-dependent user behavior.

Fig. 1 shows a block diagram of the proposed method. The
inputs are: a) radio trace files, comprising signaling events of
individual connections in the radio interface, b) the cellular
network layout, describing existing site coordinates and
antenna azimuths in the area, c) a large dataset of geotagged
messages (posts) generated in the area from social networks,
and d) a land use map of the area. This inputs are used due
to its relevant information. In this way, radio traces provides
all the necessary information about network performance,
while the land uses map adds context information and the
network layout and the dataset of geotagged posts allows to
build a deep knowledge of the spatial user distribution. On
the one hand, the network performance enables to compute
the expected traffic gain. On the other hand, spatial user
distribution and context information determine where this
gain occurs. The output is an ordered list of candidate SC
sites, specified by their geographical coordinates (latitude
and longitude), Lat/Lon(sc), expected traffic volume gain,
Gsc(sc), and ratio of traffic gain due to indoor locations,
Gin(sc).

In a first pre-processing stage, connection traces are
analyzed to compute performance indicators for each
connection, PI(k) (k denotes connection index). Likewise,
connections are also analyzed in groups based on location.
To this end, connections are positioned based on the
combination of cell identity and timing advance information
(known as Enhanced Cell ID, ECID). Timing Advance (TA)
is a temporal offset introduced at the terminal to ensure
that the downlink and uplink subframes are synchronized
at the base station. Such an offset takes discrete values
depending on the distance between user and base station. TA
statistics are collected on a cell basis, which are used to divide
cell service areas into concentric distance rings centered
at the base station. With this information, connections are
grouped per ring, Rta(c) (R for ring, c denotes cell index
and ta denotes distance ring), to perform ring-level analysis.
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The spatial distribution generated from discrete locations
of individual geotagged posts is interpolated by a kriging
algorithm to generate a continuous map approximating the
density of users of social networks, M

′

p(x, y) (x and y are
Cartesian coordinates). Finally, the land use map is simplified
into a map showing indoor and outdoor locations, Mct(x, y)
(ct for context).

In a second stage, a map is derived showing the potential
traffic gain achieved at each point if a new SC was
deployed, M∆V (x, y). In the live network, such an increase
is mainly originated by two effects: a) the increase of session
length (e.g., more downloaded web pages, larger time of
audio playback. . . ) or content quality (e.g., higher resolution
video) due to a better user experience, and b) the request
of more data-hungry services (e.g., videostreaming, app
download. . . ). In this work, the former component, related
to session length, is associated to past connections already
established without the SC (referred to as old connections),
whereas the latter component, related to new services, is
associated to fresh connections that would be established
with the new SC (referred to as new connections). Moreover,
gain values are different depending on user context (indoors
or outdoors). From these assumptions, the potential traffic
gain for existing connections per context, ∆Vold,ct(k), is
computed by processing past connections individually. In
contrast, the potential traffic gain for new connections, for
which no data is available, is computed at a ring level,
∆Vnew,ct(r), as explained later. Then, traffic gains are
distributed in space using the spatial user distribution inferred
from post messages.

In a third stage, traffic gains per tile are aggregated at a cell
level by taking into account typical small cell radii. Finally,
the best SC locations are selected based on the expected
traffic gain. To ease the understanding of the algorithm,
Table 1 contains the most important notation in the text.
Unless stated otherwise, all variables refer to the Downlink
(DL).

A. INPUT DATA
Radio traces are log files with signaling events generated
by base stations, which are periodically uploaded to the
mobile network management system. This data is delivered
as binary files that must be decoded to extract performance
measurements at a connection level. The reader is referred to
[50] for details on trace processing. Table 2 summarizes the
data fields needed by the algorithm.

The data fields used in this method to obtain the potential
traffic gain in each point of the network are DL throughput,
DL volume and the probability of each connection happening
indoor. This probability is obtained with the rest of indicators
presented in Table 2, plus DL throughput, as described in
[12].

The geotagged posts are obtained from two social
networks (Twitter [25] and Flickr [26] by Application
Programming Interfaces (APIs) provided by the service
provider [51]. Each post is collected with an associated

TABLE 1. Notation table

Notation Description Units
V (k) Data volume generated by connection

k
[bytes]

T (k) Throughput of the connection k [kbps]
Rnlt,ct(r) Ratio of connections non-last TTI vs

last-TTI connections in context ct
and distance ring r

[-]

∆Vopt,ct(k) Data volume gain from existing
non-last TTI connection k, generated
in context ct, due to better radio link
performance

[bytes]

∆Vnew,ct(r) Data volume gain from new non-last
TTI connections in context ct of
the ring r, due to better radio link
performance

[bytes]

∆Vopt(x, y) Map of data volume gain obtained
from existing non-last TTI
connections

[
bytes
tile

]

∆Vnew(x, y) Map of data volume gain obtained
from new non-last TTI connections

[
bytes
tile

]
M∆V (x, y) Map of potential data volume gain in

the network

[
bytes
tile

]
Gsc(x, y) Map of data volume gain obtained

from a small cell in tile (x,y)

[
bytes
tile

]
Rin(x, y) No. of power limited measurements

in UL
[-]

TABLE 2. Selected performance indicators

DL throughput [kbps]
DL volume [bytes]
UL volume [bytes]
RRC connection duration [s]
No. of active time transmission intervals (TTIs) [ms]
RSRP histogram [dBm]
DL CQI histogram [-]
UL SINR in PUCCH [dB]

DL spectral efficiency
[

b
RE

]
UL spectral efficiency

[
b

RE

]
No. of measurements in Rank 1 [%]
No. of measurements in Rank 2 [%]
No. of no power limited measurements in UL [%]
No. of power limited measurements in UL [%]

location, which is used to build a raster (i.e., grid-based data)
with the number of posts per location.

The map of land uses consists of a raster representing the
business and social activity of each small piece of terrain
(tile). This information is publicly accessible from open data
initiatives fostered by institutions (e.g., local municipality)
or popular crowdsourcing platforms (e.g., OpenStreetMap
[52]).

B. CONSTRUCTION OF POTENTIAL TRAFFIC GAIN MAP
First, the basis of the method is introduced. Then, a
preliminary analysis over real traces proves the validity of
the proposed approach by showing how radio link conditions
affect traffic generated by mobile users. Finally, the algorithm
to compute the potential traffic gain per location is detailed.
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1) Rationale
The deployment of a new SC can increase signal
level (coverage), signal quality (spectral efficiency) and,
ultimately, link capacity perceived by the user. It is expected
that the performance gain obtained by these changes will
be much larger for users of data-intensive services (e.g.,
videostreaming, app download. . . ) than for users of low
data volume services (e.g., instant messaging, voice call. . . ).
Unfortunately, connections in current radio access networks
are roughly divided into large groups of services. In the
absence of a precise classification of services, last-TTI
transmission statistics are used here to identify data-intensive
services. A last TTI is the last transmission interval of a
data burst that temporarily empties the transmit buffer [53].
Thus, data-intensive services, consisting of one or more
large data bursts, often have low last-TTI ratios. In contrast,
non-data-intensive services, consisting of one or more small
data bursts, have large last-TTI ratios. For these reasons,
data-intensive services tend to behave as a full-buffer traffic
source, whereas non-data intensive services can be modeled
as bursty traffic.

Based on the above observations, two main sources of
traffic gain are identified. A first component of traffic gain
comes from users already using data-intensive (i.e., non-last
TTI) services without the SC, which will increase their
traffic as a result of the increased session length and content
quality due to a better user experience. A second source
of traffic gain comes from users that, in the past only
requested non-data intensive (i.e., last-TTI) services, but with
the SC request new data-intensive services due to the better
user experience. In addition, since user behavior is not the
same in all locations, both traffic components are broken
down depending on user context (indoors or outdoors). The
convenience of this approach is validated with the analysis
presented next.

2) Impact of radio link throughput on user traffic
A priori, it is difficult to predict the impact of adding a new
SC on user traffic. To this end, a correlation analysis is carried
out based on traces collected in a live LTE network. The aim
is to model the relationship between radio link throughput
and several indicators related to traffic demand.

To check how the data volume of users of non-last TTI
services is affected by network conditions, the relationship
between data volume and user throughput is studied on a
per-connection basis. Fig. 2 shows a scatter plot of these two
variables observed in real mobile connections (1 point per
connection). The throughput value on the x-axis corresponds
to the average throughput of the connection at Packet Data
Convergence Protocol (PDCP) layer excluding last TTIs
(same for data volume on the y-axis) [54]. Since the focus
is on non-last TTI services, only connections with a last-TTI
volume ratio lower than 10% are considered in the analysis
(i.e., full-buffer connections). For clarity, three regression
curves are included in the figure. The middle one is obtained
by linear regression on all the samples (note the log scale

FIGURE 2. Example of scatter plot of data volume vs radio link
throughput per connection.

in the x-axis), and hence reflects the general trend. The
other two are computed by quantile regression to reflect the
trend of extreme cases. Specifically, the lower/upper curve is
obtained by linear regression on the 10th/90th percentile of
data volume of connections in different throughput ranges.
In the three curves, the data volume per connection increases
with average user throughput, which proves the hypothesis
that improving radio link conditions generally leads to higher
data volumes per connection. As expected, correlation is
not strong, since two connections may have very different
data volumes for the same throughput value due to different
session lengths. This observation justifies the need for
several regression curves to model the relationship between
throughput and data volume per connection. A closer analysis
of residuals shows that the mean absolute error is reduced
from 4.93e6 with a single curve to 2.25e6 with 3 curves
(achieving a reduction of 45.64 %).

To check if the number of requests of non-last TTI
services of a user is affected by network conditions,

FIGURE 3. Example of scatter plot of ratio of non-last TTI connections
vs radio link throughput per timing advance ring.
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FIGURE 4. Example of scatter plot of data volume vs radio link
throughput per connection, broken down by context.

the correlation between the ratio of non-last TTI against
last-TTI connections is examined. As above, a connection is
considered as a non-last TTI (last TTI) connection if less than
10% of data is transmitted in last TTIs (non-last TTIs). All
other connections that fall in between these two thresholds
are discarded in the analysis. As explained above, in the
absence of geolocated traces, connections are positioned
based on cell identity and timing advance. Thus, the analysis
can be done by aggregating all connections within a TA ring.
For reliability, only rings with more than 25 connections are
considered. Fig. 3 shows a scatter plot of the non-last TTI/last
TTI connection ratio versus average connection throughput
in the ring (1 point per cell/ring/context). Again, three
regression curves are superimposed, obtained by linear and
quantile regression. In the general and 90th-tile trend curves,
it is confirmed that rings with a larger average throughput
tend to have larger ratios of non-last TTI connections.
Likewise, the large dispersion justifies the need for several
regression curves also in this case (in this case, the mean

FIGURE 5. Example of scatter plot of ratio of non-last TTI connections vs
radio link throughput per timing advance ring, broken down by context.

absolute error with 3 curves is reduced by 53.28 %).
The previous analyses can be done separately for indoor

and outdoor connections to check the impact of user
context. In the absence of a precise user positioning method,
connections are tagged as indoor or outdoor based on trace
measurements as described in [12]. Only connections with
a large confidence of being indoors or outdoors (>90%) are
considered in the analysis. Fig. 4 and 5 present the results
of breaking down the regression curves per context for the
two considered traffic indicators. In Fig. 4, the outdoor and
indoor curves differ slightly for connection data volume,
which points out that data volume per connection is not much
affected by user context. However, in Fig. 5, indoor curves
are well over outdoor curves, indicating that, for the same
user throughput conditions, the ratio of data-intensive vs
non-data-intensive services is larger indoors than outdoors.
This observation justifies the need for a different set of
regression curves for indoors and outdoors.

From the previous analysis, two regression models are
derived, each consisting of 6 regression curves. A first model
defines the relationship between data volume, V , and average
connection throughput, T , in a non-last TTI connection k that
took place in context ct as

V (j)(k) = β
(j)
1,V,ctT (k) + β

(j)
0,V,ct k ∈ ct , (1)

where βi,V,ct(j) is the ith regression coefficient of the
regression curve j (j ∈ {10th, all, 90th}) and user context
ct (ct ∈ {in, out} for indoors and outdoors, respectively).
Regression j = all is a simple linear regression with all
the samples, while j=10th and 90th correspond to quantile
regression with 10th and 90th percentile of data volume
values per throughput bin, respectively. A second model
defines the relationship between the ratio of non-last TTI vs
last-TTI connections,Rnlt, and the mean throughput from all
connections, T , in a TA ring r in context ct as

R
(j)
nlt,ct(r) = β

(j)
1,R,ctT ct(r) + β

(j)
0,R,ct , (2)

where β
(j)
i,R,ct is the ith regression coefficient for the

regression curve j and user context ct.

3) Estimation of potential traffic gain per connection and ring
The traffic gain obtained by deploying a new SC is divided in
two components: a) the increase from existing connections,
calculated on a connection basis (only applicable to
connections that needed many resources, i.e., non-last TTI
connections), and b) the increase from the extended use of
data-intensive services, calculated on a ring basis.

As a first step, an optimal throughput value is defined,
Topt, as the best throughput that can be reached with optimal
propagation conditions. In this work, Topt is set to the 90th
percentile of average throughput across all connections in the
network.

Then, connections are classified as indoor or outdoor.
To this end, the probability that a particular connection is
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FIGURE 6. Estimation of Vopt(k).

generated in a given context, Pct(k), is estimated from trace
data with the algorithm described in [12]. As a result, a
connection might be tagged both as indoor and outdoor,
provided that Pin(k) + Pout(k) = 1.

Following the above classification, the potential gain of
data volume from an existing connection is divided into an
outdoor and indoor component, calculated as

∆Vopt,ct(k) = Pct(k)(V ′ct(k)− V (k)) , (3)

where Pct(k) is the indoor/outdoor probability of the
connection, V (k) is the data volume of the connection,
taken from traces, and V ′ct(k) is the potential data volume
indoors/outdoors of the connection with optimal radio
conditions (i.e., after deploying the SC). The latter is
estimated by the regression model in (1) with T (k) = Topt.
Yet, the specific regression curve (out of the three possible,
j=10th, all or 90th) must be decided. To solve this problem,
linear interpolation between the closest curves is used, as
shown in Fig. 6. Specifically,

V (k) ≥ V̂90(T (k))
{
w1 = 1 (4)

V̂all(k) ≥ V (k) > V̂90(T (k))

{
w1 = V (k)−V̂all(T (k))

V̂90(T (k))−V̂all(T (k))

w2 = 1− w1

(5)

V̂10(t) ≥ V (k) > Îall(T (k))

{
w1 = Vct−V̂10(T (k))

V̂all(T (k))−Î10(T (k))

w2 = 1− w1

(6)

V (k) < V̂10(T (k))
{
w1 = V (k)

V̂10(T (k))
(7)

To reduce the influence of outliers, input data volume is
upper and lower bounded by the values in the 90th and 10th
percentile curves.

The potential increase in data volume from the use of
more data-intensive services is estimated per ring from the
number of connections of non-data intensive services, which
should not be affected by radio link conditions, and is thus
the same with and without the SC. Specifically, the increase
in the number of ideal non-last TTI connections (i.e., those
transmitting all its data in non-last TTIs) per ring and context
is estimated as

∆Nnew,ct(r) = N ′nlt,ct(r)−Nnlt,ct(r)

= Nlt,ct(r)R
′
nlt,ct(r)−Nnlt,ct(r) ,

(8)

where Nnlt,ct(r) and Nlt,ct(r) are the number of equivalent
non-last TTI and last-TTI connections per context ct in ring
r without the SC, calculated as

Nnlt,ct(r) =
∑
k∈r

Pct(k)Rnlt(k), (9)

Nlt,ct(r) =
∑
k∈r

Pct(k)(1−Rnlt(k)) , (10)

where Rnlt(k) is the share of data volume transmitted in
non-last TTIs in connection k (e.g., 4 connections with
Pct(k) = 0.5 and Rnlt(k) = 0.5 are equivalent to
1 ideal non-last TTI connection). Likewise, N ′nlt,ct(r) is
the predicted number of ideal non-last TTI connections
with the SC, computed from the new non-last-TTI/last-TTI
connection ratio with the SC. The latter is estimated by the
regression model in (2) with the curve interpolation process
explained in Fig. 6 and T ct(r) = Topt. Then, the increase in
data volume in ring r is calculated as

∆Vnew,ct(r) = ∆Nnew,ct(r)Vopt,ct(r) , (11)

where Vopt,ct(r) is the average data volume of an ideal
non-last TTI connection in ring r with context ct with the
new SC, calculated as

Vopt,ct(r) =

∑
k∈r,ct V

′(k)

Nnlt,ct(r)
. (12)

C. SPATIAL DISTRIBUTION
Once the two traffic gain components are calculated on a
per-connection and ring basis, these have to be projected
onto the map by positioning connections. Unfortunately,
connections in traces are rarely geolocated, so they must
be located by ECID method. This leads to large positioning
errors in rings far from the serving cell. To circumvent this
problem, the spatial user distribution within a ring can be
inferred from the distribution of geotagged posts taken from
social networks as in [22], since the transmission of short
messages is not conditioned on a good radio link.

The geolocation process starts by creating a grid with the
same tile dimensions as the map of land uses, Mlu(x, y).
Hereafter, indexes (x, y) refer to horizontal and vertical tile
indexes. From land uses, a user context matrix with the
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same size, Mct(x, y), is derived indicating whether every
tile is indoor or outdoor. Then, a matrix with the number
of geolocated posts per tile, Mp(x, y), is constructed by
taking advantage of location information provided by social
networks. In areas of low population density (e.g., open
field), the average number of posts per tile is much lower
than one, causing that most tiles have no posts and a few
of them have some. For a better estimation of these small
density values, a kriging process [55] is applied to drive the
underlying spatial post distribution, M ′p(x, y).

The post distribution is used to derive the probability of
a connection occurring in a tile (x, y) labeled as context ct
(i.e., indoor or outdoor) in ring r as

P (r, x, y) =
1 +M ′p(x, y)

Nct(r) +
∑

(x,y)∈rM
′
p(x, y)

(x, y) ∈ r,

(x, y) ∈ ct ,
(13)

where Nct(r) is the number of tiles labeled as context
ct in ring r and M ′p(x, y) is the post spatial distribution.
Note that the same tile index (x, y) can be served by rings
from different cells and, thus, different P (r, x, y) values
are associated to each ring serving the same tile. A closer
analysis of (13) shows that, in rings where the number of
geotagged posts is 0 (as could be in unpopulated areas),
connections registered in traces are uniformly distributed in
the ring area (i.e., P (r, x, y) = 1/Nct(r)). In contrast, in
rings with a large number of geotagged posts, connections
are distributed following the post distribution in the ring (i.e.,
P (r, x, y) ≈ (M ′p(x, y))/sum(x,y)∈rM

′
p(x, y)).

Once tile probabilities are calculated, traffic gains are
projected onto the map. To this end, the data volume
increase from existing connections (per connection) or new
connections (per ring) is distributed in indoor/outdoor tiles
within the ring according to probabilities in (13) and then
aggregated across rings serving the same tile. Specifically,
the data volume increase due to existing or new connections
in tile (x, y), ∆Vopt(x, y) and ∆Vnew(x, y), respectively, is
computed as

∆Vopt(x, y) =
∑

r/(x,y)∈r

∑
k∈r

∆Vopt,ct(k)P (r, x, y)

(x, y) ∈ ct ,
(14)

∆Vnew(x, y) =
∑

r/(x,y)∈r

∑
k∈r

∆Vnew,ct(r)P (r, x, y)

(x, y) ∈ ct .
(15)

Finally, both terms are added to build the traffic gain map as

M∆V (x, y) = ∆Vopt(x, y) + ∆Vnew(x, y) . (16)

D. SMALL CELL SELECTION
Once potential traffic gain map is obtained, it must be decided
where the SC should be located. To this end, the aggregated
data volume gain associated to a candidate SC location (x, y),
Gsc(x, y), is calculated as

Gsc(x, y) =
∑

(i,j)∈Asc(x,y)

M∆V (i, j) , (17)

where Asc(x, y) is the coverage area of a hypothetical
SC located in (x, y). In this work, SC is assumed to be
omnidirectional, so that Asc(x, y) is a circle of radius 50
meters centered at (x, y) [56], [57].

Then, the best candidate SC locations can be identified by
detecting local maxima in Gsc(x, y) in an iterative manner.
To avoid selecting too close sites that might overlap, the
traffic gain map is updated every time a new SC is selected
by forcing to 0 the value of points under the newly selected
SC. The selection process is summarized as:

Algorithm 1 Algorithm for site selection
Input: Map of aggregated data volume gain associated to

a candidate SC location (Gsc(x, y)), minimum acceptable
gain (Gmin) and map of potential data volume gain per tile
(M∆V (x, y))

Output: List of new SC (xsc, ysc) and achieved gain
(Gsc(sc))

while max(Gsc(x, y)) > Gmin do
\\Obtain the position of maximum gain:
(xsc, ysc) = arg max

(x,y)

(Gsc(x, y))

\\Obtain maximum gain:
Gsc(sc) = max(Gsc(x, y))
\\Set to 0 all tiles covered by the new SC:
M∆V (x, y) = 0 ∀(x, y) ∈ Asc(xsc, ysc)
\\Recompute map of SC volume gain:
Gsc(x, y) =

∑
(i,j)∈Asc(x,y)M∆V (i, j) ∀(x, y)

end while

The output of the above process is a list of new SC sites
specified by the tile including the center of their targeted
service areas, with the .

Note that, in heterogeneous areas comprising indoor and
outdoor tiles next to each other, the context of the center tile
may not be the same as the context where most of the traffic
gain comes from. For instance, the suggested SC location
for a SC covering four nearby buildings (where most of the
traffic gain comes from indoor users) might be on a street
level (outdoors). To avoid this situation, a ratio of indoor
improvement for each SC, Rin(xsc, ysc), is estimated as

Rin(xsc, ysc) =

∑
(x,y)∈Asc(xsc,ysc),indoorM∆V (x, y)∑

(x,y)∈Asc(xsc,ysc)M∆V (i, j)
.

(18)
Lower values indicate that most of the traffic gain comes from
outdoor areas, and higher values indicate that the traffic gain
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TABLE 3. Description of land uses in the scenario.

Land Use Description Indoor/Outdoor Share
Services Cultural, institutional, educational or medical services. Indoor 10%
Offices Office buildings for management, information or professional services. Indoor 3%
Mixed No clear use, mixture of many land uses. Indoor 11%
Residential Houses, hotels and visitor services. Indoor 15%
Retail Retail or entertainment. Indoor 4%
Industrial Industrial and manufacturing services. Indoor 3%
Open Space Fields and green areas. Outdoor 22%
Paths Ways, fields under Right of Way and paths, both pedestrians and used by vehicles. Outdoor 30%
Rivers/Lakes Inland water. Outdoor 2%
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FIGURE 7. Spatial distribution of posts per social network.

TABLE 4. Statistics of input key performance indicators.

Source 10th percentile Mean 90th percentile
T(k) [kbps] 0 9073 28648
V(k) [bytes] 173 5.68e5 6.28e5
Pin(k) [%] 0.027 0.525 0.978

comes from indoor areas. In the former case, the SC should
be located outdoors, while, in the latter, the SC should be
located indoors. In this work, a threshold of Rin,th) = 0.5
is heuristically set to decide if a SC must be located indoors
(i.e., Rin(xsc, ysc) ≥ 0.5) or outdoors (otherwise). If the tile
of the suggested SC location does not match that context,
a closer analysis is needed to determine the best location
according to the prevailing gain context. Such an analysis
might end up with the addition of several SCs to cover indoor
and outdoor locations separately.

IV. METHOD ASSESSMENT
The proposed method is tested with a large set of
traces obtained from a live LTE network. The assessment
methodology is described first. Results are presented later,
including an explanation of how the algorithm works with
real data and a comparison with legacy approaches. Finally,
computational aspects are discussed.

A. ANALYSIS SET-UP
The considered scenario covers a geographical area of 125
km2, corresponding to the metropolitan area of a city with

800,000 inhabitants. This area is divided into tiles of 10x10
m. The land use per tile, Mlu(x, y), is obtained from
open data provided by the municipality. Table 3 shows
the distribution of land uses in the scenario, with a brief
description, their context classification (indoor or outdoor)
and their share in the scenario.

The analyzed area comprises 400 LTE cells, grouped
into 175 tri-sectorized sites, with a carrier frequency of
2.325 MHz and a system bandwidth of 15 MHz. In these
cells, trace collection is activated for 2 hours, obtaining
166,561 connections. Table 4 shows the main statistics for the
indicators derived from traces, namely radio link throughput,
connection data volume and indoor probability.

The geotagged posts from social networks generated in
the area are collected in real time during 16 months for
Twitter and 12 months for Flickr, resulting in 785,515 and
33,519 posts, respectively. The code used for this purpose
is publicly available at [58]. Fig. 7 shows the Cumulative
Distribution Functions (CDFs) of the number of posts in the
scenario,Mp(x, y), broken down per application (dashed line
for Twitter, and dotted line for Flickr). It is observed that most
posts come from tweets in Twitter.

Three methods are tested: a) the proposed method to
select the best SC candidate locations, which combines
traces and social network data (referred to as trace and
social network method, TSM), b) a simplified version of the
method based only on traces, which segregates connections
into outdoor/indoor connections to refine the spatial user
distribution from timing advance with the land use map
(referred to as trace method, TM), and c) a variant of the
method, inspired in the method to detect traffic hotspot
proposed in [22], that derives the user spatial distribution
only from social network data (referred to as social network
method, SM). The latter two are legacy approaches used as
benchmarks to check the benefit of only using posts or traces,
respectively.

Ideally, method performance should be evaluated by
deploying the sites suggested by the methods in the real
network. Since this was not possible, the comparison
presented here is based on the potential traffic gain map per
tile derived by TSM. Thus, the analysis only shows where
(and to what extent) the three methods behave differently.
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FIGURE 8. Scatter plot of data volume vs radio link throughput per
connection, broken down by context.

FIGURE 9. Scatter plot of ratio of non-last TTI connections vs radio link
throughput per timing advance ring, broken down by context.

B. METHOD PERFORMANCE
The aim here is to describe the results of the different stages
in the TSM method, shown in Fig. 1.

Estimation of potential traffic gain map
Fig. 8 and 9 show the scatter plot of data volume and non-last
TTI connection ratio versus throughput built from the trace
dataset, which are used to derive the set of regression curves
per context for each indicator. Table 5 presents the resulting
regression coefficients.

Once regression models are derived, the potential data

TABLE 5. Regression parameters.

Context, ct indoor outdoor
Percentile, j 90th mean 10th 90th mean 10th
β

(j)
0,V,ct 9.41e9 3.46e6 5.32e4 7.35e6 2.97e6 7.59e4

β
(j)
1,V,ct 284.21 105.81 21.98 365.96 127.89 12.76

β
(j)
0,R,ct 0.241 0.122 0 0.097 0.038 0

β
(j)
1,R,ct 1.86e-05 3.47e-06 0 1.48e-05 3.89e-06 0

(a) Existing connections

(b) New connections

FIGURE 10. CDF of estimated data volume gain.

volume gain per connection and ring are estimated. Table
6 summarizes the results presenting the 10th percentile,
mean and 90th percentile values of data volume gains
of connections and rings in the scenario, ∆Vopt,ct(k) and
∆Vnew,ct(r). Fig. 10 shows their CDFs, broken down by
context. As expected, in Table 6, it is observed that
gain values are smaller for individual connections than for
rings aggregating several locations. More interestingly, from
Fig. 10(a), it is deduced that, for existing connections, larger
data volume gains per connection are achieved outdoors. In
contrast, from Fig. 10(b), it is deduced that indoor rings show
a larger increase of new data-intensive connections.

TABLE 6. Statistics of data volume gain per existing connection and ring (in
bytes).

Source 10th percentile Mean 90th percentile
∆Vopt,in(k) 0 6.077e4 5.450e7
∆Vopt,out(k) 0 1.279e5 1.304e8
∆Vnew,in(r) 0 7.104e6 1.980e9
∆Vnew,out(r) 0 4.860e6 6.430e8
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FIGURE 11. Statistical distribution of indicators computed per tile.

TABLE 7. Estimation of potential data volume increase (in bytes).

KPI 10th percentile Median 90th percentile
M∆V (x, y) 0 1.030e4 1.903e8
M∆Vopt (x, y) 0 2.309e3 6.839e7
M∆Vnew (x, y) 0 3.187e3 1.818e8

C. PERFORMANCE COMPARISON
Spatial distribution
The potential gains estimated on a connection and ring
basis are projected onto a map by geolocating network
data. Fig. 11 shows the statistical distribution of several
indicators computed per tile by aggregating connections in
the tile, namely number of connections, average radio link
throughput, total data volume and mean data volume per
connection. The large variability observed in all indicators
is just the consequence of the heterogeneity of the scenario,
comprising areas of very different population density and
radio link conditions (e.g., the number of connections per tile
of 100 m2 ranges from 0 to 175 connections). This justifies
the need for a precise model that considers all the above
factors.

Fig. 12 (a)-(c) depict the potential traffic gain map, broken
down by its two components, over the orthophoto of the area.
From left to right, Fig. 12 (a), (b) and (c) show the potential

volume gain per tile from existing connections, new services
and the sum of both, respectively. It is observed that the
potential volume gained by improving already established
connections, M∆Vopt

(x, y), is more distributed across the
map. In contrast, the gain from new services, M∆Vnew

(x, y),
is more concentrated in specific areas. This is due to the
fact many rings do not have non-last TTI connections. In
both maps, transparent tiles show areas with zero gain, where
no connections were established. Most of these tiles are in
unpopulated areas, out of the targeted coverage region. Table
7 confirms these findings by presenting some statistics of
the three spatial distributions. As shown in the figures and
the table, the largest volume gains per tile come from new
connections. Likewise, the overall gain map can be used to
detect areas already performing at optimal conditions (i.e.,
low M∆V (x, y)) and others with bad radio link conditions
and many users (i.e., high M∆V (x, y) value).

Small cell selection
Finally, the decision of where to locate the new SCs is made.
To this end, the potential data volume gains per tile are
aggregated to compute the total traffic gain for the different
candidate SC locations, Gsc(x, y). Fig. 13 presents the 100
largest total gain values, ordered from highest to lowest.
For a more detailed analysis, gains are broken down into

(a) Existing connections (b) New services (c) Existing connections+new services

FIGURE 12. Spatial distribution for potential data volume improvement, M∆V (x, y).
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FIGURE 13. Data volume increase for the best 100 small cell locations.

that coming from existing and from new connections. It is
observed that, in most sites, traffic gains come from new
connections.

To show the ability of the method to detect coverage issues,
Fig. 14 plots two examples of selected SC locations (dot) and
their ideal coverage areas (circle of 50-meter radius) over
a coverage map extracted from OpenSignal platform [20].
This platform collects geolocated signal level measurements
anonymously from mobile users subscribed to this initiative.
In the figure, it is observed that the proposed SC sites
would cover areas reported as of weak radio signal level by
OpenSignal (red areas in the figure).

Finally, the analysis is focused on the indoor gain ratio
indicator, Rin(xsc, ysc), reflecting how much of the data
volume gain from a SC comes from indoor tiles. Fig. 15
shows the histogram of Rin(xsc, ysc) for the best 100
candidate SCs. It is observed that the indoor gain ratio of

(a) Location 1 (b) Location 2

FIGURE 14. Example of selected SC sites and received signal level
(OpenSignal).

FIGURE 15. Histogram of indoor gain ratio of the best 100 candidate SC
sites.

FIGURE 16. Distribution of data volume gain of the best 100 candidate
SC sites.

the best sites tends to be above 0.5, showing that the traffic
gain is mainly originated by indoor users. Specifically, 73 of
the 100 best sites have indoor gain ratio greater than 0.5 and
should be located indoors.

The proposed method that combines trace and social
network data (TSM) is compared with legacy methods that
only use traces (TM) or social data (SM). Fig. 16 shows
the CDF of the data volume gains obtained from the best
100 new SCs suggested by the three methods, evaluated with
the potential data volume gain map of TSM. As expected,
TSM obtains larger data volume gains per site. Overall, TSM
achieves a total data volume gain in the network of 27.58 GB,
TM of 25.40 GB (8% less) and SM only of 3.22 GB (88%

TABLE 8. Examples of new sites where methods perform differently.

Case Description Example
Case 1 Site for blackspot suggested by both TSM and TM/SM, but in a slightly different position. Fig. 17(a)
Case 2 Site for blackspot suggested only by TSM. Fig. 17(b)
Case 3 Site for hotspot suggested by both TSM and TM/SM, but in a slightly different position. Fig. 19(a)
Case 4 Site for hotspot suggested only by TSM. Fig. 19(b)
Case 5 Site suggested only by TM/SM. Fig. 19(c)
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(a) First case. (b) Second case.

FIGURE 17. Small cell proposals for black spot area.

less). This result points out that the solution obtained by SM
greatly differs from that of TSM and TM. A detailed analysis
shows that the difference between TM and TSM is not large
because many TA rings have few posts due to the limited size
of the social network dataset, causing traffic in these rings
to be evenly distributed (per context) in TSM, as in TM. It
is expected that larger differences would be observed with a
larger post dataset.

A more detailed analysis of SC locations on a map shows
important differences among methods. To this end, the output
of the methods is compared to find cases where the proposed
TSM method perform differently from legacy methods, TM
and SM. For convenience, the new SCs are divided in
two groups, depending on whether their aim is to cover
areas with poor coverage (i.e., black spots) or high traffic
demand (i.e., hot spots). Table 8 summarizes the identified
five cases, presented next. In both groups, several cases
are analyzed where: a) the problematic spot is detected by
several methods, but in slightly different locations, or b) the
problematic spot is only detected by one of the methods.

Fig. 17(a) shows the first case of an outdoor blackspot
detected by TSM and TM. For a complete picture, the figure
depicts the locations of the SCs suggested by TSM and TM,
the nearby macro base stations and the post messages. Not

shown is the fact that both SC locations cover an area not
in line of sight with the macro base station due to a tall
building (and, hence, the blackspot). It is observed that the
SC location of TSM is shifted to the right, following the
post distribution. In spite of this displacement, the total data
volume gain estimated by TSM and TM is almost the same
(1437.4 MB and 1423.7 MB, respectively). In both cases,
most of the gain comes from outdoor tiles.

Fig. 17(b) shows the second case of an indoor blackspot
only detected by TSM. A preliminary analysis shows that the
building where the SC is located is a underground parking
garage, which is in non-line-of-sight conditions with the
nearby macro base station due to a skyscraper. To understand
why TM does not suggest a site for this area, Fig. 18
shows the number of connections per tile, Mk(x, y), and
the associated traffic gain, Gsc(x, y), used by TSM and TM
in the area of the SC suggested by TSM. On the left, it
is observed that the connection density in TM is low and
regular, which is the result of distributing connections in
TA rings of the macrocell evenly in space (per context). In
contrast, connection density in TSM is large and irregular,
due to the concentration of posts inside the car park. This
difference justifies the reason for the large deviations in
expected traffic gains. Moreover, note that, despite the large

FIGURE 18. Detailed analysis of TM and TSM (second case).
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(a) Third case. (b) Fourth case. (c) Fifth case.

FIGURE 19. Small cell proposals for hotspot area.

number of posts in the area, SM does not suggest a new SC
due to its inability to detect coverage problems.

Fig. 19(a) shows the third case of an indoor hotspot
detected by TSM and TM. In this case, TSM locates the
new SC in the corner of a skyscraper hosting an important
company thanks to the post messages, whereas TM locates
the new SC in a smaller (and possibly less populated) nearby
building. As a result, the total gain achieved by the new SC
(estimated with traffic map of TSM) is 125.81 MB for the
position suggested by TSM and only 67.59 MB for that of
TM. In this case, SM fails to include the site in the list of 100
best SC locations because the number of posts in the area is
not high enough.

Fig. 19(b) illustrates the case of an indoor hotspot detected
only by TSM and SM. It is not seen in the figure that the
SC suggested by TSM is inside a shopping center, which
emphasizes the importance of considering geolocated posts.
Fig. 20 presents the same detailed analysis, showing that TM
fails to detect the hotspot due to its difficulty to geolocate
connections more precisely than in rings. In this case, SM
detects two points of user concentration by searching for
peaks in the post spatial distribution.

Finally, Fig. 19(c) depicts a case where SM detects a
hotspot that is not detected by TSM and TM. This case can be
explained by a peak of posts in a region where mobile users

have proper coverage and enough available radio resources.

D. COMPUTATIONAL ISSUES

The proposed method needs some previous work
(collection/pre-processing of traces and construction of land
use/post map) before the procedure in Fig. 1 can be launched.
The execution time of pre-processing traces grows linear
with the number of connections and data fields, while
the construction of maps grows linear with the number
of tiles in the map. Once input data is available, the
computational complexity of the method is given by the
algorithm for building the spatial connection distribution.
The algorithm distributes Ni indicators from Nconn(r)
connections originated in the area covered by a ring r of
the Nr rings in the scenario. Thus, the worst-case time
complexity is O(Nr ∗Nconn ∗Ni).

Trace processing is done by complex event processing with
Esper routines [59]. Land use are processed with Matlab,
post data are obtained with the Streaming API using Java
through the library Twitter4j and the Flickr API using Python
[25], [26], [60] and processed with Matlab. The proposed
method is implemented with the Statistics and Machine
Learning Toolbox and Image Processing Toolbox in Matlab.
All processes are executed in a server with a 2.4-GHz
octa-core processor and 64 GB of RAM. The time required

FIGURE 20. Detailed analysis of TM and TSM (fourth case).
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for decoding connection traces (400 cells, 2 hours of traces,
166,561 connections) is 282 seconds. The time to build the
land use and post maps (125 km2, 1,222,787 tiles) are 50,444
and 57,743 seconds. Finally, the time to detect the 100 best
candidate sites with the above dataset is 238 seconds, 67% of
which is spent in the construction of the spatial connection
distribution.

V. CONCLUSION
Small-cell site selection is currently a labor-intensive
process. In this paper, an automatic context-aware
data-driven method has been proposed to precisely detect
small areas with coverage or capacity problems in a mobile
network based on the performance of connections. The core
of the method is the positioning of connections based on the
indoor probability of each connection and the distribution
of geolocated posts from social networks. The method has
been tested with a large trace dataset from a live Long Term
Evolution network and a database of geotagged posts from
Twitter and Flickr.

Results have shown that problems detected in the network
by combining connection data and geotagged posts are
consistent with their context, i.e., sites detected due to
poor coverage present bad propagation conditions from
the serving macrocell, while spots with capacity problems
are located in very populated places (e.g., museums,
schools, shopping centers, etc.). Likewise, the indoor/outdoor
distinction for the new small cell is coherent, i.e., sites tagged
as indoor are located in indoor locations, whereas spots
covering open areas in the city are classified as outdoor.
Moreover, comparison with legacy approaches have shown
important differences in the sites selected.

A key component in the proposed method is regression
curves modeling the impact of user throughput on
traffic volume and service mix. Figures have shown that
regression accuracy can still be improved. For this purpose,
sophisticated regression models considering more predictors
can be derived with machine learning techniques, provided
that a large and diverse measurement dataset is available.

The low computational complexity of the method allows
an easy integration in radio planning tools. By combining
different data sources, the method can make the most of the
latest big-data empowered network management systems.

REFERENCES
[1] Ericsson, “Ericsson mobility report,” White paper, 2018.
[2] 5G-PPP, “5G empowering vertical industries,” 5G-PPP White Papers,

no. 9, 2016.
[3] J. Ramiro and K. Hamied, Self-organizing networks: self-planning,

self-optimization and self-healing for GSM, UMTS and LTE. John Wiley
& Sons, 2011.
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