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Abstract—Over the last years, there has been a significant
increase in the number of services in mobile networks. Such a
trend has forced operators to change their network management
processes to ensure an adequate user Quality of Experience
(QoE), instead of an adequate Quality of Service (QoS). As
a result, Customer Experience Management (CEM) is now a
critical task for mobile network operators, which demand tools
for QoE monitoring on a user basis. With the latest advances
in information technologies, the newest traffic monitoring and
analysis (TMA) solutions can leverage the huge amount of infor-
mation available from network elements and interfaces in mobile
networks. However, data processing algorithms in these tools are
still to be defined. In this work, we review the shortcomings and
challenges in the use of TMA applications in mobile networks,
and how these can be empowered by big data analytics (BDA).
For this purpose, a methodology to validate a generic big-data
driven TMA framework with user terminal agents in a real
cellular network is outlined. Then, a use case is presented to show
the potential and limitations of these applications for monitoring
end-user QoE in a live Long-Term Evolution (LTE) network.

Index Terms—Big data, mobile network, management, automa-
tion, QoE, traffic monitoring

I. INTRODUCTION

In the last years, there has been an exponential growth in
the demand of mobile services. In parallel, the success of
smartphones and tablets has changed traffic patterns in mobile
networks. Changes will continue in future 5G networks with
the introduction of network virtualization and machine-type
communications, making traffic management a very challeng-
ing task.

At the same time, the constant increase in users’ expectation
has forced operators to change the way they manage their
networks. Legacy management processes, focused on network
performance and Quality of Service (QoS), have been replaced
by a more modern approach focused on user satisfaction,
referred to as Quality of Experience (QoE). This new paradigm
has become a key differentiating factor in a market where
networks and services are quite similar between operators. As
a result, Customer Experience Management (CEM) is now one
of the most important tasks for mobile operators [1].

For simplicity, operators currently monitor QoE based on
data provided by network equipment (e.g., counters or logs).
From this data, key performance indicators related to network
resources (Resource Key Performance Indicators, R-KPIs) are
computed. Occasionally, this data is complemented with mea-
surements from simple network protocol analyzers, limited in
space (one or a few interfaces) and time (a short period). Thus,
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mobile operators discard a huge amount of information in the
form of measurements and interaction registers generated by
their networks [2]. Such data volume will be even larger in
5G with the addition of new network nodes in ultra-dense cell
deployments and machine-type communications [3].

With recent advances in information technologies, it is
now possible to process massive volumes of information with
big data analytics (BDA) platforms [4]. ‘Big Data’ refers to
data that cannot be processed by traditional means due to its
volume, velocity and variety (e.g., connection traces or packet-
level traffic). With BDA, operators can better explain network
performance by discovering hidden relationships between sys-
tem variables (self-awareness) and take corrective actions
proactively by predicting trend changes (self-adaptiveness).
For this reason, specifying BDA systems has become a priority
for standardization bodies (e.g., ITU-T Study Group 13 [5]).

An area of great potential for BDA is Traffic Monitoring
and Analysis (TMA). Legacy TMA tools [6] were focused
on the overall network performance. In contrast, the latest
TMA solutions are able to passively monitor all the traffic
crossing the network at a very fine granularity. This is achieved
by adding new network elements (deep packet inspectors)
that store a full or partial copy of each frame from different
protocol layers. Then, packet-level traffic analysis allows to
build service-specific performance metrics with end-to-end
network visibility (Service KPI, S-KPI), which can be mapped
more easily into QoE figures. Such an approach is already used
by the newest TMA solutions based on big networking data
(e.g., [7]). Nonetheless, algorithms inside these platforms are
still to be defined [2].

In this work, we revise the shortcomings and challenges in
the use of these applications for mobile networks, and how
these can be empowered by BDA. Architectural and imple-
mentation issues are not covered here. For clarity, a generic
framework for big-data driven TMA in mobile networks is first
introduced. Then, a methodology to validate these applications
is described. Later, a real use case is presented to show the
potential of BDA for analyzing QoE in a live mobile network.
Finally, open issues are discussed.

II. BIG-DATA DRIVEN TM A FRAMEWORK FOR QOE
ANALYSIS

Fig. 1 shows the structure of a generic TMA application for
QoE analysis in mobile networks. Most of its components are
included in the newest TMA solutions (e.g., [7]). Three main
layers can be differentiated.

Big data: Traffic monitoring at network layer is performed
by sniffing transit packets from selected network interfaces.
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Fig. 1. Basic scheme of a TMA application for QoE monitoring.

The pcap (packet capture) Application Programming Interface
(API) is often used for this purpose [8]. Traffic is classified on
a session and subscriber basis by Internet Protocol (IP) address
and International Mobile Subscriber Identity (IMSI). Then, in-
formation is enriched with data gathered by radio/core network
equipment, Operating/Business Support Systems (OSS/BSS)
or user terminals controlled by the operator. Context informa-
tion (e.g., time of day, location, weather or device type) can
be added to aid troubleshooting and optimization processes.

Data processing: The inputs of data processing are Trans-
mission Control Protocol (TCP) performance metrics, such
as IP session throughput, packet loss ratio or round-trip time
(RTT), computed from packet-level analysis on a session basis.
Such metrics can be aggregated per service by classifying
packets depending on service class. Current service list in-
cludes real-time conversational (e.g., Voice-over-LTE, Skype,
online games) and broadcast (e.g., Internet radio/television)
services, and non-real time streaming (e.g., YouTube, Spotify),
interactive (e.g., web browsing, social networking, app down-
load) and background (e.g., email, file sharing, cloud services)
services. Events of GPRS Tunneling Protocol for Control
Plane (GTP-C) are also supplied, providing information in
signaling flows in the core network.

Insightful Applications: Graphical Users Interfaces (GUIs)
with dashboards are implemented to assess the QoE through-
out the network. Third party applications may also use this
structure for data warehousing, in-house analytics or market-
ing. Understanding customer behavior is key to create more

DATA SOURCES

Subscriber consistent packet streams
from Gn, Gp, $1-U, S8 and S11

effective promotions and pricing strategies, which ultimately
improve user satisfaction and reduce churn [9].

The data processing workflow is as follows. Passive traffic
monitoring is implemented at key network links, totally stan-
dardized, reducing as much as possible the interaction with
production equipment. Such a monitoring point is referred
to as a probe point. Ideally, the probe should be located in
core network interfaces, where traffic from large geographical
areas is aggregated. In 3G networks, the Gn link between
the Serving GPRS Support Node (SGSN) and the Gateway
GPRS Support Node (GGSN), carrying both control and user
plane data, is the preferred interface to monitor end-to-end
performance. In 4G and first non-standalone 5G New Radio
networks, monitored links are the S11 interface between the
Mobility Management Entity (MME) and Serving Gateway
(SGW) in the control plane, and S1-U between the eNodeB
and SGW in the user plane. Cross-correlating the information
from these interfaces is needed to identify the user. Additional
interfaces, such as Gp in 3G and S8 in 4G, are monitored
in roaming scenarios. Likewise, different interfaces of IP
Multimedia Subsystem (IMS) may be monitored (e.g., Mm
link) to collect messages exchanged between IMS core and
external IP networks. All this information is combined with
performance counters from network equipment or more refined
indicators from connection traces.

Later, data processing derives insights for QOE management
from the available big data, consisting of: a) subscriber packet
streams from key network interfaces, and b) counters and trace
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files with signaling events on a subscriber basis, generated
by nodes in the radio and core network. The output of data
processing consists of Extended Session Records (ESRs) [9].
These are periodic records generated per-service for each sub-
scriber, combining S-KPIs with data from network elements
involved in the session.

Data processing includes traffic classification, TCP/IP met-
rics calculation and S-KPI estimation. Once packet-level traces
are stored, traffic classification is performed to determine the
specific service for each traffic flow. At this point, TCP/IP (for
short, TCP) performance metrics can easily be computed from
raw data. This is possible because TCP flow control makes
that traffic dynamics is correlated to end-to-end performance.
Thus, a problem affecting a TCP flow at some point (e.g., radio
interface) can be detected by observing traffic at a different
location along the path (e.g., network probe at a core network
interface). As IP address is included in monitored traffic,
TCP metrics can be separated by link direction (downlink
or uplink). Moreover, TCP metrics can also be segregated
by network segment (probe-to-terminal or probe-to-Internet)
by correlating payload and acknowledge messages in both
directions of the interface. To reduce computational load,
TCP metrics are computed only for selected services and
sufficiently large data bursts.

After traffic classification, S-KPIs are calculated on a user
and session basis. This is performed by searching for relevant
actions in the service. For instance, web download time is
calculated as the time gap between the first Hypertext Transfer
Protocol (HTTP) GET message sent by the user and the last
HTTP response message replied by service provider. S-KPI
estimates are then combined with other KPIs obtained from
different network segments (e.g., radio or core). After time
alignment for data merging, output is included in ESRs, broken
down by user, service, radio access technology or service
provider. As a result, every ESR contains a vast amount
of subscriber and session specific data, from which end-to-
end performance can be estimated. Thus, it is possible to
pinpoint user sessions with unacceptable S-KPI values. Finally,
in order to make data more practicable, ESRs are aggregated
on a per-period basis (generally, 1-5 minutes) by keeping the
granularity indicated above.

III. ANALYTICS

The data collected by TMA can be used offline for knowl-
edge discovery by data analytics. Fig. 2 shows several inter-
related disciplines involved in this process, from the simplest
data visualization steps in Exploratory Data Analysis (EDA)
to the most sophisticated Machine Learning (ML) algorithms.
The aim here is to build models for classifying, characterizing
and predicting the performance of each individual session, for
which the most important features must be selected.

1) Classification: A model is needed to segregate sessions
per service class. In the past, this was done by analyzing
protocol messages, which is not possible anymore due
to traffic encryption. Alternatively, user sessions can be
grouped by checking traffic attributes. This can be done
by heuristic rules or automatic clustering algorithms
based on unsupervised learning (e.g., k-means) [10].

2) Regression: A model must be found to estimate S-KPIs
from TCP metrics. Such a mapping can be derived from
measurements taken with terminal agents in lab environ-
ments. Then, model construction can be performed by
classical regression techniques (e.g., generalized linear
regression) or more complex supervised learning algo-
rithms (e.g., support vector machines, neural networks
or ensemble algorithms) [11].

3) Forecasting: A model must be derived to predict QoE
trends on different time scales, so that proactive control
decisions can be taken driven by QOE criteria. This
can be done by traditional time series analysis (e.g.,
ARIMA) or regression based on supervised learning
(e.g., support vector machines, neural networks). The
latter can take advantage of historical data from similar
network elements to improve prediction accuracy.

4) Feature selection: The most significant TCP metrics for
each S-KPI must be identified. Reducing the number of
variables in the model reduces the computational load,
speeds up the learning process, improves generalization
capability and makes interpretation easier for the oper-
ator.

In these processes, statistical modeling can be used to isolate
the effect of an important variable or ensure that models are
interpretable. In contrast, ML is preferred when high-order
interactions between predictors are expected or estimation
accuracy is the main goal.

IV. VALIDATION OF A BIG-DATA DRIVEN TMA
APPLICATION

The accuracy of S-KPI estimates obtained with a TMA
application needs to be assessed. In this section, a generic
methodology to check the accuracy of S-KPI estimates with a
Terminal Agent (TA) is described.

Equipment. TAs are software applications running on com-
mercial user terminals that include a S-KPI analyzer together
with automatic procedures that mimic user interactions. TAs
have direct access to one side of the communication channel,
so they can measure end-to-end performance (and, hence, S-
KPIs) accurately.

Automation. Validation tests include data captures from both
TA and probe (i.e., user and network interface). On the one
hand, the TA automatically triggers service requests as the user
would do. In parallel, the TMA application sniffs packets at
network layer to draw estimates of the end-to-end performance
experienced by the TA. Finally, S-KPI estimates from TMA
are compared against real S-KPI values measured by the TA.

Experiments. Tests must cover a wide variety of scenarios
(i.e., most demanded services, user profiles and network
conditions, such as high/low interference, high/low spectral
efficiency, handover ...) and be repeated for a sufficiently
large time period (e.g., one day). In each loop, services have
to be tested in a sequential order.

Time alignment. A correction is needed for the time offset
between clocks in the terminal and network interfaces. For
a precise alignment, three conditions must be fulfilled. First,
service tests must be separated in time within each loop to
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Fig. 2. Taxonomy of machine learning algorithms.

clearly isolate each service request in a single ESR. Second,
every service has to be tested only once per loop. Note that
information is aggregated in ESRs, and, thus, bad service
performance in one session could be hidden with other good
performing sessions of the same service. Third, to make align-
ment easier, a preliminary and fictitious service connection,
labeled as starting test header, is established to identify the
start of periodic service tests. For this purpose, a service
with a large TCP data volume that stands out from the other
services (e.g., a File Transfer Protocol, FTP, connection) is
often selected.

Calibration. The purpose of validation is not only to assess
the quality of S-KPI estimates, but also to tune internal
parameters in the TMA application. Corrective alignment is
always needed before deploying any TMA application in a
commercial network.

An important consideration when validating a TMA appli-
cation is how S-KPIs are defined. Too often it is taken for
granted that both TA and network probe are making the same
calculations. This is not always true, which might incorrectly
lead to a non-conforming report. For instance, TA usually
considers DNS resolution time and TCP handshake when
computing web download time. However, a TMA application
is only able to identify the web browsing service once the first
HTTP message is sent, which generally takes place hundreds
of milliseconds later. Likewise, the TMA application is not
able to measure some of the processes executed in the TA
that generally depend on many factors (e.g., device model,
operative system ...) and cannot be monitored by TMA. To
quantify these differences, traffic generated by the TA can be
analyzed to check how TA computes S-KPIs. Then, possible
differences with the network probe can be corrected by adding
an offset term in the S-KPI estimation process. Another issue
is the access to dynamic web pages, including dynamic objects
(e.g., advertisements). One of those objects may be wrongly
interpreted by the TMA application as the end of the web
page. To circumvent this problem, the application can be
adjusted with a sufficiently large time gap to consider two
consecutive data bursts as different sessions. These corrective
actions increase the accuracy of measurements in most cases.

V. USE CASE OF BIG DATA ANALYTICS FOR TMA
APPLICATION

In this section, a field trial of a big-data driven TMA
application for QoE monitoring and optimization in LTE is
presented. The offline construction of S-KPI estimation and
forecasting models by ML is covered first. Then, several
QoE network performance statistics from the live network are
presented.

A. Offline stage - construction of S-KPI estimation model

Descriptive analytics can be used to unveil the relationship
between S-KPI measurements from terminal agents and TCP
metrics from probes. This process entails determining the most
significant TCP metrics for each S-KPI (feature selection) and
deriving the TCP metric-to-SKPI mapping (model construc-
tion).

Fig. 3 shows the result of automatic model construction for
one of the most important S-KPIs, namely the initial buffering
time for video streaming service. In the example, feature
selection is based on a filtering method (chi-squared test)
and model construction is based on polynomial multivariate
regression [11]. To build the model, the dataset is split into
two groups for training and testing purposes (80% for training
and 20% for testing). The x-axis represents the total number of
features (TCP metrics) used for estimating the S-KPI, whereas
the y-axis represents the mean squared error (MSE) between
S-KPI measurements and estimates for each combination
of selected features. The four lines denote different models
(polynomial degrees) to map TCP metrics into S-KPI values.
The solid circle shows the optimal combination of number
of selected features and polynomial degree, resulting in the
minimum MSE with the testing dataset (MSE = 1.18 s? for
5 features and 5th order polynomial). Moreover, results show
that the initial buffering time can also be derived accurately by
4" order polynomial regression with 5 variables (specifically,
the average RTT from terminal to probe, the average RTT from
probe to Internet, the average downlink throughput of video
session, the average downlink throughput without considering
the initial TCP slow start stage and the average video bitrate).
The resulting model is tested by using a terminal agent,
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Fig. 3. Automatic model construction for the initial buffering time in video
streaming service.

showing that the indicator ranges from O to 50 s depending
on network conditions, with a 80-th percentile absolute error
of just 0.16 s.

B. Offline stage - construction of S-KPI forecasting model

Predictive analytics can be used to foresee service perfor-
mance degradation, so that corrective actions can be imple-
mented. In our context, forecasting models may be used to
predict QoE trends on different time scales on a service basis,
so that proactive control decisions can be taken driven by QoE
criteria. To this end, we can replicate legacy approaches based
on time series analysis or apply ML algorithms to build more
robust models.

Fig. 4 shows the results of a short-term forecasting model
built with ML. The considered model predicts the average
web download time of users in a cell for the next hour based
on measurements from the previous 12 hours. To build the
model, TMA was performed for several months in a large ge-
ographical area comprising many cells of a live LTE network.
With a S-KPI model, the web download time is estimated
on a session basis, and then aggregated on a cell and hourly
basis. The resulting dataset is split into two groups for training
and testing purposes (80% and 20%, respectively). Then, a
forecasting model is derived by training a recurrent neural
network (specifically, a long short-term memory network) [11]
with the set of time series from cells in the training dataset.
Then, the forecasting model is evaluated with a week-long
time series from a randomly selected cell in the testing dataset.
For this purpose, the model is executed 7*24 times, each taking
the S-KPI value from the previous 12 hours as an input.

The figure shows real S-KPI measurements by a solid
line and predicted values by a dashed line. It is observed
that the predicted pattern is very close to the original one,
which is confirmed by the small MSE value observed in the
whole testing dataset (MSE = 0.95). Similar models can be
constructed with finer time granularity (e.g., minutes) to reduce
reaction times.
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Fig. 4. Forecast of average web download time in a cell.

C. Online stage - QoE assessment

To check the tool, TMA is performed for a whole day
in a live LTE network comprising 4828 cells. Based on
operator demand, three different services are evaluated: video
streaming, web browsing and mobile broadband, consisting of
a speed test based on a FTP download.

The following S-KPIs are analyzed on a session basis: a)
the video stalling ratio (i.e., total stall time divided by total
time spent watching a video) and the video start delay for
video streaming, b) the web page display success ratio and
the average web page response delay for web browsing, and c)
the average downlink throughput for mobile broadband. Each
S-KPI is computed per cell by aggregating all sessions of a
service in a cell.

Table I presents S-KPI values for cells in the network.
Columns 4-6 show average, 95 and 5"-percentile values of
S-KPIs computed on a cell basis to evaluate the performance
of the worst cells. Column 3 shows the minimum performance
threshold per S-KPI defined by the operator to label a cell
as conforming or non-conforming. Results in Table I show
that web browsing and mobile broadband services perform
well, with at least 74.11% of cells fulfilling minimum S-KPI
thresholds. However, video streaming shows worse results.

The previous statistics allow to identify bad service per-
formance in a cell. Then, an automatic root cause analysis
can be performed by evaluating all R-KPIs (i.e., radio access,
transport and core KPIs) stored in ESRs. This is often done
by checking performance differences against the rest of the
network at the same time period. If this is the case, the
specific issue is notified to the operator, who must take the
required corrective actions. This kind of analysis also allows
to identify bad performance from the service provider side,
avoiding unnecessary network changes. In the field trial, a
closer analysis of ESRs showed that bad user experience for
video streaming was due to a large RTT value caused by the
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delay from intra-frequency handover, as well as a high packet
loss ratio in the core network due to a service provider issue.
From this analysis, the operator was able to isolate causes due
only to its network and take corrective actions to improve the
QoE of non-conforming cells and services.

The output of a TMA application can be processed by
dashboards to graphically show the network status in terms of
QoE. Dashboards complement S-KPI statistics by including
QoE maps showing the degree of compliance by geographical
areas. For this purpose, the degree of fulfillment of S-KPI
thresholds for the three considered services is averaged per
cell. Fig. 5 shows an example of S-KPI compliance map,
where cells are represented by sectors. Every sector is repre-
sented with a different color depending on whether the target
values are satisfied, close to be satisfied or not complying at
all. In the example, the area is broken down into 3 regions
according to the average S-KPI values. Similarly, QoE maps
can be drawn by mapping S-KPI values into QoE figures with
utility functions. Such maps make it easier for the operator
to spot regions of bad end-user performance and trigger local
actions.

VI. OPEN ISSUES

The following problems must be solved for a proper QoE
monitoring in future 5G networks.

Metric calculation. To reduce computational load, some
metrics are only calculated at very specific moments during a
service session, so that the number of measurement samples
per ESR may not be enough to ensure statistical reliability. For
instance, RTT is typically estimated by the TMA application
as the time difference between TCP SYNC and SYNC-ACK
messages. These messages are only sent at the beginning of the
connection, so only one RTT value is available per connection.
Although validation can be successful (i.e., RTT values from
both TA and network probe fit), this metric may not be
relevant. For QoE management, RTT must be periodically
measured to detect network performance fluctuations. This can
only be done by checking other protocol layers.

New QoE models. User satisfaction is measured by mapping
S-KPI values to QoE measures by means of utility functions.

Such functions are derived from subjective tests with real users
in lab environments, crowd-sourced user feedback or inferred
from session times. Although a wide variety of QoE models
are already available, the introduction of new services and the
increase in customer expectations requires updating existing
ones. An example is the introduction of Dynamic Adaptive
Streaming over HTTP (DASH), for which image quality (and
not stalling ratio) is now the most important S-KPI. Likewise,
utility functions may consider contextual factors, such as
device (e.g., smartphone vs computer), location (e.g., indoor vs
outdoor) or subscription plan (e.g., normal vs premium), which
information is available on a session basis. In this context,
ML techniques can be used to keep track of the most relevant
factors.

Data encryption. In the last years, most service providers
have included encryption for privacy reasons, which makes
traffic classification much more difficult. Even if encrypted
traffic is correctly classified, protocol messages are not avail-
able, so that detection of triggering actions relevant for S-
KPI estimates has to be done by other means. One approach
consists of the use of statistical models that blindly relate
TCP metrics and S-KPIs in controlled lab environments, which
can then be used in live environments to estimate end-user
experience from TCP metrics [12].

New transport mechanisms. Most TMA tools rely on TCP,
whose flow control ensures that traffic dynamics is correlated
to end-to-end performance. This is not the case for User Data-
gram Protocol (UDP). Likewise, multiplexing several streams
in the same connection makes it very difficult to isolate the
performance of each flow. This is the case of the new Quick
UDP Internet Connection (QUIC) protocol.

Proxies. The introduction of Performance-Enhancing Prox-
ies (PEP) negatively affects the accuracy of end-to-end perfor-
mance estimations. In cellular networks, PEPs are introduced
for some services (e.g., web browsing) to cope with large
round-trip delay times by splitting TCP connections into
multiple connections [13]. Unfortunately, PEPs modify some
TCP metrics derived by network probes (e.g., RTT on the
Internet side), which makes these measurements useless for
estimating end-to-end performance.

Real time. Reactive QoE management requires: a) under-
standing how different consumer segments behave depending
on perceived QoE, b) detecting what a customer does in
near real time, c) identifying the consumer context, and d)
providing a set of measures that is truly relevant.

Network slicing. Network slicing is one of the key virtu-
alization technologies in 5G, allowing network operators to
provide dedicated virtual networks with functionality specific
to a service or customer over a common physical infrastruc-
ture. This requires storing network configuration parameters
in ESRs when service degradation occurs.

VII. CONCLUSIONS

Passive network monitoring for QoE management purposes
is gaining momentum in the industry. In this paper, a generic
methodology to validate big-data driven TMA solutions for
QoE monitoring in mobile networks has been proposed. Then,
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TABLE I
S-KPIS IN SCENARIO.

Service S-KPI Threshold | Average value | 95" percentile | 5°" percentile | No. fulfilling cells
Video streaming Video stalling ratio 4 % 2.85 % 13.34 % 848 (17.15%)
Start delay 2s 35T s 9.96 s 2450 (17.15%)
Web browsing Display success ratio 98 % 97.22 % 91.26 % 3578 (74.11%)
) Response delay 2s 0.29 s 0.64 s 4747 (98.32%)
Mobile broadband | FTP DL Throughput 5 Mbps 13.83 Mbps 2.59 Mbps 4312 (89.31%)

a real use case has been presented to show the potential of big
data analytics for automatic knowledge discovery related to
QoE. Field trials have shown how these tools can detect QoE
problems in a live LTE network effectively. The S-KPI fore-
casting models derived from analytics can then be integrated
into Self-Organizing Network (SON) platforms to proactively
change network parameters on a service basis [14][15]. Some
open issues in the development of these applications have also
been identified, which will be addressed by data scientists in
the coming years.

ACKNOWLEDGMENT
This  work  was funded by the  Spanish
Ministry of Economy and Competitiveness

(TEC2015-69982-R) and Ericsson Spain.

REFERENCES

[11 D. Soldani, S. Das, M. Hassan, J. Hassan, G. Mandyam, “Traffic
management for mobile broadband networks,” IEEE Communications
Magazine, vol. 49, no. 10, pp. 98-100, 2011.

[2] N. Baldo, L. Giupponi, J. Mangues-Bafalluy, “Big Data Empowered
Self Organized Networks,” 20th European Wireless Conference, pp. 1—
8, 2014.

[3] A.Imran, A. Zoha, A. Abu-Dayya, “Challenges in 5G: how to empower
SON with big data for enabling 5G,” IEEE Network, vol. 28, pp. 27-33,
2014.

[4] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, W. Xiang,
“Big data-driven optimization for mobile networks toward 5G,” IEEE
Network, vol. 30, no. 1, pp. 44-51, 2016.

[5] ITU-T, “Big data standardization roadmap,” International Telecommu-
nication Union, Recommendation Y.3600, 2016.

[6] F. Ricciato, “Traffic monitoring and analysis for the optimization of a
3G network,” IEEE Wireless Communications, vol. 13, no. 6, pp. 4249,
2006.

[7] A. Baer, P. Casas, A. D’Alconzo, P. Fiadino, L. Golab, M. Mellia, E.
Schikuta, “DBStream: A holistic approach to large-scale network traffic
monitoring and analysis,” Computer Networks, vol. 107, pp. 5-19, 2016.

[8] [Online]. Available: https://www.winpcap.org/ntar/draft/PCAP-
DumpFileFormat.html, [accessed on 19.1.2018]

[9] D. Sipus, “Big data analytics for communication service providers,” in

Information and Communication Technology, Electronics and Microelec-

tronics (MIPRO), IEEE 39th Int. Conv., 2016, pp. 513-517.

T. T. Nguyen, G. Armitage, “A survey of techniques for internet traffic

classification using machine learning,” IEEE Communications Surveys

& Tutorials, vol. 10, no. 4, pp. 56-76, 2008.

M. Mohammed, M. B. Khan, E. B. M. Bashier, Machine learning:

algorithms and applications. CRC Press, 2016.

P. Fiadino, P. Casas, A. D’Alconzo, M. Schiavone, A. Baer, “Grasping

Popular Applications in Cellular Networks With Big Data Analytics

Platforms,” IEEE Transactions on Network and Service Management,

vol. 13, no. 3, pp. 681-695, 2016.

X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, R. Govin-

dan, “Investigating Transparent Web Proxies in Cellular Networks,” in

Proc. 16th Int. Conf. Passive and Active Measurement (PAM 2015), J.

Mirkovic and Y. Liu, Ed., 2015, pp. 262-276.

P. V. Klaine, M. A. Imran, O. Onireti, R. D. Souza, “A Survey

of Machine Learning Techniques Applied to Self-Organizing Cellular

Networks,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,

pp. 2392-2431, 2017.

(10]

(11]
[12]

[13]

[14]

[15] T Chih-Lin, Q. Sun, Z. Liu, S. Zhang, S. Han, “The Big-Data-Driven
Intelligent Wireless Network: Architecture, Use Cases, Solutions, and
Future Trends,” IEEE Vehicular Technology Magazine, vol. 12, no. 4,
pp- 20-29, 2017.

BIOGRAPHIES

ANTONIO J. GARCIA received his M.S. degree in Telecom-
munication Engineering from the University of Mélaga, Spain,
in 2014. Since 2014, he joined the Communications Engineer-
ing Department, University of Malaga, where he is currently
working toward the Ph.D. degree in Telecommunications En-
gineering in a collaborative project with Ericsson. His research
interests are focused on planning and optimization of mobile
radio access networks based on users’ experience.

MATiAS TORIL received his M.S. and Ph.D. degrees
in Telecommunication Engineering from the University of
Mailaga, Spain, in 1995 and 2007, respectively. Since 1997, he
is Lecturer in the Communications Engineering Department,
University of Mdlaga, where he is currently Full Professor. He
has co-authored more than 100 publications in leading confer-
ences and journals and 3 patents owned by Nokia Corporation.
His current research interests include self-organizing networks,
radio resource management and data analytics.

PABLO OLIVER received his M.S. degree in Telecommuni-
cation Engineering from the University of Mdlaga, Spain, in
2013. Since 2013, he joined the Communications Engineering
Department, University of Madlaga, where he is currently
working toward the Ph.D. degree in Telecommunications En-
gineering in a collaborative project with Ericsson. His research
interests are focused on planning and optimization of mobile
radio access networks based on users’ experience.

SALVADOR LUNA received his M.S. and Ph.D. degrees
in Telecommunication Engineering from the University of
Mailaga, Spain, in 2000 and 2010, respectively. Since 2000, he
has been with the Communications Engineering Department,
University of Mdlaga, where he is currently Associate Profes-
sor. His research interests include self-optimization of mobile
radio access networks and radio resource management.

RAFAEL GARCIA received his M.S. in Telecommunication
Engineering from the University of Mdlaga, Spain, in 2004.
From 2004 to 2010 he was with Optimi in Mélaga, working
in the R&D department. In 2011, he joined Ericsson as
development leader, changing to researcher on 2013. He has
lead several research projects related to mobile networks in
the areas of capacity planning, network performance monitor-
ing and troubleshooting and user experience monitoring. His
current research interests include user experience on mobile
networks and high scale data processing.



