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Abstract

The use of static system-level simulators is common practice for estimating the impact of re-planning actions in cellular networks.
In this paper, a modification of a classical static Long Term Evolution (LTE) simulator is proposed to estimate the Quality of
Experience (QoE) provided in each location on a per-service basis. The core of the simulator is the estimation of radio connection
throughput on a location and service basis. For this purpose, a new analytical performance model for the packet scheduling process
in a multi-service scenario is developed. Model parameters can easily be adjusted with information from radio connection traces
available in the network management system. The simulation tool is validated with a large trace dataset taken from a live LTE
network.
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1. Introduction

Over the years, different radio access technologies and ar-
chitectures have been developed with the aim of providing larger
cell capacity, higher peak data rates and lower latency. In para-
llel, the increase of network and service complexity has turned
network management into a very complex task. To alleviate this
situation, Self-Organizing Networks (SON) [1] aim to automate
labor-intensive tasks in network planning and optimization pro-
cedures.

Legacy SON solutions adopted a network-centric approach
focused on network performance. However, the latest techno-
logical advances in multimedia services have forced operators
to move to a user-centric approach focused on Quality of Ex-
perience (QoE) [2]. In this context, the validation of any new
SON algorithm has become extremely complex, as QoE is the
result of many interrelated factors. The most straight-forward
approach is to test the algorithm in field trials, but these are
only carried out in small geographical areas and with very res-
trictive conditions for safety reasons. In the absence of the real
network, network simulators allow different tests to check algo-
rithm performance before implementation in the live network.

Mobile simulation tools are divided into link-level and system-
level simulators. Link-level simulators (e.g., [3, 4, 5]) are fo-
cused on the physical layer, and thus often only model one
transmitter-receiver pair. In contrast, system (a.k.a. network)
simulators (e.g., [6, 7, 8, 9]) provide a global system overview

∗Corresponding author
Email addresses: pso@ic.uma.es (P. A. Sánchez),

sluna@ic.uma.es ( S. Luna-Ramı́rez), mtoril@ic.uma.es (
M. Toril), cgm@ic.uma.es ( C. Gijón), jlbl@ic.uma.es (J.
L. Bejarano-Luque)

by including multiple users/cells, so that relevant network per-
formance indicators (e.g., average cell throughput or call drop-
ping ratio) can be obtained by network operators. For this pur-
pose, models for higher protocol layers are included. For sim-
plicity, only a limited set of network features are considered,
together with simple performance models of the link layer.

Network simulators can also be static or dynamic. In the
static approach, network performance is evaluated in specific
instants without any time correlation between them. This can be
done iteratively by generating different network states with con-
nections randomly distributed by a Monte-Carlo method [10],
or in one go by estimating the performance per location in a
grid-based scenario [11]. In contrast, in the dynamic approach,
system performance is evaluated by checking network evolu-
tion over time through a series of states depending on previ-
ous states. Dynamic simulators are therefore used to check the
capability of radio resource management and self-tuning algo-
rithms to react to changing system conditions [12, 13, 14, 15],
whereas static simulators are preferred for self-planning due to
their lower computational load [16, 17, 18, 19, 20] .

For computational efficiency, most current radio network
planning tools include a static system-level simulator that fol-
lows a grid-based approach, where link performance at every
single location is calculated at the same time. Thus, it is very
difficult to model the radio resource assignment procedure (i.e.,
packet scheduling), so that link performance is only estimated
from indicators of lower layers (e.g., Signal to Interference plus
Noise Ratio, SINR [21]). Such an approach can only be used to
derive upper bounds of link capacity with the Shannon formula
[22]. In the absence of a better approach, it is generally as-
sumed that the whole system bandwidth is assigned to the user
(i.e., a single user in the scheduler). This is rarely the case in
live networks, where multiple users simultaneously demand re-
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sources. Even if analytical performance models can be derived
for simple multi-user schedulers (e.g., Round Robin, Propor-
tional Fair. . . ), these models cannot easily be extended to the
multi-service case, where radio schedulers assign different ra-
dio resources not only depending on radio link performance, but
also on user traffic demand at every time transmission interval.
As a result, most network planning tools fail to give realistic
user throughput or QoE figures, nor include service differentia-
tion.

Data from network management processes can be used to
calibrate traffic and propagation models with live performance
statistics. The simplest approach is to use performance coun-
ters gathered by base stations to tune model parameters [23]. In
LTE systems, relevant counters are broken down by cell and
service class (Quality of Service Class Identifier, QCI) [24].
With recent advances in big data technologies, it is now pos-
sible to collect and analyze very detailed information from sig-
naling events in the network, referred to as traces. These re-
flect the performance of individual connections, and can thus
be used to adjust simulation tools [25]. In [26], the authors
propose a method to improve the accuracy of radio network
utilization measurements in a live LTE network based on con-
nection traces. The result is an accurate map with the spatio-
temporal distribution of downlink resources for a particular sce-
nario. However, no performance model is provided to update
the distribution after changes in the environment (e.g., antenna
tilt change, new traffic hot spot...). To the authors’ knowledge,
no previous work has considered the use of traces to tune QoE-
related performance models in a mobile network planning tool.

In this work, a new performance model of the scheduling
process is proposed for a static grid-based LTE network sim-
ulator. The core of the model is the estimation of the average
amount of resources assigned to a user of a service in each lo-
cation, from which to derive user radio throughput on a per-
location and service basis. Unlike previous analytical works,
the proposed model is adjusted with connection traces from a
live network. The main contributions of this work are: a) a data-
driven scheduler performance model that can be used to build
QoE maps for a particular scenario with a radio network plan-
ning tool, and b) a comprehensive performance analysis based
on a real trace dataset.100

The structure of the paper is as follows. Section 2 outlines
the processing of traces for the simulation tool. Section 3 de-
scribes the scheduler performance model used to obtain user
throughput and QoE estimates. Section 4 presents model as-
sessment in a realistic scenario. Finally, Section 5 summarizes
the main conclusions of the work.

2. Traces

Mobile networks generate a large amount of information
that can be used in measurement-based re-planning and opti-
mization tasks [27]. In the radio access domain, such informa-
tion can be classified into:

1. Configuration Management (CM) information, consist-
ing of network parameter settings.

2. Performance Management (PM) information, consisting
of counters that collect aggregated measurements reflect-
ing the performance of network elements. These counters
are used to compute network Key Performance Indicators
(KPI).

3. Traffic Recordings (TR), also known as traces, collect-
ing signaling messages exchanged between the different
network nodes. These are divided into:

(a) Cell Traffic Recordings (CTR), containing, anony-
mously, events and measurements of a pre-established
percentage of connections in a cell.

(b) User Equipment Traffic Recordings (UETR), with
events and measurements for a specific user.

Trace files are binary files containing signaling events. The
structure of events consists of a header with general attributes
(e.g., timestamp, network node, user equipment, event type or
event length) and a message container including different at-
tributes (a.k.a. event parameters). Events include vendor-dependent
internal events, generated inside the base stations for monitor-
ing purposes, and standardized external events, corresponding
to messages exchanged between network nodes. Event decod-
ing is performed by a parsing tool that extracts the information
contained on fields per event type, network node and reporting
period. Then, traces are synchronized by merging files from
different nodes. The reader is referred to [26, 28] for more de-
tails on trace processing.

One of the main limitations of the current set of KPIs is
the lack of indicators segregated by application. As explained
above, counters are only broken down by cell and service class
(QCI). Likewise, trace records can be segregated by QCI. Un-
fortunately, some service classes comprise applications of very
different nature. For instance, QCI8 in live networks may in-
clude Transmission Control Protocol (TCP)-based Video stream-
ing, File Transfer Protocol (FTP) and chat services. Thus, a
more elaborated segregation approach is needed.

Several works have addressed traffic classification based on
connection descriptors. This can be done by analyzing the first
packets of the connections (early classification [29]) or the whole
connection (late classification [30, 31]). Clustering can be done
by machine learning algorithms, which can be divided into su-
pervised, semi-supervised and unsupervised learning algorithms.
In this work, an unsupervised clustering algorithm is used for
clustering connections offline based on its attributes in the ra-
dio interface, in the absence of a trace dataset with labeled cases
that can be used to train the classification model. In particular,
the k-medoids algorithm is selected, as it is more robust against
outliers than the classical k-means algorithm [32] . The process
is as follows:

1. First, events in traces are decoded and synchronized. As
a result, a single file is generated with all events of the
same type from all network nodes (cells). In this file,
each event corresponds to a different user and cell. Then,
events are segregated by event type into separate files.

2. From the synchronized events, a connection is defined
for each user connected to a cell by isolating the start/end
events of the Radio Resource Control (RRC) connection.
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Table 1: Connection indicators for traffic segregation

Name Unit

RRC connection time, Tcon ms
DL data volume, V DL bytes
UL data volume, V UL bytes
No. of active TTIs in DL, NDL

act ms
No. of active TTIs in UL, NUL

act ms
Last TTI data volume in DL, V DL

l bytes

Then, events with performance measurements associated
to the connection are included as attributes in the radio
interface.

3. To ensure that all indicators are equally important when
calculating medoids, indicators are normalized. Then,
group analysis is performed. K-medoids starts by select-
ingK points as initial medoids. Points are assigned to the
group represented by the nearest medoid. Then, a non-
medoid point and its closest medoid are swapped, points
are reassigned and the overall cost of selecting that point
as a medoid is calculated. The cost is measured using the
Mean Average Error (MAE) metric, calculated as

MAE =

K∑
k=1

∑
xi∈ck

|ck − xi| , (1)

where k represents the group index, K is the number of
groups (selected a priori), ck the position of the medioid
of group k and xi the position of the current point, be-
longing to group k. If the cost of selecting the new point
as medoid of its group is lower, the change is maintained.
The process is repeated until medoids do not change or
a previously defined convergence criterion is met (e.g.,
maximum number of iterations).

Table 1 shows indicators selected a priori as input for tra-
ffic classification. Connection duration is defined by the RRC
connection time. Data volume is included for both the complete
connection and the last Transmission Time Intervals (last TTIs).
Last TTI refers to those TTIs when the transmission buffer of
the User Equipment is emptied. In these TTIs, the user does
not take advantage of the whole capacity that could potentially
be assigned by the scheduler. Such piece of information can be
used as a rough indicator of traffic burstiness. To better differ-
entiate services, data volume figures are broken down in uplink
(UL) or downlink (DL).200

As shown later, only 3 service groups are defined a priori
to reduce the number of applications handled by the simula-
tor: Social network/Web browsing, Application download and
Video streaming. Voice over LTE (VoLTE) service is not in-
cluded here, due to the absence of VoLTE traffic in the real
dataset used in this work. This does not imply a loss of gen-
erality, since, unlike the rest of services, VoLTE can easily be
segregated, since it is often the only service with QCI = 1 in
current networks [24].

Table 2: Notations of the equations of the packet scheduling performance model

Parameter Definition Unit

BW (u) Average bandwidth assigned to user u Hz
BW (u)PRB Bandwidth of a PRB (15 kHz) Hz
NPRB(u) Average number of PRBs per TTI assigned to the user PRB
NPRB(s, u) Average number of PRBs per TTI assigned to user u with service s PRB
NPRB,n(u) Average number of PRBs assigned to user u as normal TTI PRB
NPRB,l(s, u) Average number of PRBs assigned to user u and service s as last TTI PRB
NTTI,ROP (u, s) Number of active TTIs in the ROP for user u with service s TTI
NPRB(c) Total number of available PRBs in cell c PRB
Nu(c) Number of simultaneous TTI users in cell c users
Nu,last(c) Number of simultaneous last TTI users in cell c users
Nu,norm(c) Number of simultaneous normal TTI users in cell c users
Ncon(c, s) Number of connections with service s in cell c conn
Ncon,TOT (c) Number of connections in cell c conn
Rn(c, s) Average time ratio of normal TTI for service s in cell c -
Rl(c) Average time ratio of last TTI in cell c -
Rl(c, s) Average time ratio of last TTI for service s in cell c -
SE(u) Spectral efficiency of the user bps

Hz
SINR(u) Average Signal to Noise plus Interference Ratio for the user -
TH(u) Average throughput experienced by user u bps
TH(u, s) Average throughput experienced by user u with service s bps
VROP (u, s) DL data volume during ROP for user u with service s Bytes

3. System model

In this section, a packet scheduling performance model for
a grid-based static LTE network simulator is described. As in
other grid-based simulators, performance estimates correspond
to a snapshot reflecting the average system state. Thus, no user
mobility is considered. Since the aim is to provide QoE indica-
tors, QoE models for the different services are also presented.
The model is valid for both UL and DL, although only DL per-
formance is evaluated here, since most traffic in current net-
works is carried in that link.

3.1. Packet scheduling performance model

For a clearer reading, Table 2 summarizes all parameters
used for the definition of this performance model. User trans-
mission rate can be approximated by Shannon’s formula, as

TH(u) [bps] = BW (u) [Hz] · SE(u)
[

bps
Hz

]
≈

NPRB(u) [PRB] ·BWPRB

[ Hz
PRB

]
· log2(1 + SINR(u)[−]) ,

(2)

where TH(u) is the average throughput experienced by user u,
BW (u) is the average bandwidth assigned to the user, SE(u) is
the spectral efficiency of user u, NPRB(u) is the average num-
ber of PRBs per TTI assigned to user u, BWPRB is the band-
width of a Physical Resource Block (PRB) (i.e., BWPRB=15
kHz ) and SINR(u) is the average signal-to-interference-plus-
noise ratio for user u. Note that, in a grid-based static simula-
tor, every location in the scenario is considered as a potential
user, so that network performance has to be calculated in all
possible locations in the scenario. Likewise, it is assumed that
all users in the same location obtain the same network perfor-
mance (provided that they demand the same service). Thus,
TH(u), BW (u), NPRB(u) and SINR(u) represent values at
a given location in the scenario, and u denotes a specific user
position. Once user performance is evaluated at every position,
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cell and network performance is calculated by a weighted av-
erage across locations. Finally, it is assumed that every posi-
tion/user is served by a single cell c providing the highest pilot
signal level in that location. Due to the difficulty of model-
ing the resource allocation process (i.e., NPRB(u)), most radio
planning tools assume that a user always receives the full sys-
tem bandwidth (i.e., a single user with data to transmit in the
scheduler). Such an optimistic assumption makes that network
KPIs should only be considered as an upper performance bound
only valid for lightly loaded cell. To solve this limitation, in this
work, NPRB(u) is estimated for each type of service and posi-
tion (i.e., NPRB(u, s)) with the real load conditions.

The amount of resources assigned to a user strongly de-
pends on the user data volume in the transmission buffer. Such
an influence must be taken into account when evaluating the
performance of a packet scheduler. Otherwise, a low through-
put due to lack of data may be wrongly interpreted as a bad
link performance. This effect is critical in those services whose
connections last a few TTIs (e.g., social networks, chat applica-
tions. . . ). To account for this dependency, the analysis is broken
down into normal TTI and last TTI users. A normal TTI user
is one that still has data in the buffer after transmitting in the
TTI under consideration. In contrast, a last TTI user is one hav-
ing the buffer momentarily empty after transmitting in the TTI
under analysis (either because the user is waiting for new data
bursts or the connection has ended). Figure 1 illustrates the con-
cept of normal and last TTIs in a connection. Three connections
(i.e. users) are included in the figure. Upper part in the figure
represents data in user transmission buffer for every connec-
tion. Every TTI, the scheduler (lower part in the figure) assigns
a number of PRBs to some/all users, so data in buffer for those
users decrease. This is the case, for example, of connections 1
and 3 in TTI n (while connection 2 has no PRBs assigned in
TTI n). Additionally, user data may increase in a TTI due to
a new data burst from user traffic source. This is the case of
connection 1 in TTI n+3 and connection 3 in TTI n+2. Thus,
a user is experiencing a normal TTI when its data buffer is not
empty for that TTI (e.g., TTI n and n + 3 for connection 1 or
TTI n, n + 1 and n + 2 for connection 2). A user is, however,
experiencing a last TTI when its data buffer is emptied during
that TTI (TTI n + 1, n + 3 and n for connections 1, 2 and 3,
respectively, in the figure 1 )

For simplicity, it is assumed that: a) last TTI users have
preference over normal TTI users in the scheduler, receiving

Figure 1: Three normal/last TTI connections in a scheduler.

all resources they need (i.e., only compete with other last TTI
users), and b) the resources left by last TTI users are equally
shared by normal TTI users, as in a Round Robin (RR) alloca-
tion scheme. In the time domain, a user would be considered
as a normal TTI user for several consecutive TTIs and as a last
TTI user for one (i.e., the last) TTI in every data burst. These
alternating states can only be considered in the form of time ra-
tios when evaluating a snapshot in a static grid-based simulator.
Thus, the average number of PRBs assigned per TTI to a user u
for a service s,NPRB(s, u), is estimated as the average number
of PRBs received as normal and last TTI user, calculated as

NPRB(u, s) = Rn(c, s)NPRB,n(u) +Rl(c, s)NPRB,l(u, s) ,

(3)

where c is the serving cell in the location of user u for ser-
vice s, NPRB,n(u) and NPRB,l(s, u) are the average number
of PRBs assigned to user u as normal and last TTI user for
service s, respectively, and Rn(c, s) and Rl(c, s) are the aver-
age time ratios of normal/last TTIs for service s in cell c. An
inspection of (3) shows that the average number of PRBs as-
signed to the user depends on the amount of resources assigned300

to the user in each state and the normal/last TTI ratio . Note that
NPRB,l(s, u) depends on user position and demanded service
s, whereas NPRB,n(u) only depends on user position, since it
is assumed that resources in normal TTIS are assigned based on
a RR scheme. Also important, Rn(c, s) and Rl(c, s) can be di-
rectly obtained from connection traces. The rest of this section
details the calculation of NPRB,n(u) and NPRB,l(s, u).

3.1.1. Normal TTI model
For tractability, it is assumed that normal TTI users are as-

signed resources by a RR scheme without service prioritiza-
tion. Thus, the amount of resources assigned to a normal TTI
user served by a cell c only depends on the number of PRBs
available for normal TTI users and the number of simultaneous
normal TTI users in cell c. Thus, NPRB,n(u) is calculated as

NPRB,n(u) = E


NPRB,cell(c)−

∑
u∈ul(c)

NPRB(u)

Nu(c)−Nu,l(c)

 , (4)

where NPRB,cell(c) is the total number of available PRBs in
cell c, given by the system bandwidth (NPRB,cell(c) = 50 ∀ c
in this work),

∑
u∈ul(c)

NPRB(u) is the number of PRBs as-
signed to last TTI users in cell c, Nu(c) is the number of simul-
taneous active users (i.e., with data to transmit, including both
normal and last TTI users) in cell c and Nu,l(c) is the number
of simultaneous last TTI users in cell c. An inspection of (4)
shows that the numerator reflects the number of PRBs available
for normal TTI users (i.e., those left by last TTI users) and the
denominator reflects the number of simultaneous normal TTI
users, Nu,n(c). The mean operator in (4) operates in the time
domain (i.e., across TTIs). By taking advantage of the linearity
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Table 3: Calculation of probabilities for combinations of normal and last TTI
users.

Nu(c) Nu,n(c) Nu,l(c) P

1 1 0 (1−Rl(c, s))P{Nu(c, s) = 1}

2
1 1 (1−Rl(c))Rl(c)P{Nu(c) = 2}

2 0 (1−Rl(c))
2P{Nu(c) = 2}

3

1 2 (1−Rl(c))R
2
l (c)P{Nu(c) = 3}

2 1 (1−Rl(c))
2Rl(c)P{Nu(c) = 3}

3 0 (1−Rl(c))
3P{Nu(c) = 3}

of the mean operator and the statistical independence between
the numerator and denominator, (4) can be reformulated as

NPRB,n(u) = (NPRB(c)−NPRB,l(c))·

E
[

1

Nu(c)−Nu,l(c)

]
,

(5)

whereNPRB,l(c) is the average total number of PRBs assigned
to last TTI users in cell c, which can be obtained from traces.
Now, the mean operator is only applied to the inverse of the
number of normal TTI users across TTIs.

In the absence of a closed-form expression, the inverse av-
erage in (5) is computed numerically. For this purpose, two
constraints are introduced : a) Nu(c) ≥ 1, since only TTIs with
active users must be taken into account, and b) Nu,n(c) ≥ 1,
since the mean operator must be calculated only in those TTIs
with normal TTI users. Table 3 shows all possible combinations
of normal and last TTI users (considering only cases that satisfy
a) and b)) in a cell c for Nu(c) = 1, 2 and 3, together with their
probability of occurrence, P{Nu,n(c), Nu,l(c))|Nu,n(c) ≥ 1},
generalized as

P{Nu,n(c), Nu,l(c)|Nu,n(c) ≥ 1} =
∞∑

nu=1

P{Nu(c) = nu} ·
nu∑

nu,n=1

(1−Rl(c))
nu,nRl(c)

nu−nu,n ,

(6)

where P{Nu(c) = nu} is the probability of Nu(c) being nu,
nu ∈ N. Rl(c) in (6) and Table 3 denotes the average ratio
of last TTI users in the cell under consideration, including all
services, i.e.,

Rl(c) =
∑
s

Rl(c, s) ·
Ncon(c, s)

Ncon,T (c)
. (7)

where Ncon(c, s) is the number of connections of service s in
cell c and Ncon,T (c) is the total number of connections aggre-
gating all services in cell c.

By extending the calculation to Nu(c) → ∞, the inverse
average in (5) is computed numerically as

E
[

1

Nu(c)−Nu,l(c)

]
=

∞∑
nu=1

P{Nu(c) = nu|nu ≥ 1, nu,n ≥ 1}·

nu∑
nu,n=1

1

(1−Rl(c))nu,n
· 1

nu,n
·

(1−Rl(c))
nu,n · (Rl(c))

nu−nu,n ,

(8)

where P{Nu(c) = nu} is defined in (6).
The probability P{Nu(c) = nu} is the only parameter that

cannot be obtained from traces. In this work, it is assumed that
the arrival connection rate follows a Poisson distribution, so that

P{nu|nu ≥ 1} = P{nu}
1− P{nu = 0}

=

e−Nu(c)(Nu(c))
nu

nu!
· 1

1− e−Nu(c)
,

(9)

where Nu(c) is the average number of simultaneous users with
data to transmit in the scheduler of the cell. Finally, recall that
the RR algorithm distributes the PRBs available for normal TTI
users in cell c among those users, and, thus, the final PRB as-
signment does not depend on the specific location/user or ser-
vice in a cell c, i.e., NPRB,n(u) values only differs between
users of different cells.

3.1.2. Last TTI model
The calculation of NPRB,l(u, s) implies a process simi-

lar to that of NPRB,n(u), with a mean operation across time.
Specifically, the average number of PRBs assigned to a last TTI
user u demanding service s in cell c can be expressed as

NPRB,l(u, s) = E
[
THl(u, s)

SE(u)

]
, (10)

where THl(u, s) is the throughput of user u of service s when
transmitting in last TTIs and SE(u) is the spectral efficiency
of user u. Statistical independence between numerator and de-
nominator allows to rewrite (10) as

NPRB,l(u, s) = E [THl(u, s)] · E
[

1

SE(u)

]
. (11)

The first factor (i.e., the average throughput experimented by a
last TTI user) can be approximated as:

E [THl(u, s)] ≈
VROP,l(u, s)

NTTI,ROP,l(u, s)
, (12)

5



where VROP,l(u, s) is the DL data volume transmitted in last
TTIs during the entire Reporting Output Period (ROP) for user
u of service s and NTTI,ROP,l(u, s) is the number of last TTIs
in the ROP for such user. Both indicators can be calculated
from data traces.

For simplicity, the second factor in (11) (i.e., the average of
the inverse of user spectral efficiency) is approximated as

E
[

1

SE(u)

]
≈ 1

E [SE(u)]
=

1

SE(u)
. (13)

3.2. QoE models
Once user throughput is estimated on a per-location and ser-

vice basis, user QoE can be estimated. In this work, throughput
figures are translated into QoE figures in a Mean Opinion Score
(MOS) scale by means of the utility functions described in [33]
for Social network/web browsing and App download and [34]
for Video streaming.

For a Video streaming user, MOS is calculated as

MOSV ideo(u) = 1 + (sQuality)·
β1(sInteraction− 1) + β2(sV iew − 1)

4(β1 + β2)
,

(14)

where sQuality is the maximum MOS due to the Video quality,
obtained from the tabulated values in [35] for a 5.5 inch screen,
sInteraction is the maximum MOS due to the initial loading
time (in [s−1]), sV iew is the maximum MOS due to stall fre-
quency and duration and β1 and β2 are regression constants
with values β1 = 0.71 and β2 = 0.77 [35] . sInteraction
and sV iew are obtained from [35] as a function of Lti and Lsr

respectively, where Lti is the average initial buffering time (in
seconds) and Lsr is the rebuffering ratio. In the radio plan-
ning tool, these indicators are obtained from radio throughput
as [33]:

Lti(u) = 5.91
V BR(u)

TH(u)
+ 1.43 , (15)

Lsr(u) = max(0,−0.915 TH(u)

V BR(u)
+ 0.9667) , (16)

where V BR(u) is the average video bit rate of the sequence vi-400

sualized by user u. The latter indicator is hard to estimate with
current dynamic adaptive streaming schemes since it is not ex-
plicitly reported in connection traces. In the absence of a more
precise approach, V BR is estimated from TH(u) as described
in Table 4. Such an approach is in line with current adaptive
streaming schemes that modify video resolution depending on
buffer state. Note that the ratio TH(u)/V BR(u) in (15)-(16)
reflects how close/far is the actual user throughput from the tar-
get throughput required by the video source.

App download is modeled as a classical FTP service, whose
MOS is estimated as

MOSFTP (u) = max(1,min(5, 6.5 · TH(u)− 0.54)) , (17)

Table 4: Video bitrate estimation for Video streaming QoE model

TH(u) [kbps] VBR(u) [kbps]

70000 ≤ TH(u) 10000
11500 ≤ TH(u) < 70000 4500
2800 ≤ TH(u) < 11500 2200
1200 ≤ TH(u) < 2800 1100

TH(u) < 1200 700

where TH(u) is user throughput (in Mbps).
Social network/web browsing is modeled as a classical web

browsing service, whose MOS is estimated as

MOSweb(u) = 5− 578

1 +
(

TH(u)+541.1
45.98

)2 . (18)

Figure 2: Utility functions.

For comparison purposes, Figure 2 plots the utility func-
tions relating user throughput and MOS in each service. As
expected, the same user throughput does not lead to the same
QoE in all services.

4. Performance assessment

In this section, the proposed scheduler performance model
is evaluated on a trace dataset taken from a live LTE network.
For this purpose, the model is integrated into the grid-based
static simulator described in [23]. For clarity, the simulation
set-up is described first and results are presented later.

4.1. Analysis set-up

Assessment is carried out in a real scenario consisting of
129 macro LTE cells covering a downtown area of 150 km2 in
a large coastal city. Table 5 summarizes the main parameter
settings in the static system-level simulator. For brevity, only
DL performance is considered.
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Table 5: Simulator Parameters

Simulator Parameters

Propagation Model Okumura-Hata COST-231
Grid Resolution [m] 40
Minimum propagation loss [dB] 80
Slow fading (std. deviation, σ) [dB] 8
DL carrier frequency [MHz] 734
UL carrier frequency [MHz] 704
System bandwidth [MHz] 10
Number of PRBs 50

Base Station model

Maximun EIRP [dBm] 46
Number of sites 44
Number of cells 129

Spatial traffic distribution
Based on cell-level
connection statistics and
Timing Advance measurements

PRB utilization ratio [%] [5, 70]
Avg. PRB utilization ratio [%] 24

User Equipment model

Height [m] 1.5

Table 6: Service performance statistics derived from traces

Name Social/Web App download Video Total

Ncon(s) 432128 75593 94406 602127
V DL
T (s) [GB] 5.96 472.04 49.53 528.28
V DL
T,l (s) [GB] 2.76 72.61 15.69 91.08[
V DL
l

V DL

]
0.498 0.165 0.340 0.336

Rl(s) 0.995 0.742 0.935 0.892
max

c
(Rl(c, s)) 0.999 0.965 0.966 0.999

In the live network, trace collection is carried out for 1 hour
in a working day, resulting in a dataset of 602127 connections.
From this data, the parameters defined in Table 1 in the pro-
posed scheduler performance model are obtained (or easily de-
rived) on a cell and service basis. To have a global perspective
of the scenario, Table 6 shows the values of those indicators
broken down per service and aggregated across cells in the sce-
nario for the busy hour of a working day. Specifically, the fol-
lowing indicators are included:

1. Total number of connections in the scenario per service,
Ncon(s) =

∑
c

Ncon(c, s).

2. Total volume carried in DL in the scenario per service,
V DL
T (s) =

∑
c

V DL(c, s).

3. Total volume transmitted in last TTIs in DL in the sce-
nario per service, V DL

T,l (s) =
∑
c

V DL
l (c, s).

4. Average ratio of volume transmitted in last TTIs in DL

across cells,
[
V DL
l

V DL

]
= avg

c

(
V DL
l

V DL (c, s)
)

.

5. Average ratio of last TTIs across cells,Rl(s) = avg
c
(Rl(c, s)).

6. Maximum ratio of last TTIs across cells, max
c

(Rl(c, s)).

First, it is observed that most connections in the scenario are
tagged by the traffic classification algorithm as Video and So-
cial network/Web services (16% and 72% of total connections,
respectively) based on their features. Likewise, the average last
TTI ratio (i.e., last TTIs/total active TTIs, Rl(s)) is extremely
large (i.e.,≥ 90 %) for all services but App download (74%). A
closer analysis (not shown here) reveals that most connections
consist of a single TTI. This large last TTI ratio supports the
need for a model that considers last TTIs scheduling.

Model assessment is done by comparing three scheduler
performance models: 1) a classical model, where all data is as-
sumed to be transmitted in normal TTIs (i.e., Rl(c)=0 ∀ c) and
users are assigned the full system bandwidth to transmit, here-
after referred to as Reference Scheduler Model (RSM), 2) an
intermediate model, where PRBs in a cell are shared by Nu(c)
users with a RR resource allocation scheme, hereafter referred
to as RR Scheduler Model (RRSM), and 3) the proposed model,
described in Section 3, considering last TTI transmissions and
service differentiation, hereafter referred to as Service Sched-
uler Model (SSM).

Models are compared in 2 different network load scenar-
ios to check the potential of the proposed approach in different
load conditions. First, models are compared with the real traffic
and load distribution observed in traces to quantify the impact
of considering last TTIs in a live scenario. This scenario is re-
ferred to as Measured Load (ML). Then, models are compared
in the same scenario, but with a Low network Load (LL), gen-
erated by artificially reducing the number of connections in the
network, setting the load of all the cells at 5%, withNu(c) ≈ 1.
The aim of including the LL scenario is to illustrate the need for
considering last TTI transmissions specially in low load condi-
tions, when almost all connections consist of last TTI transmis-
sions due to a high radio resource availability.

In the LL scenario , the average number of simultaneous
users per TTI per cell,Nu(c), is derived from the new (reduced)
PRB utilization ratios fixed on a cell basis, PRButil(c) = 0.05
(i.e., 5 %) ∀ c. For this purpose, a curve relating both quantities
is built from trace data (i.e., with the ML scenario). Figure 3
illustrates the relationship between both variables observed in
traces. Each point reflects the hourly average of both indica-
tors in 1 of the 129 cells in the scenario. From the figure, it
is concluded that PRButil(c) and Nu(c) are highly correlated.
Specifically, the regression equation is

Nu(c) = 2 · 10−6PRButil(c)
4 − 0.0002PRButil(c)

3+

0.0071PRButil(c)
2 − 0.0746PRButil(c) + 1.2823 ,

(19)

with a determination coefficient of R2 = 0.71. Note that such
a correlation, obtained by aggregating all services per cell, is
observed even when the traffic mix in all cells is not the same .

4.2. Results
Table 7 summarizes the main performance indicators ob-

tained by RSM and RRSM scheduling models in the 2 scenar-
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Figure 3: Relationship between PRB utilization ratio and number of simultane-
ous active users on a cell and hourly basis. Nu(c) vs PRButil(c).

Table 7: Main indicators for RSM and RRSM scheduling performance models.

Network load ML LL
Model RSM RRSM RSM RRSM

Nu 1 1.72 1 1.04
max

c
(Nu(c)) 1 10.66 1 1.04

NPRB 50 36.57 50 47,79
max
u

(NPRB(u)) 50 47,79 50 47,79

TH[Mbps] 25.72 18.81 34.31 32.71
max
u

(TH(u)) [Mbps] 45.71 43.78 45.71 43.78

ios. The following indicators are included:

1. Global average number of simultaneous active users in
the scheduler, Nu = avg

c
(Nu(c)).

2. Maximum number of active simultaneous users in the500

scheduler, max
c

(Nu(c)).

3. Global average number of PRBs allocated per user,NPRB =
avg
u
(NPRB(u)).

4. Maximum number of PRBs allocated per user, max
u

(NPRB(u)).

5. Global average user throughput, TH = avg
u
(TH(u)).

6. Maximum user throughput, max
u

(TH(u)).

Is should be pointed out that, in the above-described in-
dicators, a single overline (e.g., Nu(c)) refers to the average
operation across time (i.e., across TTIs), whereas double over-
line (e.g., Nu) indicates the average operation across time and
cells/users. Moreover, the average operation across cells is a
weighted average, so that cells with more users prevail over the
others.

The analysis is first focused on the differences between the
reference model, RSM (no scheduling, normal TTI), and the

Figure 4: CDF for average cell throughput.

intermediate model, RRSM (RR scheduler, normal TTI). In Ta-
ble 7, it is observed that RSM assumes that the number of ac-
tive users in the scheduler is 1, so that the user is assigned the
full system bandwidth (50 PRBs), leading to large values of
user throughput. In contrast, RRSM takes into account that the
number of simultaneous users is larger than 1, causing that the
average number of PRBs assigned to the user is reduced by 27%
in the ML scenario (from 50 to 36.57 PRBs) and 4% in the LL
scenario (i.e., from 50 to 47.79 PRBs) on average. This leads to
more realistic throughput estimates, especially for the ML sce-
nario, where the average number of simultaneous users is larger
(1.72). Specifically, TH decreases from 25.72 to 18.81 Mbps
(27% reduction) in the ML scenario, and from 34.31 to 32.71
Mbps (5% reduction) in the LL scenario.

For a more detailed analysis, Figures 5 (a) and (b) show
the spatial user throughput (TH(u)) distribution estimated by
RSM in the ML and LL scenarios, respectively. The largest
TH(u) values are obtained in locations close to the antenna
and served by cells with low load (i.e., high spectral efficiency
and high resource availability). The maximum value of 45.71
Mbps is close to the maximum theoretical bound obtained with
a 10-MHz system bandwidth and a MIMO 2x2 configuration
(≈50 PRB·1 Mbps/PRB) [36]. Figures 5 (c) and (d) show the
same indicator for RRSM model. A similar spatial pattern is
observed, but with lower throughput values as a result of the
smaller number of PRBs assigned to the user.

Unlike RSM or RRSM, SSM breaks down performance es-
timates on a service basis (e.g., NPRB(s)). Table 8 presents
the values of the main performance indicators obtained with the
SSM performance model. It is observed that SSM tends to give
lower estimates of NPRB(s) and, hence, of TH(s). Specifi-
cally, in the ML scenario, NPRB(s) =1.33, 12.4 and 5.82 for
Social/Web, App download and Video with SSM, respectively,
versus NPRB = 36.57 for all services with RRSM. This is due
to the fact that SSM takes into account the last TTI effect on
the average number of PRBs assigned to the connection. As
expected, the difference is larger for services with more last
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(a) RSM (LL scenario) (b) RSM (ML scenario)

(c) RRSM (LL scenario) (d) RRSM (ML scenario)

Figure 5: User throughput map with RSM and RRSM models in ML and LL scenarios.

TTIs than normal TTIs (i.e., Social/Web, whose last TTI ratio is
0.995, as shown in Table 6). In contrast, the difference is lower
in services with less last TTIs (i.e., App download, whose last
TTI ratio is 0.742). Even for the latter, throughput estimates
with SSM are lower than with RRSM. Thus, it is expected that
SSM provides values closer to session throughput (which is the
key indicator for QoE).

Also important, SSM suggests that service performance is
very close in both network load scenarios for all services. This
is counterintuitive, since the number of simultaneous users in
both scenarios differs significantly (Nu = 1.72 and 1.04 in ML
and LL, respectively). From this observation, it can be inferred
that, even in ML, many active users are still in their last TTI,
and therefore have a limited impact on normal TTI users. This
is especially true for services with a large last TTI ratio (i.e.,
Social/Web or Video), where last TTIs are the most common
situation for transmitting data. This result evidences the need
for including the last TTI effect in scheduler performance mod-

els.
Figure 4 shows the cumulative distribution functions of cell

throughput, TH(c), for the 3 scheduling models and 2 scenar-
ios. Each point in the curves represents 1 of the 129 cells in
the scenario. For clarity, a single curve is generated for SSM as
the weighted average of all the services, so that services with
more connections in the live network prevail over the others.
Again, SSM shows lower average user throughput values com-
pared to RSM and RRSM, for both ML and LL scenarios. In
RSM and RRSM, the ML scenario has lower throughput values
than the LL scenario. This is not the case for SSM, where ML
and LL perform almost identical. These results again show that
the most important factor for low throughput in low traffic net-
works is the large last TTI ratio and not cell load (as suggested
in [37]), emphasizing the need for including the last TTI effect
in the scheduling performance model. Consequently, RSM and
RRSM throughput estimates can only be considered as an upper
bound, only applicable to pure full buffer services.
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(a) Social/Web service (b) Video service

Figure 6: QoE maps derived with SSM.

Table 8: Main indicators for SSM scheduling performance model.

Network load ML LL

Nu 1.72 1.04
max

c
(Nu(c)) 10.66 1.04

NPRB(s)

Social/Web 1.33 0.88
App download 12.4 12.5

Video 5.82 4.81

max
u

(NPRB(u, s))
Social/Web 6.45 2.46

App download 25.9 25.1
Video 27.3 12.6

TH(s) [Mbps]
Social/Web 0.54 0.56

App download 7.67 8.5
Video 2.59 3.16

max
u

(TH(u, s)) [Mbps]
Social/Web 0.80 1.12

App download 21.5 22.5
Video 6.36 7.95

For validation purposes, Table 9 compares the global aver-
age user throughput per service for the complete scenario es-
timated by SSM in the ML scenario against that reported in
connection traces. A global weighted average throughput value
(i.e., with no service differentiation) is also calculated, resulting
in 25.72, 18.81, 1.87 and 2.17 Mbps for RSM, RRSM, SSM and
trace data, respectively. Recall that the comparison on a service
basis is only possible with SSM, since RSM or RRSM only pro-
vide global throughput figures with no service differentiation. It
is observed that, for SSM, the difference compared to the real
data is only 13%, whereas the difference for RSM and RRSM

Table 9: Cell throughput figures traces vs. scheduler performance models.

Services RSM RRSM SSM Traces

TH(s) [Mbps]

Social/Web - - 0.54 0.6
App download - - 7.67 16.05

Video - - 2.59 1.15
Global 25.72 18.81 1.87 2.17

is 1200% and 900%, respectively.600

To gain insight into the impact of cell load, the 3 models are
tested in a highly loaded and an underutilized cell (denoted as
C100 and C78, respectively). Specifically, PRButil(C78) =
13%, while PRButil(C100) = 59.8%. Table 10 shows a com-
parison of the different scheduler performance models in both
cells, broken down per service when appropriate. The upper
part of the table shows trace data, while the lower part shows
estimates from the simulation tool with different performance
models.

A preliminary analysis of trace data indicates that the higher
cell load, PRButil(c), in C100 is translated into a larger num-
ber of simultaneous users, Nu(c) (i.e., Nu(C78) = 1.15 and
Nu(C100) = 5.02). This difference is due to a larger traffic de-
mand, observed in V DL(c, s) and Ncon(c, s), since both cells
have the same average spectral efficiency (≈ 430 kbps/PRB).
As in Table 6, it is observed that App download is the service
with the smallest last TTI ratio in both cells. More interest-
ingly, the last TTI ratio of all services is smaller in the highly
loaded cell (C100), as a result of a lower user throughput due
to less available radio resources per user in the cell. Such a
decrease in the last TTI ratio is more evident for the service
closest to the theoretical full buffer service (i.e., App down-
load), whose Rl(c, s) decreases from 0.753 in C78 to 0.614 in
C100. In contrast, in the service consisting of small data bursts
(i.e., Social/Web), Rl(c, s) only decreases from 0.998 in C78 to
0.988 in C100.

By comparing model estimates in both cells, it is observed
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Table 10: Cell performance predicted by the proposed model in the ML sce-
nario.

Cell 100 78
Input data (traces)

PRButil(c) [%] 59.8 0.13
SE(c) [kbps/PRB] 431.7 436.9
Nu(c) 5.02 1.15
NDL

act (c) 2.33 · 106 5.22 · 105

V DL(c, s) [MB]
Social/Web 0.61 · 102 1.71 · 101
App download 1.45 · 103 3.76 · 102
Video 0.27 · 103 0.79 · 102

Rl(c, s)
Social/Web 0.9887 0.9985
App download 0.6144 0.7526
Video 0.8805 0.9353

Rn(c, s)
Social/Web 0.0112 0.0015
App download 0.3855 0.2474
Video 0.1195 0.0646

V DL
l (c, s) [kB]

Social/Web 6.18 · 104 1.57 · 104
App download 9.15 · 105 4.38 · 104
Video 2.42 · 105 4.12 · 104

Ncon(c, s)
Social/Web 10931 2349
App download 1684 246
Video 2375 362

RSM

NPRB(c) 50 50

RRSM

NPRB(c) 9.96 43.49

SSM

NPRB,n(c)
Social/Web 21.88 44.19
App download 21.88 44.19
Video 21.88 44.19

NPRB,l(c, s)
Social/Web 1.582 1.701
App download 4.478 7.014
Video 2.576 3.506

NPRB(c, s)
Social/Web 1.801 1.779
App download 11.19 16.06
Video 4.884 6.097

TH(c, s) [Mbps]
Social/Web 0.694 0.641
App download 4.683 6.534
Video 1.987 2.365

that RSM assigns the same number of PRBs per user (NPRB(c) =
50) in both C100 and C78, regardless of cell load. In con-

trast, RRSM assigns less PRBs to users of the highly loaded
cell (C100), as it takes the number of simultaneous users per
cell, Nu(c), into account. Specifically, NPRB(C100) is 77%
smaller than NPRB(C78) (9.96 vs 43.49). In SSM, service
differentiation results in a different number of PRBs per user
across services. As expected, the number of PRBs per user in
normal TTIs, NPRB,n(c), is smaller in the highly loaded cell
(44.19 in C78 vs 21.88 in C100), due to a larger number of
simultaneous user. Note that, even if Nu is 5 times larger in
C100, NPRB,n(c) in C100 is only half of that of C78. This is
because some of them are last-TTI users, which do not com-
pete for resources. By comparing NPRB,l(c, s) in both cells, it
is observed that all services also end up with less PRBs per user
in last TTIs in the highly loaded cell (C100). However, such
a decrease is only 7% for Social/Web (from 1.701 to 1.582)
and 36% for App download (from 7.014 to 4.478). As a re-
sult, the total number of PRBs per user, NPRB(c, s), in both
cells is almost the same for Social/Web (≈ 1.8), but differs sig-
nificantly for App download (i.e., 16.06 in C78 and 11.19 in
C100). Such an assignment leads to the same user throughput
in both cells for Social/Web (0.64 Mbps in C78 and 0.68 Mbps
in C100), but very different throughput between cells for App
download (6.536 Mbps in C78 vs 4.683 Mbps in C100, a 28%
decrease). Thus, the model reflects that services consisting of
small data bursts (Social/Web) are not affected by capacity lim-
itations, whereas full-buffer services (App download) are de-
graded in the same situation. Video service, consisting of large
data bursts sent periodically, is an intermediate case. Thus, cell
load still has an impact on resources assigned per user (and
user throughput), but smaller than in the App download service
(from 6.097 to 4.884 PRBs, and from 2.365 to 1.987 Mbps, a
20% and 16% decrease, respectively).

Finally, Figure 6 shows QoE maps of the two services with
the lowest and highest requirements, derived from throughput
estimates obtained with SSM in the ML scenario. Note that
RSM and RRSM do not differentiate between services, and can-
not be used to build QoE maps on a service basis. It is observed
that users of Social/Web services have better experience than
Video users, even if the number of PRBs per user (and, hence,
user throughput) is much lower.

5. Conclusions

In this work, a data-driven model for evaluating the perfor-
mance of packet scheduling in a LTE grid-based system-level
simulator has been presented. Unlike previous analytical ap-
proaches, the proposed model considers the effect of last TTI
transmissions and can easily be adjusted to a real scenario us-
ing measurements in connection traces collected in the live net-
work. Model assessment has been carried out with a real trace
dataset, from which two different network load scenarios are
generated.

Results have shown that considering the impact of last TTI
transmissions is key for estimating session throughput accu-
rately in radio planning tools, which can only be done on a
service basis. This feature is of the utmost importance to eval-
uate the QoE of services that need less resources (e.g., instant
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messaging, social networks . . . ). The impact of including last
TTIs is significant, especially on the average amount of re-
sources assigned to the user, with differences of up to 80%,
and user throughput, with an average reduction of 82%, jus-
tifying the need for this feature. The proposed model can be
integrated in radio network planning tools to check the impact
of re-planning actions on end-user experience. It is especially
suitable for big-data empowered SON platforms that make the
most of network data (traces) [38]. For this purpose, through-
put estimates computed on a service basis can be used to derive
geolocated service performance indicators (e.g., average web
page download time, number of Video stallings, initial Video
playback time. . . ), from which to obtain MOS figures per loca-
tion. Ultimately, such a tool will ensure that additional network
resources are deployed where they have the largest impact on
user opinion.700
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