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Abstract—Due to the diversity of mobile services and raising
user expectations, mobile network management has changed its
focus from Quality of Service (QoS) to Quality of Experience
(QoE). As a consequence, classical network optimization proce-
dures must be updated accordingly. One of these procedures
is traffic sharing, whose aim is to redistribute traffic among
adjacent cells so as to provide an adequate QoE to subscribers. In
this work, a novel QoE-driven traffic sharing algorithm based on
mobility load balancing is proposed for LTE networks offering
services of very different nature. Unlike previous approaches,
where the aim was to balance some QoS indicator, the aim here
is to equalize the QoE provided by all cells in the network.
For this purpose, the handover margins between adjacent cells
are tuned on a per-adjacency or per-service basis based on
QoE measurements collected in the network management system.
Method assessment is based on a dynamic system-level simulator
implementing a realistic LTE scenario. Results show that the
proposed QoE-driven traffic sharing algorithm alleviates QoE
problems by equalizing user QoE throughout the scenario.

Index Terms—Long Term Evolution (LTE), self organizing
network (SON), self-tuning, fuzzy, quality of experience.

I. INTRODUCTION

Over the last few years, there has been an exponential
growth in the demand of mobile services. At the same time,
the success of smartphones and tablets has changed traffic
patterns in mobile networks due to the introduction of new
services [1]. These changes will continue in the coming years
with the deployment of 5G systems, which will introduce new
mobile use cases [2].

In parallel, technological advances have raised users’ expec-
tations, forcing operators to change the way they manage their
networks. Traditionally, network management has been based
on objective performance indicators (Quality of Service, QoS)
measuring user or network performance (e.g., accessibility,
retainability, integrity. . . ). Recently, operators have shifted
their focus from network performance to end user opinion
(a.k.a. Quality of Experience, QoE). In this context, QoE is
defined as the overall satisfaction of a service as subjectively
perceived by the user [3]. Customer experience management
(CEM) will be even more important in 5G, as services with
very different requirements will coexist (e.g., high-definition
television, virtual/augmented reality, autonomous vehicle, sen-
sor networks . . . ) [4]. Thus, maximizing the QoE should be the
main criterion for assigning radio resources [5] or dynamically
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selecting paths in software-defined architectures in future 5G
systems [6].

The above paradigm change will make network mana-
gement more complicated. The need for an efficient net-
work management has caused intense research on automation
techniques, referred to as Self Organizing Networks (SON).
SON procedures are classified into three use cases: self-
planning, self-healing and self-optimization [7]. In particular,
self-optimization includes those techniques designed to cope
with network changes so that optimal network performance is
always ensured during the operational stage. Traffic steering
(a.k.a. traffic sharing or load balancing) is one of the key
use cases of self-optimization [8]. The aim of traffic sharing
is to alleviate congestion problems due to the uneven traffic
demand by redistributing users among neighbor cells. This
is achieved by changing cell service areas with new base
station parameter settings, such as, e.g., transmit power [9],
cell reselection offset [10], antenna tilt angle [11] or HandO-
ver (HO) margin [12], the latter being the preferred option
(referred to as mobility load balancing, MLB). Likewise, load
balancing algorithms can be classified into static or dynamic
approaches [13]. Static approaches can make use of analytical
approaches to ensure optimal performance proactively in the
long term [14] [15]. In contrast, dynamic approaches rely on
simple reactive schemes, prone to instabilities. First dynamic
MLB algorithms designed for Long Term Evolution (LTE)
were based on a simple proportional controller driven by
the load imbalance between adjacent cells [16] [17]. As
shown in [15], these algorithms may lead to severe network
performance degradation due to the tight frequency reuse in
LTE. More sophisticated algorithms use fuzzy logic controllers
with reinforcement learning [18] or combine MLB with remote
electrical tilting [11] or power re-planning [19].

All the above-mentioned MLB algorithms are driven by
simple indicators, such as average cell load or call blocking
ratio. Thus, QoE is not taken into account. In current mobile
networks, QoS control is carried out by packet scheduling
(PS) algorithms, dynamically assigning radio resources to
user data requests based on QoS constraints [20] [21]. More
sophisticated schedulers exploit multiuser diversity gain to
achieve optimal system performance and ensure user fair-
ness [22]. Several QoE-aware schedulers have been proposed
in the literature to optimize the overall QoE, while ensuring a
minimum QoE for all users. Such advanced schedulers are
designed for specific services (e.g., web [23], progressive
video streaming [24] or adaptive video streaming [25], [26],
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[27]). However, the aim of most schedulers is to ensure a
minimum QoS/QoE for the worst users or equalize the average
QoS/QoE per service within a cell, rather than equalizing
the average QoE of services across cells in the network.
Thus, QoE balance between users or services in the spatial
domain is not guaranteed. A QoE imbalanced network implies
an unfair allocation of radio resources: while fully satisfied
users in underutilized cells waste resources without increasing
their QoE, there are completely unsatisfied users in congested
cells who lack these resources. In the end, such an unfairly
distributed users’ satisfaction may turn into higher churn rates
and revenue loss. Moreover, implementing the aforementioned
advanced QoE-aware schedulers would require upgrading net-
work equipment, which is not desired by network operators
that have already made an important investment to upgrade
to the latest radio access technology. Alternatively, a standard
scheduler can be tuned to improve the system QoE. In [28],
a self-tuning algorithm for a classical multi-service packet
scheduler is proposed to balance QoE across services by re-
prioritizing users in a LTE cell. Similarly, in [29], a different
self-tuning algorithm for the same scheduler is designed based
on optimality criteria to ensure the best overall system QoE
driven by network performance statistics. However, none of
these self-tuning schemes manages to equalize the QoE across
cells in the system. Even if MLB may potentially reduce QoE
differences between cells, to the best of authors’ knowledge,
no MLB algorithm in the literature explicitly takes QoE into
account.

In this work, a novel QoE-aware MLB algorithm is proposed
for LTE systems. Unlike previous approaches, the proposed
algorithm aims to minimize QoE differences across cells
and services by adjusting handover parameters on a per-
adjacency basis. Parameter tuning is performed by a fuzzy
logic controller driven by QoE estimates obtained from key
service performance indicators. The algorithm is validated in
a dynamic system-level simulator implementing a realistic
macrocellular LTE scenario. The main contributions of this
work are: a) uncovering the limitations of traditional traffic
sharing schemes from a QoE perspective, b) a novel self-tuning
algorithm for balancing QoE by modifying handover margins,
and c) the validation of the algorithm via simulations in a
realistic macrocellular LTE scenario. The rest of the work is
organized as follows. Section II discusses the limitations of
classical load balancing schemes in terms of QoE. Section III
describes the system model used in this work. Section IV
describes the proposed QoE balancing algorithm. Section V
presents algorithm assessment. Finally, Section VI summarizes
the main conclusions.

II. PROBLEM FORMULATION

In mobile networks, the HO process ensures a seamless
connection between neighbor cells when the user moves.
Specifically, a HO is triggered when the following condition
is fulfilled

Prx(j)− Prx(i) ≥ HOM(i, j) , (1)

Fig. 1: Traffic sharing by changing handover margins [15].

where Prx(j) is the pilot signal level received from neighbor
cell j, Prx(i) is the pilot signal level received from the
serving cell i, and HOM is the HO margin, defined on a
per-adjacency basis (i.e., one value for each pair of cells and
direction of the adjacency). In most cases, HO margins are set
complementarily in both directions of the adjacency to prevent
ping-pong effect, so that

HOM(i, j) +HOM(j, i) = H , (2)

where H represents the hysteresis value.
Figure 1 illustrates how modifying HO margins can be

used as a traffic sharing technique [15]. An increase of ∆
dB in HOM(i, j) enlarges the serving area of cell i while
decreasing that of cell j. Thus, the carried traffic (and load) in
cell i increases, whereas the carried traffic (and load) of cell j
decreases. Conversely, a decrease in HOM(i, j) reduces the
serving area of cell i, while increasing that of cell j.

Classical Load Balance (LB) schemes modify HO margins
to equalize the load between neighbor cells in the hope that the
overall call blocking ratio (or some other global QoS indicator)
is improved [16][18]. Such a positive effect is often achieved at
the expense of deteriorating network spectral efficiency, since
users are reassigned to cells that do not prove the largest signal
level [15].
An evenly loaded network does not necessarily imply a
QoE-balanced network. User satisfaction is highly dependent
on the required service, causing that the QoE of users of
different services can differ significantly even if they receive
the same amount of resources. More importantly, balancing
the load between adjacent cells does not necessarily reduce
QoE differences among users in the cells, since some services
are more sensitive to load increments than others (as will be
shown later). As a consequence, equalizing the load between
neighbor cells does not necessarily reduce QoE differences if
the service mix (i.e., ratio of connections for each service) is
not exactly the same in both cells.

The previous considerations suggest that a classical QoS-
based traffic sharing scheme does reach an evenly loaded
network, but might lead to a more unevenly balanced QoE
distribution among cells in the system. This is the main
hypothesis that will be tested in this paper.
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TABLE I: Traffic model parameters.

Service Main features

VoIP Coding rate 16 kbps
Session time: exponential distribution (avg. 60 s).
Call dropped after 1 s without resources. λV oIP ' 0.

VIDEO H.264/MPEG-4 AVC
VBR (Variable bit rate)
720p resolution,
25 frames per second.
Video duration: uniform distribution between 0 and
540 s. Frame size according to real traces (avg. 9.2
MB).
Connection dropped when stalling lasts for twice the
video duration. λV IDEO = 4 · 10−3.

FTP File size: log-normal distribution (avg. 20 MB) [30].
λFTP = 2.5 · 10−3.

WEB Web page size: log-normal distribution (avg. 20 MB).
No. pages per session: log-normal (avg. 4).
Waiting time: exponential distribution (avg. 107 s) [30].
λWEB = 3.7 · 10−3.

III. SYSTEM MODEL

This section outlines the traffic and QoE models of the
mobile services covered in this work.

A. Traffic models

Table I shows the main characteristics of the four ser-
vices considered in this work: voice over Internet Protocol
(VoIP), progressive video streaming (VIDEO), file download
service via File Transfer Protocol (FTP) and web browsing
(WEB) [30]. VoIP is a guaranteed bit rate (GBR) service with
low data rates. VoIP is modeled to generate 20 bytes of voice
every 10 ms, with a bit rate of 16 kbps. In contrast, VIDEO,
FTP and WEB services are non-guaranteed bit rate (non-
GBR) services. The video service model (inspired in [31])
corresponds to buffered live video streaming with fixed quality
(720 p) and variable bit rate. For this purpose, a simple model
of the player’s buffer at the client side is implemented. In
live video streaming, content generation and playback request
occur at the same time (unlike in video on demand, where the
whole content is available at the start of the session); thus,
the video server starts sending frames to the client as they
are generated, which are stored in client buffer until reaching
a minimum video content (3 seconds, in this work). This is
modeled as a fixed video playback start delay (i.e., initial
buffering time, LTI, of 3 seconds). Later, if the buffer runs
out, the video stops (i.e., stalling event) and the player waits
until the buffer is re-filled again. Video duration follows a
uniform distribution between 0 and 540 s. Obviously, videos
of less than 3 s do not experience stalling. Frame sizes are
taken from a real H.264 video trace [32]. A video session drop
model is also simulated, where the connection is terminated
if session time is more than twice the video content duration.
The other two data services FTP and WEB are best-effort
services. FTP is a file download service and WEB consists
of downloading several web pages with different sizes with
reading time between them.

Traffic appears as data bursts; therefore, new connections
follow a Poisson distribution for all services [33] [34].

B. QoE models

QoE is often measured using the Mean Opinion Score
(MOS) scale, ranging from 1 (bad) to 5 (excellent). In absence
of surveys, QoE can be estimated from QoS measurements.
For this purpose, QoS measurements gathered on a session
basis are mapped into QoE figures by utility functions [35]. A
utility function describes the relationship between objective
QoS performance indicators and subjective QoE for each
service. Utility functions provide an estimate of the user QoE,
although they miss contextual factors. (e.g., location, time of
day, · · · ). Thus, network operators that do not take explicit
QoE measurements can estimate user QoE by processing
passive measurements of key performance indicators.

For VoIP service, user QoE can be estimated as [36]:

QoE(V oIP ) = 1+0.035R+R(R−60)(100−R)7·10−6 , (3)

where QoE(V oIP ) is the MOS value for a VoIP connection,
and R is a parameter representing the connection quality, with
values from 0 (minimum) to 93 (maximum), that only depend
on the delay experienced by VoIP packets (mouth-to-ear
delay). Note that max(QoE(V oIP )) = 4.4054 (when R = 93),
i.e., MOS never reaches the value of 5, showing that, even with
the best possible network performance, some individuals may
not score their experience as excellent. Likewise, QoE is set
to the minimum (i.e., QoE(V oIP ) = 1) when the connection
is dropped.

VIDEO utility function is defined as [28]:

QoE(V IDEO) = 4.23− 0.0672Lti − 0.742Lfr − 0.106Ltr ,
(4)

where QoE(V IDEO) is the MOS estimated for the video
connection, Lti denotes the initial buffering time (in seconds),
Lfr is the average stalling frequency (s−1) (i.e., number of
times per second that the video player is paused due to an
empty client buffer), and Ltr is the average stalling duration
(in seconds). The maximum QoE value for a video connection
is upper limited to 4.23. As in VoIP, QoE(V ıdeo) = 1 if
connection is dropped.

The utility function for FTP service is [37]

QoE(FTP ) = max(1,min(5, 6.5 · TH − 0.54)) , (5)

where TH denotes the average user throughput in Mbps.
Finally, the utility function for WEB service is [37]

QoE(WEB) = 5− 578

1 + (TH+541.1
45.98 )2

, (6)

where TH is the average user throughput in kbps. Note that,
max(QoE(WEB)) = 5. No dropping of web connections is
considered, so that low MOS values for web are reached when
TH is zero (i.e., QoE(WEB) = 1 when TH ' 0 kbps).

Note that the above-described QoE models do not depend
on traffic model parameters (e.g., video sequence duration or
file/web page size).
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IV. EXPERIENCE BALANCING ALGORITHM

In this section, a new QoE balancing algorithm with two
variants is presented.

A. Experience balancing algorithm

In this section, a new self-tuning algorithm to equalize
the QoE across cells in a LTE network is presented. The
proposed algorithm, referred to as Experience Balancing (EB),
is inspired in the MLB algorithm described in [19] (hereafter
denoted as LB). Similar to LB, EB is implemented by Fuzzy
Logic Controllers (FLC) that decide whether to increase or
decrease HOM on a per-adjacency basis. Compared to classi-
cal proportional-integrative-derivative (PID) controllers, fuzzy
logic controllers are simpler and easier to understand, since
they are described in natural language, taking advantage of
operator experience. Unlike LB, EB aims to equalize average
user QoE, instead of cell load, among cells. For this purpose,
users are sent from a cell with a lower QoE to an adjacent
cell experiencing higher QoE.

Two variants of EB are defined. In a first variant, referred
to as EB-C (for cell), the indicator to be balanced is the cell
average QoE, defined as

QoE(i) =

∑
s
QoE(i, s)

Ns(i)
, (7)

where QoE(i, s) is the average QoE for users demanding
service s in cell i, defined as

QoE(i, s) =

∑
∀u∈i ,S(u)=s

QoE(s)(u)

Nu(i, s)
, (8)

where QoE(s)(u) is the quality of experience for user u
demanding service s, computed as in (3)-(6), Ns is the number
of services in cell i and Nu(i, s) is the number of users in cell
i demanding service s. In (7), it is implicitly assumed that all
services are equally important for the operator. This is aligned
to the goal of ensuring that all users have the same service
experience, regardless of the particular selected service.
Finally, the global average QoE is defined as

QoE =

Nc∑
i=1

QoE(i)

NC
, (9)

where NC is the number of cells in the network.
As stated before, EB-C aims to balance the cell average
QoE (7). Thus, a difference indicator is defined for EB-C as

QoEdiff (i, j) = QoE(j)−QoE(i) . (10)

Such an indicator is used as an input for EB-C FLC. Figure 2
shows the structure of the FLC. The output variable is the
increment/decrement of the HOM between neighbor cells i
and j, ∆HOM(i, j). As shown in the figure, FLC consists of
three stages: fuzzification, inference and defuzzification.
In the fuzzification stage, the value of the input, QoEdiff (i, j),
is broadly termed with linguistic variables (e.g., very negative,

Fig. 2: Structure of fuzzy logic controller [19].

negative, zero. . . ) [38]. Such a mapping is carried out by input
membership functions, µx, as shown in Figure 3a (x denotes
the specific linguistic variable). For simplicity, triangular input
membership functions are selected. Experience shows that, in
mobile networks, the flexibility provided by more complex
functions in the controller is not translated into a finer control
due to the stochastic noise of input measurements. Also note
that function overlapping causes that a crisp input value
is simultaneously assigned to one or more adjectives with
different degrees.

In the inference stage, a set of “IF-THEN” rules define the
mapping of the input to the output in linguistic terms. A rule
takes the form ’if x is A, then y is B’, where A and B are
adjectives associated to input and output, respectively (i.e.,
very negative, negative, zero, positive and very positive). The
first part of the rule (x is A) is the antecedent, while the second
part of the rule (y is B) is the consequent. Unlike traditional
expert systems, several rules can be fired at the same time
in a fuzzy inference engine. The firing strength of each rule
depends on the degree in which its antecedents are satisfied
(referred to as the truth value of the rule). This feature of
fuzzy controllers ensures smooth control actions.

Figure 3c summarizes the set of rules that describe the
tuning process in EB. Roughly, HOM is decreased (i.e.,
4HOM(i, j) is N or VN) when the average QoE in the target
cell is better than in the source cell (i.e., QoEdiff (i, j) is P
or VP).

Finally, in the defuzzification stage, the output value is
obtained from the aggregation of rules. In this work, the
centre-of-gravity method [39] is applied to compute the final
output value as a weighted average. Weights are calculated
from the truth value of each rule, computed from the degree
of fulfillment of their antecedents. For simplicity, a Takagi-
Sugeno approach [38] is used, where the output membership
functions are constants, as shown in Figure 3b, leading to
a more compact representation easier to adjust and reducing
computational load. More complex output membership functi-
ons tend to give similar results.

FLCs are periodically executed after a fixed period, referred
to as reporting output period (ROP). The value of HOM(i, j)
for the next iteration, referred to as optimization loop, is
calculated from performance measurements in the previous
iteration as



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 5

(a) Input membership functions.

(b) Output membership functions.

QoEdiff (i, j) ∆HOM(i, j)

VP VN
P N
Z Z
N P

VN VP

(c) Rules.

Fig. 3: Fuzzy logic controller for EB-C algorithm.

HOM (n+1)(i, j) =

=min(max(round(HOM (n)(i, j)+

∆HOM (n)(i, j)),−7), 13) , (11)

where superscripts n and n+ 1 denotes the iteration number,
and all parameters are in dB. Note that HOM changes are
limited to the range −7 to 13 dB. The lower limit is the
minimum signal-to-interference ratio (SINR) needed for the
scheduler to assign any radio resource to a connection. The
upper limit is calculated with (2) to ensure a hysteresis level of
H = 6 dB. From (2), it is also deduced that any modification
in HOM(i, j) automatically implies an opposite change in
HOM(j, i). As a consequence, a single FLC is needed for
both directions of the adjacency. Thus, the required number
of FLC equals to the number of adjacencies in the system.

Due to their similarities, EB-C and LB would work the same
(i.e., propose the same HOM changes) if the service mix was
the same for all cells. However, as will be shown later, service
mix differs from cell to cell in live networks, causing that EB-
C and LB take different tuning actions.

Note that, even if EB-C ensures that the cell average QoE
is balanced across the network (i.e., QoE(i) ' QoE(j)∀ i, j),

some services may have larger QoE than others within a cell
(i.e., QoE(i, s1)6=QoE(i, s2)) or different to the same service
in other cells (i.e., QoE(i, s1) 6= QoE(j, s1)). To solve this, a
second variant of the algorithm, referred to as EB-CS, aims to
balancing the average service QoE of a cell against the average
user QoE of its adjacent cells. EB-CS takes advantage of the
fact that some LTE vendors now give operators the flexibility
to set different HOM values for services within a cell. Thus,
HOM can be tuned on a per-adjacency and per-service basis
driven by a new difference indicator

QoEdiff (i, j, s) = QoE(j)−QoE(i, s) . (12)

Similarly to EB-C, QoEdiff (i, j, s) in EB-CS is defined per
adjacency, but, differently to EB-C, it is segregated by service.
Thus, in EB-CS, one FLC is needed per service and adja-
cency, each proposing a service-specific margin modification,
HOM(i, j, s). EB-CS can be understood as four different QoE
balancing mechanisms per adjacency (i.e., one per service),
which might push users in different directions, e.g., WEB users
are handed over from cell i to j, but VIDEO users are handed
over from j to i. Membership functions and inference rules
are identical to those in EB-C, shown in Figure 3, with the
only change of the input parameter, QoEdiff (i, j, s) instead
of QoEdiff (i, j).

Another significant difference of EB-CS compared to EB-
C is the loss of symmetry. The difference indicator in (12)
is calculated by subtracting QoE(i, s) from QoE(j), so that
QoEdiff (i, j, s) 6= QoEdiff (j, i, s). Thus, unlike EB-C, two
FLCs must be executed in EB-CS for the same adjacency, one
per direction. This separate FLC executions in two adjacent
cells i and j might lead to changes of different magnitude for
both directions of the same adjacency, ∆HOM(i, j, s) and
∆HOM(j, i, s), causing that (2) is not fulfilled. To enforce
a constant hysteresis level, an average ∆HOM value is
calculated in EB-CS for both directions of the adjacency as

∆HOM
(n)

(i, j, s) = −∆HOM
(n)

(j, i, s) =

=
∆HOM (n)(i, j, s)−∆HOM (n)(j, i, s)

2
. (13)

It can be argued that the proposed schemes are based on
QoS rather than on QoE, since QoE metrics used to drive the
tuning process are derived from QoS measurements. Note that
the utility functions mapping QoS into QoE are not linear, and
a large QoS increment does not necessarily lead to a large QoE
increase. Such a non-linearity is critical when evaluating the
overall system performance gain (in terms of user satisfaction)
of reassigning users to a different cell. This issue is avoided
by explicitly computing QoE.

V. PERFORMANCE ANALYSIS

The proposed algorithm is tested in a dynamic system-level
LTE simulator [40]. For clarity, the simulation set-up is pre-
sented first and results are shown later. Then, implementation
issues are discussed.
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Fig. 4: Naı̈ve scenario.

TABLE II: Simulation parameters.

Time resolution 10 TTI (10 ms)
Propagation

model
Pathloss Okumura-Hata, slow fading

(log-normal σ = 8 dB, dcorr = 20 m), fast
fading (ETU model)

Base station
model

Tri-sectorized antennas, MIMO 2x2,
BW = 5 MHz (25 PRB), fcarrier = 2 GHz,

EIRPmax= 68 dBm.
Scheduler Classical exponential/proportional fair [22]

Link adaptation CQI-based
Cell geometry cell radius = 0.5 km,

Inter-site distance = 1.5 km

A. Assessment methodology

Two main experiments are performed. In a first experiment,
the aim is to check how balancing load and balancing QoE
behave differently in a naı̈ve scenario. Then, in a second
experiment, the proposed experience balancing schemes are
compared with other self-tuning approaches in a realistic
scenario to assess their performance gain. In both experiments,
only the downlink is simulated to reduce the computational
load.

1) First experiment (proof of concept): This experiment is
a proof of concept whose aim is to reveal that load balance
between two neighbor cells does not imply QoE balance.
Figure 4 shows the naı̈ve scenario used in the first experiment,
consisting of a regular tri-sectorized scenario. Table II shows
relevant simulation parameters.

Only for this proof of concept, traffic demand is confined to
three cells (denoted as C1, C2 and C3) and it is forced that all
users in a cell demand the same service (WEB, VIDEO and
VoIP for C1, C2 and C3, respectively), as shown in Figure 4.
User locations are represented by a different symbol depending
on the requested service. Likewise, it is assumed that users are
static (only in this naı̈ve scenario) to ensure that users do not
change cell for mobility reasons. Thus, it is easier to segregate
users per service, which facilitates the analysis. Note that, once
users are handed over to a different cell as a result of HOM
tuning, different services can be found in the same cell.

In the above-described scenario, the first experiment has

two stages. In a first stage, the aim is to evaluate the impact
of network load on the QoE of each service. With this aim,
offered traffic is swept by increasing the number of users in
one of the three cells (e.g., WEB users in C1) while traffic
intensity in the others is kept constant (e.g.,VIDEO and VoIP
in C2 and C3, respectively). For each offered traffic value,
cell load is measured as the average PRB utilization, U(i),
for the whole simulated period (i.e., 1 hour of network time).
Likewise, offered traffic in cells with constant traffic (VIDEO
in C2 and VoIP in C3 in the example) is fixed to a sufficiently
large value (U(C2)'U(C3)' 80 %) to generate a background
interference level. Users are uniformly distributed within every
cell. The same test is repeated by sweeping traffic intensity in
the other two cells. Note that, in this first stage, due to the
specific spatial user distribution, QoE(i) coincides with the
average QoE for the service demanded in the cell under study
(e.g., QoE(C1) = QoE(C1,WEB)).

In a second stage, the aim of the experiment is to illustrate
the limitations of classical load balancing in terms of QoE.
With this aim, HOM(i, j) is swept in 1 dB steps in a cell (e.g.,
C3). Margins from that cell to the other two cells are simul-
taneously swept (e.g., HOM(C3, C1) = HOM(C3, C2)).
Hysteresis is maintained by synchronizing changes in both
directions of the adjacencies to ensure (2).

2) Second experiment (algorithm assessment): The aim
of the second experiment is: to check the behavior of the
proposed experience balancing schemes and compare their
performance against other traffic steering algorithms.

During the analysis, five self-tuning approaches are compa-
red. The first two are the proposed schemes that aim to equa-
lize user experience across cells, EB-C, or cells and services,
EB-CS. A third scheme is the legacy MLB algorithm [19], LB,
whose aim is to equalize the average PRB utilization between
neighbor cells. For a fair comparison, a fourth scheme, referred
to as throughput-based balancing, TB [41], is also included,
to show the benefit of explicitly considering QoE instead
of QoS (user throughput). TB aims to balancing the mean
user throughput, T (i), across cells by tuning handover margin
settings on a per-adjacency basis. For this purpose, a fuzzy
controller is implemented to steer users from cells with lower
user throughput to cells with larger user throughput. The input
to the controller is the difference of mean user throughput
between adjacent cells, and the output is the handover margin
of the adjacency. Finally, a fifth scheme referred to as QoE-
based reprioritization, QR [28], is included to show the benefit
of redistributing users between cells (as in EB-C and EB-
CS) instead of reprioritizing services inside a cell by packet
scheduling. QR aims to balance the QoE of users within a
cell by reprioritizing services in a classical scheduler. For this
purpose, a set of four proportional controllers (1 per service)
are implemented per cell to tune service priority on a long-term
basis so that users of services with worse QoE are prioritized.
The input to each controller is the average QoE difference of
a service against other services, and the output is the service
priority parameter of that service in the scheduler.

A live LTE network scenario is implemented in the si-
mulator for this second experiment. Figure 5 shows the si-
mulated scenario, consisting of 108-macrocells (36 sites with
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TABLE III: Parameters in real scenario.

Bandwidth 10 MHz (50 PRB)
Base station model EIRPmax= 67 dBm

fcarrier=1850 MHz
Traffic model Spatial traffic distribution and

service mix based on live statistics
collected on a per-cell basis

Mobility model Random direction, constant speed,
3km/h

HOM(0)(i, j) 3 dB ∀ (i, j)

SPI(0)(i, s) 7 ∀ (i, s)

3 tri-sectorized antennas per site). Table III shows the main
simulation parameters, taken from the live network. In this
experiment, users move at 3 km/h in a straight path randomly
selected. Likewise, the default HOM and SPI settings are 3
dB and 7, respectively.

The five self-tuning algorithms (LB, TB, QR, EB-C and
EB-CS) are tested along 15 optimization loops. It is checked
a posteriori that the system reaches stability after 15 iterations
in the five algorithms. The duration of every optimization loop
(i.e., the ROP) is 1 hour, long enough to ensure reliable perfor-
mance statistics. At the end of each loop, the indicators used
as drivers (U(i), T (i), QoE(i, s), QoE(i) and QoE(i, s)) are
collected and algorithms are triggered. After each optimization
loop, the system updates HOM or SPI values and a new
optimization loop begins. For a fair comparison, it is ensured
that all optimization loops for the five algorithms are executed
under identical conditions by pre-generating a realization of
all random variables. Thus, performance differences between
loops are only due to the different HOM/SPI settings, and not
to the stochastic nature of simulation. Network performance
with the default HOM/SPI settings is considered as a baseline.

The aim of the proposed algorithms (EB-C and EB-CS) is to
reduce differences between users of different cells and servi-
ces. This is achieved by improving the worst users/services
at the expense of deteriorating the best users/services. For
consistency, the main figure of merit is the 5th percentile of
the QoE distribution across cells and services in the network,
QoE

(5%−th)
(i, s).

A secondary figure of merit is the overall QoE, computed as
the average of all services and cells in the scenario,

QoE =
1

NC

∑
i

QoE(i) =
1

NC

∑
i

∑
s
QoE(i, s)

Ns(i)
. (14)

Five additional key performance indicators are defined to
check performance differences across cells and services in the
network. An overall cell load imbalance indicator is defined
as

Uimb =
1

NC

∑
i

|Uimb(i)| =

=
1

NC

∑
i

∣∣∣∣∣∣∣U(i)−

∑
j∈A(i)

U(j)

Nadj(i)

∣∣∣∣∣∣∣ , (15)

where Uimb(i) is the average PRB utilization imbalance of cell
i, computed by comparing its average PRB utilization against
that of its neighbors, A(i) is the set of neighbor cells of cell
i, Nadj(i) is the number of neighbor cells of cell i and Nc is
the number of cells in the scenario. An overall intra-cell QoE
imbalance indicator is defined as

QoEimb,f =
1

NC

∑
i

|QoEimb,f (i)| =

=
1

NC

1

Ns(i)

∑
i

∑
k

∣∣4QoE(i, sk)
∣∣ , (16)

where

4QoE(i, sk) = QoE(i, sk)−

∑
s 6=sk

QoE(i, s)

Ns(i)− 1
, (17)

and QoEimb,f (i) is the QoE imbalance among services in cell
i, calculated as the mean value of the difference between the
QoE of a service and the mean QoE for the rest of the services,
as in (17).

Similarly, an overall throughput imbalance indicator is de-
fined as

Timb =
1

NC

∑
i

|Timb(i)| =

=
1

NC

∑
i

∣∣∣∣∣∣∣T (i)−

∑
j∈A(i)

T (j)

Nadj(i)

∣∣∣∣∣∣∣ , (18)

where Timb(i) is the throughput imbalance indicator of cell i,
computed by comparing its average throughput against that of
its neighbors, T (j) is defined as

T (i) =

∑
s
T (i, s)

Ns(i)
, (19)

where

T (i, s) =

∑
u∈(i,s)

T (u)

Nu(i, s)
. (20)

and T (u) is the connection throughput of user u. Likewise, an
overall QoE imbalance indicator across cells in the scenario
is defined as

QoEimb,c =
1

NC

∑
i

|QoEimb,c(i)| =

=
1

NC

∑
i

∣∣∣∣∣∣∣QoE(i)−

∑
j∈A(i)

QoE(j)

Nadj(i)

∣∣∣∣∣∣∣ , (21)

where QoEimb,c(i) is the average cell imbalance indicator of
cell i, computed by comparing its average QoE against that
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Fig. 5: Real scenario.

TABLE IV: Baseline network performance.

Indicator Avg. Max Min

Nu(i, V oIP )/Nu(i) [%] 1.8e-4 2.7e-3 0
Nu(i, V IDEO)/Nu(i) [%] 37.21 54.96 5.52
Nu(i, FTP )/Nu(i) [%] 27.09 72.14 1.83
Nu(i,WEB)/Nu(i) [%] 35.79 43.22 22.33

U(i) [%] 75 100 11.9
QoE(i) 3.02 4.42 1.89

of its neighbors. Finally, an overall QoE imbalance indicator
across services in the scenario is defined as

QoEimb,s =
1

NC

∑
i

|QoEimb,s(i)| =

=
1

NC

1

Ns(i)

∑
i

∑
s

∣∣∣∣∣∣∣QoE(i, s)−

∑
j∈A(i)

QoE(j)

Nadj(i)

∣∣∣∣∣∣∣ , (22)

where QoEimb,s(i) is the average cell and service imbalance
indicator of cell i, computed by comparing its average QoE
per service against the average QoE of its neighbors.

For clarity, Table IV shows some relevant network perfor-
mance indicators with the default HOM/SPI settings. Both
spatial user distribution and service mix, giving the probability
of a user initiating a connection of a service in a cell, are
taken from real statistics. Only the call arrival rate is artificially
modified (i.e., increased) to generate a highly loaded scenario.
From the table, it is deduced that VIDEO is the most popular
service in the area, followed by WEB. Likewise, with the
default HOM and SPI settings, cell load may differ in up
to 88.1 % and cell-average QoE may differ in up to 2.53
MOS points, justifying the need for the tuning process. It
should be pointed out that, in the considered live scenario,
VoIP traffic is extremely low and scattered in a few cells in
the network. As this might cause unreliable QoE statistics,
EB-CS is not allowed to change HOM settings for this service
(i.e., HOM(i, j, V oIP ) = 3 in EB-CS) as well as QR is not
allowed to change SPI settings (i.e., SPI(i, V oIP ) = 7 in
QR).

0 20 40 60 80 100
1.5

2

2.5

3

3.5

4

4.5

5

C3 (VoIP)

C2 (VIDEO)

C1 (WEB)

Fig. 6: QoE dependence on cell load.

B. Results

1) First experiment (proof of concept): Figure 6 shows the
sensitivity of cell average QoE, QoE(i), to cell load, U(i)
(i.e., PRB utilization). Each curve represents one of the three
cells (services) in the naı̈ve scenario. As expected, similar load
conditions do not lead to the same QoE values in the three
services. Specifically, QoE(C3) > QoE(C1) > QoE(C2)
when U(i) > 68 %. Thus, it is inferred that, for the scheduling
algorithm in the simulator, VoIP has better experience than
WEB or VIDEO for high cell load. It can also be observed
that the QoE of VoIP keeps almost constant and high up to
a very large cell load (i.e., QoE(C3) ' 4.4 ∀ U(C3) > 97
%). The same holds for VIDEO and WEB services, but with
lower load thresholds (U(i) ≈ 58 % and 56 %, respectively).

Large markers in Figure 6, represent the working point
selected for the next stage of the experiment, whose aim is to
show the benefit of QoE balancing. Such settings correspond to
a situation where the three cells have a similar cell load close
to 90.8%, but completely different QoE values (QoE(C3) =
4.4, QoE(C2) = 3.21 and QoE(C1) = 2.71). This situation
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Fig. 7: Sensitivity of cell load and QoE to HOM changes.

reflects an evenly balanced scenario in terms of cell load, but
an unevenly balanced scenario in terms of QoE. It is thus
expected that a load balancing algorithm would not modify
HOM values, even if large QoE differences exist among cells.
In contrast, a QoE-driven balancing algorithm would change
HOMs to equalize QoE among cells.

In the second stage of the experiment, HOMs are tuned to
steer traffic from C1 and C2 (the two cells with the worst
QoE) to C3 (the cell with the best QoE). Such an effect is
achieved by enlarging the cell service area of C3, produced
by increasing HOMs in the outgoing adjacencies of C3.

Figure 7 shows cell load (solid lines) and QoE (dashed
lines) values for the three cells, when HOM(C3, C1) and
HOM(C3, C2) are simultaneously swept in 1 dB steps
from 3 (the default setting) to 11 dB. In the figure, it is
observed that load imbalance increases as QoE imbalance
decreases. Specifically, load imbalance increases from Uimb=
0.3 % to 12.7 % while QoEimb,c decreases from 0.96 %
to 0.36 %. Thus, a load balancing algorithm would end up
in HOM(C3, C1)=HOM(C3, C2)= 3 dB, while a QoE
balancing algorithm would set a completely different balance
point with HOM(C3, C1/C2)= 11 dB. This is clear evidence
that load balancing and QoE balancing might drive the system
to very different states in the presence of different service
mixes in cells.

2) Second experiment (algorithm assessment): Figure 8
shows the impact of LB, TB, QR and EB algorithms on QoE
imbalance among cells along the 15 optimization loops. As
illustrated, LB does not change QoEimb,c significantly, QR
increases QoEimb,c and TB achieves a slight reduction of
QoEimb,c. In contrast, both EB-C and EB-CS more than half
the initial imbalance.

To spot the difference between EB-C and EB-CS, Figure 9
shows the evolution of the imbalance between cells and servi-
ces, QoEimb,s, across iterations in both schemes. As expected,
EB-CS better equalizes QoE among cells and services due to
its service-based design. To clarify this capability, an average

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
loop index

0

0.1

0.2

0.3

0.4

0.5

LB
TB
QR
EB-C
EB-CS

Fig. 8: Evolution of QoE imbalance.

HOM offset is computed for EB-C and EB-CS as the average
deviation of HOM values from the initial default settings, i.e.,

δHOM =

∑
(i,j,s)

δHOM(i, j, s)

Nadjs
=

=

∑
(i,j,s)

|HOM(i, j, s)− 3|

Nadjs
, (23)

where Nadjs is the total number of adjacencies in the network.
Figure 10 illustrates the average HOM deviation evolution
across iterations in all the schemes. At the 15th loop, δHOM
reaches 7 dB, 5.6 dB and 0 dB and for LB, TB and QR,
respectively, showing that LB and TB produce a significant
displacement of HOMs in many adjacencies, while, as ex-
pected, QR does not change HOM. EB-C and EB-CS also
produce a deviation of HOMs in many adjacencies. In EB-C,
δHOM reaches 4.6 dB at the 15th optimization loop, which is
less than the deviation needed by LB and TB to reach load or
throughput balance. This proves again that an evenly balanced
load or user throughput across the network do not necessarily
imply an evenly balanced QoE. In EB-CS, δHOM ranges
from 0 to 6 dB depending on the service. VIDEO service
requires a larger HOM deviation, indicating that, with the
current service mix, it is needed (on average) to hand over
a larger amount of VIDEO users than FTP or WEB users to
reach QoE balance among services of neighbor cells.

For comparison purposes, Table V summarizes the main
performance indicators at the beginning (column Initial) and
the end of the tuning process (15th optimization loop) for
the different schemes. As expected, LB achieves the best load
balance, Uimb, TB achieves the best throughput balance among
services within a cell, Timb (0.28 Mbps) and QR achieves
the smallest QoE imbalance among services within a cell,
QoEimb,f (0.32). EB-C gets a better QoE balance than LB,
TB or QR, QoEimb,c (0.18). However, EB-CS achieves the
smallest QoE imbalance across cells (QoEimb,c = 0.14) and
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Fig. 9: Evolution of QoE imbalance per service.
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Fig. 10: Evolution of average HOM offset.

services (QoEimb,s = 0.26). This is the result of adjusting
HOM on a per-adjacency and per-service basis.

Finally, Figure 11 shows the cumulative distribution
function of QoE(i, s) achieved by EB and EB-CS. It is obser-
ved that both balancing approaches deteriorate the QoE of the
best cells/services to improve that of the worst cells/services.
Focusing on the worst cells and services (lower left), it is
observed that EB-CS achieves the best improvement for those
cells and services experiencing the lowest QoE values. This
is also shown in Table V, where EB-CS has the highest
value for the QoE indicator representing the worst users (i.e.,
QoE

(5%−tile)
(i, s) = 2.36).

The stronger QoE balancing effect with EB-CS is achieved
by modifying cell service areas on a per-adjacency and per-
service basis. Figure 12a illustrates how the service area of a
particular cell is modified by EB-C at the end of the tuning
process (15th optimization loop). Note that EB-C algorithm

1 1.5 2 2.5 3 3.5 4 4.5 5
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1

C
D

F

Initial

EB-C

EB-CS

Fig. 11: QoE distribution for services across cells function.

TABLE V: Main performance indicators.

Indicator Initial LB TB QR EB-C EB-CS

Uimb[%] 15.2 6.3 15.2 14.9 17 16.6
Timb [Mbps] 1.01 4.57 0.28 0.52 4.09 0.79
QoEimb,f 0.51 0.50 0.49 0.32 0.46 0.33
QoEimb,c 0.4 0.45 0.30 0.35 0.18 0.14
QoEimb,s 0.51 0.56 0.45 0.42 0.35 0.26
QoE 3.02 2.94 2.96 2.99 2.94 2.93

QoE(i, s) 5th tile 1.89 1.90 2.01 2.07 2.10 2.36

modifies HOM only on a per-adjacency basis. Thus, the cell
service area is shared by all services. Figure 12b depicts
the service area of the same cell with EB-CS at the 15th

optimization loop. EB-CS algorithm modifies HOM on a per-
adjacency and per-service basis. Therefore, the cell service
area is different depending on the service (VIDEO, FTP or
WEB). VoIP case is not shown because VoIP traffic in the
network under analysis is negligible. Note that the cell service
area produced by EB-C, shown in Figure 12a, is completely
different from those of EB-CS, shown in Figure 12b. This
flexibility of changing cell service areas on a per-adjacency
and per-service basis is the reason for the superiority of EB-
CS when equalizing the QoE among cells and services.

Another experiment has been carried out to check the
ability of the proposed iterative algorithm (EB-CS) to adapt
to changes in the number of users and the traffic mix. For
this purpose, once the system is stable and has reached QoE
balance, the number of users is modified by increasing the
Poisson arrival rate of each service by 4%. This change
modifies the balance point, so imbalance is expected to appear
again and EB-CS starts to modify margins searching for
the new balance point. After this second balance stage, the
traffic mix is modified now by changing the percentage of
FTP, VIDEO and WEB. WEB traffic is decreased by 24%,
whereas FTP and VIDEO traffic is increased by 12%. Table
VI summarizes the results for these traffic changes, showing
the value of the QoE imbalance indicator, QoEimb,c, and the
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Fig. 12: Cell service area per service.

TABLE VI: System performance to network changes.

Stage Initial network
conditions

Network load
increase, ∆λ

Change in traffic
mix, ∆λ(s)

Loop index 1 15 16 26 27 45
QoEimb,s 0.51 0.26 0.43 0.26 0.48 0.29
QoEimb,c 0.4 0.14 0.29 0.15 0.32 0.15

value of the QoE imbalance per service, QoEimb,s, at the
beginning/end of each stage. It is observed that any change
in network conditions produce a temporary QoE imbalance
among cells and services, (QoEimb,s = 0.43 and QoEimb,c =
0.29 when traffic is generally increased, and QoEimb,s = 0.48
and QoEimb,c = 0.32 when traffic mix is changed). These
imbalances are successfully corrected by EB-CS after a few
iterations, leading network performance to a similar balance
point than that of the first stage of the experiment in the
15th iteration. Thus, it is shown that EB-CS can cope with
fluctuations of traffic demand during a day.

C. Implementation issues

The EB-C algorithm is executed on a per-adjacency basis,
and, therefore, its worst-case time complexity is O(Nadjs).
In contrast, The EB-C algorithm is executed on a per-
adjacency and per-service basis, so that its time complexity
is O(Nadjs ∗ Ns). Both algorithms have been implemented
with the Fuzzy Logic Toolbox in Matlab. For the considered
scenario, consisting of 108 cells, 11664 adjacencies and 3
services, the average execution time of 1 iteration of EB-C
and EB-CS is 2.8 and 6.5 seconds in a personal computer
with a 3.6-GHz octa-core processor and 16 GB of RAM.

VI. CONCLUSIONS

In this paper, a self-tuning algorithm for adjusting handover
margins in a LTE network has been proposed. The aim of the
algorithm is to balance the QoE between cells and services.
The proposed iterative algorithm changes handover margins
between adjacent cells to push users from cells with a lower
QoE to neighbor cells with a higher QoE. Two variants have
been presented, depending on whether margins are tuned on a
per-adjacency or per-adjacency and per-service basis. Method
assessment has been carried out in a dynamic system-level
LTE simulator implementing a realistic macrocellular scenario.
Results have shown that the average QoE of cells becomes less
imbalanced after parameter tuning. Specifically, the average
QoE difference among cells is reduced by 0.22 and 0.26 MOS
points with EB-C and EB-CS, respectively, with an average
HOM change between 0 and 6 dB depending on the service.

The proposed algorithm is conceived as a centralized solu-
tion for the network management system, since QoE statistics
needed by the algorithm are currently obtained by packet
inspection techniques in selected core network interfaces [42].
The underlying iterative algorithm is devised to be executed
after each reporting output period (e.g., 1 hour). Such a time
window ensures reliable QoE measurements for long video
streaming sessions. If faster changes are needed, the proposed
algorithm could be executed with a shorter periodicity (e.g.,
minutes), provided that reliable QoE estimates are available.
It is envisaged that such information will be delivered to SON
frameworks as part of big data generated by future 5G mobile
communication systems.
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