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On the Convexity of the System Loss Function 
 Sebastian de la Torre, Member, IEEE and Francisco D. Galiana, Fellow, IEEE 

  
Abstract— We show that the system loss function in a power 

network is bounded below by any number of supporting hyper-
planes in the space of generalized injections. A supporting hyper-
plane is defined by the linear Taylor series expansion of the 
system loss function around a given operating point. The 
supporting hyper-plane property is valid provided that the 
expansion point is sufficiently near the flat-voltage profile (FVP).  
We have assessed experimentally the range of validity of this 
assumption, called the range of hyper-plane support (RHS), 
showing that for typical networks, the RHS is broad, particularly 
when the bus voltages are controlled near 1 per unit. The 
supporting hyper-plane model was also tested as part of an 
economic dispatch with transmission losses to demonstrate that 
this linear model provides the same results as when the losses are 
treated as a non-linear function. 
 

Index Terms—System loss, load flow, linear loss 
approximation, supporting hyper-planes, convexity, loss 
formulae. 

I.  NOMENCLATURE 
Definition: Flat Voltage Profile (FVP) is the operating 
condition under which all complex bus voltages are equal to 
some arbitrary level, fvp fvpe jf+  in rectangular coordinates or 

fvp fvpV ∠δ  in polar coordinates, where ( )cosfvp fvp fvpe V= δ  and 

( )sinfvp fvp fvpf V= δ . Without loss of generality, we assume 

that bus N is the reference with  or, equivalently, with 
. This then implies that  and that 

0Nδ =
0Nf = 0fvpδ = 0fvpf = . 

Parameters: 
N Number of network buses; 
n Number of load flow equations and unknowns = 2N-1; 
G  Real part of the network admittance matrix; 

'G  Sub-matrix of G without the N-th row and column;  
L Block diagonal matrix formed with G and ; 'G
B Imaginary part of the network admittance matrix; 
Bser Component of B due to line series admittances; 
Bsh Component of B due to shunt admittances; 
1  Vector of 1’s of dimension N; 
0  Vector or matrix of 0’s; 

i1  N-dimensional vector of 0’s with 1 at position i;  

                                                           
This work was supported by the Natural Sciences and Engineering 

Research Council (NSERC), Canada, by the Fonds nature et technologies, 
Quebec, and by the European Union project FEDER-CICYT 1FD97-0545 and 
grant FPU-AP99 of the Ministerio de Educación, Cultura y Deporte of Spain.  

F. D. Galiana is with the Department of Electrical and Computing 
Engineering at McGill University, Montreal, Québec, Canada. 

S. de la Torre, was with the E.T.S.I. Industriales, Universidad de Castilla-
La Mancha, Ciudad Real, Spain, and is currently with the E.T.S.I. 
Telecomunicaiones, Universidad de Malaga, Spain 

Their e-mails are: galiana@ece.mcgill.ca and storre@uma.es.  
 

iΩ  Set of nodes connected to node i. 
Variables: 
V  Vector of complex nodal voltages; 
e Real part of V ; 
f Imaginary part of V ; 

'f  f excluding the reference bus N; 
2V  Vector of magnitudes squared of V ; 

V Vector of magnitudes of V ; 
δ  Vector of phase angles of V  excluding the reference 

bus N; 
x  n-dimensional vector of rectangular coordinate voltage 

components, 
'

⎡ ⎤
⎢ ⎥
⎣ ⎦

e
f

; 

fvpx  Value of x under FVP; 

fvpe 1  Real part of  under FVP; x
Pi Real power injection at bus i; 
Qi Reactive power injection at bus i; 
P Vector of real power injections at all N buses; 

'P  P excluding the slack bus; 
Q Vector of reactive power injections at all N buses; 

PS  Set of buses with specified real power injection; i.e., all 
buses except for the slack. 

QS  Set of buses with specified reactive power injection; 

VS   Set of buses where the voltage magnitude is specified; 
z Vector of generalized injections of dimension n 

comprised of all i PP S∈ , all  and all ; iQ S∈ Q
2

i VV S∈

z(x) Function of x characterizing the generalized injections; 
lossP  System loss; 

( )lossP x Function of x characterizing the system loss. 

II.  INTRODUCTION 
N problems such as unit commitment, resource 

scheduling, or network expansion, the power network is 
often modeled in an approximate manner or is altogether 
neglected. This is done in order to reduce the number of 
variables and the overall computational complexity, but also 
to make the problem linear thereby permitting the use of 
powerful mixed integer linear programming tools [1]. Today, 
such tools can reliably solve problems with very large 
numbers of constraints and variables, both integer and 
continuous, while non-linear mixed-integer programming 
tools are still unreliable and with limited applications.  

The simplest network models completely ignore the 
transmission loss and describe the network as a single node. 
The next level of complexity models the system transmission 
loss, Ploss, in the power balance equation as an approximate 
explicit polynomial function of the generation levels, Pg, 
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Loss approximation formulae were extensively studied as 
early as the 1960’s, beginning with the B-coefficients 
approach [2] in which the system loss function was expressed 
as a constant coefficient quadratic function of the power 
generation levels, Pg.  In the early 1980’s, taking advantage of 
specific analytic properties of the load flow equations in 
rectangular coordinates [3], more exact explicit loss 
approximation formulae up to third order were derived based 
on Taylor series expansions of Ploss in terms of z around a 
specified load flow operating point [4].  A similar result to [4] 
was published recently with applications to voltage stability 
[5]. Other authors have examined explicit loss approximations 
based on polynomials in the generation levels [6, 7].  

It is also possible to model the loss of every transmission 
line in a power network by a quadratic approximation of the 
corresponding line phase angle difference.  This leads to a 
variation of the DC load flow model of the form,  

 
[ ]'

( )
=

= +

− ≤ ≤
f f

f f f

P B δ
P B δ q δ

P P P
 (2) 

which includes the line power flows, , their limits fP fP ,  and 
the approximation of the individual line real transmission 
losses, , [8, 9].  )(δq

Notwithstanding the availability of the above mentioned 
loss approximation formulae, when solving problems that do 
not involve integer decisions, such as an optimal power flow, 
in our experience it is questionable whether such 
approximations offer any significant advantage over a non-
linear optimization method that accounts for the full non-
linear load flow model.  

In problems involving integer decisions, such as unit 
commitment, one disadvantage of the more accurate quadratic 
or higher order loss approximation formulae is that in order to 
make use of mixed-integer linear programming solvers, it is 
necessary to further decompose each non-linear term into 
piece-wise linear components. This step requires the 
introduction of new continuous and possibly integer variables, 
therefore adding to the overall modeling and computational 
complexity. On the other hand, the use of linear loss 
approximation formulae, although readily compatible with 
mixed-integer linear programming tools, is subject to greater 
approximation inaccuracies. One drawback of all loss 
approximation formulae, whether linear or higher order, is that 
the errors introduced by the approximation in comparison with 
the exact loss model cannot be easily quantified or estimated.   

The main contribution of this paper is a theoretical result 
that had been previously hypothesized [10], but not rigorously 
proven or tested, namely to demonstrate that, under certain 
relatively weak assumptions, the non-linear system loss 
function, Ploss, is convex in the generalized power flow 
injections, z. As such, a first order Taylor series expansion can 
be shown to define a lower bound approximation of the 

system loss linear in z, known as a supporting hyper-plane. 
Such representations are not approximations in the usual 
linearization sense, since they also constitute a lower bound 
on the non-linear loss function.  

This property leads to two important results: (i) As each 
such inequality is a necessary condition, new hyper-planes can 
be added without invalidating the existing ones; (ii) The error 
between the non-linear function and the describing supporting 
hyper-planes is greater than or equal to zero. Thus, the non-
linear system loss behaviour can be approached with arbitrary 
accuracy by increasing the number of linear necessary 
conditions. It is also important to note that the linearized loss 
model based on the well-known incremental transmission loss 
(ITL) coefficients is a special case of a supporting hyper-
plane. 

Another contribution of this paper is to quantify the range 
of validity of the convexity property of the loss function inside 
of which the system losses can be modeled by a set of linear 
inequalities. Numerical results on systems up to 118 buses 
suggest that the convexity property is valid over a wide range 
of operating conditions, including typical operating points. 

The system loss bounding theorem has also been applied to 
solve a lossy economic dispatch problem to illustrate the 
accuracy of the hyper-plane approximation. 

III.  SYSTEM LOSS FUNCTION SUPPORTING HYPER-PLANES  

A.  Non-Linear Load Flow Model 
In load flow models the decision variables and governing 

equations are as follows, 
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B.  Generalized Load Flow Injections  

The vector of generalized load flow injections, , is 
defined by the set of ,  and  of equation (3). As 
shown in Appendix A, Result 12, the relation between z and x 
is denoted by, 

nℜ∈z

iP iQ 2
iV

  1( ) ( )
2

= ≡z z x J x x  (4) 

C.  System Loss Sensitivity Vector 
The system loss sensitivity vector around a given operating 

point , denoted by 0x β , is defined by the sensitivities of the 
system loss with respect to the generalized load flow 
injections, z, that is, 
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where we have used the definitions of z(x) in equation (4) and 
of Ploss(x) in Result 5 of Appendix A. 

Note that the well-known incremental transmission loss 
(ITL) coefficients are the components of β  corresponding to 
the real power injections. 
 The sensitivity vector, β , characterizes the first order 
Taylor series expansion of the loss function around the 
operating point , that is, 0x
 ( )0 0( ) ( )T

loss lossP P= + −x β z z x + ε

0

 (6) 
where the quantity ε  represents the error in this linear loss 
approximation due to higher order terms. One of the 
properties of the rectangular load flow formulation derived in 
Appendix B is that,  
 0( ) ( )T

lossP =x β z x  (7) 
which when substituted into (6) reduces the first order 
expansion of the system loss to, 
  (8) T

lossP = +β z ε

Appendix B also shows that when  is sufficiently near 
the FVP, the approximation error ε  is non-negative for any 
feasible z, that is, for any z for which there exists a 
corresponding load flow solution, x. These results allow us to 
formally enunciate the following theorem. 

0x

D.  System Loss Bounding Theorem 

Given any operating point  sufficiently near a flat-
voltage-profile such that the load flow Jacobian matrix, 

, is non-singular, then, for any feasible vector of 
generalized load flow injections, z, the corresponding system 
loss satisfies, 

0x

0( )J x

 
  T

lossP ≥ β z   (9)
 
The proof of this theorem is detailed in Appendix B. 

E.  Corollary to the System Loss Bounding Theorem 
Under the conditions of the system loss bounding theorem, 

for any feasible z not collinear with , 0( )z x

 T
lossP > β z   (10) 

while for any feasible z collinear with , 0( )z x

 T
lossP = β z   (11) 

The proof of this corollary follows directly from Result 9 in 
Appendix A. 

The above linear equation (11) defines what is called a 
supporting hyper-plane of the unknown non-linear loss 
function. 

Since power systems normally operate relatively near the 
FVP, the proximity condition requiring that the expansion 
point  be sufficiently near the FVP is generally not a severe 
limitation. Experimental evidence presented in the results 
section backs up this statement. 

0x

F.  Linear System Loss Model Based on Supporting Hyper-
Planes 

Since (9) is a necessary condition, any number of 
supporting hyper-planes based on different expansion points 

 can be merged into a more restrictive constraint set. Let 
 be a set of 

0x
SH ' sβ  of which each element corresponds to a 
supporting hyper-plane of the system loss function. Then, the 
power balance equation with losses can be approximated by 
the following linear model, 

  (12) 

SH;P

PP

T
loss

loss

N

1i
i

∈∀≥

=∑
=

βzβ
In addition, operational constraints such as 

 can easily be added to the model while still 
retaining its linear nature. 

maxmin
iii PPP ≤≤

IV.  NUMERICAL RESULTS 
All quantities in this section are in per unit except for the 

bus voltage phase angles which are in degrees. 

A.  Examples of Supporting and Non-Supporting Hyper-
planes 

Consider a 5-bus network with the following line data, 
 

TABLE I: TEST NETWORK LINE DATA; 100MVA, 100KV BASES. 
 

From 
Bus 

To 
Bus 

Series 
R 

Series 
X 

Shunt 
B 

1 2 0.042 0.168 0.030 
2 3 0.031 0.126 0.020 
3 5 0.053 0.210 0.015 
3 4 0.084 0.336 0.012 
4 5 0.063 0.252 0.011 
5 1 0.031 0.126 0.010 

 
The FVP condition in polar coordinates is given by 

[ ]T0,0,0,0=δ  and [ ]T1,1,1,1,1=V , where the reference angle 
is 0(5) =δ . In terms of generalized load flow injections, the 

FVP is described by and [ ]' 0,0,0,0 T=P [ ]T1,1,1,1,12 =V .  
Tables II, III and IV below describe the supporting hyper-

plane corresponding to a specified operating point expressed 
in polar coordinates. The symbols Pβ  and Vβ  in these tables 
denote respectively the components of β  corresponding to the 
generalized injections,  and . 'P 2V
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TABLE II: EXAMPLE  A: SUPPORTING HYPER-PLANE. 5-BUS SYSTEM 
Node 0δ  0( ')P  βP  

1 2.7 1.88 -.001 
2 -12.5 -6.80 -0.184 
3 43.1 12.40 0.411 
4 1.3 -1.60 0.030 

 
TABLE III: EXAMPLE  A: SUPPORTING HYPER-PLANE. 5-BUS SYSTEM 

Node 0V  0 2( )V  βV  
1 1 1 -0.205 
2 1 1 -0.532 
3 1 1 -2.645 
4 1 1 -0.099 
5 1 1 -0.140 

 
TABLE IV: EXAMPLE  A: SUPPORTING HYPER-PLANE. 5-BUS SYSTEM 

Eigenvalue 
Number 

)(Liλ  ))(( βHL−λ i  

1 0 0 
2 0.861 0.914 
3 1.685 1.801 
4 1.686 1.806 
5 2.935 3.307 
6 3.491 3.888 
7 4.440 5.081 
8 5.752 7.705 
9 6.634 8.169 

 
In this case, the expansion point, , shown in Table II, 

expressed in polar coordinates, has phase angles that are not 
all close to zero, one of them being equal to 43 degrees. This 
suggests that the requirement that the expansion point be 
sufficiently near the FVP is not very stringent. Moreover, as 
called for by the theory, Table IV shows that the eigenvalues 
of L are all positive but one. Note, in addition, that the 
eigenvalues of the error matrix, 

0x

( )−L H β , are all close to 
those of L, and that the zero eigenvalue of L remains at zero 
for the error matrix. 

Table V, VI and VII show an example of an operating point 
that does not correspond to a supporting hyper-plane. Here, 
two of the eigenvalues of [ ( )−L H β ] are negative. A linear 
expansion about this operating point would therefore not be a 
lower bound for the system loss over all z.  Note that in this 
non-supporting case, the expansion point is relatively far from 
the FVP as evidenced from the values of the phase angles. 

 
TABLE V: EXAMPLE B: NON-SUPPORTING HYPER-PLANE. 5-BUS SYSTEM 

Node 0δ  0( ')P  βP  
1 -56.6 -9.72 -1.706 
2 28.7 1.91 1.649 
3 76.8 13.19 1.161 
4 40.8 1.16 0.663 

 

TABLE VI: EXAMPLE B: NON-SUPPORTING HYPER-PLANE. 5-BUS SYSTEM 
Node 0V  0 2( )V  βV  

1 1 1 -7.918 
2 1 1 -9.730 
3 1 1 -1.835 
4 1 1 -1.191 
5 1 1 -7.222 

 
TABLE VII: EXAMPLE B: NON-SUPPORTING HYPER-PLANE. 5-BUS SYSTEM 

Eigenvalue 
Number 

)(Liλ  ))(( βHL−λ i  

1 0 -0.404 
2 0.861 -0.402 
3 1.685 0 
4 1.686 1.724 
5 2.935 2.225 
6 3.491 3.238 
7 4.440 11.162 
8 5.752 22.740 
9 6.634 25.444 

 
A network with data based on the IEEE-118-bus test system 

with all bus voltages held at 1 per unit is considered now. Due 
to the large data set, only some values are provided. Table 
VIII shows the operating point in polar coordinates, the 
generalized injections, and the values of β  at two buses. 
Table IX shows a subset consisting of the smallest and largest 
eigenvalues of L and of the error matrix, all of which are 
positive except for one which is zero. 

 
TABLE VIII: EXAMPLE C: SUPPORTING HYPER-PLANE. 118-BUS SYSTEM 

Node 0V  )( 0xz  β  

104 o22941 .−∠  
104

2
104

0.975

1

P

V

= −

=
 

104

104

0.0633
0.1442

P

V

β
β

−

−

= −
=

 

109 1 4.461∠ o  
109
2

109

4.423

1

P

V

=

=
 109

109

0.0487
0.679

P

V

β
β

−

−

=
= −

 

 
TABLE IX: EXAMPLE C: SUPPORTING HYPER-PLANE. 118-BUS SYSTEM 

)(Liλ  ))(( βHL−λ i  
0.0000 
0.0571 
0.1905 

. 
194.50 
387.72 
387.72 

0.0000 
0.0567 
0.1924 

. 
186.18 
386.67 
386.67 

 

B.  Continuity and Range of Hyper-plane Support 
The range of hyper-plane support (RHS) describes the set of 

expansion points  for which the convexity property (9) is 
valid. Formally, the RHS is a set of  defined by,  

0x
0x
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Since the load flow Jacobian, , is non-singular when 

 is at or near , the RHS is a set that includes  and 

extends continuously outward from in all directions. Its 

boundaries are reached when  satisfies either of: (i) 
 becomes indefinite; (ii)  becomes singular. 

Next, some experimental tests to estimate the “size” of the 
RHS are conducted. 

)( 0xJ
0x fvpx fvpx

fvpx
0x

)(βHL− )( 0xJ

C.  Numerical Estimates of the Range of Hyper-plane Support 
In order to quantify the RHS, a neighborhood around the 

FVP condition is defined, 
 ilineji ji,δδδ Ω;max ∈∀∀≤−  (14) 

This condition limits the angle differences across all lines. 
Table X shows the results of various experiments on the 5-bus 
network for different values of , each based on 10,000 

values of the expansion point, , picked uniformly randomly 
within the set defined by (14). As Table X shows, the range of 
existence of loss supporting hyper-planes is quite broad, 
encompassing bus angles between  degrees and line angle 
differences up to 76.5 degrees; the latter value being the most 
significant. Outside the region of support, a small but non-
zero percentage of the randomly generated hyper-planes does 
not support the loss function. Moreover, the farther from that 
range that a hyper-plane lies, the higher the chances that it is 
non-supporting. 

max
lineδ

0x

90±

 
TABLE X: RANGE OF HYPER-PLANE SUPPORT. 5-BUS SYSTEM 

Ratio of Non-supporting to Supporting 
hyper-planes 

max
lineδ  

0/10,000 76.5 º 
31/10,000 81º 

202/10,000 90 º 
 
The results for the 118-bus network with 1000 randomly 

generated expansion points are shown in Table XI. 
 

TABLE XI: RANGE OF HYPER-PLANE SUPPORT. 118-BUS SYSTEM 
Ratio of Non-supporting to Supporting 

hyper-planes 
max
lineδ  

0/1,000 68.04 º 
7/1,000 70 º 

73/1,000 80 º 
 
These results indicate that if the absolute line angle 

differences are less than 68.04º, then, the corresponding 
hyper-plane is likely to be supporting. Note that experiments 
indicate that the range of hyper-plane support remains 
essentially unaffected if the bus voltages are kept within plus 
or minus 5% of nominal. 

V.  APPLICATION: ECONOMIC DISPATCH WITH LOSSES 
The general theory presented in this paper is suitable for use 

in many different practical problems where losses are an 
important issue; examples being unit commitment, economic-
dispatch and hydro-thermal coordination. Note however that 
the supporting hyper-plane approach is not intended to be 
used to solve problems with constraints on dependent 
variables such as line flows, load bus voltage magnitudes, or 
reactive generation levels. Such problems should be solved 
with an optimal power flow 

For the sake of illustration, the proposed general theory is 
tested solving a lossy economic dispatch problem; the system 
used is the previously presented 118-bus power system; with 
49 generating buses, 58 load buses and 179 lines.  

A.  Solving the economic dispatch. 
Note that the economic dispatch problem, when modeled 

with supporting hyper-planes, consists of the objective 
function, the bounds for the generation, one inequality 
constraint per hyper-plane and an additional equality 
constraint stating that the summation of generation must equal 
the summation of demand plus losses; thus, no explicit 
account for the network is needed. The lossy economic 
dispatch may be solved exactly using hyper-planes as follows 
(Algorithm 1): 

Step 0. Initialize a working set of hyper-planes with the 
trivial inequality constraint, that is, . 0≥lossP

Step 1. Solve the economic-dispatch problem using the 
working set of hyper-planes for the generator outputs.  

Step 2. Solve a power flow problem whose input data are 
the generation levels of all units from Step 1, except for the 
slack. The solution provides the values of  and of the 
phase angles of all buses. 

slackP

Step 3. With the data obtained in Step 2 compute vector β  
using (5). This vector defines a new hyper-plane. 

Step 4. If the difference between the values obtained for 
 in steps 1 and 2 is under a certain threshold, STOP; 

otherwise, add the hyper-plane derived in Step 3 to the set of 
working hyper-planes and return to Step 1. 

slackP

An alternative algorithm that is better suited for on-line 
operation is now presented (Algorithm 2): 

Step 1: Compute a good1 set of hyper-planes off-line. 
Step 2: When on-line, for any actual value of the vector of 

demands, solve an economic dispatch using the inequality 
constraints obtained in Step 1.  

B.  Estimating the error of the method 
It is clear that in Algorithm 2, the number of hyper-planes 

calculated off-line, NH, is the most important parameter in 
determining the cost error. Thus, a procedure is now presented 
for estimating the minimum cost error in terms of the number 
of hyper-planes used to solve a lossy economic dispatch, 
error(NH). (Algorithm 3):  
                                                           

1 The concept of “good” depends on the precision desired; the more hyper-
planes considered in Step 0, the more accurate the solution of Step 1. 



 6

Step 0: Using any suitable algorithm, such as Algorithm 1 
above, solve for the exact solution of a large number2, NT , of 
lossy economic dispatch problems with different demand 
levels, and calculate for each of them the optimal cost: 

. T0 N1)( ...:nnCost
Step 1: Compute NH supporting hyper-planes for a set of 

NH operating conditions different from those found in Step 0. 
Step 2: Solve each of the NT problems from Step 0 using 

only the NH inequality constraints from Step 1 using 
Algorithm 2 to obtain the approximate costs 

.  Comparing these costs with the optimal 
costs that were obtained in Step 0, compute the corresponding 
errors. Define  

T1 1...N)( :nnCost

)()()( 10 nCostnCostn −=ε 3 as the error 
obtained when trying to approximate the n-th problem with 
NH hyper-planes. Define the maximum of these errors as an 
estimate of the maximum total error that will be obtained 
whenever NH hyper-planes are used to solve the economic 
dispatch problem with Algorithm 2. 

In Algorithm 3, note that NH is the number of hyper-planes 
used to create a model. Also, note that NT is the number of 
problems used to assess the accuracy of that model; the exact 
solution for those NT problems is calculated in Step 0. 

Figure 1 shows the maximum total cost error as a 
percentage of the exact non-linear cost in terms of the number 
of hyper-planes used in Algorithm 2. Note that there are four 
plots in Figure 1 for two different values of NT (100 and 400) 
and two different values of w (20% and 30%). Parameter w 
indicates how near to the base-case demand were the NH 
random demands. For instance, w=30% means that, the 
randomly generated demand values lie inside an interval of 
±30% around their original value. 
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Figure 1. Cost error as a function of the number of hyper-planes used in 
Algorithm 2 

 
Note that the effect of adding or removing hyper-planes as 

illustrated by Figure 1 of the paper is not very significant on 
the optimum dispatch cost, for example, as few as 10 hyper-
planes give an error of around 0.03%. 

                                                           
2 A suitable minimum number for the IEEE 118-bus system will be 100. 
3 This will always be a positive number, because the supporting hyper-

planes are lower bounds of the actual function. 

VI.  CONCLUSIONS 
We have shown that the system loss function in a power 

network is bounded below by any number of supporting 
hyper-planes in the space of generalized injections. A 
supporting hyper-plane is defined by the linear Taylor series 
expansion of the system loss function with respect to the 
generalized injections around a given operating point. This 
supporting hyper-plane property is valid over a continuous 
range of expansion points provided that these are sufficiently 
near the flat-voltage profile (FVP).  The required degree of 
proximity between an operating point defining a supporting 
hyper-plane and the FVP, called the range of hyper-plane 
support (RHS), was assessed experimentally. For typical 
networks, the RHS was found not to be very restrictive, 
particularly for networks where the bus voltages are closely 
controlled near 1 per unit.  

The supporting hyper-plane model was also tested as part of 
an economic dispatch with transmission losses to demonstrate 
that this linear model provides the same results as when the 
losses are treated as a non-linear function. 

Future research should look at integrating the supporting 
hyper-plane model into problems such as unit commitment 
with transmission losses. The system loss bounding theorem 
should also be examined with networks containing FACTS 
devices or phase-shifting transformers. In addition, it would 
be interesting to extend these results to load flow models with 
distributed slack generation. 

VII.  APPENDIX A 
For completeness, most of the relevant properties of the 

load flow equations in rectangular coordinates are presented 
and proven in this appendix. For these and other interesting 
properties of the quadratic formulation of the load flow 
problem, see also [11], [12] and [13]. 

For all the results that follow, we make the realistic 
assumption that all transmission lines have non-zero series 
resistance and zero shunt conductance.  

 Result 1: The system loss in a power transmission network 
is positive or zero. 
 Proof: This is self-evident from energy conservation and the 
fact that the transmission network is a passive RLC network. 

 Result 2: The system loss is zero if and only if all the series 
branch currents are zero. 
 Proof: Let ser ijI −  be the series current magnitude of the line 
connecting buses i  and j  with non-zero resistance Rij. The 
corresponding transmission loss component, 2

ser ij ijI R− , is then 
zero if and only if the series current magnitude is zero. Under 
the assumption that the shunt branches are lossless, the system 
loss will also be zero if and only if all the series branch 
currents are zero. 

 Result 3: All the series branch currents are zero if and only 
if the complex bus voltages at all buses are equal. 
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 Proof: The series branch current through the line connecting 
buses  and i j  with non-zero series impedance, Rij+jXij , is 

i j
ser ij

ij ij

V V
I

R jX−

−
=

+
, which is zero if and only if i jV V= .  

 Result 4: The system loss is zero if and only if the network 
operates at FVP. 
Proof: This follows directly from the definition of FVP, 
Results 2 and 3, and the zero shunt conductance assumption. 

Result 5: In rectangular coordinates of the complex bus 
voltages, the system loss can be expressed by the following 
pure quadratic form,  

 1 ( )
2loss lossP = ≡Tx Lx xP

⎤
⎥

 (A1) 

where, 

  (A2) 2
'

⎡
= ⎢

⎣ ⎦

G 0
L

0 G
Proof: Expressing the complex node voltages in rectangular 

coordinates, feV j+= , the total real power consumed by the 
network, which defines the system losses, is given by, 

 { }
( ) ( ) ( ){ }

* *

1 1 1

*

*

N N N

loss i i ij j
i i j

T

T

P P VY V

j j j

= = =

⎧ ⎫
= = ℜ ⎨ ⎬

⎩ ⎭

= ℜ ⎡ ⎤⎣ ⎦

= ℜ + + +⎡ ⎤⎣ ⎦

∑ ∑∑

V YV

e f G B e f

'

/ 2

/ 2

 (A3) 

If G is symmetric, then  

  (A4) 
( )' '

T T
loss

TT

P = +

= +

e Ge f Gf

e Ge f G f
However, if G is not symmetric, as may occur in networks 

with phase-shifting transformers, then in equation (A4), G 
gets replaced, without loss of generality by the symmetric 
matrix . This is necessary since, if G is not 
symmetric, its eigenvalues are not related to those of 

. The latter is always a symmetric matrix whose 
eigenvalues are real and non-negative. We therefore assume 
throughout this appendix that G is symmetric. 

( )T+G G

( )T+G G

Recall from the Nomenclature that, without loss of 
generality, fN is here set to zero, thus obtaining the second 
form in equation (A4).  

Result 6: The symmetric matrix G is positive semi-definite. 
Proof: From Result 1,  for all f and e. In particular, 

by letting , it follows from equation (A2) in Result 5 that 
 for any e , which defines G as positive semi-

definite. From matrix theory, the positive semi-definite 
condition also implies that all the eigenvalues of G are real 
and non-negative. 

0≥lossP
0=f
0T

lossP = ≥e Ge

Result 7:  The conductance matrix G has one and only one 
zero eigenvalue with eigenvector  where  is an 
arbitrary constant. The remaining N-1 eigenvalues must 
therefore be real and positive. 

1e fvpe= fvpe

Proof: To prove that G has one non-zero eigenvalue, let the 
network operate at FVP, that is, fvpe=V 1  . From Result 3, all 
branch currents must be null, which implies that the 
component of the net bus current injections due to branch 
currents must also be null, in other words, 
  ( )ser ser fvpj e= +Y V G B 1 0=  (A5) 

where ser serj= +Y G B  is the component of the network 
admittance matrix due to series elements. Note that the shunt 
current vector components, ( )sh shj=Y V B V  is not zero at 
FVP but under the assumption of zero shunt conductances this 
component does not contribute to the system loss. Condition 
(A5) that the series current injections are null under FVP 
implies that ( ) 01G =fvpe , which proves that G has a zero 
eigenvalue whose eigenvector is . 1fvpe

In order to prove that G has only one zero eigenvalue, 
suppose that there exists another non-zero vector  
satisfying the zero eigenvalue condition, , and not of 
the FVP form 

Nℜ∈ê
0êG =

fvpe 1 . Since ˆ=V e  is a vector of voltages that 
does not correspond to the FVP, according to Result 4, the 
system loss must be strictly positive, that is, . A 
contradiction then arises since (A4) states that 

0>lossP

ˆ ˆ 0T
lossP = =e Ge . Consequently, there cannot exist a vector e  

with the above property and the only possible eigenvector 
corresponding to the zero eigenvalue is . 

ˆ

1fvpe

Result 8: The symmetric matrix  is positive definite. 'G
Proof: From Result 6, G is positive semi-definite. Thus for 

all f, . Moreover, from Result 7, 0T ≥f Gf 0T =f Gf  for non-
zero f only if f  is proportional to 1. Now, if fN = 0, 

. However, with f( ') ' 'T T Gf=f G f f N = 0, it is impossible for f 
to be proportional to 1. Thus, with fN = 0, 
( ') ' ' 0T T= >f G f f Gf  for all  except for the trivial case 
when 

'f
' =f 0 , which is the condition for positive definiteness 

of . 'G

Result 9: The matrix L defined in Result 5 is positive semi-
definite with a single zero eigenvalue, whose eigenvector 
corresponds to the FVP. 

Proof: From the properties of block-diagonal matrices, the 
set of eigenvalues of  L is the union of the respective sets of 
eigenvalues of G and . As proven in Results 7 and 8, the 
combined eigenvalues of these two matrices are all positive 
except for one which is zero whose eigenvector corresponds 
to the FVP. 

'G

Result 10: The vectors of real and reactive power 
injections, P and Q, as well as the vector of bus voltage 
magnitudes, , are quadratic functions of the real and 
imaginary complex voltage components, . 

2V
x

Proof: The vector of complex power injections is, 
 { } { }{ }** VYVIVQPS diagdiagj ==+=  (A6) 

which in rectangular form becomes, 
 { } ( )( ){ *feBGfeS jjjdiag +++= }  (A7) 
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Separating S  into its real and imaginary parts, P and Q, gives 
the following quadratic equations in , x

  (A8) 
{ }( ) { }( )
{ }( ) { }( )BeGfeBfGefQ

BeGffBfGeeP
+−−=
++−=

diagdiag
diagdiag

Similarly, since , the vector of voltage 
magnitudes squared can also be expressed as a quadratic in x,  

2 2
i iV e f= + 2

i

 { } { }2 diag diag= +V e e f f  (A9) 

Result 11: Any scalar linear combination of elements of 

 and  can be expressed in the form ,P Q 2V
1
2

Tx Hx  where H 

is a real symmetric matrix dependent only on the network 
parameters. 

Proof: From the definition of the N-dimensional vector 1i 
in the Nomenclature and from equation (A8) in Result 10 the 
real power injection at bus i is expressed as, 

{ }( ) { }( )
{ }( ) { }( )

( )

( )

T
i i

T
i

T T
i i

P

diag diag

diag diag

=

= − + +⎡ ⎤⎣
= − +⎡ ⎤ ⎡⎣ ⎦ ⎣

1 P

1 e Ge Bf f Gf Be

e 1 Ge Bf f 1 Gf Be
⎦

+ ⎤⎦

T
i

i

 (A10)  

Defining now the symmetric matrix, 

{ } { } { } { }
{ } { } { } { }

ˆ P
i

T
i i i

T T
i i i

diag diag diag diag
diag diag diag diag

=

⎡ ⎤+ − +
⎢ ⎥− + +⎣ ⎦

H

1 G G 1 1 B B 1
B 1 1 B 1 G G 1

 (A11) 

it follows from (A10) that  can be expressed as, iP

 1 ˆ
2

T
P

i iP ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

e
H

f f
e

 (A12) 

Now, defining P
iH  as ˆ P

iH  without the N-th row and column,  

 1
2

T P
iP = x H xi  (A13) 

Similarly, for the reactive power injections we obtain, 

 1
2

T Q
iQ = x H xi  (A14) 

where  is found by removing the N-th row and column 
from, 

Q
iH

{ } { } { } { }
{ } { } { } { }

ˆ
T T

i i iQ
i T T

i i i

diag diag diag diag
diag diag diag diag

⎡ ⎤− − − +
= ⎢ ⎥− + − −⎣ ⎦

1 B B 1 1 G G 1
H

G 1 1 G 1 B B 1
i

i

  (A15) 
Finally, for bus voltage magnitudes squared we obtain, 

 2 1
2

T V
iV = x H xi  (A16) 

where  is found by removing the N-th column and row 
from, 

V
iH

 
{ }

{ }
ˆ 2 iV

i
i

diag
diag

⎡ ⎤
= ⎢

⎣ ⎦

1 0
H

0 1 ⎥  (A17) 

Now, from equations (A13), (A14) and (A16), it follows 
that any individual generalized power flow injection, , can 
therefore be expressed as a pure quadratic of the form, 

iz

 [ ]1
2

T
iz = x H xi  (A18) 

Thus, 

 
1

1 ( )
2

n
T

i i
i

z
=

α =∑ x H α x  (A19) 

where we defined, 

  (A20) 
1

( )
n

i i
i=

= α∑H α H

Result 12: The load flow problem with n specified 
generalized injections, zi; i=1,…,n , can be expressed as a set 
of equations of the form, 

 1 ( )
2

=z J x x

⎥
⎥

  (A21) 

where  is an n by n matrix defined by, ( )J x

  (A22) 

T
1

T
n

( )
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

x H
J x

x H
M

Proof: This result follows immediately from equation 
(A19) in Result 11.  

Result 13: The matrix J(x) is the Jacobian matrix of the 
load flow equations in rectangular coordinates.  

Proof: The load flow Jacobian matrix is defined as the 
sensitivity of z with respect to x, which from equations (A21) 
and (A22) in Result 12 gives, 

 

T
1

T
T 1

n

T
n

1
2

( )

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥∂ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥∂ ⎢ ⎥⎣ ⎦⎣ ⎦= = ⎢ ⎥∂ ∂ ⎢ ⎥⎣ ⎦

x H x

x Hx H xz J x
x x

x H

M

M =  (A23) 

Result 14: The Jacobian matrix J(x) is linear in x. 
Proof: This result follows directly from (A23). 

Result 15: For any ∆x , . T T∆ = ∆α J( x) x H(α)
Proof: From Result 11, 

 

n n
T T T

i i i i
i 1 i 1

T
1

T T

T
n

( )

( )

= =

⎡ ⎤ ⎡ ⎤∆ = ∆ α = α ∆⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤∆
⎢ ⎥= = ∆⎢ ⎥
⎢ ⎥∆⎣ ⎦

∑ ∑x H α x H x H

x H
α α J x

x H
M

 (A24) 

VIII.  APPENDIX B: PROOF OF SYSTEM LOSS BOUNDING 
THEOREM 

As shown in Result 5 of Appendix A, the system loss 
function can be written as a pure quadratic form in , x

 1
2lossP = Tx Lx   (B1) 

Furthermore, from Result 9 in Appendix A, L has only one 
zero eigenvalue whose corresponding eigenvector is the flat 
voltage profile. 

We examine now the behavior of the load flow equations 
and the system loss function in terms of deviations from an 
arbitrary operating point, , so that .  Recalling 
the expression for the load flow equations in Result 12 and the 
fact that the load flow Jacobian matrix is linear in x from 

0x 0= +x x ∆x
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Result 14, we have, 

  
xxJxxJxxJ

xxxxJz

)∆(∆
2
1)∆())((

2
1

)∆)(∆(
2
1

000

00

++=

++=
 (B2) 

Similarly, the system loss equation (B1) can be rewritten as, 

 xLxxLxLxx ∆∆+∆+= TTT
lossP

2
1)()(

2
1 000  (B3) 

Since the load flow Jacobian at the operating point, , is 
non-singular, from (B2), 

0x

 [ ] ⎟
⎠
⎞

⎜
⎝
⎛ −−=∆

−
))(∆(∆

2
1))((

2
1)( 0010 xxJxxJzxJx  (B4) 

Substituting (B4) into the linear term of (B3) gives, 

[ ]

[ ]

[ ] [ ] xLxxxJzxJLx

xxJxxJzxJLx

xLxLxx

∆∆
2
1)∆)(∆(

2
1)()(

)∆)(∆(
2
1))((

2
1)()(

∆∆
2
1)(

2
1

100

00100

00

TT

T

TT
lossP

+⎟
⎠

⎞
⎜
⎝

⎛ −=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −−+

+=

−

−
(B5) 

From the definition of β  in (5), and taking its transpose, the 
exact system loss equation in (B5) can now be expressed as, 

[ ]

[ ]

1 1( )( )
2 2

1 1( )( )
2 2

TT
loss

TT T

P ⎛ ⎞= − ∆ ∆ + ∆ ∆⎜ ⎟
⎝ ⎠

= − ∆ ∆ + ∆ ∆

β z J x x x L

β z β J x x x L x

x
 (B6) 

Now, using Result 15 with α  taking the particular value of β , 
it follows from (B6) that, 

  [ ] [ ]1
2

T
lossP = + ∆ − ∆Tβ z x L H(β) x  (B7) 

Comparing (B7) with (8), we see that the approximation 
error, , is given by the quadratic form, ε

 [ ] [ ]1 ( )
2

ε = ∆ − ∆Tx L H β x  (B8) 

To complete the proof of the System Loss Bounding 
Theorem, we now show that if  lies sufficiently near a 
FVP, the real symmetric matrix  is positive semi-

definite. This will imply that for all , 
 or equivalently that for all  and z 

satisfying respectively (B1) and (4), 

0x
)(βHL−

nℜ∈x∆
[ ] 0∆)(∆ ≥− xβHLxT

lossP

   (B9) zβT
lossP ≥

To prove that  is positive semi-definite first recall 

from Result 9 that . Thus, if , then 

. Similarly, given that the load flow Jacobian 

is non-singular at , then  

. Now, from equation (A20) in Result 11, 

if 

)(βHL−

0=fvpLx fvpxx ≅0

00 =≅ fvpLxLx
0x [ ] ≅=

− 010 )( LxxJβ
10( ) fvp

−
⎡ ⎤ =⎣ ⎦J x Lx 0

0β ≅  then 0βH ≅)( . 
Since L and ( )−L H β  are arbitrarily close real symmetric 

matrices, their respective sets of eigenvalues are real and 
arbitrarily close. From Result 9, the eigenvalues of L are 
strictly positive except for ( ) 0nλ =L . This means that all the 
eigenvalues of ( )−L H β  are guaranteed to be positive except 
possibly ( (n ))λ −L H β  which although arbitrarily close to 

( ) 0nλ =L , may have shifted to a negative value.  
To discard this option, recall from equation (5) and from 

Result 15 in Appendix A that, 

 [ ] 000 )()( xβHβxJLx ==
T

 (B10) 
Then, 

 [ ] 0( ) 0− =L H β x  (B11) 
This implies that ( )−L H β  still has a zero eigenvalue with 

eigenvector  and therefore that  . This 
proves that 

0x ( ( ))nλ − =L H β 0
)(βHL−  is positive semi-definite and concludes 

the proof of the system loss bounding theorem. 
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