
�

Ver 2.1 November 2002 www.analog.com/microconverter

 I2C is a Registered Trademark of Philips Semiconductors Inc
 MicroConverter is a Registered Trademark of Analog Devices Inc

MicroConverter Technical Note uC001
MicroConverter I2C Compatible Interface

1.0 INTRODUCTION

This Technical Note describes the hardware slave and software master implementation of an I2C (inter
integrated circuit) compatible interface using the MicroConverter. This technical Note also contains
example code showing how a master and a slave can communicate with each other using the
MicroConverter I2C compatible interface.

The main features of the I2C bus are:

• Only two bus lines are required; a serial data line (SDATA) and a serial clock line (SCLOCK).

Both of these lines are bi-directional meaning that both the master and the slave can operate as
transmitters or as receivers.

• An I2C master can communicate with multiple slave devices. Because each slave device has a

unique 7-bit address then single master/slave relationships can exist at all times even in a multi slave
environment.

• Software master can output data at approx 140 kbit/s using a 12MHz clock. Hardware slave can

receive clocks (and data) at above 400 kbit/s.

• On-Chip filtering rejects <50ns spikes on the SDATA and the SCLOCK lines to preserve data

integrity.

A typical block diagram of an I2C interface is shown in figure 1 below.

ADuC812
(Master)

ADuC812
(Slave 1)

26

27 27

26SCLOCK

SDATA

5V

Pull-up
resistor

Pull-up
resistor

SCLOCK

SDATA

ADuC812
(Slave 2)

SDATA

26

27

SCLOCK

Figure 1. Single Master Multi Slave I2C Block Diagram

Ver 2.1 November 2002 Page 2 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

1.1 I2C INTERFACE OVERVIEW

I2C is a two-wire serial communication system developed by Philips, which allows multiple masters and
multiple slaves to be connected via two wires (SCLOCK and SDATA). In an I2C interface there must
be at least a single master and a single slave.

The SCLOCK signal controls the data transfer between master and slave. The SCLOCK signal is
always transmitted from the Master to the Slave. (The slave however does have the ability to pull this
line low if it is not ready for the next transmission to begin. This is called ‘Clock Stretching’ (see section
1.7)). One clock pulse must be generated for each data bit transferred.

The SDATA signal is used to transmit or receive data. The SDATA input must be stable during the
HIGH period of SCLOCK. A transition of the SDATA line while SCLOCK is high will be seen as a
START or STOP condition (fig 2a & 2b).

Note: For the ADuC812 pull-up resistors are needed on both the SCLOCK and the SDATA lines.
However for the ADuC814/ADuC816/ADuC824/ADuC83x weak pull-ups are implemented in
hardware.

1.2 I2C COMPLETE DATA TRANSFER SEQUENCE

START CONDITION
A typical data transfer sequence for an I2C interface starts with the START condition. The START
condition is simply a HIGH to LOW transition in the SDATA line while the SCLOCK line is pulled
HIGH (figure 2a). The master is always responsible for generating the START condition.
Note: The START (and STOP) conditions are the only time that the SDATA line should change

during a high period of the SCLOCK line. During normal data transfer (including Slave
addressing) the data on the SDATA line must be stable during the HIGH period of the
SCLOCK line.

Start

SDATA

SCLOCK

Stop

SDATA

SCLOCK

Figure 2a: Start Condition for I2C Figure 2b: Stop condition for I2C

SLAVE ADDRESS
After the start condition the master sends a byte (MSB first) on the SDATA line (along with eight
SCLOCK pulses). The first seven bits of this byte is the 7-bit Slave Address. The slave will only
respond to the master if this 7-bit address matches the unique address of the slave device (see section
1.3). The eighth bit (LSB) is the R/� status bit. The R/� status bit determines the direction of the
message. If this bit is clear then the master will write data to a selected slave. If this bit is set then the
master expects to receive data from the slave.

Ver 2.1 November 2002 Page 3 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

If the slave receives the correct address then the slave returns a valid ACK (more below), pulls the
SCLOCK line low and sets the I2CI interrupt bit (generating an interrupt if configured correctly). The
SCLOCK line is pulled low so that the master knows that the slave is not ready to receive the next byte
yet. Clearing the I2CI bit will release the SCLOCK line.

ACKNOWLEDGE (ACK) / NO ACKNOWLEDGE (NACK)
If the slave address matches the address sent by the master then the slave will automatically send an
Acknowledge (ACK), otherwise it will send a No Acknowledge (NACK). An ACK is seen as a LOW
level on the SDATA line on the 9th clock pulse. An NACK is seen as a HIGH level on the SDATA
line on the 9th clock pulse (see figure 3).

Clock pulse for acknowledge

Master Clock

Data output by
Transmitter

Data output by
Receiver

Transmitter releases SDATA

8 9

LSB

7

DATA

Receiver pulls SDATA low for ACK

SDATA floats (high) for NACK

Figure 3. Acknowledge (ACK) and a no Acknowledge (NACK) on the I2C bus

During data transfer the ACK or the NACK is always generated by the receiver. However the clock
pulse required for the ACK is always generated by the Master. The transmitter must release the
SDATA line (high) during the ACK clock pulse. For an ACK the receiver must pull the SDATA line
low for a valid ACK.

If the MicroConverter is configured in slave mode then, both the ACK and the NACK are
automatically generated in hardware, at the end of each byte in the reception. If the MicroConverter is
configured in Master mode then, the users software must implement the ACK at the end of each byte
in the reception.

If a master receives a NACK from a slave-receiver (either the slave did not respond to the slave address
or the data transmitted) then the master should generate the STOP condition (more below) to abort
the transfer.

A master-receiver must signal the end of a data sequence to the slave-transmitter by generating an no
acknowledge (NACK) after the last byte that was sent by the slave. Once the slave receives the NACK
it releases the SDATA line to allow the master to generate the STOP condition.

DATA TRANSFER
In the I2C ISR (or in a polled implementation) the slave will decide whether or not to transmit or
receive depending on status of the R/� bit sent by the master. The slave will then either transmit or
receive a bit on each clock sent by the master. It is up to the master to provide the 9 clocks (8 for the
data and 1 for the ACK) for the slave to transmit/receive data to/from the master. The I2CI bit will be
set every time a valid data byte has been transmitted/received by the slave.

Ver 2.1 November 2002 Page 4 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

Note again that in a slave-transmitter, master-receiver system the master must signal the end of a data
sequence to the slave by sending a NACK after the last byte transmitted by the slave. Once the slave
receives the NACK it releases the SDATA line to allow the master to generate the STOP condition.

STOP CONDITION
The data transfer sequence is terminated by the STOP condition. A STOP condition is defined by a
LOW to HIGH transition on the SDATA line while SCLOCK is HIGH (figure 2b).

The STOP condition is always generated by the master. The master will send the STOP condition once
the master is satisfied that the data sequence is over or if it receives a NACK from the slave device. The
reception of the STOP condition resets the slave device into waiting for the slave address again.

A typical transfer sequence is shown in figure 4.

1 2 7 8 9 1 8 9
ACK ACK

SCLOCK

2-73-6

MSB LSB

DATA

Start
 bit

Stop
 bit

SDATA

R/W
MSB LSB

bit bit

Figure 4. Typical I2C transfer sequence

1.3 SLAVE 7-BIT ADDRESSING

The master sends the 7-bit slave address as the 7 MSBs of the first transmitted data byte after a
START condition. (The eighth bit is the R/� status bit). The slave compares only the 7 upper bits to
its own address. To make a complete byte, the slave adds a zero to the MSB position. The result of this
completion is compared to the slave address register I2CADD.

While the slave does all the manipulation of the I2C slave addressing as described above automatically
in hardware it is up to the master to output the slave address appropriately.

e.g. To select a slave device with slave address 44h (I2CADD for slave device = 44h) the master must
transmit the byte 88h (master-transmitter, slave-receiver) or 89h (master-receiver, slave-transmitter)
after the START condition.

This is because the 7-bit address is mapped as the seven MSBs for the master. The LSB is either high
or low depending on whether or not the master expects to transmit or receive data after communication
with the slave device has been established. Once the slave manipulates this data the 7 MSBs of the
master appear as the 7 LSBs for the slave address with a zero put in the MSB position. This is shown in
figure 5 below.

Ver 2.1 November 2002 Page 5 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

 1 0 0 0 1 0 0
1

0
Step 1 : The master sends the address
 88H or 89H (depending on the
 mode of operation).

 1 0 0 0 1 0 0
1

0
Step 2 : The slave takes the

 7-upper bits.

 0 1 0 0 0 1 0 0 Step 3 : The slave builds the address
 by adding a 0.

The slave puts a 0 into the MSB position.
Therefore the Master has addressed the
Slave with address 44h

Figure 5: 7-bit Slave Address Procedure

1.4 I2C IMPLEMENTATION ON THE MICROCONVERTER

This section describes the I2C implementation on the MicroConverter. The MicroConverter provides
both hardware slave and software master operating modes. Three SFRs are used to control the I2C
interface :

I2CADD : Holds the 7-bit address of the MicroConverter device (default value = 55H).

Note: This SFR is only used in slave mode. See section 1.3 as regards addressing the
slave.

I2CDAT : In slave-receiver mode the received data from the SDATA line is latched into this SFR.
Hence after a successful reception the received data can be read from this SFR. E.g.

MOV A, I2CDAT
reads the received data into the accumulator.

In slave transmitter mode a write to this SFR will make the data available for transmission
on the SDATA line under control of the master. E.g.

MOV I2CDAT, #60h
writes 60h out the SDATA line when clocked by the master.

Note: For the ADuC814/ADuC816/ADuC824/ADuC83x a write or a read of the I2CDAT SFR
automatically clears the I2CI interrupt flag. Clearing this flag for a second time will cause
the I2C controller to get ‘lost’. For the ADuC812 the I2CI interrupt flag must be cleared
in software.

Ver 2.1 November 2002 Page 6 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

I2CCON : Holds configuration/ control bits for master/slave mode of operation as defined in table 1.

Bit
Mneumonic

Description

MDO

Software Master Data Out Bit (MASTER ONLY)
This bit is used to implement a master I2C interface transmitter in
software. Data written to this bit will be outputted on the SDATA pin if
the data output enable (MDE) is set.

MDE

Software Master Data Out Enable Bit (MASTER ONLY)
This bit is used to implement a master I2C interface in software. Setting
this bit enables the SDATA pin as an output (TX). Clearing the bit
enables SDATA as an input (RX).

MCO

Software Master Clock Out Bit (MASTER ONLY)
This clock out bit is used to implement a master I2C interface in software.
Data written to MCO will be outputted on the SCLOCK pin.

MDI

Software Master Data In Bit (MASTER ONLY)
This bit is used to implement a master I2C receiver interface in software.
The data on the SDATA pin is latched in here on SCLOCK if data
output enable (MDE) is clear.

I2CM

I2C Mode Bit
Setting this bit enables software master mode, clearing this bit enables
hadware slave mode.

I2CRS

I2C Serial Port Reset (SLAVE ONLY)
Setting this bit will cause a reset of the I2C interface.

I2CTX

I2C Transmission Direction Status (SLAVE ONLY)
This bit indicates the direction of transfer. The bit is set if the master is
reading from the slave. The bit is cleared if the master is writing data to
the slave. This bit is automatically loaded with the R/� bit after the slave
address and start condition.

I2CI

I2C Interrupt Flag (SLAVE ONLY)
This is the interrupt flag for the I2C serial port. This bit is set after a byte
has been transmitted or received. It must be cleared in software. See
section 1.8 to see how this is done.

Table 1: Bit Definition of I2CCON

Ver 2.1 November 2002 Page 7 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

1.5 SOFTWARE MASTER MODE IMPLEMENTATION

The MicroConverter acts an I2C software master. The user must program the MicroConverter to ‘bit
bang’ the SDATA and SCLOCK lines. Master mode is selected by setting the I2CM bit in the
I2CCON register.

To transmit data on the SDATA line, the MDE bit must first be set to enable the output driver on the
SDATA pin. The MDO bit in the I2CCON register is the Data Out bit. The output driver on the
SDATA pin will either pull the SDATA line high or low depending on whether the MDO bit is set or
cleared.

The MCO bit in the I2CCON register is the Clock output bit. The output driver on the SCLOCK pin
is always enabled in master mode and will either pull the SCLOCK line high or low depending on the
whether the bit MCO is set or cleared.

Note: On the ADuC812 there is no pull-up on the SDATA/SCLOCK output driver hence the user

must implement external pull-ups to pull this line high. For the ADuC812S/ ADuC816/
ADuC824 weak pull-ups exist so the user does not have to pull these lines high.

To receive data, the MDE bit must be cleared to disable the output driver on SDATA. Software is used
to toggle the MCO bit (send out a clock pulse) and read the status of the SDATA line via the MDI bit.
The MDI bit is set if SDATA is high and cleared if SDATA is low (provided MDE is cleared).

Software must control the MDO, MCO and MDE bits appropriately to generate the START
condition, slave address, acknowledge bits, data bytes and STOP conditions appropriately. The data is
latched into MDI on a rising edge SCLOCK only if MDE is cleared. Use the functions in the master
code example (I2Cmstr.asm) for the various functions to generate the various transmit and receive
signals.

Note:

• It is not possible to read the status of the SDATA line (MDI bit) unless MDE is low (unless it is
tied to another port pin).

• It is not possible to read back the status of the SCLOCK line (unless it is tied to another port
pin).

• Since the Master is a software master on the MicroConverter I2C interrupts will not take place.

1.6 HARDWARE SLAVE MODE IMPLEMENTATION

The MicroConverter implements a hardware slave. The part defaults into I2C slave mode. I2C mode (as
apposed to SPI mode) is activated by clearing the SPE bit in the SPICON SFR (SPE=0 by default).
The I2C address is stored in the I2CADD register. Data received or to be transmitted is stored in the
I2CDAT register.

Slave mode is selected by clearing the I2CM bit in the I2CCON register. The default state for the I2C
slave is waiting for a START condition. The MicroConverter will set the I2CI bit when it has detected
a valid start condition followed by a valid address followed by the R/� bit (i.e. I2CI is set 8 bits after
the start condition if the address is correct).

Ver 2.1 November 2002 Page 8 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

The I2C peripheral will not generate a core interrupt unless the user has pre-configured the I2C
interrupt enable bit in the IE2/IEIP2 SFR as well as the global interrupt bit EA in the IE SFR. i.e.

; Enabling I2C Interrupts for theADuC812
MOV IE2,#01h ; enable I2C interrupt
SETB EA

; Enabling I2C Interrupts for the ADuC812S/ADuC816/ADuC824
MOV IEIP2,#01h ; enable I2C interrupt
SETB EA

Note: On the ADuC812 it is very important that the I2CI bit be cleared only once per interrupt. If for
any reason the user tries to clear I2CI more than once then the I2C controller will get ‘lost’.

CLR I2CI ; clear interrupt bit for ADuC812

On the ADuC812S/ADuC816/ADuC824 : An auto-clear of the I2CI bit is implemented so this
bit is cleared automatically on a read or write access to the I2CDAT SFR.

MOV I2CDAT, A ; I2CI cleared by transmission (812S/816/824)
MOV A, I2CDAT ; I2CI cleared by reception (812S/816/824)

Again if for any reason the user tries to clear the interrupt more than once i.e. access the data
SFR more than once per interrupt then the I2C controller will get lost.

The user can choose to poll I2CI bit or enable the interrupt. In the case of the interrupt the PC counter
will vector to 003BH at the end of each complete byte. For the first byte when the user gets to the I2CI
ISR the 7-bit address and the R/� bit will be in the I2CDAT SFR i.e. the byte just received.

The I2CTX bit contains the R/� bit sent from the master. If I2CTX is set, the slave will transmit data
by writing to the I2CDAT register. If I2CTX is cleared, the slave will receive a serial byte into the
I2CDAT register. Software can interrogate the state of I2CTX to determine whether is should write to
or read from I2CDAT.

The slave will hold SCLOCK low until the I2CI bit is cleared by software. This is “clock stretching” as
described in section 1.7. Stretching the SCLOCK basically ensures that the master does not transmit
the next data until the slave is ready.

The I2CI interrupt bit will be set every time a complete data byte is received or transmitted provided it
is followed by a valid ACK. If the byte is followed by a NACK an interrupt is NOT generated. The
MicroConverter will continue to issue interrupts for each complete data byte transferred until a STOP
condition is received or the interface is reset.

Note: There is no way to distinguish between an interrupt generated by a received START + valid
address and an interrupt generated by a received data byte. To differentiate between the two
interrupts the user will have to keep track of the communication sequence. (perhaps set/clear a
flag as appropriate)

When a STOP condition is received, the interface will reset to a state where it is waiting to be addressed
(idle). Similarly, if the interface receives a NACK at the end of a sequence it also returns to the default
idle state. The I2CRS bit can be used to reset the I2C interface. This bit can be used to force the
interface back to the default idle state.

Ver 2.1 November 2002 Page 9 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

1.7 I2C FEATURES NOT IMPLEMENTED ON THE MICROCONVERTER

SLAVE MODE:

• The MicroConverter (slave) will not respond to the General Call Address (0000 000).

• The repeated START allows the master to address another slave (or change the direction of data

transfer) without issuing the STOP condition. The data transfer continues as if the repeated
START is a new START condition. The MicroConverter does accept a repeated START
condition. However the only way for the user to distinguish the repeated start condition from data
that has been transmitted is by monitoring the R/� bit. This bit will only change if the repeated
START condition changes the direction of data transfer. Thus a user can only distinguish a
repeated START if it changes the direction of data transfer.

In general on the MicroConverter the STOP condition must be sent to the SLAVE to end the
communication with a single slave. After the STOP condition has been sent a new START
condition can be sent to initiate the new communication.

• The MicroConverter cannot support the ‘Start Byte’ in slave mode. This can be implemented in

software in master mode however.

• The MicroConverter does not support 10-bit addressing.

MASTER MODE:

CLOCK STRETCHING
• Clock stretching is used when interfacing a fast master to a slow slave. When the slave receives a

valid address or valid data byte it automatically pulls the SCLOCK line low. Once the I2CI bit has
been cleared in software the slave releases the SCLOCK line. To implement clock stretching
correctly the master must be able to read the status of the SCLOCK line and delay sending out new
data until the slave has released SCLOCK.
On the MicroConverter the master cannot read back the SCLOCK line via the I2C interface. To
read back the SCLOCK line the SCLOCK line must be connected to a digital input (any port pin)
and read back the state of the SCLOCK line to see if the slave has released this line or not.

ARBITRATION
• In multi-master applications it is necessary to be careful that two masters do not try and write data

on the bus at the same time. For this reason Arbitration is used to monitor the SDATA line.
Arbitration is said to take place on the SDATA line while the SCLOCK line is high, in such a way
that the master which transmits a high level, while another master transmits a low will switch off its
data output stage and wait until the bus is free.
For arbitration, it is necessary to read SDATA while driving it in order to compare bits sent by
master with the actual state of the SDATA line. On the MicroConverter the master cannot read
back the SDATA line via the I2C interface. To read back the SDATA line the SDATA line must be
connected to a digital input (any port pin) on the master.

Ver 2.1 November 2002 Page 10 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

1.8 DIFFERENCES BETWEEN MICROCONVERTER I2C IMPLEMENTATIONS

ADUC812

• No pull-ups on the SDATA/SCLOCK output drivers.

• I2CI must be cleared in software using the CLR I2CI instruction (only clear once)

• The I2C interrupt enable bit (ESI) and I2C interrupt priority bit (PSI) are in the IE2 SFR (SFR

address A9h) and the IP SFR (SFR address B8h) respectively.

ADUC814/ADUC816/ADUC824/ADUC83X

• Weak pull-ups (approx 20µA) on the SDATA/SCLOCK output drivers. These pull-ups are only

switched in when I2C mode is selected. For SPI mode these pull-ups are switched off. For a system
with many slaves external pull-ups might be necessary.

• The I2CI interrupt bit is automatically cleared once a read or a write of the I2CDAT SFR is

executed in software. Clearing this bit again will cause the I2C controller to ‘get lost’ hence it
should be ensured that this bit is only ever cleared once per interrupt.

• The I2C interrupt enable bit (ESI) and I2C interrupt priority bit (PSI) are both in the IEIP2 SFR

(SFR address A9h) at IEIP2.0 and IEIP2.4 respectively

Ver 2.1 November 2002 Page 11 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

2.0 I2C MASTER OPERATION CODE EXAMPLE

This note describes the master program I2Cmstr.asm. This program should be used in conjunction with
the slave program I2Cslave.asm on two separate evaluation boards to show the I2C communication
between the master and the slave on the MicroConverter. This example code (I2Cmstr.asm)
demonstrates how the I2C interface on the MicroConverter can be programmed in master mode.

The master program sends the START condition, the slave address, and the R/� bit (set to initiate a
master-reception) to the slave. It then receives a single byte from the slave and sends back a NACK and
the STOP condition. The NACK indicates to the slave that the master has received the last byte to be
transmitted by the slave. It then sends the START condition, slave address and R/� bit (cleared to
indicate a transmission) to the slave again. This time the master transmits a byte to the slave. After the
transmission of the byte it examines the ACK and sends the STOP condition. The master then
transmits the received byte up the UART to the PC where it can be viewed using hyperterminal. The
master program jumps back to the start and receives a character from the slave again.

If a character is received from the UART (by pressing the keyboard), then the master sends out the
ASCII value associated with that character to the slave device. By pressing the INT0 button on the
evaluation board the data being outputted by the master to the slave will increment.

Flow charts are shown for the overall master program (figure 6). The subroutines RCVDATA and
SENDDATA are shown in figures 7a and 7b respectively.

PROGRAM VARIABLES

SLAVEADD: Slaveadd holds the address of the slave that you wish to address. In this case we want to
address the slave with the address 44h, this means that the master must send 88h (or
89h) as explained in section 1.3.

OUTPUT: Output holds the value to be transmitted to the slave, this is initialized to 0h.

INPUT: Input is the value received from the slave. This value is sent out the UART.

NOACK: This is set if a NACK is received when an ACK is expected.

ERR: The ERR flag is set if the NOACK is set anywhere in the program and allows the
NOACK flag to be cleared in the software. If the ERR flag is set at the end of the
program an error message is sent out the UART.

DESCRIPTION OF CODE

The following description of the code I2Cmstr.asm should be read in conjunction with the main
flowchart in figure 6 and also the two separate flowcharts for RCVDATA and SENDDATA in figure
7a and figure 7b.

Configuration: The UART and the External Interrupt 0 (INT0) are configured.
 UART: UART is configured for 9600 baud.
 External Interrupt 0: Set EX0/IT0 to enable INT0 interrupt as edge triggered
 Set EA to allow interrupts

Initialization: The I2C registers and flags are initialized.
 I2CCON = A8h => Master Mode

Ver 2.1 November 2002 Page 12 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

Disables the output driver on SDATA
SCLOCK float high

OUTPUT = 0 Initial byte to be transmitted is ‘0’.
Note: Since the I2C interface is in master mode there is no need to enable the I2C

interrupt, or put a value into I2CADD.

Reception: Reception of a byte is done as follows (see RCVDATA figure 7a)
1) Send the START BIT
2) Send the Slave address (manipulated with R/� bit set for reception)
3) Check the ACK.
4) If an NACK is received send a STOP bit and set the ERR flag
5) If an ACK is received then send 8 clocks to the slave device reading the MDI bit

after each clock is transmitted. After the 8 clocks the received byte is saved in
INPUT

6) Send a NACK to indicate that this is the last byte to be received
7) Send STOP BIT.
8) If a NACK is received then set the ERR flag.

Transmission: Transmission of a byte is done as follows (see SENDDATA figure 7b)
1) Send the START BIT
2) Send the Slave address (manipulated with R/� bit clear for transmission)
3) Check the ACK
4) If an NACK is received send a STOP bit and set the ERR flag
5) If an ACK is received then send 8 clocks to the slave device. With each clock the

MDO bit in I2CCON should be loaded with the appropriate value from the data
byte OUTPUT.

6) Check the ACK
7) If a NACK is received then set the ERR flag.
8) Send STOP BIT

Check ERR: Check the ERR flag to see if an error occurred. If an error occurred send an error
message up the UART to the PC.

Transmit i/p: Transmit the inputted byte up the UART to the PC.

Delay: This large delay (approx 1s) is only used to slow the program down for visual purposes
so that the LED can be seen to toggle.

Toggle LED: Each toggle of the LED represents that a byte has been received from the slave and that
the master has transmitted a byte back to the slave.

Check RI: If a byte is received by the master from the UART then the byte is loaded into the
OUTPUT byte and future transmissions will transmit this value as the new OUTPUT.
A byte can be sent to the master by connecting the evaluation board to the PC via the
serial port and then pressing any key on the keyboard. In this case the ASCII
representation of the character will be loaded into OUTPUT.
E.g. if a ‘0’ is pressed then 30h is loaded into OUTPUT. If ‘a’ is pressed then 61h is
loaded into OUTPUT.

The program now goes back and waits to receive the next data byte.

INTO ISR: Pressing the INT0 button on the evaluation board (causing an INT0 interrupt) will
cause the output byte to be incremented.

Ver 2.1 November 2002 Page 13 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

Setup UART

Config Interrupts
Initialise I2C

Receive Data
Byte (see fig 7a)

Send Data Byte
(see fig 7b)

?
Error Flag

Set
?

Send Received
Value (I2C) out

UART

?
RI Set

?

Put Received
Value (UART)
into OUTPUT

Send Error Msg
out UART

YES

NO

YES

NO

Increment
OUTPUT

INT0 ISR

Delay 1s

Toggle LED

Figure 6: Flow Chart for master example code (I2Cmstr.asm)

Ver 2.1 November 2002 Page 14 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

Send Start
Condition

Send Slave
Address with

R/� set

Read input bit
by bit into Acc
(RCVBYTE)

?
NOACK

SET
?

RET

?
Check ACK

?

Copy received
data byte into

INPUT

SET

CLEAR
Set ERR Flag

NACK

ACK

Send STOP
condition

Send Slave
Address with

R/� clear

Send the data in
Acc out bit by bit

(SENDBYTE)

Move OUTPUT
into Acc

?
NOACK

SET
?

RET

?
Check ACK

?

Send STOP
condition

Set ERR Flag

SET

CLEAR

NACK

ACK

Send Start
Condition

SENDDATA SUBROUTINERCVDATA SUBROUTINE

Figure 7a and 7b: Flowchart for the SENDDATA and RCVDATA subroutines.

Ver 2.1 November 2002 Page 15 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

2.1 I2C SLAVE OPERATION CODE EXAMPLE

This note describes the slave program I2Cslave.asm. This program should be used in conjunction with
the master program I2Cmstr.asm on two separate evaluation boards to show the I2C communication
between the master and the slave on the MicroConverter. This example (I2Cslave.asm) code
demonstrates how the I2C interface on the MicroConverter can be programmed in slave mode.

The slave program waits for an I2C interrupt. Once an interrupt occurs it checks to see if the master
requires it to transmit or receive. If it is required to transmit then the I2CDAT register is written to and
the slave transmits. If it is required to receive it waits for the next I2CI interrupt before reading in the
data. After a reception has occurred the slave program then transmits the received byte up the UART
to the PC where it can be viewed using hyperterminal. The program then jumps back to the start
waiting for an I2C interrupt.

If a character is received from the UART (by pressing the keyboard), then the slave saves this new byte
as its output byte which is transmitted to the master device. By pressing the INT0 button on the
evaluation board the data being outputted by the slave to the master will increment.

Flow charts are shown for the slave program (figure 8). Below there is a description of the code and
details of the registers, variables etc. used, is also given.

PROGRAM VARIABLES

OUTPUT: OUTPUT holds the value to be transmitted to the slave, this is initialized to 0.

INPUT: INPUT holds the value received from the slave and is sent out the UART to the PC.

GO: The flag GO is used so that the program will wait for an I2C interrupt.

FIRST: The flag FIRST is used in the receive mode, it is set for the first interrupt so the

program only reads in the data byte and not the address.

DESCRIPTION OF CODE

The following description of the code I2Cslave.asm should be read in conjunction with the flowchart in
figure 8. This program communicates with I2Cmstr.asm which was described in section 2.0.

Configuration: The UART and the External Interrupt 0 (INT0) are configured.
 UART: UART is configured for 9600 baud.
 External Interrupt 0: Set EX0/IT0 to enable INT0 interrupt as edge triggered

 Set EA to allow interrupts

Initialization: The I2C registers and flags are initialized.
 I2CCON = 00h => Slave Mode

 I2CCON = 44h Slave address = 44h
 Initialise OUTPUT to 30h

Wait for I2CI: Wait for an I2C interrupt.

Ver 2.1 November 2002 Page 16 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

Check I2CTX: Once an I2C interrupt occurs check the I2CTX bit. This tells the slave whether the
master wants the slave to transmit or to receive.
If transmitting move ‘OUTPUT’ into I2CDAT and wait for another interrupt to signify
that the byte has been sent.

 If receiving wait for a second interrupt (after the first interrupt the address is in
I2CDAT). Once the second interrupt occurs then move the contents of I2CDAT into
‘INPUT’.

Toggle LED: Each toggle of the LED represents that a byte has been transmitted and received to/from

the master.

Transmit i/p: Transmit the inputted byte up the UART to the PC.

Check RI: Move the ASCII representation of any inputted bytes from the keyboard into

‘OUTPUT’

The program now goes back and waits for an I2C interrupt.

INTO ISR: Pressing the INT0 button on the evaluation board (causing an INT0 interrupt) will

cause the output byte to be incremented.

Ver 2.1 November 2002 Page 17 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

Setup UART

Config Interrupts
Initialise I2C

Wait for I2C
Interrupt

Send INPUT
out UART

Move received
byte (I2CDAT)

into INPUT

Wait for a 2nd
I2C Interrupt

?
Check
I2CTX

?

?
RI Set

?

Put Received
Value (UART)
into OUTPUT

YES

SET => Transmit

NO

CLEAR => Receive

Increment
OUTPUT

INT0 ISR

Put transmit value
(OUTPUT) into

I2CDAT

Toggle LED

Figure 8: Flow Chart for a typical I2C Slave transmit and receive (I2Cslave.asm)

Master Program (I2Cmstr.asm)

Ver 2.1 November 2002 Page 18 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

2.3 I2C MASTER EXAMPLE CODE

;==
;
; Author : ADI - Apps www.analog.com/MicroConverter
;
; Date : Oct 2000
;
; File : i2Cmstr.asm
;
; Hardware : ADuC812 (commented out = ADuC824/ADuC816/ADuC834/ADuC836)
;
; Description : Code for a master in an I2C system. This code will
; continuously receive and transmit a byte over the I2C
; interface, then send the received byte out the UART,
; then check if a character had been entered in the UART,
; if so, it will send the ASCII value of the character
; entered to the slave, the next time it transmits a byte.
;
; Reference : Tech Note, uC001: "MicroConverter I2C Compatible
; Interface" find it at www.analog.com/MicroConverter

;
;==

$MOD812 ; use ADuC812 & 8052 predefined symbols
;$MOD816
;$MOD824

;__
 ; DEFINE VARIABLES IN INTERNAL RAM

BITCNT DATA 30h ; bit counter for I2C routines
SLAVEADD DATA 31h ; slave address for I2C routines
INPUT DATA 32h ; data recieved from the slave
OUTPUT DATA 33h ; data to be transmitted to slave

NOACK BIT 00h ; I2C no acknowledge flag
ERR BIT 00h ; I2C error flag

LED EQU P3.4

;__
 ; BEGINNING OF CODE
CSEG
ORG 0000h
 JMP MAIN

;__
 ; INT0 ISR
ORG 0003h
 INC OUTPUT
 RETI

Master Program (I2Cmstr.asm)

Ver 2.1 November 2002 Page 19 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

;__
 ; MAIN PROGRAM
ORG 0060h
MAIN:

; configure the UART ADuC812
 MOV SCON,#52h ; configure UART for 9600baud..
 MOV TMOD,#20h ; ..assuming 11.0592MHz crystal
 MOV TH1,#-3
 SETB TR1

; configure the UART ADuC824/ADuC816
; MOV RCAP2H,#0FFh ; config UART for 9830baud
; MOV RCAP2L,#-5 ; (close enough to 9600baud)
; MOV TH2,#0FFh
; MOV TL2,#-5
; MOV SCON,#52h
; MOV T2CON,#34h

; configure & enable interrupts
 SETB EX0 ; enable INT0
 SETB IT0 ; INT0 edge triggered
 SETB EA ; allow all the interrupts

; initialise settings
 MOV SLAVEADD,#88H ; clear RW bit
 MOV I2CCON,#0A8h ; sets SDATA & SCLOCK, and
 ; selects master mode
 MOV OUTPUT,#0 ; TX 0 as default
 CLR NOACK
 CLR ERR

RXTXLOOP:
; code for a read mode (master recieves one byte from slave)
 CALL RCVDATA ; sends start bit
 ; sends address byte
 ; checks acknowledge
 ; receives byte into ACC
 ; checks ACK
 ; sends stop bit

; code for write mode (master transmits one byte to slave)
 CALL SENDDATA ; sends start bit
 ; sends address byte
 ; checks acknowledge
 ; transmits ACC
 ; checks ACK
 ; sends stop bit

; Check for Error message
 JB ERR,SENDERR ; if error, send error message

; Transmit received byte (INPUT) up UART to PC (hyperterminal)
 MOV A,INPUT ; put value received into ACC
 CALL SENDVAL ; send value received out the UART

Master Program (I2Cmstr.asm)

Ver 2.1 November 2002 Page 20 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

 JMP SKIP

SENDERR:
 CALL ERROR ; send error message out the UART
 CLR ERR ; clear error flag

SKIP:
 MOV A,#10 ; send LF+CR
 CALL SENDCHAR
 MOV A,#13
 CALL SENDCHAR

; Toggle LED (1s delay so that LED can be seen toggle)
 MOV A, #10
 CALL DELAY
 CPL LED

; Check for new OUTPUT
 JNB RI, RXTXLOOP ; repeat (unless UART data received)

; If UART data received, then save to OUTPUT
 MOV OUTPUT,SBUF ; update OUTPUT byte to new value
 CLR RI ; must clear RI
 JMP RXTXLOOP ; back to main loop

;==
; SUBROUTINES
;==

;__
 ; SENDDATA
; Send all the sequence to the slave (slave address + data (OUTPUT))

SENDDATA:
 ; send start bit
 CALL STARTBIT ; acquire bus and send slave address

 ; send slave address
 MOV A, SLAVEADD
 CALL SENDBYTE ; sets NOACK if NACK received

 JB NOACK, STOPSEND ; if no acknowledge send stop

 ; send OUTPUT byte
 MOV A, OUTPUT
 CALL SENDBYTE ; sets NOACK if NACK received

STOPSEND:
 CALL STOPBIT ; sends stop bit
 JNB NOACK, SENDRET ; if slave sends NACK send error
 SETB ERR ; sets the error flag
SENDRET:
 RET

Master Program (I2Cmstr.asm)

Ver 2.1 November 2002 Page 21 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

;__
 ; RCVDATA
; receives one or more bytes of data from an I2C slave device.

RCVDATA:
 INC SLAVEADD ; Set RW for reception

 ; send start bit
 CALL STARTBIT ; acquire bus and send slave address

 ; send slave address
 MOV A, SLAVEADD
 CALL SENDBYTE ; sets NOACK if NACK received

 DEC SLAVEADD ; returns SLAVEADD to 88h (after INC)

 JB NOACK, STOPRCV ; Check for slave not responding.
 CALL RCVBYTE ; Receive next data byte.
 MOV INPUT,A ; Save data byte in buffer.

STOPRCV:
 CALL STOPBIT
 JNB NOACK, RCVRET ; if slave sends NACK send error
 SETB ERR ; sets the error flag
RCVRET:
 RET
;__
 ; STARTBIT
; Sends the start bit to initiate an I2C communication

STARTBIT:
 SETB MDE ; enable SDATA pin as an output
 CLR NOACK
 CLR MDO ; low O/P on SDATA
 CLR MCO ; start bit
 RET
;__
 ; STOPBIT
; Sends the stop bit to end an I2C transmission

STOPBIT:
 SETB MDE ; to enable SDATA pin as an output
 CLR MDO ; get SDATA ready for stop
 SETB MCO ; set clock for stop
 SETB MDO ; this is the stop bit
 RET
;__
 ; SENDBYTE
; Send 8-bits in ACC to the slave
SENDBYTE:
 MOV BITCNT,#8 ; 8 bits in a byte
 SETB MDE ; to enable SDATA pin as an output
 CLR MCO ; make sure that the clock line is low
SENDBIT:
 RLC A ; put data bit to be sent into carry
 MOV MDO,C ; put data bit on SDATA line

Master Program (I2Cmstr.asm)

Ver 2.1 November 2002 Page 22 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

 SETB MCO ; clock to send bit
 CLR MCO ; clear clock
 DJNZ BITCNT,SENDBIT ; jump back and send all eight bits

 CLR MDE ; release data line for acknowledge
 SETB MCO ; send clock for acknowledge
 JNB MDI,NEXT ; this is a check for acknowledge
 SETB NOACK ; no acknowledge, set flag
NEXT: CLR MCO ; clear clock
 RET
;__
 ; RCVBYTE
; receives one byte of data from an I2C slave device. Returns it in A

RCVBYTE:
 MOV BITCNT,#8 ; Set bit count.
 CLR MDE ; to enable SDATA pin as an input
 CLR MCO ; make sure the clock line is low
RCVBIT:
 SETB MCO ; clock to recieve bit
 CLR MCO ; clear clock
 MOV C,MDI ; read data bit into carry.
 RLC A ; Rotate bit into result byte.

 DJNZ BITCNT,RCVBIT ; Repeat until all bits received.
 ; recieved byte is in the accumulator

 SETB MDE ; Data pin =Output for NACK
 SETB MDO ; Send NACK (always send NACK for
 ; last byte in transmission)
 SETB MCO ; Send NACK clock.
 CLR MCO
 RET

;__
 ; DELAY
; DELAY ROUTINE FOR THE ADuC812/ADuC816/ADuC824
DELAY: ; Delays by 100ms * A

; ADuC812 100ms based on 11.0592MHz Core Clock
; ADuC824 100ms based on 1.573MHz Core Clock

 MOV R2,A ; Acc holds delay variable
DLY0: MOV R3,#200 ; Set up delay loop0
DLY1: MOV R4,#229 ; Set up delay loop1
;DLY0: MOV R3,#50 ; Set up delay loop0
;DLY1: MOV R4,#131 ; Set up delay loop1
 DJNZ R4,$; Dec R4 & Jump here until R4 is 0
 ; wait here for 131*15.3us=2ms
 DJNZ R3,DLY1 ; Dec R3 & Jump DLY1 until R3 is 0
 ; Wait for 50*2ms
 DJNZ R2,DLY0 ; Dec R2 & Jump DLY0 until R2 is 0
 ; wait for ACC*100ms
 RET ; Return from subroutine

Master Program (I2Cmstr.asm)

Ver 2.1 November 2002 Page 23 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

;__
 ; ERROR
; this subroutine is run if a NACK is received from the slave

ERROR:
 MOV A,#45h
 CALL SENDCHAR ; send the letter E out the UART
 RET
;__
 ; SENDCHAR
; sends ASCII value contained in A to UART

SENDCHAR:
 JNB TI,$; wait til present char gone
 CLR TI ; must clear TI
 MOV SBUF,A
 RET
;__
 ; HEX2ASCII
; converts A into the hex character representing the value of A’s
; least significant nibble

HEX2ASCII:
 ANL A,#00Fh
 CJNE A,#00Ah,$+3
 JC IO0030
 ADD A,#007h
IO0030: ADD A,#’0’
 RET
;__
 ; SENDVAL
; converts the hex value of A into two ASCII chars, and then spits
; these two characters up the UART. does not change the value of A.

SENDVAL:
 PUSH ACC
 SWAP A
 CALL HEX2ASCII
 CALL SENDCHAR ; send high nibble
 POP ACC
 PUSH ACC
 CALL HEX2ASCII
 CALL SENDCHAR ; send low nibble
 POP ACC
 RET
;__

END

Slave Program (I2Cslave.asm)

Ver 2.1 November 2002 Page 24 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

2.4 I2C SLAVE EXAMPLE CODE

;==
;
; Author : ADI - Apps www.analog.com/MicroConverter
;
; Date : Oct 2000
;
; File : i2cslave.asm
;
; Hardware : ADuC812 (commented out = ADuC816/ADuC824/ADuC834/ADuC86)
;
; Description : Code for a slave in an I2C system. This code will
; continuously receive and transmit a byte over the I2C
; interface, then send the received byte out the UART,
; then check if a character had been entered in the UART.
; If so, it will send the ASCII value of the character
; entered to the slave, the next time it transmits a byte.
;
; Reference : Tech Note, uC001: "MicroConverter I2C Compatible
; Interface" find it at www.analog.com/MicroConverter
;
;==

$MOD812 ; use ADuC812 & 8052 predefined symbols
;$MOD816
;$MOD824

;__
 ; DEFINE VARIABLES IN INTERNAL RAM

BYTECNT DATA 30h ; byte counter for I2C routines
INPUT DATA 31h ; data recieved from master
OUTPUT DATA 32h ; data to be transmitted to master

GO BIT 00h ; flag to wait for interrupts
FIRST BIT 01h ; flag to indicate first receive Int

LED EQU P3.4 ; P3.4 drives the LED on eval board

;__
 ; BEGINNING OF CODE
CSEG
ORG 0000h
 JMP MAIN
;__
 ; INT0 ISR
ORG 0003h
 INC OUTPUT
 RETI
;__
 ; I2C ISR
ORG 003Bh

 JB I2CTX, SLAVE_TRANSMITTER

Slave Program (I2Cslave.asm)

Ver 2.1 November 2002 Page 25 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

SLAVE_RECEIVER:
 JB FIRST, ENDINT1 ; if first INT then wait for next int
 SETB GO ; reception complete
 MOV INPUT, I2CDAT ; store data received in INPUT
 JMP ENDINT1

SLAVE_TRANSMITTER:
 SETB GO ; transmission complete
 MOV I2CDAT, OUTPUT ; move data to be transmitted into I2CDAT
; JMP ENDINT2 ; Note: On the ADuC824/816 the read or
 ; write of I2CDAT register
 ; automatically clears i2ci. If
 ; I2CI is cleared twice then the
 ; MicroConverter will hang.)

ENDINT1:
 CLR I2CI ; clear I2C interrupt bit (812 only)
ENDINT2:
 CLR FIRST ; address has already been received
 RETI

;__
 ; MAIN PROGRAM
ORG 0060h
MAIN:

; configure the UART ADuC812
 MOV SCON,#52h ; configure UART for 9600baud..
 MOV TMOD,#20h ; ..assuming 11.0592MHz crystal
 MOV TH1,#-3
 SETB TR1

; configure the UART ADuC824/ADuC816
; MOV RCAP2H,#0FFh ; config UART for 9830baud
; MOV RCAP2L,#-5 ; (close enough to 9600baud)
; MOV TH2,#0FFh
; MOV TL2,#-5
; MOV SCON,#52h
; MOV T2CON,#34h

;configure and enable interrupts
 MOV IE2,#01h ; enable I2C interrupt
; MOV IEIP2,#01h ; enable I2C interrupt
 SETB EX0 ; enable INT0
 SETB IT0 ; INT0 edge triggered
 SETB EA ; allow all the interrupts

;initialize settings
 MOV I2CADD,#044h ; slave address is 44h
 MOV I2CCON,#00h ; slave mode (default=>not necessary)
 CLR GO ; clear flag to wait for interrupt
 ; GO is set once data is TX’d or RX’d
 SETB FIRST ; FIRST is cleared after receiving the
 ; first SLAVE receiver interrupt

Slave Program (I2Cslave.asm)

Ver 2.1 November 2002 Page 26 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

 MOV OUTPUT,#0 ; first byte to be transmitted is 40h
 CLR LED

WAITFORDATA:
 JNB GO,$; ----- wait for i2c interrupt ------
 ; If it is in receive mode, it will
 ; wait here for a second interrupt (as
 ; the first interrupt only contains the
 ; slave address in I2CDAT).
 ; In transmit mode the tranmission will
 ; occur after the first interrupt.
 SETB FIRST ; re-initialise flags
 CLR GO
 JB I2CTX,WAITFORDATA
 ; if the slave has just transmitted then
 ; wait to receive a byte
 ; if the slave has just received then
 ; send input up the UART

SENDUART:
 CPL LED ; LED changes each time one byte has been
 ; received and another transmitted
 MOV A,INPUT ; send value received out the UART
 CALL SENDVAL
 MOV A,#10
 CALL SENDCHAR ; send LF + CR
 MOV A,#13
 CALL SENDCHAR

 JNB RI, WAITFORDATA ; repeat (unless UART data received)

; WHEN UART DATA RECEIVED, MOVE DATA TO I2C OUTPUT...

 MOV OUTPUT, SBUF ; update OUTPUT byte to new value
 CLR RI ; must clear RI
 JMP WAITFORDATA ; back to main loop

;==
; SUBROUTINES
;==

;__
 ; SENDCHAR
; sends ASCII value contained in A to UART

SENDCHAR:
 JNB TI,$; wait ’til present char gone
 CLR TI ; must clear TI
 MOV SBUF,A
 RET

Slave Program (I2Cslave.asm)

Ver 2.1 November 2002 Page 27 of 27 Technical Note uC001

www.analog.com/microconverter

MicroConverter I2C Compatible Interface

;__
 ; HEX2ASCII
; converts A into the hex character representing the value of A’s
; least significant nibble

HEX2ASCII:
 ANL A,#00Fh
 CJNE A,#00Ah,$+3
 JC IO0030
 ADD A,#007h
IO0030: ADD A,#’0’
 RET
;__
 ; SENDVAL
; converts the hex value of A into two ASCII chars, and then spits
; these two characters up the UART. does not change the value of A.

SENDVAL:
 PUSH ACC
 SWAP A
 CALL HEX2ASCII
 CALL SENDCHAR ; send high nibble
 POP ACC
 PUSH ACC
 CALL HEX2ASCII
 CALL SENDCHAR ; send low nibble
 POP ACC
 RET
;__

END

