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Abstract—Pool-based electricity markets can be simulated
with various degrees of accuracy. When compared to actual
markets, most of the simulators produce outcomes than cannot be
extrapolated beyond the specific scenario analyzed. This is most
critical for regulators and market participants which need tools
to analyze market power and bidding strategies, respectively,
for a broad range of scenarios. Both objectives can be tackled if
the possible equilibria of a pool-based multiperiod market are
determined. This paper presents a three-step methodology to find
these equilibria. First, a detailed model of an electricity market is
presented, considering multiperiod bidding, price elasticity, and
network modeling. Second, an iterative simulation process is run
to detect participants’ bidding strategies implicit in the optimized
production resulting from the simulation. Finally, output data
from the simulator are analyzed to obtain Nash equilibria. Iter-
ated deletion is used in the last step to remove strategies that are
dominated by others that generate higher profits. A realistic case
study illustrates the proposed technique.

Index Terms—Electricity markets, market power, market simu-
lation, Nash equilibrium.

NOMENCLATURE
A. Indexes

GENCOs in the market.

Time periods considered in the time horizon.
Network nodes.

Generating units.

Demands.

Power blocks for each demand.

Power blocks for each generating unit.
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B. Functions

Me(qd) Stepwise monotonically decreasing discontinuous
function that expresses the market-clearing price as
a function of the quota of GENCO ¢ for hour ¢. This
function is known as price-quota curve.

Cjt Production cost for hour ¢ of the jth generating unit.

C. Constants

Np Number of blocks of the cost function for every unit.
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Number of demands in the system.

Number of price-blocks for every demand.
Number of units in the system.

Total number of nodes in the system.
Market-clearing price corresponding to hour ¢. Note
that AM is not strictly a constant, its value is derived
from the solution of problem (6)—(13).

Price corresponding to the hth block of demand d in
hour ¢.

Price corresponding to the bth block of unit j in hour
t.

Size of the hth quantity block offered by demand d
in hour {.

Size of the bth quantity block offered by unit j in
hour ¢.

Feasible operating region for unit j.

Susceptance of the line between nodes n and k.
Conductance of the line between nodes n and k.
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Power produced by unit j in hour ¢.

Power produced with the bth block of unit j
in hour ¢.

Power consumed by demand d in hour ¢.
Power consumed by the hth block of demand
d in hour t.

Quota of GENCO ¢ in hour ¢.

Maximum capacity of the line between nodes
n and k.

Summation of power injected in node n in
hour ¢ by all the participants except GENCO
i.

Phase angle of node n in hour ¢.

Strategy of GENCO .

Strategies of GENCOs other than GENCO .
Strategy vector of all the GENCOs.

Payoff function of GENCO <.

Set of generating units belonging to GENCO ¢.
Set of units connected to node 7.

Set of nodes directly connected to node n.

Set of demands connected to node n.

GENCO 7 information set.

GENCO : strategy set.

Set of possible actions of GENCO .
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1. INTRODUCTION

ARKET simulators are used increasingly to replicate the

behavior of actual electricity markets. Regulators can
use these tools to monitor and detect market power. Similarly,
buyers and sellers can use them to refine their bids. Market
power is dependent on many factors, namely, the number of
market players, the bidding behavior, and the restrictions im-
posed. It is desirable for a simulator to reproduce as close as
possible the actual market functioning to make the simulator re-
sults comparable to actual figures. Thus, a good simulator de-
sign must contain all of the rules of the market.

In an auction-based day-ahead market [1]-[3], the market op-
erator processes the bid information provided by the producers
and consumers and aggregates this information creating hourly
offer and demand curves, respectively. Both producers and con-
sumers bid with the target of maximizing their profits, respec-
tively [4]. Once the bids are submitted, a market-clearing algo-
rithm matches the production and demand curves producing a
series of hourly prices and accepted quantities [5], [6]. Through
the simulator, this process is repeated many times so that some
patterns of behavior can be detected and studied.

Modeling a pool-based electric market is a complicated task.
The need for integer variables, the nonconvex and nondiffer-
entiable nature of the bid functions, different time spans, and
transmission network modeling [7], just to name a few exam-
ples, make the modeling complex. Current market models lack
some or all of these features, although they provide a valuable
qualitative insight. A detailed study is provided in [8].

Searching for market equilibrium is a desirable objective
both for market participants and regulators: for participants,
because an equilibrium shows long-term bidding strategies of
their rivals; for regulators, because market power monitoring
and corrective measures are possible. To find equilibria, the
methodology presented in this paper proposes: 1) create a
realistic model of the market, 2) simulate how participants
generate their bids iteratively and the market operator clears the
market, and 3) identify plausible equilibria. Step 1 is possible
by means of sophisticated optimization techniques, step 2 is
possible given the procedure provided in this paper, and step 3
relies on the concept of Nash equilibrium.

Nash equilibrium can be defined as a set of strategies, one
per player, so that each strategy is the best response to the other
players’ [9]. In a game there can be none, single, or multiple
equilibria. In addition, equilibria can be pure or mixed [9],
[10]. The Nash equilibrium concept has been mainly applied to
Cournot models of electric markets with network constraints,
as seen in [11]-[15]. In particular, [15] presents a dc transmis-
sion network model, but it does not include nonlinear losses.
In addition, market power in simple networks is studied in
[16], using a three-node system. Also, games with incomplete
information, where participants do not have full knowledge of
other participant’s parameters, are shown in [17]. Finally, [18]
presents a Nash bargaining game for transmission analysis,
where power exchanges in a two-area system are analyzed;
this is a full ac model. Other game theory methods to obtain
an equilibrium, such as the supply function equilibrium model
[19], [20], or the Stackelberg leader-follower model [21], are
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outside the scope of this paper. In this paper, the concept of
Nash equilibrium is applied to interpret sensible outcomes of a
very realistic simulator [6], in terms of produced quantities and
obtained profits. Simplifications to the structure of the problem
are not considered, except for a limitation in the number of
strategies in the game.

The paper is organized as follows. Section II provides an
introduction to the basic definitions and concepts in game
theory and Nash equilibrium. Section III presents the simu-
lator structure and the iterative process of bidding using the
simulator. Section IV shows a representative case study where
several Nash equilibria are found and interpreted. Conclusions
and future work are outlined in Section V.

II. GAME THEORY AND NASH EQUILIBRIUM: BACKGROUND
REVIEW

A game is a “formal representation of a situation in which
a number of individuals interact in a setting of strategic inter-
dependence” [10]. This means that the welfare of an individual
depends upon its own action and the actions of the other par-
ticipants in the game. To describe a game, there are four things
to consider: 1) the players, 2) the rules of the game, 3) the out-
comes and 4) the payoffs and the preferences (utility functions)
of the players. It is usually assumed that the player’s utility func-
tion is its payoff function. A game can be either cooperative,
where the players collaborate to achieve a common goal, or non-
cooperative, where they act on their own. Also, a game can be
either of perfect or imperfect information, and sequential or si-
multaneous (the players play at the same time).

A player plays a game through actions. An action is a choice or
election that a player takes, according to his (or her) own strategy.
Since agame sets aframework of strategic interdependence, a par-
ticipant should be able to have enough information about its own
and other players’ past actions. This is called the information set.
Note that there is one information set per player and per stage of
the game. A strategyis arule that tells the player which action(s) it
should take, according to its own information set at any particular
stage of a game. Finally, a payofffunction expresses the utility that
a player obtains given a strategy profile for all players.

More formally stated, assume that there is a finite set of players

{1,...,I} participating in a game. If H; is the collection of
player i’s information sets, A is the set of possible actions, and
u; (81, ..., 8r) is the payoff function of player ¢, then:

A (pure) strategy for player ¢ is a function s;: H; — A such
that s; belongs to the strategy vector s = (s1,. .., s7) that con-
tains the strategies of all the players [10]. It is useful to write
the strategy vector s as (s;, s_;) where s_; is the (I — 1) vector
of strategies for players other than 7. Since for every profile of
strategies there is an outcome of the game, the payoffs received
by each player can be deduced accordingly. Thus, the game can
be specified in terms of strategies and associated payoffs. This
is called the normal (or strategic) form of a game.

A normal form representation specifies for each player ¢
a set of strategies .S; (with s; € S;) and a payoff function
u;(81,...,8r). In this way, player ¢’s strategy set can be
expressed as S; = {sui, $2i, ...} referring to each strategy of
player : by its number.
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Whenever a player detects that one of its strategies is
the best strategy regardless of what other players do, it
has found a strictly dominant strategy. Thus, this strategy
maximizes the player’s payoff against any strategy that the
rivals would choose. More formally, a strategy s; € S; is a
strictly dominant strategy for player ¢ in a game if Vs, # s;,
ui(si,s_i) > ui(s,'t-,s_i) Vs_; € S_;.

Although it seems a good idea for a player to play dominant
strategies always, it is rare that they exist. But it is plausible that
the player does not play dominated strategies. A strategy s; € .S;
is strictly dominated for player ¢ in a game if there exists another
strategy s; € S;suchthatVs_; € S_;,u;(sh, s—;) > ui(si, $—s).
In that case, strategy s, strictly dominates strategy s;.

Assuming that the same game can be played in several rounds
(iterations), in each round the players may delete simultaneously
the strategies that are strictly dominated. This is called iterated
deletion. It is easy to see that only the strategies that survive
iterated deletion will be played in the long term, and they are
candidates to be equilibria of the game [10]. Among all defini-
tions of equilibria, Nash equilibrium is the most widely used.
Nash equilibrium constitutes a profile of strategies such that
each player’s strategy is the best response to the other players’
strategies that are actually played. Therefore, neither player has
an incentive to change its strategy. More formally, a strategy
vector s = (s1,...,sr) is a Nash equilibrium of a game if for
every playeri =1, ..., I, u;(s;, s—;) > u;(sh,s_;) Vs, € S;.

III. MARKET SIMULATOR

This section presents a detailed explanation of the internal
mechanism of the market simulator whose results are used to
construct representative bidding strategies in a power pool. First,
a detailed model of the generating and consuming companies is
presented, then the market-clearing algorithm is described, and,
finally, the iterative simulation algorithm is explained [6].

A. Generating Companies Model

Depending on its relative size and generating mix, a GENCO
behaves either as a price-maker [4] or as a price-taker; however,
the formulation presented next is valid for both price-makers
and price-takers.

The formulation of the problem faced by GENCO ¢ is as fol-
lows [4]:

Nt
maximize g0 (1) = Y e O
Pjod 4= jer;
subjectto:pﬁer; Viely;t=1,....Nr (2)
g => 5 t=1,...,Nr (3)
JEL;
> P5Ar T 4 Y Bk (Ot —0ke)—
JEW,NTY) ked,
1
5 S Gutllae — O = 0:
ked,

_pgk < Bnk(gnt - 9kt> < pfk?
n=1,... Ny;Vke ®,;t=1,...,Nr. (5

The objective function (1) expresses the profit of the price-
maker: total revenue minus total costs. Taking advantage of the
stepwise nature of price-quota curves (also known as effective
demand curves or price-production curves), the total revenue
can be expressed linearly using positive real variables and binary
variables [4]. For a detailed formulation of the cost function, see
[4] and [22].

Set of constraints (2) enforces that every unit works within
its feasible operating region over the whole planning horizon. A
precise mixed-integer linear description of this feasibility region
can be found in [22] and [23].

Set of constraints (3) expresses for every hour the price-maker
quota as the sum of the power production of its units.

Block of (4) defines power balance at every node, stating that
the difference between power reaching any node and power
leaving that node must equal zero. The first term in this equation
expresses the power injected by the GENCO. The second term

i,0thers .. ..

i expresses the total power injected by other participants
in the node; it comprises the power injected by other generators
minus the power demanded at the node. Note that p’ 7™ is
considered publicly available data known by the GENCO before
solving its optimization problem. The third term is the net power
reaching the node through adjacent lines. Note that 50% of the
losses incurred in each of the lines connected to the considered
node are introduced as an artificial demand in that node. This
mechanism allows formulating a simple yet accurate linear
model for the losses. For more details regarding loss modeling,
see [5].

Block of (5) imposes the restrictions related to the capacity
of transmission lines.

For a given hour, the quota of a price-maker is the amount
of power it contributes to serve the demand in that hour. The
function that expresses how the market-clearing price changes
as the quota of a given price-maker changes is called price-
quota curve [4]. Note that different price-makers competing in
the same electricity market present different price-quota curves.
The price-quota curve for a given hour corresponding to a price-
maker is a stepwise monotonically decreasing curve because
(producer/consumer) bids are assumed to be blocks of power at
given prices. The 24 hourly day-ahead price-quota curves of a
given price-maker provide all of the market information it needs
to self-schedule optimally (i.e., to maximize its benefits).

The day-ahead price-quota curves of a price-maker can
be obtained: 1) by market simulation or 2) using forecasting
procedures, however, both techniques are outside the scope of
this paper. For the case studies presented in this paper, a direct
method was used to obtain the price-quota curves. For any
given hour, the price-quota curve for a certain GENCO is equal
to the aggregated demand curve minus the aggregated offer
curve of the rest of the GENCOs. As a result of this subtraction,
the market-clearing price is a function of the GENCOs own
production. Note that the above two curves are assumed to be
publicly available from the market operator. For the sake of
illustration, Fig. 1 shows a typical price-quota curve.

The solution of problem (1)—(5) provides any GENCO with
its optimal self-scheduling (i.e., the power blocks the GENCO
should get accepted in the market to maximize its profit). To that
end, the bidding strategy for all GENCOs for any given hour is
defined as follows:
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Fig. 1. Price-quota curve.

1) only power blocks with optimal self-scheduling values
different from zero are offered at their corresponding mar-
ginal costs;

2) the remaining blocks are offered at price infinity.

Although GENCOs do take into account the network to com-
pute their bids, they do not try to use the network as an instru-
ment to exert market power; in other words, no GENCO is trying
to produce a saturation in order to take advantage of the resulting
higher prices. The modeling of such a behavior is complicated
and out of the scope of this paper.

B. Consuming Companies Model

CONCOs are modeled in a simple fashion because the main
purpose of the procedure presented in this paper is to analyze the
behavior of GENCOs. Each demand is considered a fixed set of
price-quantity values. As in the real world, stepwise elastic de-
mands are considered distributed over the nodes of the network
(see Fig. 2).

C. Market-Clearing Algorithm

A network-constrained multiperiod auction to maximize so-
cial welfare is used to clear the market. It is based on mixed-
integer linear programming. The complete formulation of the
problem is as follows:

Nt Np Ng Ny Np

L D\ Dbid G yGbid
maximize Z Z Z PdghAden - — Z Z PinAjw | (6)
»

sebPatn =1 [d=1h=1 j=1b=1

P eQ; j=1,...,Npt=1,...,Nr (7
0 < pin < pan
d:L...,ND;h:L...,NH;
t=1,...,Np (8)
0 < pSip < Pl
_jzl,...7N];b:1,...,NB;
t=1,...,Np 9)
]\TB
b=1
j:17...7NJ;t:1.,...7NT (10)
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Equation (6) is the objective function; it expresses total so-
cial welfare as the summation of the social welfare for every
hour. Social welfare is computed as the difference of two terms:
the first term is the sum of accepted demand bids times their
corresponding bidding prices; the second term is the sum of ac-
cepted production bids times their corresponding bidding prices.
A block of (7) is equivalent to block (2) but extended to all of the
units in the system. Blocks of (8)—(9) state the limits for the main
variables of the problem. Block of (10) defines the power gener-
ated by any generator in any given hour as the summation of its
corresponding production blocks. The block of (11) defines the
power consumed by any demand in any given hour as the sum-
mation of its corresponding consumption blocks. Block of con-
straints (12) defines power balance at every node, stating that the
total generation at any node plus the net injections through lines
must equal the total power demanded (variable) at that node.
Note that artificial demands have been introduced to take losses
into account. The block of constraints (13) is equivalent to block
(5).

It should be noted that the market-clearing price for each hour
is not explicitly obtained from solving problem (6)—(13). In this
paper, the market-clearing price is defined as the price of the
last accepted production bid. According to the actual practice in
many electricity markets, such as the one in mainland Spain, a
uniform-price auction is considered.
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D. Market Simulation

The model described in this paper considers the three
typical participants in a pool-based electricity market; namely,
generating companies (GENCOs), consuming companies
(CONCOs), and the market operator (MO). This section
describes the process used for the simulations. The main steps
of that iterative process are described below.

Step 0) An initial solution and initial price-quota curves for
all GENCOs are obtained by clearing a market con-
sidering that all units offer all of their power blocks
for all time periods at their corresponding marginal
costs. This provides an initial solution.

Once the market is cleared, all necessary information
is made available to the participants. The aggregated
offer and the aggregated demand for every hour are
made public. Injections at all nodes for every hour
are also made public.

With the information obtained from step 1) and
with the knowledge of its own previous offer to the
market, every GENCO derives its price-quota curve
for every hour. Assuming that all other companies
do not change their offers, any given GENCO solves
problem (1)—(5) described above. The solution ob-
tained allows deriving the optimal offer of that
GENCO for the next iteration.

Once all GENCOs have calculated and submitted
their offers, the MO clears the market and calculates
productions and market-clearing prices for every
hour; this is achieved by solving problem (6)—(13)
above. If the desired number of iterations have been
reached, the simulation concludes; otherwise, the
simulation continues in step 1).

Note that the above procedure 1-3 is repeated a suffi-
cient number of times to identify the behavior patterns of the
GENCO:s. These patterns are crucial to identify Nash equilibria.

Also note that our model differs from Cournot equilibrium
models in the sense that the aggregated demand curves in the
previous iteration are used to construct the price-quota curves.
The calculation of the amount of power offered to the market is
achieved solving problem (1)—(5), using the price-quota curves.
Our model also differs from supply function equilibrium
models, since the decision variables are the quantities offered,
not the bid curves. The purpose of our model is to reproduce as
close as possible the behavior of profit-seeker market agents.
In summary, every producer gathers all of its available infor-
mation, builds its price-quota curve, solves its problem (1)—(5),
and decides the quantity to bid. In turn, the market operator
clears the market using a detailed market clearing procedure.

Step 1)

Step 2)

Step 3)

IV. CASE STUDY

In the previous section, both the simulator and an iterative
simulation procedure have been presented. This section is de-
voted to describing Nash equilibria of the market from a game
perspective. In this game, the producers maximize their profits
from selling their production through a multiperiod pool-based
auction.

TABLE I
GENERATING UNITS DATA
Type A B C D E F G
P [MW] 12 76 100 155 197 350 400
PMwl | 24 15.2 25 54.25 | 68.95 | 140 100
c” 25.63 | 18.98 | 20.36 | 10.95 | 21.02 | 11.13 | 7.82
(O 26.01 | 19.81 | 21.92 | 11.32 | 22.24 | 11.79 | 7.92
G 2038 | 23.01 | 23.72 | 11.79 | 2322 | 1225 | 8.14
c” 3328 | 26.46 | 24.87 | 1243 | 2422 | 1294 | 834
RRIMW/AI| 12 76 100 155 180 120 400
SC($) 114.1 | 789.6 | 949.9 | 1263 | 1300 | 5920 | NA®"
MUT (h) 4 8 8 8 12 24 NA®Y
MDT (h) 2 4 8 8 10 48 NA®"

© Units: [MWh]. ) NA: Not Applicable.

TABLE 11
UNITS OWNED BY EACH COMPANY
A| B C|DJ|E|F G Total
El 2 2 2 2 2 3 6 19
E2 1 3 3 1 3 1 1 13
E3 2 2 2 3 4 3 2 18

The model presented has been tested using an all-thermal
power system of realistic size. The considered electricity market
comprises three price-maker companies: E1, E2, and E3. The
market time horizon is 24 h. Data for all units are based on the
1996 IEEE RTS [24], and are detailed in Table I.

In this table, type indicates the unit type (A, B, C, D, E, F,
or G); P and P indicate, respectively, maximum and minimum
power output; every Cy, value provides the production cost of the
block b of the unit (four-block piecewise convex cost curves are
considered); RR gives both ramp-up and ramp-down maximum
values; SC is the constant start-up cost; and MUT and MDT
represent the minimum up and down times, respectively. A total
number of 50 units are considered in the system. Data regarding
the distribution of the units among the GENCOs are presented
in Table II.

The units are distributed over a 73-nodes, 108-lines transmis-
sion network that is based on the network described in [24]. All
of the units are placed evenly distributed over the network.

After running 80 iterations of the simulator with data from
Tables I and II, reasonable strategies played by market partici-
pants are detected. There is no convergence, but the oscillations
of the total production are either negligible, small, or bounded,
as seen in Fig. 3. Similar oscillatory behavior, although using
supply functions, has been reported in [25], where convergence
is never attained.

In particular, each of the three companies—El, E2, and
E3—shows a distinctive behavior depending on the time of the
day. The first eight hours of the day show a gradual increase
in prices, and the remaining 16 h present two peaks: around
11 AM. and around 10 PM,, respectively. Therefore, it seems
logical to divide a company’s strategy into two elements: the
morning portion and the evening portion. During the first eight
hours, two strategies are enough due to the stability of the
prices, but for the rest of the day, any company needs at least
three strategies to account for the variation in prices of the
not-so-stable price curve (see Fig. 4).
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A company’s strategy is calculated making use of the
simulator output. Any company, El for instance, competes
against the other two in an iterative simulation process, as
explained in Section III. As a result, E1 can identify the overall
production (megawatts) that maximizes its own profit. This
is the base scenario for E1, meaning that E1 may change its
output by increasing or decreasing the number of megawatts
offered. Given the sum of E1’s optimized production for the
first eight hours provided by the simulator after 80 iterations
(P, M), two different morning strategies are allowed to EI.
The “low-production morning strategy” allows E1’s overall
morning output to be as much as 90% of Pjjps. In the same
way, a “high-production morning strategy” allows E1’s output
to be as much as 110% of Pijs. Similarly, three different
possibilities are considered for the evening period: low-,
medium-, and high-production strategies. Fig. 5 shows all
possible morning and evening strategies of company E1. The
strategies are modeled as constraints of the type <; thus,
the missing “medium-production morning strategy” can be
considered included in the “high-production morning strategy”
as a particular case. Hence, it is clear that nothing prevents
the “medium-production morning strategy” from taking place.
The +/—10% limits only apply to total production. The sum
of E1’s optimized production after 80 iterations for the last
16 h is calculated (P;g). Now the overall output constraints
are set to 90, 100, and 110% of P; g, respectively. All of these
morning and evening constraints may be changed to a different
set of values, and the resulting Nash equilibria would also be
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Fig. 5. Morning and evening selected strategies of company E1.

different. However, we restrict our analysis to this case, which
provides enough detail.

In conclusion, a company has to choose from six possible
strategies, with two options in the morning and three in the
evening. It makes a total of 2 x 3 = 6 strategies. Following
the notation explained in Section II, the set of strategies of com-
pany E;, S;, contains the following elements:

Si ={si1, 8i2, 8:3, 514, Si5, Si6 }
= {(low,low), (low,mid), (low,high),
(high,low), (high,mid), (high,high)} .

?

(14)

Thus, the resulting set of strategies for the three companies
contains 6 X 6 X 6 = 216 elements. Each one of these 216
elements in the set is the result of combining all possible
morning and evening strategies for all companies. This implies
running 216 times the market-clearing algorithm with six extra
production constraints enforced. One constraint is taken from
the morning period and one from the evening for each company.

Table III provides the results of solving the market-clearing
problem for the aforementioned 216 scenarios, with production
limits enforced. Each cell in the table represents the profit or
payoff in thousands of dollars for companies E1, E2, and E3,
respectively. For example, the values of the third row, second
column of Table ITI(c) are: 942.1;209.5; 301.9. These values are
the payoffs whenthe strategy of El isfixedto s; = (low,high)and
the strategies of E2 and E3 are also fixed to s, = (low,high) and
s3 = (low,mid). Table III contains six subtables that represent all
strategies of E2 and E3, if E1’s strategy is fixed for each subtable.

An iterated deletion process to remove dominated strate-
gies has been performed as follows. First, the strategies in
Table III(a) are discarded because E1’s (low, low) profit is
always lower than E1’s (low, high) profit, which happens in
Table III(c). Next, the same argument can be used to discard
Tables III(b), I1I(d), and III(e). At this point, only Tables III(c)
and III(f) remain eligible to search for Nash equilibria. Note
that these two tables represent E1’s (low, high) and (high,
high) strategies, respectively. E1, with more units that E2 and
E3, is always better off playing the “high-production evening
strategy;” this is a result of its market power.
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PROFITS AND NASH EQUILIBRIA FOR ALL COMPANIES

A

51 = (low,low)

53 = (low,low)

53 = (low, mid)

53 = (low, high)

53 = (high,low)

53 = (high,mid)

53 = (high, high)

sy = (low,low)

264.7; 46.5; 84.2

265.5; 48.4; 85.1

264.7, 48.4; 89.3

269.5; 49.5; 86.8

270.3; 49.5; 88.3

269.5; 49.5; 91.8

§p = (low,mid)

482.2;106.0; 143.8

462.9; 100.4; 136.5

330.8; 64.7;107.7

335.1; 66.7;103.0

619.6; 145.6; 179.5

335.9; 66.7;109.2

©

5 = (low, high)

658.0; 158.6; 177.8

660.0; 159.6; 188.4

654.8; 158.0; 202.1

664.1; 160.6; 180.5

664.1; 160.6; 192.8

659.6; 159.1; 202.0

8§y = (high,low)

276.2; 51.2; 90.5

276.2; 51.2; 91.2

276.2; 51.2; 93.0

269.0; 49.3; 86.5

269.0; 48.4; 88.3

269.0; 49.3; 91.5

8o =(high,mid)

436.3; 93.2,130.2

436.5; 94.9;131.7

665.5; 156.8; 216.4

372.4; 77.5;110.5

520.4; 114.4; 208.7

472.6; 101.6; 164.4

sy =(high, high)

©

666.8; 161.5; 183.5

670.7;162.3; 197.6

668.0; 161.5; 209.2

659.5; 159.7; 179.5

658.2; 158.9; 188.6

660.7; 159.7; 205.3

B

51 = (low, mid)

53 = (low,low)

53 = (low, mid)

53 = (low, high)

s3 = (high,low)

53 = (high,mid)

53 = (high, high)

§o = (low,low)

265.7; 47.4; 84.2

265.7; 48.4; 86.0

264.9; 48.4; 89.3

270.5; 49.5; 86.8

271.0; 49.6; 87.0

272.7, 50.0; 92.9

@

5 = (low, mid)

338.1; 65.7; 99.8

338.1; 64.7;104.9

506.2; 105.6; 167.2

448.6; 90.4; 141.5

701.6; 154.0; 206.8

446.7; 92.0; 152.8

©

5 = (low, high)

699.8; 158.8; 177.2

701.1; 158.8; 188.2

701.9; 156.9; 201.6

707.5; 160.6; 180.5

711.1;161.2; 194.2

709.6; 159.3; 206.1

8o = (high,low)

277.1; 51.2; 90.5

277.1; 51.2; 93.7

277.9; 51.2; 94.4

269.9; 49.3; 86.5

269.9; 49.3; 88.3

271.6; 49.8; 91.0

@

55 = (high,mid)

434.0; 89.4;123.7

663.9; 145.8; 195.2

514.5; 109.0; 166.2

342.4; 66.6; 102.1

448.1; 92.6;129.3

573.5;123.2;179.3

©

5 =(high, high)

714.2;162.3; 184.2

715.5;162.3; 194.5

716.3; 162.3; 208.7

706.9; 160.5; 180.1

705.3; 159.7; 191.3

709.0; 160.5; 206.0

C

©“

| =(low,high)

53 = (low,low)

s3 = (low,mid)

s3 = (low, high)

53 = (high,low)

53 = (high,mid)

s3 = (high, high)

@

5 = (low,low)

942.1; 199.3; 287.9

747.8;152.9;192.9

747.8; 153.9; 205.8

932.0; 197.2; 296.3

753.5; 155.0; 194.6

752.6; 155.0; 210.4

5y = (low,mid)

748.7;162.9; 180.9

928.2;202.7; 298.5

749.9; 160.8; 206.2

763.2;167.5; 185.5

940.4; 205.9; 308.3

753.1; 163.8; 208.6

©

> = (low, high)

747.4;162.5; 180.8

942.1; 209.5; 301.9

750.6; 164.1; 207.1

752.2;163.6; 183.4

752.6; 164.6; 195.4

765.3; 166.6; 210.0

8o = (high,low)

935.5; 204.1; 286.0

757.9; 156.7; 200.1

759.2; 156.6; 212.0

932.2;199.3; 296.0

752.0; 154.8; 194.0

752.0; 153.9; 209.5

@

55 = (high,mid)

927.0; 212.2; 284.2

759.2; 165.4; 202.2

807.6; 175.8; 238.1

756.0; 162.8; 184.0

752.0; 162.6; 193.7

931.0; 207.6; 320.9

©

5 =(high,high)

770.6; 169.5; 188.4

774.0; 170.1; 201.4

759.2; 166.2; 213.5

939.4; 211.2; 297.6

752.9;163.5; 194.8

762.6; 167.2; 212.1

D

sy =(high,low)

53 = (low,low)

s3 = (low,mid)

s3 = (low, high)

s3 = (high,low)

53 = (high,mid)

s3 = (high, high)

)

§o = (low,low)

269.1; 48.4; 86.5

269.1; 49.3; 87.1

269.1; 49.3; 91.3

269.1; 49.3; 85.2

269.1; 49.3; 88.0

270.9; 49.8; 91.6

55 = (low,mid)

390.2; 80.9; 115.6

608.4; 137.7; 188.3

392.2; 81.1; 126.6

334.7; 66.6; 102.1

522.6; 118.9; 156.8

335.5; 66.6; 110.9

©

> = (low, high)

661.0; 159.7; 179.5

663.6; 160.5; 191.8

661.8; 158.8; 203.7

663.6; 160.5; 180.1

663.6; 160.5; 194.5

661.8; 159.7; 204.0

)

5 = (high,low)

269.1; 48.4; 86.5

269.9; 49.3; 86.6

269.1; 49.3; 90.2

269.1; 48.4; 85.2

269.9; 49.3; 87.1

269.1; 49.3; 92.8

8§y =(high, mid)

645.1; 150.1; 189.1

485.2;108.7; 145.2

430.0; 92.6; 136.7

334.7,65.7, 101.7

562.3; 131.0; 165.7

410.7; 88.0;133.0

©

> =(high,high)

661.1; 159.7; 179.5

663.6; 159.6; 193.3

661.8; 159.7; 203.9

663.6; 160.5; 180.1

663.6; 160.5; 190.4

661.8; 159.7; 204.0

E

©

| =(high,mid)

53 = (low,low)

53 = (low,mid)

s3 = (low, high)

53 = (high,low)

s3 = (high,mid)

53 = (high, high)

sy = (low,low)

270.1; 49.3; 86.5

270.1; 49.3; 88.4

270.1; 49.3; 91.6

270.1; 49.3; 86.5

270.1; 49.3; 86.7

270.1; 49.3; 91.3

§o = (low, mid)

342.8; 66.6; 102.1

754.5; 163.8;253.4

490.1; 104.2; 150.1

342.8; 66.6; 102.1

448.1; 93.4;129.1

342.8; 65.8;110.1

)

> = (low, high)

705.5; 159.7; 179.4

708.4; 160.5; 190.7

706.3; 158.4; 203.9

705.5; 159.7; 179.4

708.4; 160.5; 191.5

703.4; 158.9; 205.6

©

55 = (high,low)

270.1; 49.3; 86.5

270.1; 49.3; 86.3

270.1; 49.3; 83.3

270.1; 49.3; 86.5

270.1; 49.3; 88.3

269.3; 49.3; 90.3

8§, =(high,mid)

469.2; 97.3; 130.4

471.2;97.5;141.8

562.3;119.9; 210.3

449.1; 92.6; 124.4

749.6; 165.9; 251.8

555.4;117.5;173.1

“

5 =(high, high)

705.5; 159.7; 179.5

708.4; 160.5; 192.4

706.3; 159.7; 204.0

705.5; 159.7; 179.5

708.4; 160.5; 193.4

706.3; 159.7; 205.2

F

©

| =(high, high)

53 = (low,low)

53 = (low, mid)

53 = (low, high)

53 = (high,low)

53 = (high,mid)

53 = (high, high)

8§, = (low,low)

751.0; 154.4; 182.7

752.2;154.8; 195.3

950.4; 197.8; 311.5

752.2;153.9; 183.0

762.8; 157.1; 197.4

941.8; 196.0; 316.2

§p = (low,mid)

752.2;164.8; 183.2

752.2;163.5; 196.8

800.2; 172.2; 232.9

752.2;163.8; 182.9

753.1;161.9; 195.5

944.9; 205.8; 317.7

©

5 = (low, high)

945.1; 206.0; 284.8

750.9; 163.4; 178.2

760.6; 166.6; 210.2

949.2; 207.5; 293.7

763.6; 167.8; 196.1

760.6; 166.6; 209.9

8§y = (high,low)

758.5; 156.2; 184.3

752.2;154.8; 193.5

753.1; 154.8; 209.6

758.5;156.2; 183.0

753.1; 154.8; 193.5

752.2; 154.8; 207.9

§o =(high,mid)

753.1; 164.8; 183.1

803.9; 174.8; 221.1

948.3; 209.4; 310.9

906.2; 196.4; 273.7

810.0; 173.2; 224.6

752.2; 164.8; 209.4

%)

5 =(high, high)

769.1; 168.8; 186.3

751.8;164.4; 195.0

760.6; 166.6; 210.1

753.1; 164.4; 183.0

763.6; 167.7;196.3

756.4; 165.5; 210.0

649
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TABLE IV
NASH EQUILIBRIA

rules based on the Nash outcomes. A case study illustrating
the technique has shown seven possible Nash equilibria. These
equilibria are comparatively characterized. In the future, we will

# STRATEGIES PROFIT f 4 ¢ futt
El E2 E3 El E2 E3 Total study the effect of different production constraints in the Nash

1 | 1ow, high | low, high | low, mid | 942.1 | 209.5 | 301.9 | 14535 equilibria results.

2 | low, high | low, mid | high, mid | 940.4 | 205.9 | 308.3 | 1454.6

3 | low, high | high, high | high, low | 939.4 | 2112 | 297.6 | 1448.2

4 | 1ow, high | high, mid |high, high| 931.0 | 207.6 | 3209 | 14595 REFERENCES

5 Jhigh, high| high, mid | low, high | 948.3 209.4 3109 | 1468.6 [11 G. B. Sheblé, Computational Auction Mechanisms for Restructured

6 | high, high | low, high | high, low | 949.2 | 207.5 | 293.7 | 1450.4 Power Industry Operation. Norwell, MA: Kluwer, 1999.

7 | high, high| low, mid |high, high| 944.9 | 2058 | 317.7 | 14684 [2] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric

Considering Tables III(c) and III(f), only 72 different strategy
vectors are possible Nash equilibria. Having in mind the defini-
tion of a Nash equilibrium presented in Section I and analyzing
in detail all of the remaining possibilities, seven pure Nash equi-
libria are found. Table IV describes each of them. Note that
pure Nash equilibria may not exist in other cases, but a mixed
strategy equilibrium always exists for finite games [26]. There-
fore, mixed equilibria are also possible and can be obtained by
solving a system of equations that guarantees the same profit for
every pure strategy selected by any player (condition of mixed
strategies equilibrium). The system of equations is highly non-
linear. The computation involved and the analysis of its solution
are outside the scope of this paper.

All equilibria are similar in terms of individual and overall
profits, although the strategies are quite different. Note that E2
never plays its “low-production evening strategy,” because E2
has many units, albeit not as many as E1. In addition, Nash equi-
librium #2 is “dominated in profits” by equilibrium #5 (i.e., the
three companies make more money in equilibrium #5 than in
equilibrium #2). This makes equilibrium #2 unlikely. Finally,
equilibrium #6 is the one with the second lowest total profit, al-
though it is the most profitable for E1. Note that strategies that
only differ in a +10% margin have a big impact in the compa-
nies’ profits. For example, E1’s profits range between thousands
of U.S.$: 264.7 and 950.4.

The simulations presented were performed using CPLEX 7.5
under GAMS [27] on a DELL PowerEdge 2500 biprocessor
(1.26 GHz) with 2 GB of RAM. The total required CPU time
to solve the 216 scenarios was 503.6 min. This represents an
average of 2.3 min per scenario.

V. CONCLUSION

A methodology to study Nash equilibria in auction-based
multiperiod electricity markets has been presented in this
paper. Nash equilibria are valuable instruments because they
predict if a market can be stable in the long term. To obtain
these equilibria, a step-by-step technique has been used. First,
a very detailed market model has been developed. Second, an
iterative simulation process has provided bidding criteria to the
producers. And third, these bidding criteria have been used to
build realistic strategies. In addition, unrealistic strategies have
been removed by iterated deletion.

The proposed methodology can be of interest to regulators
that study the behavior of oligopolistic markets and to bidders
who want to know the best strategy to follow. One extra advan-
tage comes from the ex-post analysis of the results, providing
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