
Taking advantage of Sherman’s march?

Pablo Guerrero-Garćıa1 and Mat́ıas Toril-Genovés2

1Dept. Applied Mathematics, Univ. Málaga, pablito@ctima.uma.es??

2Dept. Communications Engineering, Univ. Málaga, mtoril@ic.uma.es

Abstract. During the simulation of a mobile telecommunications sys-
tem, a sequence of systems of linear equations must be solved. In this
sequence, the coefficient matrix of the (k + 1)th system is of order one
greater than that of the kth, and the former is constructed by enlarging
the latter with a new column and a new row. All matrices involved are
strictly diagonally dominant, but the condition number suffers a heavy
worsening as k increases. In this lecture we show that taking advantage
of this diagonal dominance property is crucial to be able to obtain as
much as a 30% improvement on average in the CPU time to complete
the whole process in Matlab v7.5.

Key words: LU decomposition, updating, leading principal submatrix,
Sherman’s march, strictly diagonally dominant.

1 Four naive approaches using Matlab

The problem at hand can be formulated as follows. Given a strictly diagonally
dominant matrix A ∈ Rn×n, let us denote by Ak , A(1: k, 1: k) its leading
principal submatrix of order k ∈ 1:n. Given a right-hand-side vector b ∈ Rn, let
us denote by bk the subvector with the k uppermost components. The aim is to
solve the systems of linear equations Akxk = bk for each k ∈ 1:n.

The very first idea would be to ignore the sequential feature of these systems
and hence solve them all by direct backslashing in Matlab:

for k = 1:n
x = A(1:k,1:k)\b(1:k);

end

Alternatively, we can also use a factorization: in Matlab we have both the
LU and the QR decomposition available, the latter being slower but also an
interesting choice when we must deal with condition numbers of O(107), say.
Therefore, pivoting for numerical stability seems to be a priori necessary in the
LU decomposition,
? Technical Report MA-10/01 (http://www.matap.uma.es/investigacion/tr.html),

Dept. Applied Mathematics, Univ. Málaga, 29th January 2010. Lecture to be given
at 11th ACDCA Summer Academy conference of the Technology and its Integration
into Mathematics Education (TIME 2010) international symposium to be held at
Málaga (Spain) in July 2010.

?? Corresponding author.



2 P. Guerrero-Garćıa and M. Toril-Genovés

for k = 1:n
[Lk,Uk,pk] = lu(A(1:k,1:k),’vector’); temp = b(1:k);
x = Uk\(Lk\temp(pk));

end

However, updating this pivoted factorization is no longer efficient. On the other
hand, the QR decomposition can either be recomputed

for k = 1:n
[Qk,Rk] = qr(A(1:k,1:k));
x = Rk\(b(1:k)’*Qk)’;

end

or it can easily be updated by using qrinsert:

Qk = 1; Rk = A(1,1);
for k = 1:n-1
[Qk,Rk] = qrinsert(Qk,Rk,k+1,A(1:k,k+1),’col’);
[Qk,Rk] = qrinsert(Qk,Rk,k+1,A(k+1,1:k+1),’row’);
x = Rk\(b(1:k)’*Qk)’;

end

Note that both codes avoid transposing the orthogonal factor to economize in
memory allocation and access. To sum up, we have four choices so far:

BS. Direct backslashing with Ak.
LU. Recompute the LU decomposition with pivoting PkAk = LkUk.
QR. Recompute the QR decomposition Ak = QkRk.
UP. Update the QR decomposition Ak = QkRk knowing Ak−1 = Qk−1Rk−1.

2 Updating the LU decomposition without pivoting

Let us show how a fifth approach can be obtained. Assume that the LU decom-
position Ak = LkUk is known. The LU decomposition of Ak+1 can be computed
by noting that:

Ak+1 ,

[
Ak A(1: k, k + 1)

A(k + 1, 1: k) A(k + 1, k + 1)

]
=

[
Lk O
vT

k 1

] [
Uk uk

OT dk

]
.

Equating blocks we get:

Lkuk = A(1: k, k + 1), vT
k Uk = A(k + 1, 1: k), vT

k uk + dk = A(k + 1, k + 1),

and hence, using superindex −T to denote the inverse of the transpose,

uk = L−1
k A(1: k, k+1), vk = U−T

k A(k+1, 1: k)T , dk = A(k+1, k+1)−vT
k uk.

This procedure, which was named Sherman’s march by Stewart [4, p. 169] in
reference to a procession proceeding to the southeast from Tennessee to Georgia,
can be implemented efficiently in Matlab as follows:



Taking advantage of Sherman’s march 3

Lk = 1; Uk = A(1,1);
for k = 1:n-1
uk = Lk\A(1:k,k+1); vkt = A(k+1,1:k)/Uk; dk = A(k+1,k+1)-vkt*uk;
Lk = [Lk zeros(k,1); vkt 1]; Uk = [Uk uk; zeros(1,k) dk];

end

Note that our code avoids transposing the upper triangular factor to economize
in memory allocation and access. The main drawback of this procedure is that it
does not allow pivoting to be taken into account (and maybe this is the reason
why it is not even described in most numerical analysis textbooks), but notice
that matrix A in our case is strictly diagonally dominant by rows and hence it
is well-known [2, p. 399] that Gaussian elimination can be performed without
pivoting in a numerically stable way (i.e., no growth of round-off errors) for this
class of matrices!

In other words, taking advantage of the diagonal dominance property has
been crucial to obtain this fifth approach:

SH. Update the LU decomposition without pivoting Ak = LkUk knowing Ak−1 =
Lk−1Uk−1.

However, the code seems to be quite complex when compared with that of re-
computed LU or that of direct backslashing. Now a natural question arises: does
it lead to a significant reduction in the CPU time, while maintaining a good
numerical quality of the obtained approximate solutions?

3 Preliminary numerical experiments

To compare the five approaches developed in the previous sections, we must check
both the CPU time needed to complete the whole process and the numerical
quality of the approximate solutions x̂k obtained for each k. The latter can be
accomplished with a measurement of the backward error, as the rule of thumb
“forward error . backward error × condition number” indicates: the forward
error measures the (absolute or relative) distance between exact and computed
solutions, the backward error measures the stability of the method, and the
condition number measures the stability of the problem. This is the reason why
a suitable scale-independent measurement is Wilkinson’s relative residual [3, p.
12], which is a normwise relative backward error defined as

‖bk −Akx̂k‖2

‖Ak‖2 ‖x̂k‖2
.

As it is well-known, the lesser its backward error, the better an approximate solu-
tion computed by a given method is. We have used the Frobenius norm ‖Ak‖F ,√∑

i,j∈1:k |aij |2 rather than the 2-norm ‖Ak‖2 ,
√

maxi∈1:k |λi(AT
k Ak)| for our

experiments not to take a long time.
The comparison was done in Matlab v7.5 with an Intel Pentium 4, 2.8 Ghz,

768 Mb RAM under Windows XP. The right-hand-side vector b ∈ Rn has been



4 P. Guerrero-Garćıa and M. Toril-Genovés

randomly generated from a standard normal distribution. We have considered
two real-world matrices (taken from the simulator) with n = 1020 and n = 1200,
and both have been checked to be strictly diagonally dominant by rows. These
values of n seem to be quite representative of the real situations that our solvers
are going to deal with. Instead of starting from A1, we have started from Ak0

with k0 = 21 in the former case and k0 = 201 in the latter case, in order to
perform 999 iterations for both examples. The left side of figure 1 shows the
relative residuals for the n = 1020 example, whereas the right side shows those
for the n = 1200 example; lower graphs in this figure limit the greatest relative
residuals to 5·10−19 and discard the first 100 iterations to show a cleaner zoom-in
window for both examples.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−18 Relative residuals

 

 
LU
QR
BS
UP
SH

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−18 Relative residuals

 

 
LU
QR
BS
UP
SH

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−19 Relative residuals for k0+k≥ 100

 

 
LU
QR
BS
UP
SH

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−19 Relative residuals for k0+k≥ 100

 

 
LU
QR
BS
UP
SH

Fig. 1. Relative residuals

The backward residuals obtained in all situations were pretty small, always
less than 3 ·10−18 and with no significant differences among the five approaches.
Hence we can conclude that the five approaches allow us to obtain approximate
solutions that can be regarded as very satisfactory from a numerical analysis



Taking advantage of Sherman’s march 5

point of view in spite of the progressive ill-conditioning (measured with the
condition number ‖Ak‖F ‖A−1

k ‖F using the Frobenius norm to be consistent
with the relative residuals) of the leading principal submatrices displayed in the
upper graphs of figure 2. As above, the left side corresponds to the n = 1020
example and the right side to the n = 1200 example.

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14
x 10

6Worsening of condition number of leading principal submatrices

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9
x 10

6Worsening of condition number of leading principal submatrices

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
CPU times

 

 
LU
QR
BS
UP
SH

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
CPU times

 

 
LU
QR
BS
UP
SH

Fig. 2. Condition numbers and CPU times

Regarding the CPU times (shown in the lower graphs of figure 2), it is clear
that QR is the worst approach and SH is the best one as k increases. Although
BS and LU are slightly better than UP, these three approaches seem to get
asymptotically closer as k increases (this effect is cleaner in the n = 1200 ex-
ample). Total CPU times for the whole processes in the n = 1020 example, for
which SH needed 58.71 seconds, were as follows:

– LU needed 86.47 seconds (x1.5 slower than SH, could be improved a 32%)
– QR needed 310.28 seconds (x5.3 slower than SH, could be improved a 81%)
– BS needed 95.69 seconds (x1.6 slower than SH, could be improved a 39%)



6 P. Guerrero-Garćıa and M. Toril-Genovés

– UP needed 139.78 seconds (x2.4 slower than SH, could be improved a 58%)

and those in the n = 1200 example, for which SH needed 111.02 seconds, were
as follows:

– LU needed 153.47 seconds (x1.4 slower than SH, could be improved a 28%)
– QR needed 571.10 seconds (x5.1 slower than SH, could be improved a 81%)
– BS needed 163.44 seconds (x1.5 slower than SH, could be improved a 32%)
– UP needed 216.35 seconds (x1.9 slower than SH, could be improved a 49%)

4 Conclusion

Professor Acton’s celebrated history (dated sixty years ago) on being asked to
invert a matrix that turned out to be an orthogonal one [1, p. 246] teach us to look
carefully to the properties of the matrices being involved in every engineering
problem. We have been faced with another instance of this cautionary tale in
which not taking advantage of the diagonal dominance property of the matrices
involved would have prevented us to obtain as much as a 30% improvement on
average in the time required to complete the whole process!

Acknowledgements

This work has been supported by the Spanish Ministry of Science and Innovation
(grant TEC2009-13413).

References

1. Forman S. Acton. Numerical Methods That Work. The Mathematical Association
of America, Washington (DC, USA), 1990.

2. Richard L. Burden and J. Douglas Faires. Numerical Analysis, 8th edition. Inter-
national Thomson Publishing, Belmont (CA, USA), 2005.

3. Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, 2nd edition.
SIAM Publications, Philadelphia (PA, USA), 2002.

4. Gilbert W. Stewart. Matrix Algorithms I: Basic Decompositions. SIAM Publica-
tions, Philadelphia (PA, USA), 1998.


