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ABSTRACT In future mobile communications systems, network management procedures must be
upgraded to consider user quality of experience (QoE) to deal with service diversity. In this work, a
computationally efficient centralized method for determining the best configuration of antenna tilts when
planning a LTE network is presented. Unlike previous network-centric methods, the proposed self-planning
method is driven by QoE criteria. The core of the method is the grouping of cells into clusters without mutual
interference, which speeds up the search for the optimal solution with a classical steepest descent algorithm.
Method assessment is carried out in a static system-level simulator adjusted with real connection traces. For
this purpose, traffic demand in the scenario is broken down per location and service to estimate the QoE
obtained by each antenna tilt plan. During the analysis, the method is compared with legacy tilt planning
approaches. Results show that the proposed method achieves a near-optimal solution for the overall system
QoE with a computational cost lower than state-of-the art algorithms previously reported in the literature.

INDEX TERMS LTE, self-planning, antenna tilt, traces, QoE

I. INTRODUCTION

THE evolution of services offered by operators have
radically transformed mobile networks, making cellular

network management a very complex task. Such a trend
will continue in the coming years with the new applications
and services supported by 5G systems [1], [2]. To deal
with network complexity, operators require automated net-
work management tools including Self-Organizing Networks
(SON) techniques [3].

One of the most critical tasks in cellular network manage-
ment is determining the right size of each cell in the network.
Insertion of base stations (e.g., new site) or changes in the
environment (e.g., new buildings) require constantly updat-
ing cell footprints. This problem, referred to as Coverage
and Capacity Optimization (CCO), has been identified as a
relevant SON use case [4]. In practice, cell footprint can
be controlled by changing parameters of the base station,
such as height, transmit power [5]–[7] or antenna bearings
(i.e., tilt [8]–[14] and/or azimuth [15]–[17]). The introduction
of Remote Electrical Tilt (RET) has made antenna tilting
the preferred option. Nonetheless, finding the optimal tilt of

every single antenna in the network is a challenging task due
to the large number of base stations and complex relationship
between the performance of neighbor cells. The underlying
large-scale optimization problem is not separable, since the
best tilt for a cell depends on neighbor settings. Even when
considering a small cluster of cells, the large size of the
solution space prevents the use of exact algorithms. More-
over, deriving a closed-form expression relating individual
tilt angles to the overall network performance is also difficult,
since a trade off exists between signal quality for cell-edge
users and interference over users in neighbor cells.

Tilt-based CCO methods can be grouped into self-planning
and self-optimization schemes. Self-planning methods rely
on analytical or simulation models to estimate network per-
formance obtained by a tilt plan. With these models, sophis-
ticated search algorithms can be used to find the optimal
tilt plan. In contrast, self-optimization methods use the real
network to check the impact of small tilt changes selected
by heuristic rules. In both schemes, a network-centric ap-
proach focused on network performance is often adopted.
Thus, the figure of merit used to assess the quality of a
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tilt plan is derived from signal quality indicators, such as
signal-to-noise-plus-interference ratio (SINR) on cell edge
and cell center. In the last years, the launch of multimedia
services have forced mobile operators to update network
management towards a user-centric approach focused on
Quality of Experience (QoE) [18]. Thus, it is widely accepted
that end user experience must be considered in the design
and operation of future 5G systems [19], [20]. For this
purpose, operators can leverage big-data empowered SON
platforms to analyze data collected on a per-connection basis
in different network interfaces [21]. Nonetheless, estimating
user satisfaction from network performance measures is not
straight forward, especially in radio network planning. The
main difficulty is modeling dynamic packet scheduling in
the base station with services of very different nature, to
derive user throughput per location and service. Thus, most
automatic planning schemes are still driven by signal quality
estimates.

In this work, a computationally efficient iterative method
for determining the best configuration of antenna tilts when
(re)planning a LTE network is presented. As in most planning
methods, network performance is estimated by analytical
means. However, unlike legacy network-centric approaches,
the proposed method is driven by QoE criteria. The core of
the method is the grouping of cells into clusters with no mu-
tual interference, which speeds up the search for the optimal
solution with a classical steepest descent algorithm. Method
assessment is carried out in a static system-level simulator
adjusted with real connection traces. For this purpose, traffic
demand in the scenario is broken down per location and
service to estimate the QoE obtained by each antenna tilt
plan. During the analysis, the method is compared with state-
of-the-art methods, namely rule based [14] or Taguchi [17]
method. Results show that the proposed method achieves a
near-optimal solution for the overall system QoE with a com-
putational cost significantly lower than algorithms previously
reported in the literature. The rest of the paper is structured as
follows. Section II revises related work. Section III outlines
the system model. Section IV formulates the antenna tilt
planning problem. Section V describes the proposed self-
planning method. Section VI presents the experiments car-
ried out to assess the method. Finally, Section VII presents
the main conclusions of the work.

II. RELATED WORK
CCO by antenna tilting has been widely cover in the litera-
ture. Preliminary studies cover basic radio aspects in a tilted
cell [22], [23]. Later studies check the impact of tilting on
system performance by simulations [24]–[28] or field trials
[29], [30]. These studies are the basis of CCO methods

In the deployment stage, self-planning (a.k.a. self-
configuration) schemes use network performance models
to check the quality of a parameter plan [10]–[12], [14],
[17], [31]–[38]. To find the best tilt plan, some methods
use exhaustive search (e.g., brute-force enumeration [11]) to
ensure optimality at the expense of a large execution time. To

speed up computations, other methods use advanced meta-
heuristics (e.g., Taguchi [17], genetic [12], evolutionary [31],
particle swarm [32]. . . ) to efficiently explore the solution
space in the search for near-optimal solutions. Alternatively,
some methods use local search algorithms (e.g., coordinate
descent [33], Nelder-Mead [34], gradient descent [14], [35],
simulated annealing [36], case-based learning [10], Tabu
search [37], primal-dual [38]. . . ). These algorithms start with
an initial solution that is progressively refined by introducing
small changes. Thus, they achieve high-quality solutions if
they are not trapped in local minima.

In the operational stage, self-optimization (a.k.a. self-
tuning) schemes [5], [7], [14], [39]–[45] take advantage of
live measurements to dynamically adapt network parameters
to changing network conditions. For this purpose, a controller
iteratively modifies network parameters based on continu-
ous performance measurements (e.g., cell load or inter-cell
interference) without the need for a network model. The
controller can be an equation solver [5], [39], a local search
algorithm [7], [40], a heuristic rule-based controller [14], [41]
or an adaptive controller adjusted by reinforcement learn-
ing [42]–[45]. These can be implemented as a centralized
entity to reduce communication overhead or as a distributed
entity to share computational load among base stations.

All the above methods adopt a network-centric approach
focused on network performance. To the authors’ knowledge,
the only work on tilt-based CCO that explicitly considers
service performance is [46], where a voice QoE model is
used to adjust antenna tilts with a particle swarm algorithm.
Hence, no work has evaluated QoE-driven tilt optimization
in a multi-service environment.

The main contributions of this work are:
1) The inclusion of QoE criteria when adjusting antenna

tilts in a multiservice cellular scenario, unlike [46],
where only a single service is considered (i.e., voice).
Note that optimal tilt settings may not be the same
for all services, requiring a trade-off among services,
which makes the search for the optimal solution more
complicated. By evaluating the QoE of each service,
the proposed tilt plan maximizes the overall system
QoE.

2) The grouping of cells into clusters with no mutual
interference in a classical gradient-based algorithm,
which speeds up the search for the optimal solution by
ensuring steps in orthogonal directions.

3) The assessment of solutions in terms of QoE with the
analytical system model described in [47]. Note that
the proposed method is conceived for the network de-
sign stage, when no QoE measurements are available.
Thus, the impact of tilt changes on QoE has to be
evaluated with a network performance model, which in
most cases relies on computationally expensive Monte-
Carlo simulations. The proposed analytical approach
for evaluating solution quality reduces execution time
and can be applied to any self-planning algorithm
driven by QoE criteria.
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III. SYSTEM MODEL
Most radio network planning tools divide the geographical
area under analysis into a grid of points. Each point denotes
a potential user, generating a data volume of a limited set of
services. Unlike previous work, user satisfaction is measured
here in terms of QoE, reflected as Mean Opinion Scores
(MOS), ranging from 1 (bad) to 5 (excellent) [48].

The QoE experienced by a user of a service is estimated
from Quality-of-Service (QoS) indicators measured on a
user and service basis. For data hungry services (e.g., web,
video streaming or file sharing), QoS is given by average
user throughput, which can be mapped into QoE values
by means of utility functions specifically defined for each
service. Without loss of generality, only the above-mentioned
services are considered here for simplicity. Average user
throughput is computed per location and service with the
system-level simulation tool described in [47]. For this pur-
pose, an analytical performance model of dynamic packet
scheduling is used, including service differentiation and the
consideration of last Time Transmission Interval (last-TTI)
transmissions. More details about the simulation tool can be
found in [47].

Then, the assessment of a tilt plan is based on QoE indi-
cators. Two metrics are used to reflect the coverage-capacity
trade-off. A first figure of merit reflecting network capacity
is the global QoE, defined by a weighted average of cells in
the scenario as

QoEglobal =

∑
c
Nconn(c)QoEcell(c)

Nconn,T
, (1)

where Nconn(c) is the number of connections in cell c,
Nconn,T is the total number of connections across the net-
work (i.e.,Nconn,T=

∑
c
Nconn(c)).QoEcell(c) is the average

QoE of users in cell c, defined as

QoEcell(c) =

∑
u∈c

D(u)QoEuser(u)∑
u∈c

D(u)
, (2)

where D(u) is the data volume of user u in cell c and
QoEuser(u) is the QoE experienced by user u (in cell c),
calculated as

QoEuser(u) =

∑
s

D(s, u)QoE(s, u)∑
s

D(s, u)
, (3)

where D(s, u) is the data volume of user u (in cell c) for
service s, and QoE(s, u) is the QoE experienced by user u
(in cell c) for service s. The latter is calculated from service
performance indicators (e.g., download time for web surf-
ing/file sharing or initial buffering time for video streaming)
with utility functions defined on a per-service basis. The
utility function defined for each service is detailed in [47].

A second figure of merit reflecting network coverage is the
5th percentile of theQoEuser distribution across the network,
QoE

(5th)
user . This value is obtained by sorting QoEuser(u)

values in the scenario and aggregating their data volume
until 5% of the total network data volume is reached, i.e.,
QoE

(5th)
user = QoEuser(u5th), where u5th is the first user

fulfilling that

u5th∑
u=1

D(u)∑
u

D(u)
≥ 0.05 . (4)

Note that, in (4), users are ranked from lower to higher
QoEuser(u) values.

Both figures of merit reflect MOS values. Thus, QoE
improvements are measured in MOS points.

IV. PROBLEM FORMULATION
The CCO problem is formulated as the optimization problem

max
α(c)

QoEglobal (5)

s.t. 0 ≤ α(c) ≤ αmax ∀ c (6)∑
u

D(u) = DT (7)∑
c

X(u, c) = 1 ∀ u . (8)

The decision variables are the antenna tilt angles, α(c),
ranging from a minimum value (i.e., 0◦ when the antenna is
aimed at the horizon) to a maximum value, αmax, defined by
the vendor. Eq. (5) reflects the goal of maximizing the overall
network QoE. Eq. (6) reflects physical antenna limitations.
Eq. (7) enforces that the total user data volume remains
fixed with tilt changes across iterations. The aim of this
constraint is a fair comparison of performance indicators
across iterations. Finally, (8) ensures that every user is served
by just one cell (a.k.a. single homing). To this end, a binary
variable, X(u, c), is defined, so that X(u, c) = 1 if user u is
served by cell c, and 0 otherwise.

The problem in (5)-(8) is a high-dimensional non-
separable non-convex optimization problem. Specifically, the
size of the solution space in tilt-based CCO is NαNc , where
Nα is the number of possible tilt angles andNc is the number
of cells. The huge number of combinations makes brute-
force enumeration infeasible even for small scenarios. Thus,
tilt optimization has to be solved by numerical methods.
In these methods, computational efficiency is critical, since
they follow an iterative solution procedure. This is achieved
by minimizing the number of solutions to be tested. Unfor-
tunately, non-separability makes the selection of candidate
solutions more complicated.

Starting with the antenna aimed at the horizon, the larger
tilt in a cell c, α(c), the higher signal level received in the area
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served by the antenna and the lower interference received by
neighbor cells. This antenna movement causes an increase
of signal quality, spectral efficiency and throughput for users
in the modified cell, translated into a better user experience.
In parallel, cell coverage area is reduced by downtilting. If
the antenna is downtilted beyond the actual cell edge, there
may be some distant users receiving insufficient signal power,
which are handed over to another cell if enough cell over-
lapping exists. Otherwise, a coverage hole is created, with
the subsequent degradation of user experience. Conversely, a
smaller tilt angle might solve coverage gaps, but may lead to
excessive interference in neighbor cells.

From the above explanation, it is clear that tilt changes
must be coordinated between neighbor cells. As an example,
Figure 1 shows the result of a naive planning algorithm where
tilt analysis is applied independently between two neighbor
cells (sectors), BSa and BSb, located in nearby sites. First,
the algorithm checks the impact of increasing the tilt angle
(i.e., downtilting) of BSa by 1 degree. This change reduces
BSa service area (dashed line in the figure). Users in the
old cell edge (shaded area in the figure) are excluded, while
users still in BSa after antenna movement experience a better
performance. On the other side, users in the shaded area are
handed over to BSb, but their performance is similar to (or
slightly worse than) that when assigned to BSa. Thus, the
global performance for this two-cell scenario would improve
with this antenna movement. Hence, the algorithm decides
to downtilt BSa by 1 degree. Following a similar reasoning,
in an independent and later decision, an increase in BSb tilt
angle is also suggested. As a result, two downtilt actions
are decided, even if each individual decision is assessed
in a wrong scenario as if only one antenna was modified.
Figure 1a illustrates cell service areas when both downtilt
changes are implemented. It is observed that shaded areas
are excluded from BSa and BSb, causing a coverage hole,
and degrading the overall system performance. The opposite
case is represented in Figure 1b, where the uncoordinated
movements of both cells create a very large area of overlap,
unnecessarily increasing inter-cell interference, while also
degrading the overall system performance.

To circumvent cell coupling, tilt planning can be approxi-
mated by combining multiple regular scenarios built on a per-
adjacency basis [49]. Such a regularization approach requires
solving Nα × Nc optimization problems, where Nα is the
number of possible angles and Nc the number of cells, with
a single decision variable (i.e., the tilt angle of the cell
under study), which is much easier than solving the original
multi-dimensional problem. However, such an approach has
no guarantee on the quality of the final solution. Another
approach is to evaluate the impact of tilt changes one at
a time (i.e., sequentially). In this approach, the algorithm
first evaluates and changes tilt in BSa, and then evaluates
tilt changes in BSb with the new tilt of BSa. This ensures
that the impact of every tilt change is properly estimated,
but increases the computational load, as all cells must be
re-evaluated after every single parameter change. More im-

 

BSa 

BSb 

(a) Both BS increase tilt angle.

 

BSa 

BSb 

(b) Both BS decrease tilt angle.

FIGURE 1: Naive tilt planning algorithm.

portantly, the number of iterations grows exponentially as
changes are restricted to a single antenna per step. In this
work, a different approach is taken based on defining groups
of cells with no mutual interference.

V. SOLUTION ALGORITHM
The rationale of the algorithm is explained first and the
details of the algorithm are presented later.

A. RATIONALE OF THE ALGORITHM
To solve the above problem, any classical gradient-based
algorithm can be used. A first option is gradient (or Steepest)
Descent (SD), which is an iterative algorithm for finding a
local minimum of a differentiable function [50]. SD starts
with an initial tilt plan,α(0)(c), which is progressively refined
by small steps, ∆α(c), proportional to the negative of the
gradient of the objective function in (5). However, SD slowly
converges to the optimal solution in non-separable problems
where the objective function depends on interaction between
decision variables. This is the case of tilt planning, as QoE
in a cell depends on the tilts of all neighbor cells. Note that
changes in antenna tilt have a direct impact on the service
areas of the modified cell and their neighbors [51]. Such
a dependence causes that any tilt change in a cell often
requires updating the tilt of neighbor cells in subsequent iter-
ations. Alternatively, the conjugate gradient (CG) algorithm
selects small steps in orthogonal directions, which speeds
up the search for the optimal solution [50]. Based on this
orthogonality principle, a simple gradient-based algorithm
is proposed here that minimizes the number of updates in
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the search by ensuring that tilt changes introduced at any
iteration do not affect neighbor cells. This is achieved by
grouping cells into clusters with no mutual interference.

The aim is to divide the scenario into Ng antenna groups
(<Nc). These groups, of different size, consist of decoupled
antennas, i.e., spaced-apart antennas that do not interfere with
each other. Thus, antenna movements within the group have
no impact on other antenna movements in the group. Such
a decoupling allows starting the analysis of every antenna
movement without taking into account movements of other
antennas in the group. Once tilt changes in a group have been
implemented, next group is defined and adjusted. Cells in
the next group are usually coupled with cells in the previous
one, and, thus, performance evaluation has to consider tilt
changes in the previous group. The process continues until all
antenna groups have been adjusted, and it is repeated several
times until some convergence criterion is met. For clarity, the
analysis of a group is hereafter referred to as a step, and the
analysis of all groups is referred to as an iteration.

B. ALGORITHM OUTLINE
The method proposed here uses a gradient-based iterative
algorithm that takes advantage of radio decoupling between
distant cells to speed up the search for the optimal solution
(hereafter denoted as Decoupled Cells algorithm, DC). The
aim is to find the maximum of an objective function (i.e., the
global QoE) by incorporating gradient estimates from finite
differences. In its simplest version, the search starts from an
initial tilt configuration, which is updated at iteration (n+ 1)
with gradient estimates for that cell as

α(n+1)(c) = α(n)(c) + ∆α(n)(c)

= α(n)(c) + k ̂∇QoEglobal
(n)

(c)

= α(n)(c) + k
̂

δQoEglobal
δα

(n)

(c)) ,

(9)

where k is a gain constant.
To compute gradient estimates, a straight-forward ap-

proach is to introduce small changes in each individual
component of the decision variable (i.e., tilt of a single cell)
one at a time (Kiefer-Wolfowitz algorithm [52]). Alterna-
tively, some methods simultaneously change all parameter
components using a random variable distribution to reduce
the number of function evaluations (simultaneous perturba-
tion stochastic algorithm [53]). Similarly to the latter, the
proposed algorithm changes several tilt parameter simulta-
neously, but ensures that the selected cells are decoupled.
For this purpose, the scenario is divided into some number
of groups of distant cells, so that changes in cells belonging
to the same group do not affect other cells in the same group.
Thus, tilt modifications can be implemented simultaneously
without the need for reevaluating system performance.

DC follows an iterative process consisting of an external
loop (iterations) and an internal loop (steps). The external
loop is illustrated in Figure 2, where every new execution is

FIGURE 2: Flow diagram of the DC algorithm.

an iteration. The first task is the calculation of cell mutual
interference. For every cell in the scenario, a list of the
Nint most interfering neighbor cells with the current tilt
plan is generated. Based on these lists, antenna groups are
defined. A group is defined by those cells that are not in
any interference list for any other cell in the group, i.e., any
couple of cells selected in a group experience a negligible
mutual interference (i.e., less than the Nint most interfering
cells). Different groups can have a different number of cells.
At this point, Ng groups are defined. Then, the internal loop
(referred to as step) computes tilt changes for every group.
The iteration ends when all groups have been analyzed.

C. CLUSTERING ALGORITHM
A straight-forward approach to define groups of decoupled
cells is by geometric means. Such an approach only con-
siders site locations and antenna azimuths, thus requiring
no explicit calculation of mutual interference. The resulting
groups are static, thus requiring no update in subsequent
iterations. However, interference levels are strongly affected
by tilt changes, causing that the most significant interfering
cells change with iterations.

Instead, a simple heuristic clustering algorithm based on
interference levels is used here. For every cell in the scenario,
a list of the Nint most interfering neighbor cells with the
current tilt plan is generated. This is achieved by selecting
neighbors causing the lowest average signal-to-interference-
plus-noise ratio (SINR) in the dominance area of a serving
cell when only the interference from that neighbor is taken
into account. SINR is computed per location with a system-
level simulation tool. Based on these lists, an arbitrary num-
ber of antenna groups, Ng , will be formed. In each group,
a first seed antenna (cell) is selected and other antennas are
added if they are not included in the interferer list of cells
already in the group. The process continues by selecting one
of the unassigned antennas as seed of a new group, until
all antennas belong to a group. Note that groups can have
a different number of antennas, and a different number of
groups can result at every iteration. The number of groups
depends on the parameter Nint, which must be large enough
to ensure that all significant interferers are included in the
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list. In this work, Nint = 20, which is large enough to ensure
that antennas in the same group have negligible mutual
interference in typical scenarios. Also note that the maximum
number of groups is Nint, so that clustering is done in, at
most, Nint steps.

An example of how to define one group of non-interfering
cells, S1, is detailed next. It starts from an ordered list
of all cells in the scenario, C. From this list, a randomly
selected cell, s1, becomes the first cell of S1. Later, the set
of interferers of cells in the group is initialized with the 20
most interfering cells of s1, I{s1}. Next, the candidate cell
set, C, is updated as:

C′ = C− s1 − I{s1} . (10)

Then, a new cell, s2, is searched in C′, such that it meets the
condition

s1 6⊂ I{s2} . (11)

The first cell in C′ that meets this condition becomes a
member of S1 and the set of interferers is updated with the
interferers of s2. This process continues until C′ = ∅. The
same process is repeated for the following cell groups, Si,
with the constraint that cells already belonging to a previous
group are not available for selection. With this process, Ng
groups of variable length are obtained. Note that Ng is not
pre-defined but a result of the clustering algorithm.

For best accuracy, cell groups should be recalculated after
every change of tilt settings (i.e., after every step). Instead,
cell groups are updated only after every iteration to ensure
that all cells are tuned once per iteration. Thus, the computa-
tional load of clustering is negligible.

The internal loop is illustrated in Figure 3, where iter-
ation index is omitted for clarity. Tilt changes in cells of
a group are computed on a cell-by-cell basis. First, the
algorithm estimates the change in QoE when tilt angle in
cell c is increased or decreased by 1 degree. This is done
by comparing system performance in the vicinity of the cell
under analysis before and after implementing the changes.
For computational efficiency, it is assumed that the impact
of adjusting the antenna of a cell is restricted to its closest
neighbors (hereafter referred to as cluster of a cell; not to
be confused with the group of cells involved in the search
algorithm). The QoE in the cluster of cell c is defined as the
weighted sum of the QoE of cell c and its most important
neighbors, as

QoEcluster(c) =

Nconn(c)QoEcell(c) +
∑

v∈V (c)

Nconn(v)QoEcell(v)∑
v∈V (c)

Nconn(v)
,

(12)

FIGURE 3: Flow diagram of internal loop.

where v is the neighbor cell index and V (c) is the set of
relevant neighbors of cell c. Accordingly, ∆QoEglobal ≈
∆QoEcluster(c). Then, the selected action for that cell (in-
crease, decrease or no change) is that leading to a better
system performance (i.e., ∆QoEcluster(c) > 0).

In this work, 4α(c) ∈ {−1◦, 0◦,+1◦}, ensuring an
adequate trade-off between system stability and convergence
speed. As a final stage, the new tilt angle for cell c is calcu-
lated as in (9). At this point, two variants of the algorithm are
defined, differing in the gain constant:

1) DC: the tilt change in each cell is proportional to the
QoE increase obtained by the selected action in its clus-
ter, normalized by the largest improvement achieved by
a cell of the scenario, i.e.,

4αDC(c) =
4QoEcluster(c)

max
c

(4QoEcluster(c))
4 α(c) . (13)

Note that 4α(c) in (13) equals +1◦,−1◦ or 0◦, if the
selected action is increase, decrease or no change in
the tilt angle, respectively. Briefly, 4α(c) is related
to the expected QoE improvement to favor changes
with a larger impact on system QoE, as in a gradient
ascent algorithm. At the same time, normalization aims
to limit the magnitude of changes to ensure stability.
Thus, tilt angle changes are bounded in the interval
[min(4α(c)), max(4α(c))] (i.e., [−1◦,+1◦] in this
work). It should be pointed out that, for convergence
reasons, the value of max

c
(4QoEcluster(c)) is cal-

culated at the end of the first iteration, and remains
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fixed for the following iterations, in the hope that the
magnitude of tilt changes decreases for subsequent
iterations.

2) DC-GS: In this case, a heuristic Gain Scheduling (GS)
algorithm is used to derive tilt changes, as

4 αGS(c) =

max
(
β

4QoEcluster(c)
max
c

(4QoEcluster(c))
, γ

)
4 α(c) ,

(14)

where β and γ are gain factors, shared by all cells,
introduced to improve convergence to the final solu-
tion, as in many feedback control systems. Such gains
are initially set to large values (e.g., β = 3.5 and
γ = 1.5) to allow large tilt changes to ensure that
the algorithm explores large portions of the solution
space. Then, gains are progressively reduced to ensure
stability. Specifically, gain factors are decreased for a
group of cells if the decoupling assumption is not valid
anymore. This is detected by evaluating the condition

∣∣∣∣∣∣
∑

c∈Si(c)

4QoEcluster(c)−
∑

c∈Si(c)

4QoEsim(c)

∣∣∣∣∣∣∑
c∈Si(c)

4QoEcluster(c)
< 0.3 ,

(15)

where Si(c) is the set of cells in the group to which
cell c belongs, and 4QoEsim(c) is the change in the
system QoE when all tilt changes in the group are
implemented simultaneously. If (15) is satisfied, new
values of β and γ are computed as

β′ = max( 0.85 β , 1) and (16)

γ′ = max( 0.9 γ , 0.5) , (17)

where β′ and γ′ are the new values of gain factors for
the next step.

Both algorithms stop when a certain convergence criterion
is met. In this work, iterations continue until

| 4QoEglobal|(n) = QoE
(n)
global −QoE

(n−1)
global ≤ 0.005 .

(18)

D. COMPUTATIONAL ISSUES
The theoretical worst-case time complexity of the algorithm
should be close to that of non-linear conjugate gradient
algorithm [54]. Thus, the number of iterations to convergence
grows linear with the number of decision variables (i.e.,
antennas or cells). In each iteration, calculations include
gradient estimation and cell clustering. Cell clustering is ex-
tremely simple. In contrast, the gradient estimation requires

perturbation operations involving the analytical simulator,
which are repeated per cell. In this operation, the most time
consuming task is interference calculation, which has to
be done on an adjacency basis. Thus, the worst-case time
complexity of interference calculations is O(N2

c ), where Nc
is the number of cells in the scenario. Interference estimates
are updated after changing the tilt settings of each cell group,
which takes place Ng times per iteration, where Ng is the
number of decoupled cell groups. Thus, the overall algorithm
complexity is O(NgN

2
c ).

In practice, method convergence is improved by restricting
the maximum tilt change per iteration to 1◦, which ensures an
adequate trade-off between system stability and convergence
speed. Larger values are not selected because of the high
sensitivity of network performance (and user QoE) to an-
tenna tilt changes. This would require updating interference
statistics more frequently during the optimization process,
which would increase computational load. On the other side,
vendors offer the possibility of tilting the antenna in smaller
changes (e.g., +/-0.1◦), but these would have a negligible
impact on network performance, thus degrading convergence
speed.

Nonetheless, there is no analytical proof that the above
method does not get trapped in a local minimum. For this rea-
son, the proposed algorithm has to be compared with a state-
of-the-art metaheuristic designed to find the globally optimal
solution (e.g., Taguchi method). Simulation results presented
next will show that the proposed method finds solutions as
good as Taguchi, but with much less computational effort.

VI. PERFORMANCE ASSESSMENT
This section presents the simulations performed to assess the
proposed algorithm. The simulation set-up is described first
and results are discussed later.

A. SIMULATION SET-UP
Performance assessment is carried out with a grid-based
static system-level simulator implemented in Matlab [47].
Table 1 presents the main parameters of the tool.

A realistic scenario is implemented in the simulator, con-
sisting of 129 macro LTE cells of a downtown area of 150
km2 in a big coastal city. The propagation model consists of
a classical pathloss and slow fading model. The link layer
is modeled with mapping curves obtained from a link-level
simulator [55]. For these curves, it is assumed that system
bandwidth is 10 MHz, antenna configuration is MIMO 2x2
(typical for downlink) and channel model is Extended Typi-
cally Urban 3 km/h. The radio resource management (RRM)
model relies on an analytical performance model of the
dynamic packet scheduler in base stations, including service
differentiation and the consideration of last-TTI transmis-
sions. Such a model is used to compute estimates of user
throughput needed for evaluating QoE on a per-location and
service basis. Finally, the traffic model reflects the irregular
spatial traffic distribution derived from connection statistics
and timing advance measurements of a live network [14].
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TABLE 1: Simulation parameters

Scenario Number of sites 44
Number of cells 129

Propagation Model Pathloss COST 231 Hata
Slow fading Log-normal

Std. deviation 8 dB
Correlation distance 20 m

Grid Resolution 40 m
Minimum propagation loss 80 dB

Base station model EIRP max 46 dBm
Maximum antenna gain 15 dB
3-dB vertical beamwidth 9.5, 12, 15 ◦

3-dB horizontal beamwidth 65
Antenna tilt angle [0, 16] ◦

Downlink carrier frequency 734 MHz
Mobile station model Height 1.5 m

Maximum antenna gain 0 dB
Link layer model Adaptive modulation and coding based on

average SINR per location
Antenna configuration MIMO 2x2
System bandwidth 10 MHz
Channel model ETU 3 km/h

Radio resource model No. of physical resource blocks (PRB) 50
User throughput based on cell load, SINR
and last-TTI ratio per service

Traffic model Spatial distribution based on cell-level
connection statistics and timing advance
measurements
PRB utilization ratio [5, 70] %
Avg. PRB utilization ratio 24 %

TABLE 2: Service performance statistics derived from traces

Name Social/Web App download Video Total

Nconn(s) 432128 75593 94406 602127
V DL
T (s) [GB] 5.96 472.04 49.53 528.28
V DL
l (s) [GB] 2.76 72.61 15.69 91.08
V DL
l /V DL

T (s) 0.498 0.165 0.340 0.336
Rl(s) 0.995 0.742 0.935 0.892
max

c
Rl(c, s) 0.999 0.965 0.966 0.999

The simulator is adjusted with data from real connection
traces. Table 2 summarizes trace statistics, broken down by
service, where Nconn(s) is the total number of connection
for service s, V DLT (s) is the total volume transmitted in the
network for service s in the downlink, V DLl (s) is the total
data volume transmitted in last TTIs for service s in the
downlink, and Rl(s) is the average time ratio of last TTIs
for service s.

Six different self-planning approaches for antenna tilts are
compared:

1) OS (Operator Solution): the tilt plan currently imple-
mented by the operator, which is the starting point for
the local search methods.

2) HLS (Heuristic Local Research): a heuristic rule-based
fuzzy logic controller proposed in [14], modifying tilt
angles to improve SINR across the network, driven
by indicators reflecting cell overshooting, useless cell
overlapping and bad cell-edge coverage on a cell ba-
sis. Basically, HLS downtilts antennas with high cell
overshooting and useless cell overlapping, and uptilts
antennas with bad cell-edge coverage.

3) HLS-CR (HLS Congestion Relief): a variant of the
HLS method including a basic congestion relief al-
gorithm. The aim of HLS-CR is to solve localized

congestion problems by reducing cell service areas
by downtilting antennas while solving cell-edge cov-
erage problems by uptilting antennas. The inputs to
the algorithm are Physical Resource Block utilization,
PRButil, reflecting cell load in the Physical Downlink
Shared Channel (PDSCH), and cell-edge bad coverage
ratio, Rbc, computed from reference signal level and
timing advance statistics on a cell basis. Figure 4 shows
the input membership functions, µ, used to map nu-
merical input values to fuzzy qualifiers (LOW, HIGH).
Table 3 shows the inference rules. For instance, rule 1
reads as “IF Rbc is High in cell c (i.e., bad cell-edge
coverage), THEN 4α(c) is Negative (i.e., uptilt)”.
Similarly to HLS, the output is the tilt change rounded
to the nearest integer, so that 4αHLS,HLS−CR(c) ∈
{−1, 0, 1}.

FIGURE 4: Membership functions for CR algorithm.

TABLE 3: Inference rules for CR algorithm.

Rule Rbc(c) PRButil(c) 4α(c)

1 High - Negative
2 - High Positive
3 - Low Zero
4 Low - Zero

4) DC (Decoupled Cells): the first variant of the QoE-
driven gradient-based algorithm in this work. This
algorithm takes advantage of cell decoupling, where
tilt changes are proportional to expected QoE improve-
ments.

5) DC-GS (DC with Gain Scheduling): the second variant
of the QoE-driven gradient-based algorithm in this
work. This algorithm takes advantage of cell decou-
pling with gain scheduling.

6) TAG (Taguchi): the Taguchi algorithm for tilt plan-
ning proposed in [17], [56], adapted here to con-
sider QoEglobal as the objective function to maxi-
mize. Taguchi algorithm is an iterative method that
uses Orthogonal Arrays [57] to systematically define
a reduced subset of representative combinations of
the decision variables that explore the full solution
space. At the end of each iteration, the best solutions
found so far are used as center values for the decision
variables, defining the new region to explore in the
next iteration. Thus, it finds near-optimal solutions in
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high-dimensional optimization problems, which is the
reason why it is used as a benchmark.

All methods are implemented in Matlab. Different tests are
performed in the static simulator. As a proof of concept, the
performance of a single iteration of the DC method is first
analyzed. The aim of this preliminary analysis is to justify
the benefit of grouping decoupled antennas. Then, the above
six methods (OS, HLS, HLS-CR, DC, DC-GS and TAG)
are compared in the scenario. All iterative methods run until
convergence is reached, i.e., when the QoE improvement
obtained per iteration is negligible. As a result, the number
of iterations is different for each algorithm. The main figures
of merit to assess the methods are QoEglobal, as a network
capacity indicator, and QoE

(5th)
user , as a network coverage

indicator. Execution times are also shown, but as a secondary
figure of merit, since network planning is done offline.

B. RESULTS
A preliminary analysis aims to show the benefit of defining
groups of decoupled cells. For this purpose, a single iteration
of three basic optimization approaches is executed:

1) In the individual approach, every antenna is moved
according to the best 4QoEcluster prediction, and tilt
changes are progressively implemented, i.e., antenna
movement for cell 1 is predicted and implemented, cell
2 movement is then predicted (considering the new
antenna setting of cell 1) and implemented, and so
on. This approach ensures proper network performance
evaluations, but requires updating interference matri-
ces Nc times per iteration.

2) In the simultaneous approach, every antenna is moved
according to the best QoEcluster, but tilt changes are
not implemented until all cells are analyzed. This op-
tion saves network calculations (only one matrix recal-
culation for the complete analysis), but the prediction
of QoE benefit made individually per cell (with only 1
antenna movement) could not match the final network
performance at the end of the iteration (with all antenna
movements).

3) In the group approach, DC algorithm divides the sce-
nario into groups of distant cells that are optimized at
the same time. This option can be seen as an interme-
diate solution between the individual and simultaneous
approaches, i.e., cells in a group are modified with
the simultaneous approach, but different groups are
modified as in the individual method. The aim is to
save calculations for cells in the same group, while not
losing accuracy in the estimation of QoE benefits.

Figure 5 shows the improvement on the global QoE (in
MOS points), 4QoEglobal, in a first iteration and for each
of the 129 cells of the scenario achieved by the different
approaches. The individual approach always gets QoEglobal
improvements (positive values). This result was expected, as
its performance predictions are always right, because they are
made with the same network settings as when the movement

FIGURE 5: Comparison of basic tilt optimization
approaches.

FIGURE 6: Network performance evolution.

is implemented. At the end of the iteration, the global QoE
benefit is4QoEglobal = 0.1915. In contrast, with the simul-
taneous approach, QoE improvement can be largely negative
or positive. This is the result of simultaneously changing all
antennas without a proper performance evaluation, resulting
in a total negative ∆QoEglobal = −0.5980 (i.e., the new
tilt plan severely degrades network performance). In the
group approach, even if some cells slightly degrade their
QoE, the overall network performance is improved, with
∆QoEglobal = 0.0393. The execution time is 32017, 430
and 3759 seconds for the individual, simultaneous and group
approaches, respectively. These results show the adequate
trade-off between solution quality and computational effi-
ciency in the group approach.

After the preliminary analysis, the six planning methods
(OS, HLS, HLS-CR, DC, DC-GS and TAG) are compared.
Figure 6 shows network performance obtained by the dif-
ferent methods across iterations. Each point represents the
proposed solution across iterations, whose coordinates are
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TABLE 4: Network performance for different tilt planning approaches.

Algorithm HLS HLS-CR DC DC-GS TAG

initial QoEglobal (OS) 4.29
initial QoE(5th)

user (OS) 2.13
final QoEglobal 4.36 4.31 4.45 4.46 4.47
final QoE(5th)

user 2.11 0.85 3.75 3.76 3.78
QoEglobal improvement [%] 1.66 0.52 3.70 3.79 4.10
QoE

(5th)
user improvement [%] -0.69 -59.81 75.97 76.45 77.51
No. of iterations 25 25 10 10 11000

Runtime per iteration [s] 70 64 4778 4673 164.94
Total runtime [s] 1750 1599 47783 46729 1814400

FIGURE 7: Convergence process for the best methods.

the coverage indicator, QoE(5th)
user , and the capacity indicator,

QoEglobal. Points on the upper right of the figure correspond
to better tilt plans. For clarity, the first and last iterations
are highlighted with a larger marker. Recall that OS is
the initial solution for the other methods, so that network
performance at first iteration is identical for all methods.
Also note that DC/DC-GS curves include the result from
every group change (i.e., they represents steps instead of
iterations), so as to show a more detailed evolution of the
proposed methods. Table 4 summarizes the main network
performance indicators at the end of the optimization process.
Initial values (i.e., OS figures) are also included in the Table
for comparison reasons. As expected, Taguchi provides the
best solution (QoEglobal = 4.47 and QoE

(5th)
user = 3.78),

which can be considered as an upper bound for the other
methods. HLS manages to improve the global QoE (from
4.29 to 4.36, 1.6%) by increasing the average system SINR
by 1 dB without affecting cell edge users (note thatQoE(5th)

user

is only degraded 0.69%). HLS-CR only improves the global
QoE slightly (from 4.29 to 4.31, 0.5%) even if cell load in
the most congested cells is reduced by up to 20%. Moreover,
it severely deteriorates neighbors’ cell edge (as QoE(5th)

user

is more than halved). A close inspection of the trajectory
followed by these methods reveals that most of their benefits
are obtained in the first iterations. More importantly, neither
HLS nor HLS-CR achieve large improvements on global

QoE because they do not take QoE explicitly into account.
In contrast, the proposed QoE-driven methods, DC and DC-
GS, achieve significant performance gains at the end of the
iterative process (QoEglobal=4.45 and 4.46, QoE(5th)

user =3.75
and 3.76). Both end up with a similar QoE performance,
even if they follow different trajectories. However, as shown
later, gain scheduling in DC-GS achieves larger performance
gains in the first iterations. More importantly, DC and DC-
GS find a high-quality solution whose performance is almost
identical to the near-optimal solution obtained by Taguchi
(QoEglobal=4.47 and QoE(5th)

user = 3.78).
Finally, computational efficiency is evaluated. Table 4

breaks down the execution times in a personal computer
with a Intel(R) Core(TM) i5-3470 4-core 3.5 GHz CPU with
16 GB of DDR3 RAM. Taguchi achieved the best network
performance at the cost of an excessive runtime (1,814,400 s,
≈ 21 days). In contrast, DC and DC-GS take much less time
(47,783 s for DC and 46,730 s for DC-GS, only 2.6% of
Tagughi’s time). Note that, even if DC and DC-GS achieve
similar network performance at the end of the optimization
process, their convergence speed is not similar. Figure 7
compares the evolution of QoEglobal through time for both
algorithms. The convergence speed for DC-GS is higher, so
better network results are achieved before. It is also observed
how Taguchi reaches significantly lower QoE values in the
same amount of time, due to its longer computing time.
Not shown in the figure, the same trend is observed with
QoE

(5th)
user evolution.

VII. CONCLUSIONS
Finding the best configuration for antenna tilts is one of the
most critical and time consuming tasks for mobile network
operators, regardless of the radio access technology. In this
work, a computationally efficient method for QoE-driven
self-planning of antenna tilts has been presented. The core
of the method is the grouping of cells with no mutual inter-
ference to speed up the search for the optimal solution with a
classical gradient-based algorithm. Simulations results have
shown that the two variants of the algorithm reach solutions
of extreme quality in much less time than Taguchi algorithm
(40 times faster). Thus, runtime is reduced from days to
hours.

With legacy approaches, tilt re-planning is only done when
system infrastructure is updated (e.g., every time a new site
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or a new software feature affecting network quality/capacity
is deployed). It is also occasionally used to cope with perma-
nent changes in the environment (e.g., new obstacle affecting
line of sight or new hot-spot modifying spatial traffic distri-
bution). The availability of a computationally efficient self-
planning method as the one presented here makes that tilt
re-planning can be done more frequently (e.g., on a weekly
instead of on a monthly basis), for different time periods
(e.g., different tilts for working days and weekends) and
larger geographical areas (e.g., the whole network instead of
a cell cluster). Moreover, its ability to evaluate QoE aspects
can be used to deal with the launch of new terminals and
applications altering the traffic mix and user expectations.

The proposed method is conceived as a centralized solu-
tion that can be integrated in a radio network planning tool.
A distributed version for evaluating tilts for cells within a
group in parallel can also be implemented, but the different
groups must still be evaluated sequentially.
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