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Chapter 1

Definitions, examples. Finite
dimensional Leavitt path
algebras

Introduction

Leavitt path algebras are a specific type of path K-algebras associated to
a graph E, modulo some relations. Its appearance, for row-finite graphs,
took place in [2] and [12]. They can be considered, on the one hand, natu-
ral generalizations of Leavitt algebras L(1, n) of type (1, n), introduced and
investigated by Leavitt in [41] in order to give examples of algebras not sat-
isfying the IBN property.

On the other hand, they are the algebraic version of Cuntz-Krieger graph
C∗-algebras, a class of algebras intensively investigated by analysts for more
than two decades. For a complete explanation of the history of Leavitt path
algebras see [20].

While the analytic aspects of Leavitt path algebras will be analyzed in
subsequent chapters, in this one we will relate them to the work by Leavitt
and will give some important and interesting examples.

1.1 The IBN property and the type of a ring.

Let R be a unital ring. We say that R satisfies the invariant basis number
(IBN) property if any two bases (i.e., linearly independent spanning sets) for
a free left R-module have the same number of elements. In words, the IBN
property says that if m and n are integers with the property that the free
left modules RR

m and RR
n are isomorphic, then m = n.
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4Chapter 1. Definitions, examples. Finite dimensional Leavitt path algebras

Noetherian rings and commutative rings are included among the many
classes of rings having this property . But the IBN property does not hold
for all rings, as the following example shows.

Example 1.1.1 For a field K, let V = K(N), whis is a countably infinite
dimensional vector space over K, and let R = EndK(V ). It is not difficult
to see that R ∼= RFMN(K), the countable row-finite matrices over K (use
the standard basis for V , view the elements of V as row-vectors, and apply
transformations on the right hand side). Then RR

m ∼= RR
n for all m,n ∈ N:

The first step is to show RR
1 ∼= RR

2; such an isomorphism is given by the
map which associates X ∈ R with the pair of matrices (X1, X2), where X1

(resp. X2) is built from the odd-numbered (resp. even numbered) columns
of X. But then RR

1 ∼= RR
2 gives RR

1 ⊕ RR
1 ∼= RR

2 ⊕ RR
1 , so RR

2 ∼= RR
3,

and the result follows by continuing in this way.

It is easy to determine, algebraically, whether or not for a ring R we have

RR
1 ∼= RR

n for some n > 1. Note that such an isomorphism exists if and
only if there is a set of 2n elements in R which produce the appropriate
isomorphisms as matrix multiplications by an n-row vector and an n-column
vector with entries in R. Specifically, it is easy to show that RR

1 ∼= RR
n

for some n > 1 if and only if there exist elements x1, ..., xn, y1, ..., yn ∈ R for
which xiyj = δij1R for all i, j, and

∑n
i=1 yixi = 1R.

Suppose that a unital ring R does not have IBN. Let m ∈ N be minimal
with RR

m ∼= RR
n for some n > m and find the minimal such n for m. Then

it is said that R has module type (m,n). (Warning: some authors call the
module type of such a ring (m,n−m).) For example, RFMN(K) has module
type (1,2).

In his paper, Leavitt proved that for each pair of positive integers n > m
and any field K there exists a K-algebra of module type (m,n). To do this,
observe that, as it has been used before, isomorphisms between free modules
can be realized as matrix multiplications by matrices having coefficients in
R. So we need only construct algebras which contain elements which behave
“correctly”. Do this as a quotient of a free associative K-algebra in the
appropriate number of variables satisfying the appropriate relations.

For example, to get an algebra of type (1,3) we need an algebra containing
elements x1, x2, x3, y1, y2, y3 for which xiyj = δij1R for all i, j, and

∑3
i=1 yixi =

1R. Consider the polynomial algebra over a field K in 6 non-commuting
variables. Then factor by the ideal generated by the appropriate relations.
It is not difficult to show that this quotient is not zero if m ≥ 2, but this is
much more difficult to show (directly) if m = 1.
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The quotient algebra described above is denoted LK(m,n), and called the
Leavitt K-algebra of type (m,n).

1.2 Path algebras and Leavitt path algebras

Definitions 1.2.1 A (directed) graph E = (E0, E1, r, s) consists of two
countable sets E0, E1 and maps r, s : E1 → E0. The elements of E0 are
called vertices and the elements of E1 edges.

If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-
finite. If E0 is finite then, by the row-finite hypothesis, E1 must necessarily
be finite as well; in this case we simply say that E is finite. A vertex which
emits no edges is called a sink. A path µ in a graph E is a sequence of edges
µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case,
s(µ) := s(e1) is the source of µ, r(µ) := r(en) is the range of µ, and n is the
length of µ, i.e, l(µ) = n. We denote by µ0 the set of its vertices, that is:
µ0 = {s(e1), r(ei) : i = 1, . . . , n}.

Although much work has been done on arbitrary graphs, we will be con-
cerned only with row-finite graphs.

Example 1.2.2 Consider the following graph:

•u2
e2 // •u3 ejj

•u1

e1
<<zzzzzzzz

f

""DD
DD

DD
DD

•v

Then E0 = {u1, u2, u3, v}, E1 = {e1, e2, f}, r(e1) = u1, s(e1) = u2, etc.
The vertex v is a sink. Some paths are, for example, v, f , e1e2, e, ee, e2eee,
etc. For µ = e1e2e

3, µ0 = {u1, u2, u3}.

Definition 1.2.3 Now let K be a field and let KE denote the K-vector
space which has as a basis the set of paths. It is possible to define an algebra
structure on KE as follows: for any two paths µ = e1 . . . em, ν = f1 . . . fn,
we define µν as zero if r(µ) 6= s(ν) and as e1 . . . emf1 . . . fn otherwise. This
K-algebra is called the path algebra of E over K.

Example 1.2.4 Consider a field K and the following graph E:
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•u2
e2 // •u3

•u1

e1
<<zzzzzzzz

f

""DD
DD

DD
DD

•v

Then the path algebra KE has, as a vector space over K, dimension 8,
while the path K-algebra asociated to the graph in example 1.2.2 is infinite
dimensional.

There are several ways of defining Leavitt path algebras.

Definition 1.2.5 Given a graph E we define the extended graph of E as the
new graph Ê = (E0, E1 ∪ (E1)∗, r′, s′), where (E1)∗ = {e∗i : ei ∈ E1} and the
functions r′ and s′ are defined as

r′|E1 = r, s′|E1 = s, r′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

Definition 1.2.6 Let K be a field and E be a row-finite graph. The Leavitt
path algebra of E with coefficients in K is defined as the path algebra over
the extended graph Ê, with relations:

(CK1) e∗i ej = δijr(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗.

(CK2) vi =
∑
{ej∈E1:s(ej)=vi} eje

∗
j for every vi ∈ E0 which is not a sink.

This algebra is denoted by LK(E) (or by L(E) if there is no risk of confusion
with the field K).

The conditions (CK1) and (CK2) are called the Cuntz-Krieger relations.
In particular condition (CK2) is the Cuntz-Krieger relation at vi. If vi is a
sink, we do not have a (CK2 ) relation at vi. Note that the condition of
row-finiteness is needed in order to define the equation (CK2).

There exists a natural inclusion of the path algebra KE into the Leavitt
path algebra LK(E) sending vertices to vertices and edges to edges. We will
use this monomorphism without any explicit mention to it.

Another way of introducing Leavitt path algebras is as follows.

Definition 1.2.7 For a field K and a row-finite graph E, the Leavitt path
K-algebra LK(E) is defined as the universal K-algebra generated by a set
{v : v ∈ E0} of pairwise orthogonal idempotents, together with a set of
variables {e, e∗ : e ∈ E1}, which satisfy the following relations:
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(1) s(e)e = er(e) = e for all e ∈ E1.

(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.

(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.

(4) v =
∑
{e∈E1|s(e)=v} ee

∗ for every v ∈ E0 that emits edges.

Universal means that if A is a K-algebra containing a set of pairwise
orthogonal idempotents {av : v ∈ E0} and a set of elements {be, be∗ : e ∈ E1}
satisfying the relations (1)-(4), then there exists an algebra homomorphism
Φ : LK(E) → A satisfying Φ(v) = av for all v ∈ E0, Φ(e) = be and Φ(e∗) =
be∗ for all e ∈ E1.

The uniqueness of the Leavitt path algebra associated to a graph E and
to a field K follows from the universal property.

Again the identities (3) and (4) are called the Cuntz-Krieger relations.

The elements of E1 are called (real) edges, while for e ∈ E1 we call e∗ a
ghost edge. The set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗)
denote s(e), and we let s(e∗) denote r(e). If µ = e1 . . . en is a path, then we
denote by µ∗ the element e∗n . . . e

∗
1 of LK(E).

1.3 Examples of Leavitt path algebras

Many well-known examples of K- algebras can be seen as Leavitt path K-
algebras over concrete graphs.

Example 1.3.1 (Leavitt algebras of type (1, n), n > 1). The Leavitt
path K-algebra of the following graph

•v e1hh

22

ss

33

��

en

RR...

is the Leavitt algebra of type (1, n), for n > 1.

Example 1.3.2 (Matrix algebras). Consider the graph

•u1
e1 // •u2 •un−1

en−1 // •un

Then Mn+1(K) ∼= LK(E), via the map ui 7→ eii, ei 7→ ei+1i, and e∗i 7→ eii+1,
where eij denotes the matrix unit in Mn(K) with all entries equal zero except
that in row i and column j.
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Example 1.3.3 ((The Laurent polynomial ring). Consider the graph

•u ehh

Then the map ϕ : LK(E) → K[x, x−1] given on generators (as a K- vector
space) by ϕ(en) = xn and ϕ((e∗)n) = x−n produces an isomorphism between
LK(E) and K[x, x−1].

A path µ is called a cycle if s(µ) = r(µ) and s(µi) 6= s(µj) for every i 6= j.
A graph E without cycles is said to be acyclic.

1.4 Finite dimensional Leavitt path algebras

We finish this chapter by showing that the Leavitt path K- algebra of every
finite and acyclic graph is a direct sum of matrices of finite size over K. In
particular, they are semisimple and artinian. The converse is also true, that
is, every semisimple and artinian Leavitt path algebra is associated to a finite
and acyclic graph.

First we need to state that Leavitt path algebras are Z-graded algebras,
and that every set of paths is linearly independent.

Lemma 1.4.1 Every monomial in LK(E) is of the following form:

(i) kivi with ki ∈ K and vi ∈ E0, or

(ii) kei1 . . . eiσe
∗
j1
. . . e∗jτ where k ∈ K; σ, τ ≥ 0, σ + τ > 0, eis ∈ E1 and

e∗jt ∈ (E1)∗ for 0 ≤ s ≤ σ, 0 ≤ t ≤ τ .

Proof. Follow the proof of [47, Corollary 1.15], a straightforward induction
argument on the length of the monomial kx1 . . . xn with xi ∈ E0∪E1∪(E1)∗.
2

Although not every Leavitt path algebra is unital (this happens, for ex-
ample, when the number of vertices is infinite), they are “nearly unital”,
concretely, they are algebras with local units, i.e., for E a graph, K a field
and LK(E) the associated Leavitt path algebra, there exists a set of idem-
potentes {un}n∈N in LK(E) satisfying the following properties:

– un ∈ un+1LK(E)un+1,
– for every finite subset X ⊆ LK(E) there exists m ∈ N such that X ⊆

umLK(E)um.
This statement is proved in the following result.
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Lemma 1.4.2 If E0 is finite then L(E) is a unital K-algebra. If E0 is
infinite, then L(E) is an algebra with local units (specifically, the set generated
by finite sums of distinct elements of E0).

Proof. First assume that E0 is finite: We will show that
∑n

i=1 vi is the unit
element of the algebra. First we compute (

∑n
i=1 vi)vj =

∑n
i=1 δijvj = vj.

Now if we take ej ∈ E1 we may use the equations (2) in the definition of
path algebra together with the previous computation to get (

∑n
i=1 vi)ej =

(
∑n

i=1 vi)r(ej)ej = r(ej)ej = ej. In a similar manner we see that (
∑n

i=1 vi)e
∗
j =

e∗j . Since L(E) is generated by E0 ∪ E1 ∪ (E1)∗, then it is clear that
(
∑n

i=1 vi)α = α for every α ∈ L(E), and analogously α(
∑n

i=1 vi) = α for
every α ∈ L(E). Now suppose that E0 is infinite. Consider a finite subset
{ai}ti=1 of L(E) and use 1.4.1 to write ai =

∑ni
s=1 k

i
svjsi +

∑mi
l=1 k

′i
l p

i
l where

kis, k
′i
l ∈ K−{0}, and pil are monomials of type (b). Then with the same ideas

as above it is not difficult to prove that α =
∑t

i=1(
∑ni

s=1 vjsi +
∑mi

l=1 r(p
i
l) +∑mi

l=1 s(p
i
l)) is a finite sum of vertices such that αai = aiα = ai for every i.

2

Now we see that every Leavitt path algebra is a Z-graded algebra and
describe the grading.

Lemma 1.4.3 L(E) is a Z-graded algebra, with grading induced by

deg(vi) = 0 for all vi ∈ E0; deg(ei) = 1 and deg(e∗i ) = −1 for all ei ∈ E1.

That is, L(E) =
⊕

n∈Z L(E)n, where L(E)0 = KE0 + A0, L(E)n = An for
n 6= 0 where

An =
∑
{kei1 . . . eiσe∗j1 . . . e

∗
jτ : σ+τ > 0, eis ∈ E1, eit ∈ (E1)∗, k ∈ K, σ−τ = n}.

Proof. The fact that L(E) =
∑

n∈Z L(E)n follows from 1.4.1. The grading

on L(E) follows directly from the fact that A(Ê) is Z-graded, and that the
relations (CK1) and (CK2) are homogeneous in this grading. 2

Note that the natural monomorphism from the path algebra KE into the
Leavitt path algebra LK(E) is graded, hence KE is a Z-graded subalgebra
of LK(E).

The following result appears in [52].

Lemma 1.4.4 Let E be a graph and K a field. Any set of different paths is
K-linearly independent in LK(E).
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Proof. Let µ1, . . . , µn be different paths. Write
∑

i kiµi = 0, for ki ∈ K.
Applying that LK(E) is Z-graded we may suppose that all the paths have
the same length. Since µ∗jµi = δijr(µj) then 0 =

∑
i kiµ

∗
jµi = kjr(µj); this

implies kj = 0. 2

The results that follow appear in [6].

Lemma 1.4.5 Let E be a finite and acyclic graph and v ∈ E0 a sink. Then
Iv :=

∑
{kαβ∗ : α, β ∈ E∗, r(α) = v = r(β), k ∈ K} is an ideal of L(E),

and Iv ∼= Mn(v)(K).

Proof. Consider αβ∗ ∈ Iv and a nonzero monomial ei1 . . . eine
∗
j1
. . . e∗jm =

γδ∗ ∈ L(E). If γδ∗αβ∗ 6= 0 we have two possibilities: Either α = δp or
δ = αq for some paths p, q ∈ E∗.

In the latter case deg(q) ≥ 1 cannot happen, since v is a sink.

Therefore we are in the first case (possibly with deg(p) = 0), and then

γδ∗αβ∗ = (γp)β∗ ∈ Iv

because r(γp) = r(p) = v. This shows that Iv is a left ideal. Similarly we
can show that Iv is a right ideal as well.

Let n = n(v) (which is clearly finite because the graph is acyclic, finite
and row-finite), and rename {α ∈ E∗ : r(α) = v} as {p1, . . . , pn} so that

Iv :=
∑
{kpip∗j : i, j = 1, . . . , n; k ∈ K}.

Take j 6= t. If (pip
∗
j)(ptp

∗
l ) 6= 0, then as above, pt = pjq with deg(q) > 0

(since j 6= t), which contradicts that v is a sink.

Thus, (pip
∗
j)(ptp

∗
l ) = 0 for j 6= t. It is clear that

(pip
∗
j)(pjp

∗
l ) = pivp

∗
l = pip

∗
l .

We have shown that {pip∗j : i, j = 1, . . . , n} is a set of matrix units for Iv,
and the result now follows. 2

Proposition 1.4.6 Let E be a finite and acyclic graph. Let {v1, . . . , vt} be
the sinks. Then

L(E) ∼=
t⊕
i=1

Mn(vi)(K).
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Proof. We will show that L(E) ∼=
⊕t

i=1 Ivi , where Ivi are the sets defined
in Lemma 1.4.5.

Consider 0 6= αβ∗ with α, β ∈ E∗. If r(α) = vi for some i, then αβ∗ ∈ Ivi .
If r(α) 6= vi for every i, then r(α) is not a sink, and the relation (4) in the
definition of LK(E) applies to yield:

αβ∗ = α

 ∑
e∈E1

s(e)=r(α)

ee∗

 β∗ =
∑
e∈E1

s(e)=r(α)

αe(βe)∗.

Now since the graph is finite and there are no cycles, for every summand
in the expression above, either the summand is already in some Ivi , or we
can repeat the process (expanding as many times as necessary) until reaching
sinks. In this way αβ∗ can be written as a sum of terms of the form αγ(βγ)∗

with r(αγ) = vi for some i. Thus L(E) =
∑t

i=1 Ivi .
Consider now i 6= j, αβ∗ ∈ Ivi and γδ∗ ∈ Ivj . Since vi and vj are sinks,

we know as in Lemma 1.4.5 that there are no paths of the form βγ′ or γβ′,
and hence (αβ∗)(γδ∗) = 0. This shows that IviIvj = 0, which together with

the facts that L(E) is unital and L(E) =
∑t

i=1 Ivi , implies that the sum is
direct. Finally, Lemma 1.4.5 gives the result. 2

We now get as corollaries to Proposition 1.4.6 the two results mentioned.

Theorem 1.4.7 The Leavitt path algebra LK(E) is a finite dimensional K-
algebra if and only if E is a finite and acyclic graph.

Proof. If E is finite and acyclic, then Proposition 1.4.6 immediately yields
that LK(E) is finite dimensional.

Suppose on the other hand that E is not finite; in other words, the set
E0 of vertices is infinite. But then {v | v ∈ E0} is a linearly independent set
in LK(E). Furthermore, if E is not acyclic, then there is a vertex v and a
closed path µ based at v. But then {µn | n ≥ 1} is a linearly independent
set in LK(E). 2

Combining Proposition 1.4.6 with Theorem 1.4.7 immediately yields

Corollary 1.4.8 The only finite dimensional K-algebras which arise as LK(E)
for a graph E are of the form A =

⊕t
i=1 Mni(K).
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Chapter 2

Uniqueness theorems. Simple
Leavitt path algebras

Introduction

We start this chapter by studying semiprimeness of path algebras and of
Leavitt path algebras, property that differs in each context. Our following
goal will be to describe graded ideals in Leavitt path algebras.

2.1 Semiprimeness in path algebras and in

Leavitt path algebras

We first study the semiprimeness of the path algebra associated to a graph E.
Recall that an algebra A is said to be semiprime if it has no nonzero ideals
of zero square, equivalently, if aAa = 0 for a ∈ A implies a = 0 (an algebra
A that satisfies this last condition is called in the literature nondegenerate).

Proposition 2.1.1 ([52, Proposition 2.1]). For a graph E and a field K the
path algebra KE is semiprime if and only if for every path µ there exists a
path µ′ such that s(µ′) = r(µ) and r(µ′) = s(µ).

Proof. Suppose first thatKE is semiprime. Given a path µ, since µ(KE)µ 6=
0, there exists a path ν ∈ KE such that µνµ 6= 0. This means that
s(ν) = r(µ) and r(ν) = s(µ).

Now, let us prove the converse. Note that by [44, Proposition II.1.4
(1)], a Z-graded algebra is semiprime if and only if it is graded semiprime.
Hence, and taking into account that being graded semiprime and graded
nondegenerate are equivalent, it suffices to show that if x is any nonzero

13



14 Chapter 2. Uniqueness theorems. Simple Leavitt path algebras

homogeneous element of KE, then x(KE)x 6= 0. Write x =
∑n

i=1 kiαi, with
0 6= ki ∈ K and α1, . . . , αn different paths of the same degree (i.e. of the
same length). Denote the source and range of α1 by u1 and v1, respectively.
Then, by (3), α1

∗x = k1α1
∗α1 = k1v1. By the hypothesis, there exists a path

α1
′ such that s(α1

′) = v1 and r(α1
′) = u1. Observe that α1

′x 6= 0; otherwise
0 = (α1

′)∗α1
′x = u1x, a contradiction since a set of different paths is always

linearly independent over K (Lemma 1.4.4) and α1 = u1α1 6= 0. Therefore
0 6= k1α1

′x = k1v1α1
′x = α1

∗xα1
′x ∈ α1

∗x(KE)x. 2

Lemma 2.1.2 ([18, Lemma 1.5]). Let E be an arbitrary graph. Let v be a
vertex in E0 such that there exists a cycle without exits c based at v. Then:

vLK(E)v =

{
n∑

i=−m

kic
i | ki ∈ K; m,n ∈ N

}
∼= K[x, x−1],

where ∼= denotes a graded isomorphism of K-algebras, and considering (by
abuse of notation) c0 = w and c−t = (c∗)t, for any t ≥ 1.

Proof. First, it is easy to see that if c = e1 . . . en is a cycle without exits
based at v and u ∈ T (v), then s(f) = s(g) = u, for f, g ∈ E1, implies f = g.
Moreover, if r(h) = r(j) = w ∈ T (v), with h, j ∈ E1, and s(h), s(j) ∈ T (v)
then h = j. We have also that if µ ∈ E∗ and s(µ) = u ∈ T (v) then there
exists k ∈ N∗, 1 ≤ k ≤ n verifying µ = ekµ

′ and s(ek) = u.
Let x ∈ vLK(E)v be given by x =

∑p
i=1 kiαiβ

∗
i +δv, with s(αi) = r(β∗i ) =

s(βi) = v and αi, βi ∈ E∗. Consider A = {α ∈ E∗: s(α) = v}; we prove
now that if α ∈ A, deg(α) = mn + q, m, q ∈ N with 0 ≤ q < n, then
α = cme1 . . . eq. We proceed by induction on deg(α). If deg(α) = 1 and
s(α) = s(e1) then α = e1. Suppose now that the result holds for any β ∈ A
with deg(β) ≤ sn + t and consider any α ∈ A, with deg(α) = sn + t + 1.
We can write α = α′f with α′ ∈ A, f ∈ E1 and deg(α′) = sn + t, so by the
induction hypothesis α′ = cse1 . . . et. Since s(f) = r(et) = s(et+1) implies
f = et+1, then α = α′f = cse1 . . . et+1.

We shall show that the elements αiβ
∗
i are in the desired form, i.e., cd

with d ∈ Z. Indeed, if deg(αi) = deg(βi) and αiβ
∗
i 6= 0, we have αiβ

∗
i =

cpe1 . . . eke
∗
k . . . e

∗
1c
−p = v by (4). On the other hand deg(αi) > deg(βi)

and αiβ
∗
i 6= 0 imply αiβ

∗
i = cd+qe1 . . . eke

∗
k . . . e

∗
1c
−q = cd, d ∈ N∗. In a

similar way, from deg(αi) < deg(βi) and αiβ
∗
i 6= 0 it follows that αiβ

∗
i =

cqe1 . . . eke
∗
k . . . e

∗
1c
−q−d = c−d, d ∈ N∗. Define ϕ:K[x, x−1] → LK(E) by

ϕ(1) = v, ϕ(x) = c and ϕ(x−1) = c∗. It is a straightforward routine to check
that ϕ is a graded monomorphism with image vLK(E)v, so that vLK(E)v is
graded isomorphic to K[x, x−1] as a graded K-algebra. 2
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For a not necessarily associative K-algebra A, and fixed x, y ∈ A, the left
and right multiplication operators Lx, Ry:A→ A are defined by Lx(y) := xy
and Ry(x) := xy. Denoting by EndK(A) the K-algebra of K-linear maps
f :A→ A, the multiplication algebra of A (denotedM(A)) is the subalgebra
of EndK(A) generated by the unit and all left and right multiplication oper-
ators La, Ra : A→ A. There is a natural action of M(A) on A such that A
is anM(A)-module whose submodules are just the ideals of A. This is given
by M(A)×A −→ A, where f · a := f(a) for any (f, a) ∈M(A)×A. Given
x, y ∈ A we shall say that x is linked to y if there is some f ∈ M(A) such
that y = f(x). This fact will be denoted by x ` y.

The result that follows states that any nonzero element in a Leavitt path
algebra is linked to either a vertex or to a nonzero polynomial in a cycle with
no exits. So it gives a full account of the action of M(LK(E)) on LK(E).
This result is very powerful as the main ingredient to show that the socle of
a Leavitt path algebra of a row-finite graph is the ideal generated by the line
points. Other interesting results are also obtained as a consequence of it.

Proposition 2.1.3 ([17, Proposition 3.1]). Let E be an arbitrary graph.
Then, for every nonzero element x ∈ LK(E), there exist µ1, . . . , µr, ν1, . . . , νs
∈ E0 ∪ E1 ∪ (E1)∗ such that:

1. µ1 . . . µrxν1 . . . νs is a nonzero element in Kv, for some v ∈ E0, or

2. there exist a vertex w ∈ E0 and a cycle without exits c based at w such
that µ1 . . . µrxν1 . . . νs is a nonzero element in wLK(E)w.

Both cases are not mutually exclusive.

Proof. Show first that for a nonzero element x ∈ L(E), there exists a path
µ ∈ L(E) such that xµ is nonzero and in only real edges.

Consider a vertex v ∈ E0 such that xv 6= 0. Write xv =
∑m

i=1 βie
∗
i + β,

with ei ∈ E1, ei 6= ej for i 6= j and βi, β ∈ L(E), β in only real edges and
such that this is a minimal representation of xv in ghost edges.

If xvei = 0 for every i ∈ {1, . . . ,m}, then 0 = xvei = βi + βei, hence
βi = −βei, and xv =

∑m
i=1−βeie∗i +β = β(

∑m
i=1−eie∗i +v) 6= 0. This implies

that
∑m

i=1−eie∗i +v 6= 0 and since s(ei) = v for every i, this means that there
exists f ∈ E1, f 6= ei for every i, with s(f) = v. In this case, xvf = βf 6= 0
(because β is in only real edges), with βf in only real edges, which would
conclude our discussion.

If xvei 6= 0 for some i, say for i = 1, then 0 6= xve1 = β1 + βe1, with
β1 + βe1 having strictly less degree in ghost edges than x.

Repeating this argument, in a finite number of steps we prove our first
statement.
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Now, assume x = xv for some v ∈ E0 and x in only real edges. Let
0 6= x =

∑r
i=1 kiαi be a linear combination of different paths αi with ki 6= 0

for any i. We prove by induction on r that after multiplication on the left
and/or the right we get a vertex or a polynomial in a cycle with no exit. For
r = 1 if α1 has degree 0 then it is a vertex and we have finished. Otherwise we
have x = k1α1 = k1f1 · · · fn so that k−1

1 f ∗n · · · f ∗1x = v where v = r(fn) ∈ E0.
Suppose now that the property is true for any nonzero element which is

a sum of less than r paths in the conditions above. Let 0 6= x =
∑r

i=1 kiαi
such that deg(αi) ≤ deg(αi+1) for any i. If for some i we have deg(αi) =
deg(αi+1) then, since αi 6= αi+1, there is some path µ such that αi = µfν
and αi+1 = µf ′ν ′ where f, f ′ ∈ E1 are different and ν, ν ′ are paths. Thus
0 6= f ∗µ∗x and we can apply the induction hypothesis to this element. So we
can go on supposing that deg(αi) < deg(αi+1) for each i.

We have 0 6= α∗1x = k1v +
∑

i kiβi, where v = r(α1) and βi = α∗1αi. If
some βi is null then apply the induction hypothesis to α∗1x and we are done.
Otherwise if some βi does not start (or finish) in v we apply the induction
hypothesis to vα∗1x 6= 0 (or α∗1xv 6= 0). Thus we have

0 6= z := α∗1x = k1v +
r∑
i=1

kiβi,

where 0 < deg(β1) < · · · < deg(βr) and all the paths βi start and finish in v.
Now, if there is a path τ such that τ ∗βi = 0 for some βi but not for all

of them, then we apply our inductive hypothesis to 0 6= τ ∗zτ . Otherwise for
any path τ such that τ ∗βj = 0 for some βj, we have τ ∗βi = 0 for all βi. Thus
βi+1 = βiri for some path ri and z can be written as

z = k1v + k2γ1 + k3γ1γ2 + · · ·+ krγ1 · · · γr−1,

where each path γi starts and finishes in v. If the paths γi are not identical we
have γ1 6= γi for some i, then 0 6= γ∗i zγi = k1v proving our thesis. If the paths
are identical then z is a polynomial in the cycle c = γ1 with independent term
k1v, that is, an element in vL(E)v.

If the cycle has an exit, it can be proved that there is a path η such that
η∗c = 0, in the following way: Suppose that there is a vertex w ∈ T (v), and
two edges e, f , with e 6= f , s(e) = s(f) = w, and such that c = aweb = aeb,
for a and b paths in L(E). Then η = af gives η∗c = f ∗a∗aeb = f ∗eb = 0.
Therefore, η∗zη is a nonzero scalar multiple of a vertex.

Moreover, if c is a cycle without exits, by Lemma 2.1.2,

vL(E)v =

{
n∑

i=−m

lic
i, with li ∈ K and m,n ∈ N

}
,
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where we understand c−m = (c∗)m for m ∈ N and c0 = v.
Finally, consider the graph E consisting of one vertex and one loop based

at the vertex to see that both cases can happen at the same time. This
completes the proof. 2

Corollary 2.1.4 For any nonzero x ∈  L we have x ` v for some v ∈ E0 or
x ` p(c, c∗) where c is a cycle with no exits and p a nonzero polynomial in c
and c∗.

Proof. Use Lemma 2.1.2 together with Proposition 2.1.3. 2

Proposition 2.1.5 Let E be an arbitrary graph. Then LK(E) is semiprime.

Proof. Take a nonzero ideal I such that I2 = 0. If I contains a vertex
we are done. On the contrary there is a nonzero element p(c, c∗) ∈ I by
Corollary 2.1.4. If we consider the (nonzero) coefficient of maximum degree
in c and write p(c, c∗)2 = 0 we immediately see that this scalar must be zero,
a contradiction. 2

2.2 Uniqueness theorems

An edge e is an exit for a path µ = e1 . . . en if there exists i such that
s(e) = s(ei) and e 6= ei. A graph is said to satisfy Condition (L) if every
cycle in the graph has an exit.

For any K-algebra A the M(A)-submodules of A are just the ideals of
A and the cyclic M(A)-submodules of A are the ideals generated by one
element (principal ideals in the sequel), so Corollary 2.1.4 states that the
nonzero principal ideals of any Leavitt path algebra contain either vertices
or nonzero elements of the form p(c, c∗). Therefore, for graphs in which every
cycle has an exit, each nonzero ideal contains a vertex.

The following result is a consequence of Proposition 2.1.3.

Corollary 2.2.1 Let E be an arbitrary graph.

(i) Every Z-graded nonzero ideal of LK(E) contains a vertex.

(ii) Suppose that E satisfies Condition (L). Then every nonzero ideal of
LK(E) contains a vertex.

Proof. The second assertion has been proved above. So assume that I is a
graded ideal of  L which contains no vertices. Let 0 6= x ∈ I and use Corollary
2.1.4 to find elements y, z ∈ LK(E) such that yxz =

∑n
i=−m kic

i 6= 0. But
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I being a graded ideal implies that every summand is in I. In particular,
for t ∈ {−m, . . . , n} such that ktc

t 6= 0 we have 0 6= (kt)
−1c−tktc

t = w ∈ I,
which is absurd. 2

Theorem 2.2.2 Let E be an arbitrary graph, and let LK(E) be the associ-
ated Leavitt path algebra.

(1) Graded Uniqueness Theorem.

If A is a Z-graded ring and π : LK(E)→ A is a graded ring homomor-
phism with π(v) 6= 0 for every vertex v ∈ E0, then π is injective.

(2) Cuntz-Krieger Uniqueness Theorem.

Suppose that E satisfies Condition (L). If π : LK(E) → A is a ring
homomorphism with π(v) 6= 0, for every vertex v ∈ E0, then π is
injective.

Proof. In both cases, the kernel of the ring homomorphism π is an algebra
ideal (a graded ideal in the first one). By Corollary 2.2.1, Ker(π) must be
zero because otherwise it would contain a vertex (apply (i) in the corollary
to (1) and (ii) to the other case), which is not possible by the hypotheses.
2

2.3 Simple Leavitt path algebras

In this section we use Proposition 2.1.3 to proof a characterization of simple
Leavitt path algebras (see [2, Theorem 3.11] and [18, Corollary 3.8]).

Recall that an algebra A is said to be simple if A2 6= 0 and it has no
nonzero proper ideals. If the algebra is graded by a group G, write A =∑

σ∈GAσ, it is called graded simple if A2 6= 0 and it has no nonzero proper
graded ideals (an ideal I of A is graded if whenever y =

∑
σ(yσ), every

yσ ∈ I). In general, and in the particular case of Leavitt path algebras,
simplicity and graded-simplicity are not equivalent, as we shall see.

For n ≥ 2 we write En to denote the set of paths of length n, and
E∗ =

⋃
n≥0E

n the set of all paths. We define a relation ≥ on E0 by setting
v ≥ w if there is a path µ ∈ E∗ with s(µ) = v and r(µ) = w. A subset H
of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H. A hereditary
set is saturated if every vertex which feeds into H and only into H is again
in H, that is, if s−1(v) 6= ∅ and r(s−1(v)) ⊆ H imply v ∈ H. Denote by H
(or by HE when it is necessary to emphasize the dependence on E) the set
of hereditary saturated subsets of E0. For a graph E, the empty set and E0

are hereditary and saturated subsets of E0.
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The set T (v) = {w ∈ E0 | v ≥ w} is the tree of v, and it is the smallest
hereditary subset of E0 containing v. We extend this definition for an arbi-
trary set X ⊆ E0 by T (X) =

⋃
x∈X T (x). The hereditary saturated closure

of a set X is defined as the smallest hereditary and saturated subset of E0

containing X. It is shown in [15] that the hereditary saturated closure of a
set X is X =

⋃∞
n=0 Λn(X), where

Λ0(X) = T (X), and

Λn(X) = {y ∈ E0 | s−1(y) 6= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X),
for n ≥ 1.

One way of constructing graded ideals in a Leavitt path algebra is the
following:

Lemma 2.3.1 Let H be a hereditary subset of E0, for a graph E. Then

I(H) =
{∑

kαβ∗, with k ∈ K,α, β paths such that r(α) = r(β) ∈ H
}
.

In fact, I(H) is a graded ideal.

Proof. Denote by J the following set:

J =
{∑

kαβ∗ | k ∈ K,α, β are paths and r(α) = r(β) ∈ H
}
.

The containment J ⊆ I(H) is clear. For the converse, consider µ, ν, α, β
paths in L(E), and u ∈ H such that µν∗uαβ∗ 6= 0. By [53, Lemma 3.1],
µν∗uαβ∗ is µα′β∗ if α = να′ or µν ′∗β∗ if ν = αν ′. Note that α = να′,
u = s(α) and H hereditary imply r(α′) ∈ H, hence µα′β∗ ∈ J . In the second
case, ν = αν ′, u = s(α) and H hereditary imply s(ν ′∗) = r(ν ′) ∈ H, hence
µr(ν ′)ν ′∗β∗ ∈ J , therefore I(H) ⊆ J .

The last statement follows immediately by the form the elements of I(H)
have.

2

Moreover, it was proved in [2, Lemma 3.9]

Lemma 2.3.2 For every ideal I of a Leavitt path algebra LK(E), I ∩ E0 is
a hereditary and saturated subset of E0.

In fact, all graded ideals of a Leavitt path algebra come from hereditary
and saturated subsets of vertices.
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Remark 2.3.3 An ideal J of L(E) is graded if and only if it is generated
by idempotents; in fact, J = I(H), where H = J ∩E0 ∈ HE. (See the proofs
of [15, Proposition 4.2 and Theorem 4.3].)

Now, the question that arise is if every graded ideal of a Leavitt path
algebra is again a Leavitt path algebra (note that this question has sense
only for graded ideals as every Leavitt path algebra is graded). Other natural
question is if the quotient of a Leavitt path algebra by an ideal is a Leavitt
path algebra too.

In both cases, as we shall see, the answer is yes.
For a graph E and a hereditary subset H of E0, we denote by E/H the

quotient graph

(E0 \H, {e ∈ E1 | r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1),

and by EH the restriction graph

(H, {e ∈ E1 | s(e) ∈ H}, r|(EH)1 , s|(EH)1).

Observe that while L(EH) can be seen as a subalgebra of L(E), the same
cannot be said about L(E/H).

Lemma 2.3.4 ([19, Lemma 2.3]) Let E be a graph and consider a proper
H ∈ HE. Define Ψ : L(E)→ L(E/H) by setting Ψ(v) = χ(E/H)0(v)v, Ψ(e) =
χ(E/H)1(e)e and Ψ(e∗) = χ((E/H)1)∗(e

∗)e∗ for every vertex v and every edge
e, where χ(E/H)0 : E0 → K and χ(E/H)1 : E1 → K denote the characteristic
functions. Then:

1. The map Ψ extends to a K-algebra epimorphism of Z-graded algebras
with Ker(Ψ) = I(H) and therefore L(E)/I(H) ∼= L(E/H).

2. If X is hereditary in E, then Ψ(X) ∩ (E/H)0 is hereditary in E/H.

3. For X ⊇ H, X ∈ HE if and only if Ψ(X) ∩ (E/H)0 ∈ H(E/H).

4. For every X ⊇ H, Ψ(X) ∩ (E/H)0 = Ψ(X) ∩ (E/H)0.

Proof. (1) It was shown in [2, Proof of Theorem 3.11] that Ψ extends to
a K-algebra morphism. By definition, Ψ is Z-graded and onto. Moreover,
I(H) ⊆ Ker(Ψ).

Since Ψ is a graded morphism, Ker(Ψ) ∈ Lgr(L(E)). By [15, Theorem
4.3], there exists X ∈ HE such that Ker(Ψ) = I(X). By Lemma ??, H =
I(H)∩E0 ⊆ I(X)∩E0 = X. Hence, I(H) 6= Ker(Ψ) if and only if there exists
v ∈ X \H. But then Ψ(v) = v 6= 0 and v ∈ Ker(Ψ), which is impossible.
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(2) It is clear by the definition of Ψ.
(3) Since Ψ is a graded epimorphism, there is a bijection between graded

ideals of L(E/H) and graded ideals of L(E) containing I(H). Thus, the
result holds by [15, Theorem 4.3].

(4) It is immediate by part (3). 2

Lemma 2.3.5 Let E be a graph. For every hereditary and saturated subset
H of E, the ideal I(H) is isomorphic to L(HE).

Corollary 2.3.6 Every graded ideal of a Leavitt path algebra is again a Leav-
itt path algebra.

One interesting property for Leavitt path algebras is that cycles without
exists behaves in a similar way to sinks, so, roughly speaking, for a graph
having no cycles with exits, and such that every vertex connects to the cycle
(the so called Cn-comet), the corresponding Leavitt path algebra is a direct
sum of matrices over something appropriate.

The notion of Cn-comet was introduced in [7] to describe the locally finite
Leavitt path algebras. The role of the cycle Cn within a Cn-comet is similar to
that played by sinks in more general graphs. If a graph E is a Cn-comet, then
its associated Leavitt path algebra is isomorphic to Mn(K[x, x−1]). Since Cn-
comets have a finite number of vertices, it is natural to generalize this concept
to the case of an infinite (numerable) set of vertices.

Definition 2.3.7 We say that a graph E is a comet if it has exactly one
cycle c, T (v) ∩ c0 6= ∅ for every vertex v ∈ E0, and every infinite path ends
in the cycle c.

Remark 2.3.8 The following is not an example of a Cn-comet:

•v1 e1 //

""EEEEEEEE •v2 e2 //

��

•v3 e3 //

||yyyyyyyy
•v4

vvllllllllllllllll

•

c

ZZ

and the reason is that the infinite path γ = e1e2e3 . . . does not end either in
a sink or in a cycle.

Proposition 2.3.9 Let E be a graph which is a comet. Then the Leavitt path
algebra L(E) is isomorphic to Mn(K[x, x−1]), where n ∈ N if E is finite, or
n =∞ otherwise.
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Proof. We can adapt [7, Theorem 3.3] to our situation. Concretely, let c be
the cycle in E, v a vertex at which the cycle c is based and consider {pi} the
(perhaps infinite) family of all paths in E which end in v but do not contain
the cycle c. Let n ∈ N ∪ {∞} be the number of all such paths. Denote by
N the set {1, . . . , n} when n is finite and N = N when n = ∞. Consider
the family B := {pickp∗j}i,j∈N,k∈N of monomials in L(E) where we understand
c0 = v and cn = (c∗)−n for negative n.

As in [7, Theorem 3.3], we can show that B is a linearly independent
set. We will prove that B generates L(E) as a K-vector space. First, note
that since E is a comet, then T (v) is a finite set for every v ∈ c0. Not only
is this true for any vertex on the cycle c but also for any vertex in E as
follows: Suppose on the contrary that there exists w ∈ E with |T (w)| =∞.
In particular, w does not lie on the cycle. As E is row-finite, we are able to
find and edge e1 in E with s(e1) = w and v1 := r(e1) such that |T (v1)| =∞.
Again v1 does not lie on the cycle. Repeating this process, we find an infinite
path such that none of its vertices lie on c, which contradicts the fact that
every infinite path in E ends in the cycle c.

Take an arbitrary element
∑

i kiαiβ
∗
i of L(E), where αi, βi are paths in

E and ki ∈ K. Consider the set {r(αi)}. Some of these vertices could lie on
the cycle c, in which case we leave the corresponding monomial as is. For
those monomials αkβ

∗
k whose {r(αk)} is not on c, we proceed as in [6, Proof

of Proposition 3.5] by using relation (4) to expand it as

αkβ
∗
k =

∑
{e∈E1:s(e)=r(αk)}

αkee
∗β∗k =

∑
{e∈E1:s(e)=r(αk)}

(αke)(βke)
∗.

As we have just proved that the tree of any vertex is finite, so will be this
process of expanding these monomials until reaching vertices of c.

Consider now a monomial αkβ
∗
k with r(αk) ∈ c0. Let t be the subpath

of c with s(t) = r(αk) and r(t) = v. Since c does not have exits then
αkβ

∗
k = αktt

∗β∗k = (αkt)(βkt)
∗ = αβ∗, where α and β are paths in E that end

in v. Finally, since E is a comet, we can always factor some powers of c out
of α and β so that there exist integers m,n such that α = pic

m and β = pjc
n

for some paths pi, pj which do not contain the path c. Hence, we obtain that
αkβ

∗
k = pic

m−np∗j ∈ B. This proves that B is a K-generator of L(E).
Now, by defining φ : L(E) → Mn(K[x, x−1]) on the basis by setting

φ(pic
kp∗j) = xkeij for eij the (i, j)-matrix unit, then again one easily checks

that φ is a K-algebra isomorphism. 2

For a graph E, denote by Pc(E) the set of vertices in the cycles without
exits of E.

Proposition 2.3.10 Let E be a graph. Then:
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(i) I(Pc(E)) =
⊕

j∈Υ I(Pcj(E)), where Υ is a countable set and {cj}j∈Υ

is the set of all different cycles without exits of E (and by abuse of
notation we identify two cycles that have the same vertices).

(ii) Pc(E) is hereditary and if H denotes the saturated closure of Pc(E), we
have that

I(Pc(E)) = I(H) ∼= L(HE) ∼=
⊕
i∈Υ1

Mni(K[x, x−1])⊕
⊕
j∈Υ2

Mmj(K[x, x−1]),

where Υ1 and Υ2 are countable sets, ni ∈ N and mj =∞.

Proof. We will use Lemma 2.3.1 implicitly. This can be done because Pc(E)
is, clearly, a hereditary set.

(i). To shorten the notation, write: J = I(Pc(E)) and Jj = I(Pcj(E)).
Consider monomials γδ∗ with r(δ) ∈ (cj)

0 and στ ∗ ∈ J . Since the
cycles cj have no exits, they are disjoint and then, similar arguments to that
of the previous paragraph show that γδ∗στ ∗, στ ∗γδ∗ ∈ Jcj . Moreover, these
arguments also yield that if στ ∗ ∈ Jck with j 6= k, then γδ∗στ ∗ = στ ∗γδ∗ = 0.
Thus, {Jcj} is indeed a family of orthogonal ideals of J .

To show that J =
∑

j Jj apply Lemma 2.3.1 to H = ∪jc0
j , which is a

hereditary set since the considered cycles have no exits.

(ii). I(Pc(E)) = I(H) follows by [19, Lemma 2.1] and I(H) ∼= L(HE) by
[16, Lemma 1.2] The same results applied to cj instead of c imply I(Pcj(E)) =
I(Hj) ∼= L(HjE), for Hj the saturated closure of Pcj . By the definition of Hj,
and since cj has no exits, every vertex in Hj connects to cj. The same can
be said about HjE, where cj can be seen as its only cycle. Now suppose that
γ is an infinite path in HjE. Again, by the way this graph is constructed,
there must exist a finite path p and an infinite path β such that γ = pβ,
with β being completely contained in EHj . Suppose that β does not end in
the cycle cj. This, together with the fact that cj does not have exits, yield
that β0 ∩ c0

j = ∅. On the other hand, because β0 ⊆ Hj we can consider m to
be the minimum n such that Λn(c0

j)∩ β0 6= ∅. Now, β0 ∩ c0
j = ∅ implies that

m > 0 so that there exists w ∈ {v ∈ (EHj)
0 | ∅ 6= r(s−1(v)) ⊆ Λm−1(c0

j)}∩β0.
As β is infinite, there is an edge e in β such that s(e) = w and r(e) ∈ β0.
This contradicts the minimality of m. Therefore β ends in the cycle c, and
consequently γ. Hence, HjE is a comet. Apply Proposition 2.3.9 and (i) to
obtain the result. 2

Theorem 2.3.11 Let E be an arbitrary graph. Then LK(E) is simple if
and only if E satisfies Condition (L) and the only hereditary and saturated
subsets of E0 are the trivial ones.
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Proof. Suppose first that LK(E) is simple. If there exists some cycle without
exits in E, the simplicity of LK(E) and Proposition 2.3.10 imply that the
Leavitt path algebra coincides with the ideal generated by this cycle, which
is isomorphic to a matrix ring over the Laurent polynomial ring. But this
rings are not simple, so this cannot happen, that is, every cycle in E must
have an exit.

Now, if H were a hereditary and saturated subset of E0, then the ideal
it generates would be a proper nonzero ideal of LK(E), contradicting the
hypothesis of simplicity.

For the converse take into account that Condition (L) implies that any
nonzero element in LK(E) is linked to a vertex (see Proposition 2.2.1). Thus,
there is a vertex in any nonzero ideal I of LK(E). But on the other hand
∅ 6= I∩E0 is hereditary and saturated ([4, Lemma 2.3]), therefore it coincides
with E0 and so I = LK(E). 2

Recall that a matricial algebra is a finite direct product of full matrix
algebras over K, while a locally matricial algebra is a direct limit of matricial
algebras. At this point we have shown that finite and acyclic graphs produce
matricial algebras. Our following target will be to show that acyclic Leavitt
path algebras are locally matricial. The following results can be found in [3].

Lemma 2.3.12 Let E be a finite acyclic graph. Then L(E) is finite dimen-
sional.

Proof. Since the graph is row-finite, the given condition on E is equivalent
to the condition that E∗ is finite. The result now follows from the previous
observation that L(E) is spanned as a K-vector space by {pq∗ : p, q are paths
in E}. 2

This lemma is just what we need to the following

Proposition 2.3.13 Let E be a graph. Then E is acyclic if and only if
LK(E) is a union of a chain of finite dimensional subalgebras. Concretely,
it is a locally matricial K-algebra.

Proof. Assume first that E is acyclic. If E is finite, then Lemma 3 gives
the result. So now suppose E is infinite, and rename the vertices of E0

as a sequence {vi}∞i=1. We now define a sequence {Fi}∞i=1 of subgraphs of
E. Let Fi = (F 0

i , F
1
i , r, s) where F 0

i := {v1, . . . , vi} ∪ r(s−1({v1, . . . , vi}),
F 1
i := s−1({v1, . . . , vi}), and r, s are induced from E. In particular, Fi ⊆ Fi+1

for all i. For any i > 0, L(Fi) is a subalgebra of L(E) as follows. First note
that we can construct φ : L(Fi)→ L(E) a K-algebra homomorphism because
the Cuntz-Krieger relations in L(Fi) are consistent with those in L(E), in
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the following way: Consider v a sink in Fi (which need not be a sink in E),
then we do not have CK2 at v in L(Fi). If v is not a sink in Fi, then there
exists e ∈ F 1

i := s−1({v1, . . . , vi}) such that s(e) = v. But s(e) ∈ {v1, . . . , vi}
and therefore v = vj for some j, and then F 1

i := s−1({v1, . . . , vi}) ensures
that all the edges coming to v are in Fi, so CK2 at v is the same in L(Fi)
as in L(E). The other relations offer no difficulty. Now, with a similar
construction and argument to that used in [2, Proof of Theorem 3.11] we
find ψ : L(E)→ L(Fi) a K-algebra homomorphism such that ψφ = Id|L(Fi),
so that φ is a monomorphism, which we view as the inclusion map. By
construction, each vertex in E0 is in Fi for some i; furthermore, the edge e
has e ∈ F 1

j , where s(e) = vj. Thus we conclude that L(E) = ∪∞i=1L(Fi).
(We note here that the embedding of graphs j : Fi ↪→ E is a complete graph
homomorphism in the sense of [15], so that the conclusion L(E) = ∪∞i=1L(Fi)
can also be achieved by invoking [15, Lemma 2.1].)

Since E is acyclic, so is each Fi. Moreover, each Fi is finite since, by the
row-finiteness of E, in each step we add only finitely many vertices. Thus,
by Lemma 2.3.12, L(Fi) is finite dimensional, so that L(E) is indeed a union
of a chain of finite dimensional subalgebras.

For the converse, let p ∈ E∗ be a cycle in E. Then {pm}∞m=1 is a linearly
independent infinite set, so that p is not contained in any finite dimensional
subalgebra of L(E). 2

A different proof derives from Corollary 1.4.8 and Lemma 4.3.3.

2.4 Purely infinite Leavitt path algebras

The concept of purely infinite simple C∗-algebra was introduced by Cuntz
in 1981 [28] and implied a significant advance in the development of the
theory of C∗-algebras. It was in 2002 that Ara, Goodearl and Pardo gave the
definition of purely infinite (unital) simple ring (see [14]). Both definitions
agree when considering C∗-algebras. An idempotent e in a ring R is called

infinite if eR is isomorphic as a right R-module to a proper direct summand
of itself. The ring R is called purely infinite in case every nonzero right ideal
of R contains an infinite idempotent.

The following characterization of purely infinite simple rings can be found
in [3].

Proposition 2.4.1 For a ring R with local units, the following are equivalent
conditions:

(i) R is purely infinite simple.
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(ii) R is simple, and for each nonzero finitely generated projective right A-
module P , every nonzero submodule C of P contains a direct summand T of
P for which T is directly infinite. (In particular, the property ‘purely infinite
simple’ is a Morita invariant of the ring.)

(iii) wRw is purely infinite simple for every nonzero idempotent w ∈ R.

(iv) R is simple, and there exists a nonzero idempotent w in R for which
wRw is purely infinite simple.

(v) R is not a division ring, and A has the property that for every pair of
nonzero elements α, β in R there exist elements a, b in R such that aαb = β.

As in the case of simplicity for Leavitt path algebras, being purely infinite
and simple can be characterized in terms of the graph.

Most of the results of this section belong to the paper [3], although some
proofs differ from the original ones.

Lemma 2.4.2 Suppose A is a union of finite dimensional subalgebras. Then
A is not purely infinite. In fact, A contains no infinite idempotents.

Proof. It suffices to show the second statement. So just suppose e = e2 ∈ A
is infinite. Then eA contains a proper direct summand isomorphic to eA,
which in turn, by definition and a standard argument, is equivalent to the
existence of elements g, h, x, y ∈ A such that g2 = g, h2 = h, gh = hg = 0, e =
g + h, h 6= 0, x ∈ eAg, y ∈ gAe with xy = e and yx = g. But by hypothesis
the five elements e, g, h, x, y are contained in a finite dimensional subalgebra
B of A, which would yield that B contains an infinite idempotent, and thus
contains a non-artinian right ideal, which is impossible. 2

A closed simple path based at vi0 is a path µ = µ1 . . . µn, with µj ∈ E1,
n ≥ 1 such that s(µj) 6= vi0 for every j > 1 and s(µ) = r(µ) = vi0 . Denote
by CSP (vi0) the set of all such paths. We note that a cycle is a closed simple
path based at any of its vertices, but not every closed simple path based at
vi0 is a cycle. We define the following subsets of E0:

V0 = {v ∈ E0 : CSP (v) = ∅}

V1 = {v ∈ E0 : |CSP (v)| = 1}

V2 = E0 − (V0 ∪ V1)

Proposition 2.4.3 Let E be a graph. Suppose that w ∈ E0 has the property
that, for every v ∈ E0, w ≥ v implies v ∈ V0. Then the corner algebra
wL(E)w is not purely infinite.



2.4. Purely infinite Leavitt path algebras 27

Proof. Consider the graph H = (H0, H1, r, s) defined by H0 := {v : w ≥ v},
H1 := s−1(H0), and r, s induced by E. The only nontrivial part of showing
that H is a well defined graph is verifying that r(s−1(H0)) ⊆ H0. Take
z ∈ H0 and e ∈ E1 such that s(e) = z. But we have w ≥ z and thus
w ≥ r(e) as well, that is, r(e) ∈ H0.

Using that H is acyclic, along with the same argument as given in Propo-
sition 2.3.13, we have that L(H) is a subalgebra of L(E). Thus Proposition
2.3.13 applies, which yields that L(H) is the union of finite dimensional sub-
algebras, and therefore contains no infinite idempotents by Lemma 2.4.2. As
wL(H)w is a subalgebra of L(H), it too contains no infinite idempotents,
and thus is not purely infinite.

We claim that wL(H)w = wL(E)w. To see this, given α =
∑
piq
∗
i ∈

L(E), then wαw =
∑
pijq

∗
ij

with s(pij) = w = s(qij) and therefore pij , qij ∈
L(H). Thus wL(E)w is not purely infinite as desired. 2

Lemma 2.4.4 Let E be a graph. If L(E) is simple, then V1 = ∅.

Proof. For any subset X ⊆ E0 we define the following subsets. H(X) is the
set of all vertices that can be obtained by one application of the hereditary
condition at any of the vertices of X; that is, H(X) := r(s−1(X)). Similarly,
S(X) is the set of all vertices obtained by applying the saturated condition
among elements of X, that is, S(X) := {v ∈ E0 : ∅ 6= {r(e) : s(e) = v} ⊆
X}. We now define G0 := X, and for n ≥ 0 we define inductively Gn+1 :=
H(Gn) ∪ S(Gn) ∪Gn. It is not difficult to show that the smallest hereditary
and saturated subset of E0 containing X is the set G(X) :=

⋃
n≥0Gn.

Suppose now that v ∈ V1, so that CSP (v) = {p}. In this case p is clearly
a cycle. By Theorem 2.3.11 we can find an edge e which is an exit for p.
Let A be the set of all vertices in the cycle. Since p is the only cycle based
at v, and e is an exit for p, we conclude that r(e) 6∈ A. Consider then the
set X = {r(e)}, and construct G(X) as described above. Then G(X) is
nonempty and, by construction, hereditary and saturated.

Now Theorem 2.3.11 implies that G(X) = E0, so we can find n =
min{m : A ∩ Gm 6= ∅}. Take w ∈ A ∩ Gn. We are going to show
that w ≥ r(e). First, since r(e) 6∈ A, then n > 0 and therefore w ∈
H(Gn−1) ∪ S(Gn−1) ∪ Gn−1. Here, w ∈ Gn−1 cannot happen by the min-
imality of n. If w ∈ S(Gn−1) then ∅ 6= {r(e) : s(e) = w} ⊆ Gn−1. Since w
is in the cycle p, there exists f ∈ E1 such that r(f) ∈ A and s(f) = w. In
that case r(f) ∈ A∪Gn−1 again contradicts the minimality of n. So the only
possibility is w ∈ H(Gn−1), which means that there exists ei1 ∈ E1 such that
r(ei1) = w and s(ei1) ∈ Gn−1.

We now repeat the process with the vertex w′ = s(ei1). If w′ ∈ Gn−2

then we would have w ∈ Gn−1, again contradicting the minimality of n. If
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w′ ∈ S(Gn−2) then, as above, {r(e) : s(e) = w′} ⊆ Gn−2, so in particular
would give w = r(ei1) ∈ Gn−2, which is absurd. So therefore w′ ∈ H(Gn−2)
and we can find ei2 ∈ E1 such that r(ei2) = w′ and s(ei2) ∈ Gn−2.

After n steps we will have found a path q = ein . . . ei1 with r(q) = w and
s(q) = r(e). In particular we have w ≥ s(e), and therefore there exists a cycle
based at w containing the edge e. Since e is not in p we get |CSP (w)| ≥ 2.
Since w is a vertex contained in the cycle p, we then get |CSP (v)| ≥ 2,
contrary to the definition of the set V1. 2

Theorem 2.4.5 Let E be a graph. Then L(E) is purely infinite simple if
and only if E has the following properties.

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.

(ii) Every cycle in E has an exit.

(iii) Every vertex connects to a cycle.

Proof. First, assume (i), (ii) and (iii) hold. By Theorem 2.3.11 we have
that L(E) is simple. By Proposition 2.4.1 it suffices to show that L(E) is not
a division ring, and that for every pair of elements α, β in L(E) there exist
elements a, b in L(E) such that aαb = β. Conditions (ii) and (iii) easily imply
that |E1| > 1, so that L(E) has zero divisors, and thus is not a division ring.
We now apply Proposition 2.1.3 to find a, b ∈ L(E) such that aαb = w ∈ E0.
By condition (iii), w connects to a vertex v 6∈ V0. Either w = v or there
exists a path p such that r(p) = v and s(p) = w. By choosing a′ = b′ = v in
the former case, and a′ = p∗, b′ = p in the latter, we have produced elements
a′, b′ ∈ L(E) such that a′wb′ = v.

An application of Lemma 2.4.4 yields that v ∈ V2, so there exist p, q ∈
CSP (v) with p 6= q. For any m > 0 let cm denote the closed path pm−1q.
Using [2, Lemma 2.2], it is not difficult to show that c∗mcn = δmnv for every
m,n > 0.

Now consider any vertex vl ∈ E0. Since L(E) is simple, there exist
{ai, bi ∈ L(E) | 1 ≤ i ≤ t} such that vl =

∑t
i=1 aivbi. But by defining

al =
∑t

i=1 aic
∗
i and bl =

∑t
j=1 cjbj, we get

alvbl =

(
t∑
i=1

aic
∗
i

)
v

(
t∑

j=1

cjbj

)
=

t∑
i=1

aic
∗
i vcibi = vl.

Now let s be a left local unit for β (i.e., sβ = β), and write s =
∑

vl∈S vl for

some finite subset of vertices S. By letting ã =
∑

vl∈S alc
∗
l and b̃ =

∑
vl∈S clbl,

we get

ãvb̃ =
∑
vl∈S

alc
∗
l vclbl =

∑
vl∈S

vl = s.
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Finally, letting a = ãa′a and b = bb′b̃β, we have that aαb = β as desired.

For the converse, suppose that L(E) is purely infinite simple. By Theorem
2.3.11 we have (i) and (ii). If (iii) does not hold, then there exists a vertex
w ∈ E0 such that w ≤ v implies v ∈ V0. Applying Proposition 2.4.3 we get
that wL(E)w is not purely infinite. But then Proposition 2.4.1 implies that
L(E) is not purely infinite, contrary to hypothesis. 2

2.5 The dichotomy principle for simple Leav-

itt path algebras

We are now in a position to show that every simple Leavitt path algebra is
locally matricial or purely infinite.

We denote by E∞ the set of infinite paths γ = (γn)∞n=1 of the graph E
and by E≤∞ the set E∞ together with the set of finite paths in E whose end
vertex is a sink. We say that a vertex v in a graph E is cofinal if for every
γ ∈ E≤∞ there is a vertex w in the path γ such that v ≥ w. We say that a
graph E is cofinal if so are all the vertices of E.

Lemma 2.5.1 ([19, Lemma 2.7]). A graph E is cofinal if and only if H =
{∅, E0}.

Proof. Suppose E to be cofinal. Let H ∈ H with ∅ 6= H 6= E0. Fix
v ∈ E0 \ H and build a path γ ∈ E≤∞ such that γ0 ∩ H = ∅: If v is a
sink, take γ = v. If not, then s−1(v) 6= ∅ and r(s−1(v)) * H; otherwise, H
saturated implies v ∈ H, which is impossible. Hence, there exists e1 ∈ s−1(v)
such that r(e1) /∈ H. Let γ1 = e1 and repeat this process with r(e1) 6∈ H.
By recurrence either we reach a sink or we have an infinite path γ whose
vertices are not in H, as desired. Now consider w ∈ H. By the hypothesis,
there exists z ∈ γ such that w ≥ z, and by hereditariness of H we get z ∈ H,
contradicting the definition of γ.

Conversely, suppose that H = {∅, E0}. Take v ∈ E0 and γ ∈ E≤∞,
with v 6∈ γ0 (the case v ∈ γ0 is obvious). By hypothesis the hereditary
saturated subset generated by v is E0, i.e., E0 =

⋃
n≥0 Λn(v). Consider m,

the minimum n such that Λn(v)∩ γ0 6= ∅, and let w ∈ Λm(v)∩ γ0. If m > 0,
then by minimality of m it must be s−1(w) 6= ∅ and r(s−1(w)) ⊆ Λm−1(v).
The first condition implies that w is not a sink and since γ = (γn) ∈ E≤∞,
there exists i ≥ 1 such that s(γi) = w and r(γi) = w′ ∈ γ0, the latter
meaning that w′ ∈ r(s−1(w)) ⊆ Λm−1(v), contradicting the minimality of m.
Therefore m = 0 and then w ∈ Λ0(v) = T (v), as we needed. 2
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Theorem 2.5.2 Every simple Leavitt path algebra is locally matricial or
purely infinite.

Proof. Let E be a graph and K a field, and suppose that LK(E) is a simple
algebra. If E has no cycles, then LK(E) is a locally matricial agebra, by
Proposition 2.3.13.

Now, suposse that E has cycles. As it is simple, by Theorem 2.3.11 and
Lemma 2.5.1, every vertex connects to a cycle, hence, by Theorem 2.4.5, the
Leavitt path algebra LK(E) is purely infinite and simple. 2



Chapter 3

Graph C∗-algebras

Introduction

C∗-algebras (originally W ∗-algebras) appear around 1950 as a restriction
of the properties defining von Neumann algebras. Roughly speaking, C∗-
algebras restrict the scope of von Neumann algebras to the context of Func-
tional Analysis. Even if they are “algebraic” objects with “analytic” struc-
ture, most of the work C∗-algebras is done from the analytic point of view.

We will try to connect, at least in the context of graph algebras, these
objects with their purely algebraic nature.

3.1 Basics on C∗-algebras

For operator algebraists, a ∗-algebra is an associative algebra A over the
complex numbers C with an involution: a map a 7→ a∗ from A to A such
that (λa + µb)∗ = λa∗ + µb∗, (a∗)∗ = a and (ab)∗ = b∗a∗. A ∗-algebra may
or may not have an identity element 1, but if so, 1∗ is also an identity, and
hence 1∗ = 1.

Definition 3.1.1 A C∗-algebra is a ∗-algebra A with a norm ‖a‖ : A →
[0,∞) which satisfies the usual axioms for a norm on a vector space, which
satisfies

‖ab‖ ≤ ‖a‖ ‖b‖ and ‖a‖2 = ‖a∗a‖ (the C∗-identity), (3.1)

and for which the normed space (A, ‖·‖) is complete in the sense that Cauchy
sequences converge. It follows from 3.1 that the norm also satisfies ‖a∗‖ =
‖a‖, and, if A has an identity 1, that ‖1‖ = 1.

31
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It is important to notice that the C∗-identity forces any ∗-homomorphism
between C∗-algebras to be continuous in the norm-topology, because they are
contractive maps (see below). Also it is important the fact that a Banach
algebra has (if such exists) a unique norm under which it becomes a C∗-
algebra.

Example 3.1.2

1. Let X be a compact Hausdorff space (or a compact metric space if you
prefer). Then the set

C(X) := {f : X → C : f is continuous on X}

is a C∗-algebra with the algebra operations defined pointwise, with
f ∗(x) := f(x), and with ‖f‖ := sup{|f(x)| : x ∈ X}. This C∗-algebra
is commutative (that is, fg = gf) with identity given by the function
1 with constant value 1 ∈ C.

2. Let H be a Hilbert space: an inner-product space over C which is
complete in the norm ‖h‖ := (h |h)1/2 defined by the inner product. A
linear transformation T : H → H is bounded if it maps bounded sets to
bounded sets (and then for no good reason we call it a bounded linear
operator on H); a basic result says that T is bounded if and only if it
is continuous. The set B(H) of bounded linear operators on H is a C∗-
algebra with addition and scalar multiplication given pointwise, with
multiplication given by composition, with the operator norm defined
by

‖T‖op = sup{‖Th‖ : ‖h‖ ≤ 1},

and with the adjoint T ∗ of T given by the unique bounded operator
satisfying

(T ∗h | k) = (h |Tk) for all h, k ∈ H

(it is a fundamental lemma that for each T there is exactly one such
operator T ∗).

When H = Cn, every linear transformation T is bounded, and passing
from T to its matrix with respect to the usual basis for Cn identifies
B(H) with Mn(C). This identification carries composition into matrix
multiplication and adjoints into conjugate transposes, so Mn(C) is a
C∗-algebra in the operator norm.

Notice that, according to results of Gelfand and Naimark: (a) If A is
a commutative C∗-algebra with identity, then there is a compact Hausdorff
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space X such that A is isomorphic to C(X); (b) Every C∗-algebra A is
isomorphic to a closed ∗-subalgebra (or C∗-subalgebra) of B(H).

The existence of an involution provides special sets of elements, which
plays a central role in the understanding of the structure of C∗-algebras. If
A denotes a C∗-algebra, an element a ∈ A is:

1. Self-adjoint, if a = a∗.

2. Positive, if a = xx∗ for some x ∈ A.

3. Projection, if a = a∗ = a2.

4. Unitary, if aa∗ = a∗a = 1.

5. Isometry, if a∗a = 1.

6. Partial isometry, if a∗a = p projection, called the source projection,
while aa∗ is called the range projection.

Also, given any element a of a C∗-algebra A, we define the Spectrum of a

Spec(a) = {λ ∈ C | λ− a 6∈ A−1}.

The spectrum of an element is a compact Hausdorff space, and in fact the sub-
C∗-algebra of A generated by a, denoted C∗(a), is ∗-isomorphic (so isometric)
to the commutative C∗-algebra C(Spec(a)). This produces one of the most
powerful tools in C∗-algebra Theory: the functional calculus. Functional
calculus is specially useful when a is a positive element, since then Spec(a) ⊂
R+, so that the element is represented as the real function f(x) = x, and
any function on this ”picture” (e.g. f(x) =

√
x) corresponds to an element

in A. This fact provides lots of information about the algebra. You can see
several results in this line in [43] or [55], among others. For example

Lemma 3.1.3 ([55, Lemma 5.1.6]) Let A be a C∗-algebra, and let a ∈ A be
a positive element with ‖a‖ ≤ 1. If ‖a − a2‖ < ε ≤ 1/4, then there exists a
projection p ∈ A such that ‖p− a‖ < 2ε ≤ 1/2.

Proof. For every t ∈ C(Spec(a)), t is a real number such that 0 ≤ t− t2 <
ε ≤ 1/4. Then, there is a gap in Spec(a): t ∈ [0, 1

2
− δ] ∪ [1

2
+ δ, 1], where

δ := 1
2

√
1− 4ε. Thus, the function

f(t) :=

{
0 if t < 1/2
1 if t > 1/2
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is continuous over Spec(a). Then, p = f(a) ∈ A, and it is a projection
because f = f = f 2. Moreover,

sup{|f(t)− t| | t ∈ Spec(a)} =
1

2
− δ,

so that ‖p− a‖ = ‖f(a)− id(a)‖ = 1
2
− δ < 2ε for ε < 1/4. 2

As a consequence, any idempotent in A can be approached by a projection
near enough to guarantee that they are Murray-von Neumann equivalent, so
they represent the same element in K-theoretic sense (see e.g. [24]).

When we say that I is an ideal in a C∗-algebra, we mean that I is norm-
closed and 2-sided. It then follows that I is also closed under the adjoint
operation [43, Theorem 3.1.3], so the quotient A/I is a ∗-algebra.

Theorem 3.1.4 If I is an ideal in a C∗-algebra A, then the quotient A/I is
a C∗-algebra in the quotient norm

‖a‖I := inf{‖a+ i‖ : i ∈ I}.

For proofs of this theorem, see [43, Theorem 3.1.4]. The proofs are not
as routine as one might think: it takes considerable ingenuity and some
substantial general theory to prove that the quotient norm satisfies the C∗-
identity.

There are other results that will be important in some places in this course
(even if we use them implicitly):

1. Suppose that A and B are C∗-algebras and φ : A→ B is a homomor-
phism. Then φ is norm-decreasing: ‖φ(a)‖ ≤ ‖a‖ for every a ∈ A. If φ
is injective, then φ is norm-preserving: ‖φ(a)‖ = ‖a‖ for every a ∈ A
[20, Theorem 1.1.6].

2. The range of every homomorphism φ : A → B between C∗-algebras is
a C∗-subalgebra of B [20, Corollary 1.1.9].

3. Suppose that A is a C∗-algebra and {An : n ∈ N} are C∗-subalgebras

of A such that An ⊂ An+1 and A =
⋃∞
n=1An. If a homomorphism

φ : A → B is injective on each An, then φ is injective on A [20,
Corollary 1.1.12].

3.2 Generators and relations

As seen in Chapter 1, a graph algebra (i.e. a Leavitt path algebra) is a
K-algebra given by generators and relations codified by a direct graph.
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So, in order to construct a graph C∗-algebra over a graph E, we first need
to understand the notion of C∗-algebras given by generators and relations.
Our source will be [42].

From the algebraic point of view, for a given set of generators G and
relations R on the alphabet G, the K-algebra with presentation

K〈G | R〉

is the quotient of the free K-algebra FK(G) by the two-sided ideal I(R) of
FK(G) generated by the relations R. This construction always has sense in
the context, even if I(R) ∩ G 6= ∅ (so that some generators collapses), or
I(R) = FK(G) (so that K〈G | R〉 = 0!), with no restrictions on the sets of
generators and relations.

From the C∗-algebraic point of view, though, the key point [42, §1.1] is
that free C∗-algebras over sets of generators do not exist in the above
sense. The reason is that, if G is a countable set and H is a separable (i.e,
with a countable basis) complex Hilbert space, it should exists an injective
∗-morphism

F∗C(G)→ B(H)

so that any relation of G will generate a closed two-sided ideal. Now, pick
α ∈ R++ with α > 2. Then, if G = {x} and we consider the relation
xx∗ − αx∗x, then for any sequence {an}n≥1 ⊂ `2(C) will produce an element∑
i≥1

anxx
∗ with the property

∑
i≥1

(2nan)x∗x <
∑
i≥1

anx
∗x =

∑
i≥1

anxx
∗

which clearly is unbounded as operator on H!
So, we need to consider bounded sets of generators, and to define F∗C(G |

R) using a universal property: it is C∗-algebra A with a representation

i : G � A

such that for any representation 〈bg〉 of R into a C∗-algebra B there exists a
unique extension ∗-homomorphism from A to B sending g ∈ G to bg.

The standard way is to fix a such presentation in B(H). Thus, the general
problem is:

1. To find such a map

π : F∗C(G | R)→ B(H).
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2. To check the injectivity of π.

This links the question about the existence of this universal algebra to
the existence of a Uniqueness Theorem which fix when a morphism with
source F∗C(G | R) is injective. This is the reason of the interest of graph
C∗-algebraists in getting these Uniqueness Theorems.

3.3 The C∗-algebra of a graph E

Because of the remarks in Section 3.2, it is clear that we cannot consider
the existence of the graph C∗-algebra C∗(E) associated to a graph E (as an
algebra given by generators and relations) as an automatic fact. Since we
want that C∗(E) enjoys the universal property associated to the presentation
encoded by the graph E (in the terms of Chapter 1), we are in fact looking
for

C∗(E) = F∗C(G | R),

where G = {pv | v ∈ E0}∪ {se | e ∈ E1}, while R is the set of Cuntz-Krieger
relations:

1. pv = p∗v = p2
v for every v ∈ E0;

2. pvpw = δv,wpv for every v, w ∈ E0;

3. s∗ese = ps(e) for every e ∈ E1 (ps(e) is the source projection of the partial
isometry se);

4. ses
∗
e ≤ pr(e) for every e ∈ E1;

5. pv =
∑

r(e)=v ses
∗
e for every v ∈ E0 with 0 < |s−1(v)| <∞.

Notice that (3 − 5) are the reverse on (CK1 − 2) in the definition of a
Leavitt path algebra. In fact, if we consider the transpose graph Et (same
set of vertices and edges, but reverse sense for the edges), then (CK1− 2) of
LC(E) coincide with (3− 5) of C∗(Et). The reason of C∗-algebraists’ choice
relies in the final comment of (3).

To proceed with the construction of C∗(E), we need to fix the map

π : F∗C(G | R)→ B(H),

so that we first need a faithful representation of the Cuntz-Krieger E-family
as bounded operators on a separable Hilbert space. For, let H be an (infinite-
dimensional) separative complex Hilbert space, and let H = ⊕v∈E0Hv, where



3.3. The C∗-algebra of a graph E 37

Hv = H for every v ∈ E0. Now, for each v ∈ E0, let Pv : H → Hv be the
natural projection map. Also, for each v ∈ E0 decompose Hv as a direct
sum Hv = ⊕{e∈E1|r(e)=v}Hv,e of infinite-dimensional subspaces, and take Se
to be a unitary isomorphism Se : Hs(e) → Hr(e),e, viewed as a partial isometry
on H with initial space Hs(e). Clearly, the set G = {Pv | v ∈ E0} ∪ {Se |
e ∈ E1} satisfies the above Cuntz-Krieger relations, and every element in G
is a nonzero element of B(H). So, the ∗-subalgebra of B(H) generated by
{Pv | v ∈ E0}∪{Se | e ∈ E1} give us a faithful representation of a C∗-algebra
whose presentation corresponds to a Cuntz-Krieger E-family {S, P}. We will
denote such algebras by C∗(S, P ).

Now, we are looking amongst the C∗-algebras C∗(S, P ) the one satisfy-
ing the desired universal property (if such an algebra exists!). We start by
showing the existence of such an object, and later we proceed to show the
uniqueness of it.

The key results for existence are

Proposition 3.3.1 [47, Proposition 1.12] Let E be a row-finite graph, and
let C∗(S, P ). Then:

1. The projections {SeS∗e | e ∈ E1} are mutually orthogonal.

2. S∗eSf 6= 0⇒ e = f .

3. SeSf 6= 0⇒ s(e) = r(f).

4. SeS
∗
f 6= 0⇒ s(e) = s(f).

Corollary 3.3.2 [47, Corollary 1.14] Let E be a row-finite graph, and let
{S, P} be a Cuntz-Krieger E-family in a C∗-algebra B. Let µ, ν ∈ E∗. Then:

1. If |µ| = |ν| and µ 6= ν, then (SµS
∗
µ)(SνS

∗
ν) = 0.

2. S∗µSν =


S∗µ′ if µ = νµ′ for some µ′ ∈ E∗
Sν′ if ν = µν ′ for some ν ′ ∈ E∗
0 otherwise.

3. If SµSν 6= 0, then µν is a path in E and SµSν = Sµν.

4. If SµS
∗
ν 6= 0, then s(µ) = s(ν).

Corollary 3.3.3 [47, Corollary 1.15] Let E be a row-finite graph, and let
{S, P} be a Cuntz-Krieger E-family in a C∗-algebra B. For µ, ν, α, β ∈ E∗,
we have

(SµS
∗
ν)(SαS

∗
β) =


Sµα′S

∗
β if α = να′

SµS
∗
βν′ if ν = αν ′

0 otherwise.
(3.2)
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It particular, it follows that every nonzero finite product of the partial isome-
tries Se and S∗f has the form SµS

∗
ν for some µ, ν ∈ E∗ with s(µ) = s(ν).

As a consequence we get

Corollary 3.3.4 [47, Corollary 1.16] If E is a row-finite graph, and {S, P}
is a Cuntz-Krieger E-family, then

C∗(S, P ) = span{SµS∗ν | µ, ν ∈ E∗, s(µ) = s(ν)}.

In terms of the Leavitt path algebra LC(E), Corollary 3.3.4 means that

C∗(S, P ) = ϕS,P (LC(E))
‖·‖

, where

ϕS,P : LC(E)) −→ C∗(S, P )
v 7→ Pv
e 7→ Se

(3.3)

is the map induced by the universal property of LC(E). In fact, the keystone
to guarantee the existence of C∗(E) relies in the above fact, expressed in a
formal way as follows: consider the formal symbols dµ,ν giving a basis of a
complex vector space V , and complex coefficients zµ,ν so that only finitely
many of them in each sum are nonzero. Then we have the following result.

Proposition 3.3.5 [47, Proposition 1.20] Let E be a row-finite graph. Then
the vector space V of formal linear combinations

V =

{∑
µ,ν

zµ,νdµ,ν | µ, ν ∈ E∗, s(µ) = s(ν)

}

is a ∗-algebra with dµ,ν∗ = dν,µ and

(dµd
∗
ν)(dαd

∗
β) =


dµα′d

∗
β if α = να′

dµd
∗
βν′ if ν = αν ′

0 otherwise.
(3.4)

The reason is that Proposition 3.3.5 encodes the universal property of
LC(E), so that for a given Cuntz-Krieger E-family {S, P} we have

ϕS,P : LC(E)→ C∗(S, P ).

Since the C∗-identity imply that projections and partial isometries have norm
1, we get

‖ϕS,P (
∑

αµ,νµν
∗)‖ ≤

∑
‖αµ,ν‖ · ‖SµS∗ν‖ ≤

∑
|αµ,ν |,
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so that

‖a‖1 = sup{‖ϕS,P (a)‖ | {S, P} Cuntz-Krieger E − family}

is finite for every a ∈ LC(E). Hence, ‖·‖1 is an ∗-algebra seminorm satisfying
the C∗-identity. By [53, Theorem 7.3] (we will come back to this result with
more detail in next chapter), ‖ · ‖1 is in fact a norm. Thus,

C∗(E) := LC(E)
‖·‖1

turns out to be a C∗-algebra of C∗(S, P ) type related to the graph E. More-
over, since for any Cuntz-Krieger E-family {S, P} the map ϕS,P is ‖ · ‖1-
continuous, the map 3.3 extends uniquely to a ∗-morphism

ΦS,P : C∗(E) −→ C∗(S, P )
pv 7→ Pv
se 7→ Se

(3.5)

whence we conclude

Theorem 3.3.6 [47, Proposition 1.21 & Corollary 1.22] Let E be a row-finite
graph. Then:

1. C∗(E) is a C∗-algebra generated by a Cuntz-Krieger E-family {s, p}
such that for any Cuntz-Krieger E-family {T,Q} in a C∗-algebra B,
there is an injective homomorphism πT,Q : C∗(E) → B satisfying
πT,Q(se) = Te for every e ∈ E1 and πT,Q(pv) = Qv for every v ∈ E0.

2. Suppose that C is a C∗-algebra generated by a Cuntz-Krieger E fam-
ily {w, r} such that for any Cuntz-Krieger E-family {T,Q} in a C∗-
algebra B, there is an injective homomorphism ρT,Q : C → B satisfying
ρT,Q(we) = Te for every e ∈ E1 and ρT,Q(rv) = Qv for every v ∈ E0.
Then there is an isomorphism φ : C∗(E)→ C such that φ(se) = we for
every e ∈ E1 and φ(pv) = rv for every v ∈ E0.

The first part of Theorem 3.3.6 guarantees the existence of the graph C∗-
algebra C∗(E), and the second part the uniqueness (because is the universal
property of the algebra). In fact, we can relax the hypotheses of the second
part, getting the injectivity of the map from milder assumptions which are
easier to be checked. The basis of that relies of the existence of a continuous
action of the circle T on C∗(E); is the standard Gauge action.

Proposition 3.3.7 [47, Proposition 2.1] Let E be a row-finite graph. Then
there is an action γ of T on C∗(E) such that, for each z ∈ T, γz(se) = zse
for every e ∈ E1 and γz(pv) = pv for every v ∈ E0.



40 Chapter 3. Graph C∗-algebras

By using this Gauge action, we are able to proof the celebrated Unique-
ness Theorems for graph C∗-algebras, which turns out to be the most pow-
erful tools in the development of this theory.

Theorem 3.3.8 [47, Theorem 2.2] Let E be a row-finite graph, and let
{T,Q} be a Cuntz-Krieger E-family in a C∗-algebra B such that Qv 6= 0
for every v ∈ E0. If there is a continuous action β : T → Aut(B) such that
βz(Te) = zTe for every e ∈ E1 and βz(Qv) = Qv for every v ∈ E0, then the
homomorphism πT,Q : C∗(E)→ B is an isomorphism onto C∗(T,Q).

Theorem 3.3.9 [47, Theorem 2.4] Let E be a row-finite graph satisfying
Condition (L)1, and let {T,Q} be a Cuntz-Krieger E-family in a C∗-algebra
B such that Qv 6= 0 for every v ∈ E0. Then the homomorphism πT,Q :
C∗(E)→ B is an isomorphism onto C∗(T,Q).

and as a consequence we get

Theorem 3.3.10 [47, Corollary 2.5] Let E be a row-finite graph satisfying
Condition (L), and let {S, P} and {T,Q} be two Cuntz-Krieger E-families
on a separable Hilbert space H such that Pv 6= 0 and Qv 6= 0 for every
v ∈ E0. Then there exists an isomorphism φ : C∗(S, P ) → C∗(T,Q) such
that φ(Se) = Te for every e ∈ E1 and φ(Pv) = Qv for every v ∈ E0.

So, under Condition (L), any two Cuntz-Krieger E-families generate iso-
morphic C∗-algebras, and isomorphic to C∗(E), whence in this case we need
not to care about the choice of the representation.

3.4 First applications of G.I.U.T.

Let us to expend a few time in looking to other interesting and useful appli-
cations of these uniqueness theorems.

Corollary 3.4.1 [47, Corollary 2.6] Suppose that E is a row-finite graph with

no sources, and define the dual graph Ê by Ê0 = E1, Ê1 = E2, r bE(ef) = e

and s bE(ef) = f . Then, Ê is row-finite and C∗(Ê) ∼= C∗(E).

There are general versions of this results in the C∗-algebra context [22,
Theorem 3.2] and in the Leavitt path algebra context [1, Theorem 2.8].

Also, we can use these theorems to erase sources and sink from the graph
(which existence is critical for some results), without lose of the “stable”

1Notice that, in this contex, Condition (L) means that every cycles has an entry.
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properties of the algebra. For, we add a head to each source and a tail to
each sink (i.e., and infinite line subgraph starting in each sink/ending in each
source). The underlying idea is to state injective morphisms between non-
unital graph algebras, which is strongly useful to state Morita equivalences
between algebras.

Corollary 3.4.2 [47, Corollary 2.11] Suppose that E is a row-finite graph,
and F is the graph obtained by adding a head to every source of E and a tail
to every sink of E. Denote by {s, p} and {t, q} the canonical Cuntz-Krieger
families generating C∗(E) and C∗(F ) respectively, and let qE ∈ M(C∗(F ))
be the projection

qE =
∑
v∈E0

pv.

Then, qEC
∗(F )qE is a full corner in C∗(F ), and there is an isomorphism

φ : C∗(E)→ qEC
∗(F )qE

such that φ(se) = te for every e ∈ E1 and φ(pv) = qv for every v ∈ E0.

Also, by using the link between AF -algebras and directed graphs (the
Bratteli diagrams) (see e.g. [30]), is it possible to show that any AF -algebra
is strongly Morita equivalent to a graph C∗-algebra, as follows.

Proposition 3.4.3 [47, Proposition 2.12] Let A be a unital AF -algebra, and
let (E, {Vn}, v0) be a Bratteli diagram for A. Then, A ∼= pv0C

∗(E)pv0, and
pv0C

∗(E)pv0 is a full corner of C∗(E).

Other examples of application can be found in [47, Chapter 2].

3.5 Gauge invariant ideals

A fundamental consequence of the uniqueness theorems is the description
of the gauge-invariant ideals of a graph C∗-algebra. This will allows, with
a slight extra effort, to characterize simple/purely infinite simple graph C∗-
algebras (we delay this discussion to the next chapter).

We will describe such ideals in a “constructive” way. The starting point
is try to decide which kind of closed two-sided ideals in C∗(E) give quotients
that turns out to be graph C∗-algebras too.

Let I �C∗(E) be a closed two-sided ideal, and consider the subset of E0

given by the rule HI = {v ∈ E0 | pv ∈ I}. Now consider the quotient map qI :
C∗(E) → C∗(E)/I. Notice that qI(pv) 6= 0 for every v 6∈ HI , and moreover,
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if s(e) 6∈ HI , then qI(ps(e)) 6= 0, whence 0 6= qI(se)qI(se)
∗ ≤ qI(pr(e)), and

thus r(e) 6∈ HI too. So,

E \HI = (E0 \HI , s
−1(E0 \HI), s, r)

is a graph, and {qI(se), qI(pv) | s(e), v 6∈ HI} is a Cuntz-Krieger E\HI-family.
Hence, if E satisfies Condition (L), Theorem 3.3.10 implies that

C∗(E \HI) ∼= C∗(E)/I.

Thus, in order to understand two-sided ideals, we need to boil up the abstract
characterization of the sets of the form HI .

Definition 3.5.1 We define a relation ≥ on E0 by setting w ≥ v if there is
a path µ ∈ E∗ with s(µ) = v and r(µ) = w.2 A subset H of E0 is called
hereditary if v ≤ w and v ∈ H imply w ∈ H. A hereditary set is saturated
if every vertex which feeds into H and only into H is again in H, that is, if
r−1(v) 6= ∅ and s(r−1(v)) ⊆ H imply v ∈ H.

Denote by H (or by HE when it is necessary to emphasize the dependence
on E) the set of hereditary saturated subsets of E0. Then we have the
following result

Lemma 3.5.2 [47, Lemma 4.5] Suppose that I a nonzero ideal in C∗(E).
Then HI ∈ HE.

We need to recall a definition

Definition 3.5.3 A graph E satisfies Condition (K) if for each vertex v on
a closed simple path there exists at least two distinct closed simple paths
α, β based at v.

Lemma 3.5.4 [47, Lemma 4.7] A graph E satisfies Condition (K) if and
only if for every H ∈ HE the graph E \H satisfies Condition (L).

Thus, we get the main result in this section. First we need a definition

Definition 3.5.5 Let E be a row-finite graph, and let H ∈ HE. We de-
fine a graph EH = (H, r−1(H), s, r). We will denote by pH the projection∑

v∈H pv ∈M(C∗(E)).

2Recall that C∗-algebraists read the information of the graph reversing the sense of the
arrows.
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Theorem 3.5.6 [47, Theorem 4.9] Let E be a row-finite graph satisfying
Condition (K). Then:

1. For each H ∈ HE, let IH be the ideal generated by {pv | v ∈ H}. Then
H 7→ IH is a bijection between HE and the set L(C∗(E)) of two-sided
ideals of C∗(E), with inverse given by I 7→ HI .

2. For every H ∈ HE, C∗(E \H) ∼= C∗(E)/IH and C∗(EH) is isomorphic
to the full corner pHIHpH .

Moreover, the map defined in Theorem 3.5.6(1) is a lattice isomorphism
(see e.g. [20, Theorem 2.1.6]).

Remark 3.5.7 If E do not satisfy Condition (K), then Theorem 3.5.6(1)
works by replacing L(C∗(E)) by the lattice Lγ(C∗(E)) of gauge-invariant
ideals of C∗(E), simply using Theorem ?? instead of Theorem 3.3.9.

Let us sketch the proof of Theorem 3.5.6, because it illustrates the usage
of the uniqueness theorem in this context.

We are assuming that E satisfies Condition (K), and that I � C∗(E),
H := HI ∈ HE. Let us see that I = IH . Trivially, IH ⊆ I. To be the reverse
inclusion, Consider the maps

qI : C∗(E)→ C∗(E)/I,

qIH : C∗(E)→ C∗(E)/IH ,

and
qI/IH : C∗(E)/IH → C∗(E)/I.

Note that qI = qI/IH ◦ qIH . Since qI(pv) = 0 if and only if qIH (pv) = 0,
and hence qI(se) = 0 if and only if qIH (se) = 0, both {qI(se), qI(pv)} and
{qIH (se), qIH (pv)} are Cuntz-Krieger (E \H)-families generating the respec-
tive quotients. Let

π : C∗(E \H)→ C∗(E)/IH

and
ρ : C∗(E \H)→ C∗(E)/I

be the corresponding universal morphisms. As ρ and qI/IH ◦ π agree on the
generators of C∗(E \H), we conclude that ρ = qI/IH ◦π. So, ρ is injective by
Lemma 3.5.4 and Theorem 3.3.10. Since π is onto, we conclude that qI/IH is
injective. Thus, I = IH , as claimed.

Since I = IHI , the map H 7→ IH is onto. To see that it is injective,
we shall prove that if H ∈ HE, then H = {v ∈ E0 | pv ∈ IH}. Trivially,
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H ⊆ {v ∈ E0 | pv ∈ IH}. To see the reverse inclusion, let {t, q} be the
Cuntz-Krieger (E \ H)-family generating C∗(E \ H). Notice that defining
te = 0 for every s(e) ∈ H and qv = 0 for every v ∈ H, we have in fact that
{t, q} is a Cuntz-Krieger E-family. Then, by Theorem 3.3.9 there exists a
morphism

πt,q : C∗(E)→ C∗(E \H)

such that πt,q(qv) = 0 for every v ∈ H. Thus, IH ⊆ Kerπt,q. Then, for any
v 6∈ H, as qv 6= 0, we have that πt,q(pv) 6= 0, whence pv 6∈ Kerπt,q, and thus
pv 6∈ IH . Hence, H = {v ∈ E0 | pv ∈ IH}, as desired.



Chapter 4

Links between C∗(E) and LC(E).

4.1 Leavitt path algebras versus graph C∗-

algebras

Leavitt algebras [41] appeared in the 1960’s as a universal model for non-
IBN algebras. Independently Cuntz [27], in 1977, introduced an analytic
version in order to model some pathologies for K-Theory of C∗-algebras.
These algebras (the so-called Cuntz algebras) were generalized in [29], in
connection with the classification of subshifts of finite type. Enomoto and
Watatani [33] introduced the notion of C∗-algebra of a finite graph as a way of
giving a presentation of Cuntz-Krieger algebras, encoding such a presentation
in a finite direct graph. Fifteen years later, Kumjian, Pask and Raeburn [40]
extended Enomoto & Watatani’s construction to infinite row-finite graphs
(extending a previous model of Cuntz-Krieger algebras given in terms of
groupoids [39]). This model and its generalizations constitutes now the kernel
of the study of graph C∗algebras.

From the algebraic point of view, the first generalization can be founded
in [12], where a construction (fractional skew monoid rings) generalizing skew
group rings to semigroup rings is introduced. This construction is a gener-
alization of the crossed product of a C∗-algebra by an endomorphism intro-
duced by Paschke [45], lately used by Rørdam [49] to model Cuntz-Krieger
algebras; the same model holds for the algebraic construction in [12]. Around
2003, Abrams and Aranda [2], and Ara, Moreno and Pardo (independently)
[15] introduced the notion of Leavitt path algebra on a row-finite graph as a
generalization of both Leavitt algebras and Cuntz-Krieger graph C∗-algebras.

So, in the study of the structure of Leavitt path algebras, the properties
enjoyed by graph C∗-algebras has been an inspiration source. Nevertheless,
the graph C∗-algebra C∗(E) is an analytic object, and even if the results ob-

45
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tained for LK(E) turns out to be surprisingly analog (except in two cases we
will analyze later in this chapter), there is no known way of transfer directly
results from the graph C∗-algebra context to the Leavitt path algebra con-
text, and conversely; in fact, a major question for bridging the gap between
both classes of algebras is to find a correct framework in which we can state
and proof results for these classes of algebras with no distinctions.

From the C∗-algebraists side, one of the most surprising facts about Leav-
itt path algebras theory is that an algebraic analog of the Gauge Invariant
Uniqueness Theorem (Theorem 3.3.9) do not play a central role (in fact, no
role) in the study of Leavitt path algebras. As seen in Chapter 4, in the case
of graph C∗-algebras, this theorem is essential to guarantee the existence &
uniqueness of the algebra, and also the structure of the lattice of ideals. But
as seen in the Chapter 1, in the case of Leavitt path algebras, its existence
& uniqueness relies in properties emanating of Universal Algebra, while the
structure of (graded) ideals can be determined using the nonstable K-Theory
of LK(E), as shown in [15, Theorem 5.3], and then the algebraic versions of
Theorems 3.3.9 & 3.3.10 (over graphs satisfying Condition (L)) are conse-
quence of [15, Theorem 5.3] and [2, Corollary 3.3]. In fact, to determine the
injectivity of Leavitt path algebra maps do not play any role in the theory
before the work of classification of purely infinite simple Leavitt path alge-
bras (see [14] for general definition, [3] for characterization of this property
in Leavitt path algebras, and [1] for a first approach to the classification
problem).

Because of the Z-graded structure of LK(E) (for any field K) and [15,
Theorem 5.3], “it is clear” that the natural map

ϕ : LC(E)→ C∗(E)

is an injective ∗-algebra map for any row-finite graph E. But is necessary
to wait to Tomforde’s work [53] to find a formal, general proof of this fact;
the interest of Tomforde’s result relies in the fact that his proof follows the
C∗-algebra strategy, thus offering a first analog of G.I.U. Theorem for Leavitt
path algebra (a version has been studied in Chapter 2). We will start our
comparison of both kind of algebras in this point.

4.2 Tomforde’s Graded Invariant Uniqueness

Theorem for LPAs

The source of the section is [53]. In this paper Tomforde proves an alge-
braic version of the G.I.U. Theorem for Leavitt path algebras (over arbitrary
graphs)



4.2. Tomforde’s Graded Invariant Uniqueness Theorem for LPAs 47

Theorem 4.2.1 [53, Theorem 4.8] Let E by a graph, let K be a field, and let
A be any Z-graded algebra. If π : LK(E) → A is a Z-graded ring morphism
such that π(v) 6= 0 for every v ∈ E0, then π is injective.

As a consequence, Tomforde prove a version of [15, Theorem 5.3] for
arbitrary graphs [53, Theorem 5.7], linking graded ideals of LK(E) with
hereditary and saturated subsets of E0. Thus, he deduce a Cuntz-Krieger
Uniqueness Theorem (again on arbitrary graphs), as follows

Theorem 4.2.2 [53, Theorem 6.8] Let E by a graph that satisfies Condition
(L), let K be a field. If π : LK(E) → A is a ring morphism such that
π(v) 6= 0 for every v ∈ E0, then π is injective.

In particular he deduces that E satisfies Condition (K) if and only if
every ideal in LK(E) is graded [53, Theorem 6.16] (the row-finite version was
proved by Aranda, Siles and Pardo [19, Theorem 4.5]).

So, Tomforde’s paper states in the case of arbitrary graphs that there
exists a coupling between graded ideals in Leavitt path algebras and gauge-
invariant ideals in graph C∗-algebras, which determine the form of the al-
gebraic versions of G.I.U.T. and C-K.U.T. (we will study that relation in a
deep way a little later). One interesting application [53, Theorem 7.3] is the
prove of the injectivity of the map

ϕ : LC(E)→ C∗(E).

Notice that the principal problem to apply [15, Theorem 5.3] and [2, Corol-
lary 3.3] for doing that is that C∗(E) is not a Z-graded algebra. This problem
was avoided by noticing that A = ϕ(LC(E)) (which is a Z-graded algebra) is
a dense ∗-subalgebra of C∗(E). Tomforde’s argument ignores this assump-
tion, and in fact allows to prove this fact as a consequence of Theorem 4.2.1.
The strategy is to consider the standard gauge action γ of T on C∗(E), and
to define, for each n ∈ Z,

An =

{
a ∈ A |

∫
T
z−nγz(a)dz = a

}
where the integral is defined with respect to the normalized Haar measure
on T. Thus, given λsαs

∗
β ∈ A, we get∫

T
z−nγz(λsαs

∗
β) =

{
λsαs

∗
β if |α| − |β| = n

0 otherwise.
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Hence,
N∑
k=1

λksα,ks
∗
β,k ∈ A if and only if |(α, k)| − |(β, k)| = n for every

1 ≤ k ≤ N . Thus, A = ⊕n∈ZAn is a Z grading for A. Now, since ϕ(v) = pv
for every v ∈ E0, while ϕ(e) = se and ϕ(e∗) = s∗e for every e ∈ E1, we
conclude that ϕ is Z-graded, so that Theorem 4.2.1 apply, and thus ϕ is
injective. And thenA is a dense ∗-subalgebra of C∗(E) for free! [53, Corollary
7.5].

Also, Tomforde state a direct link between graded ideals of LC(E) and
gauge-invariant ideals of C∗(E). To be concrete, under the identification of

LC(E) with A ⊂ A‖·‖0 = C∗(E), where for any a ∈ LC(E)

‖a‖0 = sup{‖π(a)‖ | π : LC(E)→ B(H) nondegenerate representation}

[53, Corollary 7.6], the map I 7→ I defines a lattice isomorphism from graded
ideals of LC(E) to gauge-invariant ideals of C∗(E), with inverse map J 7→
J ∩LC(E). This isomorphism identifies ideals of LC(E) with closed ideals of
C∗(E) whenever E enjoys Condition (K). And certainly fails for ungraded
ideals (see [53, Remark 7.8]).

For applications about injectivity of maps on Leavitt path algebras, it is
also relevant a generalization of the standard action of T on C∗(E), intro-
duced in [1, Section 1].

Definitions 4.2.3 [1, Definitions 1.3] Let K be a field, and let A be a Z-
graded algebra over K. For t ∈ K∗ = K \ {0} and a any homogeneous
element of A of degree d, set

τt(a) = tda,

and extend τt to all of A by linearity. It is easy to show that τt is a K-algebra
automorphism of A for each t ∈ K∗. Then τ : K∗ → AutK(A) is an action
of K on A, which we call the gauge action of K on A.

If I is an ideal of A, we say that I is gauge-invariant in case τt(I) = I
for each t ∈ K∗. This condition is equivalent to requiring that τt(I) ⊆ I for
every t ∈ K∗, since τt−1(I) ⊆ I gives I ⊆ τt(I).

The next result establishes a relationship between graded and gauge-
invariant ideals of any Z-graded algebra.

Proposition 4.2.4 [1, Proposition 1.4] Let K be a field, let A be a Z-graded
K-algebra, and let I be an ideal of A. Let τ : K∗ → AutK(A) be the gauge
action of K on A.
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1. If I is generated as an ideal of A by elements of degree 0, then I is
gauge-invariant.

2. If K is infinite, and if I is gauge-invariant, then I is graded.

We now apply this result in the context of Leavitt path algebras. For
clarity, we present here the definition of the gauge action of K on the Leavitt
path algebra LK(E) of the row-finite graph E.

Definition 4.2.5 [1, Definition 1.5] Let E be a row-finite graph, and let K
be a field. Then the gauge action τ of K on the Leavitt path algebra LK(E)
(denoted sometimes by τE for clarity) is given by

τE : K∗ → AutK(LK(E))
t 7→ τEt

as follows: for every t ∈ K∗, for every v ∈ E0, and for every e ∈ E1

τEt : LK(E) → LK(E)
v 7→ v
e 7→ te
e∗ 7→ t−1e∗

and then extend linearly and multiplicatively to all of LK(E).

For a graph E, the set of graded ideals of A = LK(E) is denoted by Lgr.

Proposition 4.2.6 [1, Proposition 1.6] Let E be a row-finite graph, let K
be an infinite field, and let I be an ideal of LK(E). Then I ∈ Lgr if and only
if I is gauge-invariant.

We note that the implication “I ∈ Lgr implies I is gauge-invariant” holds
for any field K, finite or infinite, because in this case I is generated as ideal
by the set I ∩E0. In contrast, we now show that the converse implication of
Proposition 4.2.6 is never true for any finite field.

Proposition 4.2.7 [1, Proposition 1.7] For any finite field K there exists
a graph E such that the Leavitt path algebra LK(E) contains a non-graded
ideal which is gauge-invariant.

Proof. If we denote card(K) by m + 1, then tm = 1 for all t ∈ K∗. Let E
be the graph

•v xhh
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so that, as noted previously, LK(E) ∼= K[x, x−1]. In particular we have
τt(1 + xm) = 1 + xm for all t ∈ K∗. This then yields that the ideal I =<
1 + xm > of LK(E) is gauge-invariant. But it is well known (or it can be
shown using an argument similar to that given in the proof of [2, Theorem
3.11]) that I is not a graded ideal of K[x, x−1]. 2

We are now in position to present the main application of these ideas.

Theorem 4.2.8 [1, Proposition 1.7] (The Algebraic Gauge-Invariant Unique-
ness Theorem.) Let E be a row-finite graph, let K be an infinite field, and
let A be a K-algebra. Suppose

φ : LK(E)→ A

is a K-algebra homomorphism such that φ(v) 6= 0 for every v ∈ E0. If there
exists a group action σ : K∗ → AutK(A) such that φ ◦ τEt = σt ◦ φ for every
t ∈ K∗, then φ is injective.

Proof. Let I = Ker(φ). Then for every a ∈ I and for every t ∈ K∗,
φ(τEt (a)) = σt(φ(a)) = σt(0) = 0, whence τEt (a) ∈ Ker(φ) = I. Thus
for every t ∈ K∗ we have τEt (I) ⊆ I, so that I is gauge-invariant. Hence
I ∈ Lgr by Proposition 4.2.6. In particular, if I 6= {0}, then I ∩ E0 6= ∅
by [15, Proposition 5.2 and Theorem 5.3], contradicting the hypothesis that
φ(v) 6= 0 for every v ∈ E0. 2

When K = C, this result apply for the exchange of K∗ by T, so that
Theorem 4.2.8 is an algebraic precursor of Theorem 3.3.9. As final remark,
we notice that an approach is a similar direction, due to Raeburn, appears
in [20, Section 1.3].

4.3 Comparison of properties

In this section we will revisit some properties of both graph C∗-algebras and
Leavitt path algebras, characterized in terms of intrinsic properties of the
graphs, in order to state similarities and differences between both classes of
algebras.

One of the main aspects in the comparison is the independence of results
in both contexts. The reason is that to perform completions in any norm
uses to “broke” properties in a dramatic way. For example, pick α = eiΘ for
an irrational number Θ ∈ [0, 2π), and define the complex McConnel-Petit
algebra

RΘ = C〈x, yx−1, y−1 | xy = αyx〉.
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Then, RΘ has a natural involution, and moreover, a faithful ∗-representation
into B(H) for a suitable countable complex Hilbert space H, so that it admits
a C∗-completion AΘ, called the irrational rotation algebra. Both are simple
algebras, but RΘ is a (Dedekind) domain, sr(RΘ) = 2 and K0(RΘ) = Z,
while AΘ is not longer a domain, sr(AΘ) = 1 and K0(AΘ) = is a dense
subgroup of the reals! Mostly of the arguments used in the Leavitt path
algebra/graph C∗-algebra context are bad-behaved in this sense.

4.3.1 Simple & Purely infinite simple algebras

In any family of rings or algebras, simplicity (i.e. the absence of proper two-
sided ideals) plays a major role amongst the properties, and it is directly
related to the existence of faithful representations. In the particular case
of graph C∗-algebras and Leavitt path algebras, simplicity encodes in fact
faithfulness of the representation of an universal object, and thus it has a
“universal” character.

In the case of graph C∗-algebras, the first result of characterization of
simplicity was given by Cuntz and Krieger [29] for Cuntz-Krieger algebras. In
the more general setting several authors did the job for various constructions
associated to (row-finite, or even arbitrary) graphs.

The singular point is that simplicity is reflected in intrinsic properties of
the graph. In fact, in both classes, simplicity of C∗(E) (or that of LK(E))
depend only on two facts:

1. The algebra is gauge-simple (respectively graded-simple).

2. Every nonzero ideal contains a nonzero gauge- (graded-) ideal.

Because of the results in Chapters 2 and 3, gauge-simplicity (graded-
simplicity) means that E0 contains no proper hereditary and saturated sub-
sets; this condition can be expressed (this is the classical way of) by saying
that E is a cofinal graph, that is, for any vertex v ∈ E0 and any infinite path
α there exists a finite path µ such that s(µ) = v, while r(µ) is a vertex in
the path α [19, Lemma 2.8]. Part 2 in the above list depends only in the fact
that E satisfies Condition (L) [2, Corollary 3.3]. For the case of Leavitt path
algebras this result was first proved, in a direct way, by Abrams and Aranda
[2, Theorem 3.11]; for the case of graph C∗-algebras the result is analog, and
it was obtained by different authors, see e.g. [47, Chapter 4]

Notice that, if E is a graph such that LK(E) is simple, then either has
a sink (and then E is finite, it has only one sink, it contain no cycles, and
every vertex connect with the sink), or it contain no sinks, so that either is
acyclic (it contains no cycles) and then is infinite, or it contains at least one
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cycle, so that every vertex lies at least in two different closed simple paths.
In the first two cases, LK(E) turns out to be isomorphic to Mn(K) for some
n ∈ N (case with a sink) or locally matricial (acyclic case with no sinks); and
analogously C∗(E) ∼= Mn(C) or is a AF -algebra.

The interesting question is to decide which kind of algebra is obtained in
the third case. We need to define an special class of simple algebras. Recall
that an idempotent (respectively projection) e ∈ R is said to be infinite if
there exist orthogonal idempotents g, h ∈ R such that e = g + h, eR ∼= gR
and h 6= 0.

Definition 4.3.1

1. Let A be a C∗-algebra. We say that A is purely infinite simple if
it is simple and every hereditary subalgebra of A contains an infinite
projection [27].

2. Let R be a ring. We say that R is purely infinite simple if it is simple
and every right ideal of R contains an infinite idempotent [14].

When the ring (C∗-algebra) R has a unit, it is purely infinite and simple
if and only if for every nonzero a ∈ R there exist x, y ∈ R such that xay = 1,
and R is not a division ring.

The fact is that the third of the above cases for a graph E with LK(E)
(resp. C∗(E)) simple is exactly the case of Leavitt path algebras being purely
infinite simple [3, Theorem 11] (for the case of C∗(E) the result is analog,
and it was obtained by different authors, see e.g. [47, Chapter 4]).

So, we close this part with two remarks:

1. The results are analog in both classes, but a simple inspection of the
methods used in both context reveals that this results are also inde-
pendent.

2. There is a dichotomy in simple Leavitt path algebras (graph C∗-algebras):
they are either ultramatricial (AF -algebras) or purely infinite simple.

4.3.2 Real rank zero versus Exchange property

Either in the context of C∗-algebras or that of rings, the abovementioned di-
chotomy for simple objects is associated to an interesting structural property
in any of those classes.

Recall that a C∗-algebra A is sad to have real rank zero (RR(A) = 0
for short) if the set of self-adjoint invertible elements is dense in the set of
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self-adjoint elements. This notion corresponds to a sort of noncommutative
dimension for C∗-algebras generalizing the covering dimension for topological
spaces (in fact is exactly that in the case of commutative C∗-algebras); for a
primer on this, see [25] or [57].

On the other side, a (not necessarily unital) ring R is said to be an
exchange ring (see [9]) if for every element x ∈ R the equivalent conditions
in the next lemma are satisfied.

Lemma 4.3.2 [9, Lemma 1.1] Let R be a ring and let R′ be a unital ring con-
taining R as a two-sided ideal. Then the following conditions are equivalent
for an element x ∈ R :

1. There exists e2 = e ∈ R with e− x ∈ R′(x− x2),

2. there exist e2 = e ∈ Rx and c ∈ R′ such that (1− e)− c(1−x) ∈ J(R′),

3. there exists e2 = e ∈ Rx such that R′ = Re+R′(1− x),

4. there exists e2 = e ∈ Rx such that 1− e ∈ R′(1− x),

5. there exist r, s ∈ R, e2 = e ∈ R such that e = rx = s+ x− sx.

(Here J(R′) denotes the Jacobson radical of R′).

By [13, Theorem 7.2] (see [9] for nonunital rings), a C∗-algebra has real
rank zero if and only if it is an exchange ring. Thus, a good test to compare
graph C∗-algebras and Leavitt path algebras is to characterize the property
of being an exchange ring in both contexts.

In the case of graph C∗-algebras, RR(C∗(E)) = 0 if and only if the graph
E has no isolated closed simple paths (equivalently, no isolated cycles), i.e. E
satisfies Condition (K), which is equivalent to the fact that every two-sided
ideal is gauge-invariant. This characterization was shown by Jeong, Park and
Shin [36, 37]. The basis of the proof is the fact that any purely infinite simple
C∗-algebra has real rank zero [25, 56], and that real rank zero is preserved
for extensions under mild hypotheses.

In the case of Leavitt path algebras, the result is analog [19, Theorem
4.5], and the basis of the proof is essentially the same, because of the fact
that any purely infinite simple ring is an exchange ring [10].

Nevertheless, a simple inspection in the proofs for both graph C∗-algebras
and Leavitt path algebras reveals that these proofs cannot be exchanged, and
do not imply the result in the opposite context.
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4.3.3 K-Theory

Now, we will make a brief raid on K-theoretical invariants for graph C∗-
algebras and Leavitt path algebras.

Our references for K-theory for C∗-algebras are [24] and [50]. For al-
gebraic K-theory, we refer the reader to [51]. For a unital ring R, let
M∞(R) be the directed union of Mn(R) (n ∈ N), where the transition maps

Mn(R) → Mn+1(R) are given by x 7→
(
x 0
0 0

)
. We define V (R) to be the

set of isomorphism classes (denoted [P ]) of finitely generated projective left
R-modules, and we endow V (R) with the structure of a commutative monoid
by imposing the operation

[P ] + [Q] := [P ⊕Q]

for any isomorphism classes [P ] and [Q]. Equivalently [24, Chapter 3], V (R)
can be viewed as the set of equivalence classes V (e) of idempotents e in
M∞(R) with the operation

V (e) + V (f) := V

((
e 0
0 f

))
for idempotents e, f ∈ M∞(R). The group K0(R) of a unital ring R is the
universal group of V (R). Recall that, as any universal group of an abelian
monoid, the group K0(R) has a standard structure of partially pre-ordered
abelian group. The set of positive elements in K0(R) is the image of V (R)
under the natural monoid homomorphism V (R) → K0(R). Whenever A
is a C∗-algebra, the monoid V (A) agrees with the monoid of Murray-von
Neumann equivalence classes of projections in M∞(A); see [24, 4.6.2 and
4.6.4] or [50, Exercise 3.11]. It follows that the algebraic version of K0(A)
coincides with the operator-theoretic one. Also, in the case of nonunital rings
with local units (as for example graph C∗-algebras or Leavitt path algebras)
the group K0(R) still is the universal group of V (R).

In order to compute the monoid V (LK(E)) (and so the Grothendieck
groupK0(LK(E))), we need to reduce the problem to the case of finite graphs.
Recall that a graph homomorphism f :E = (E0, E1) → F = (F 0, F 1) is
given by two maps f 0:E0 → F 0 and f 1:E1 → F 1 such that rF (f 1(e)) =
f 0(rE(e)) and sF (f 1(e)) = f 0(sE(e)) for every e ∈ E1. We say that a graph
homomorphism f is complete in case f 0 is injective and f 1 restricts to a
bijection from s−1

E (v) onto s−1
F (f 0(v)) for every v ∈ E0 such that v emits

edges. Note that under the above assumptions, the map f 1 must also be
injective. Let us consider the category G whose objects are all the row-finite
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graphs and whose morphisms are the complete graph homomorphisms. It is
easy to check that the category G admits direct limits. In order to simplify
notation, the K-algebra LK(E) will be sometimes denoted by L(E).

Lemma 4.3.3 ([15, Lemma 3.1]) Every row-finite graph E is a direct limit
in the category G of a directed system of finite graphs.

Since the map E 7→ LK(E) is a continuous covariant functor, we get

Lemma 4.3.4 ([15, Lemma 3.2]) The assignment E 7→ LK(E) can be ex-
tended to a functor LK from the category G of row-finite graphs and complete
graph homomorphisms to the category of K-algebras and (not necessarily
unital) algebra homomorphisms. The functor LK is continuous, that is, it
commutes with direct limits. It follows that every graph algebra LK(E) is the
direct limit of graph algebras corresponding to finite graphs.

and the analog for graph C∗-algebras

Lemma 4.3.5 ([15, Lemma 3.3]) The assignment E 7→ C∗(E) can be ex-
tended to a continuous functor from the category G of row-finite graphs
and complete graph homomorphisms to the category of C∗-algebras and ∗-
homomorphisms. Every graph C∗-algebra C∗(E) is the direct limit of graph
C∗-algebras associated with finite graphs.2

Let ME be the abelian monoid given by the generators {av | v ∈ E0},
with the relations:

av =
∑

{e∈E1|s(e)=v}

ar(e) for every v ∈ E0 that emits edges. (4.1)

Since the map E 7→ME is a continuous covariant functor, we get

Lemma 4.3.6 ([15, Lemma 3.4]) The assignment E 7→ME can be extended
to a continuous functor from the category G of row-finite graphs and complete
graph homomorphisms to the category of abelian monoids. It follows that
every graph monoid ME is the direct limit of graph monoids corresponding
to finite graphs.

Now, the above reduction to the case of a finite graph E allows to compute
the monoid V (L(E)) by using [23, Theorem 6.2]

Theorem 4.3.7 ([15, Theorem 3.5]) Let E be a row-finite graph. Then there
is a natural monoid isomorphism V (LK(E)) ∼= ME.
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The interesting (and highly nontrivial) fact is that the monoid V (C∗(E))
is naturally isomorphic to V (LC(E)), as follows

Theorem 4.3.8 ([15, Theorem 7.1]) Let E be a row-finite graph, and let
L(E) = LC(E) be the graph algebra over the complex numbers. Then the
natural inclusion ψ:L(E)→ C∗(E) induces a monoid isomorphism

V (ψ):V (L(E))→ V (C∗(E)).

In particular the monoid V (C∗(E)) is naturally isomorphic with the monoid
ME.

Then, in terms of K0(LK(E)) we have an easy way to compute it (which
coincides with the computation of K0(C∗(E)), see e.g. [20, §2.3.1]) when
the graph is finite. As noticed above, K0(L(E)) ∼= Grot(ME) := G, where
Grot(ME) denotes the universal group of the monoid ME. Since ME is
finitely generated, so is its universal group G. Thus G admits a presentation
π : Zn → G (an epimorphism). Here ker(π) is the subgroup of relations,
which in this setting corresponds to the image of the group homomorphism
AtE − I : Zn → Zn, where AtE is the transpose of the incidence matrix AE of
E. Hence we get

K0(L(E)) ∼= G ∼= Zn/ker(π) = Zn/im(AtE − I) = coker(AtE − I).

Moreover, under this isomorphism the element [1L(E)] is represented by

(1, 1, ..., 1)t + im(AtE − I)

in coker(AtE − I).
This facility connects with the possibility of using K-theoretical invari-

ant to classify Leavitt path algebras up to isomorphism. In the study of
C∗-algebras, an important role is played by the Classification Theorem of
purely infinite simple unital nuclear C*-algebras (see e.g. [38, 46]). Specif-
ically, Kirchberg and Phillips (independently) showed that if X and Y are
purely infinite simple unital C∗-algebras (satisfying certain additional condi-
tions), then X ∼= Y as C∗-algebras if and only if (i) K0(X) ∼= K0(Y ) via an
isomorphism φ for which φ([1X ]) = [1Y ], and (ii) K1(X) ∼= K1(Y ).

As it turns out, in the more specific case of purely infinite simple unital
Cuntz-Krieger graph C*-algebras, K-theoretic information is in fact encoded
in the transpose AtE of the incidence matrix AE of the graph E. Specifically,
when E has no sinks, then by [20, Theorem 3.9]

K0(C∗(E)) ∼= coker(AtE − I) and K1(C∗(E)) ∼= ker(AtE − I),
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where I is the identity matrix of size n = |E0|.
We seek a similar result in the setting of purely infinite simple unital

Leavitt path algebras. So suppose E and F are finite graphs for which
LK(E) and LK(F ) are purely infinite simple unital. By [3, Theorem 11] these
graphs contain no sinks. By [1, Proposition 3.6] we can assume without loss
of generality that E and F have the same number n of vertices and that they
have no sources. Thus if K0(L(E)) ∼= K0(L(F )), then using the previously
established isomorphism we get coker(AtE − I) ∼= coker(AtF − I). This in
turn implies (by the Fundamental Theorem of Finitely Generated Abelian
Groups) the existence of invertible matrices P,Q ∈ Mn(Z) such that AtF−I =
P (AtE − I)Q. Thus ker(AtF − I) ∼= ker(AtE − I) (as these are subgroups of Zn

having equal rank); notice that in particular, since K1(C∗(E)) ∼= ker(AtE−I),
we have recovered the result of [20, Theorem 3.9] for graph C∗-algebras.
Moreover, by using the unique unital ring map ψ : Z → K, we get that the
PAQ-equivalence of AtE − I and AtF − I also holds on K. If K× denotes the
multiplicative group on nonzero elements in K, then the previous remark
implies that coker(AtE − I : (K×)

n → (K×)
n
) and coker(AtF − I : (K×)

n →
(K×)

n
) (where AtE−I and AtE−I are seen as multiplicative maps on (K×)

n
)

are also isomorphic. Since by [26, Theorem 3.19], for any finite graph G with
n vertices with no sinks or sources we have

K1(L(G)) ∼= coker(AtG − I : (K×)
n → (K×)

n
)⊕ ker(AtG − I : Zn → Zn),

we conclude that the hypothesisK0(L(E)) ∼= K0(L(F )) in fact yieldsK1(L(E)) ∼=
K1(L(F )) as a consequence. With this observation and the aforementioned
Kirchberg - Phillips result in mind, it is then natural to ask the following

The Classification Question for purely infinite simple uni-
tal Leavitt path algebras. Suppose E and F are graphs
for which L(E) and L(F ) are purely infinite simple unital. If
K0(L(E)) ∼= K0(L(F )) via an isomorphism φ having φ([1L(E)]) =
[1L(F )], must L(E) and L(F ) be isomorphic?

Some advances in this direction, analog to those of graph C∗-algebras,
are obtained in [1] (and recently improved in [8]).

4.3.4 Stable rank

Stable rank for rings is an interesting property, related to computing general
linear groups on unital rings. Also it is related to interesting cancellation
properties of finitely generated projective modules over rings. This is spe-
cially true in case of exchange rings [13], and it is a witness for an affirmative
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answer to the Separativity Problem: the values of stable rank for a separative
exchange ring must be 1, 2 or ∞.

In case of graph C∗-algebras, the amazing result is that not only the values
of stable rank are 1, 2 or ∞, but also that the occurrence of this values is
determined in terms of intrinsic properties of the graph, so that a Trichotomy
is obtained [31, Theorem 3.4].

The same result is enjoyed by Leavitt path algebras, except that the
Trichotomy result do not coincide exactly with this of graph C∗-algebras.

First, we need to recall a bunch of definitions and results. Let S be
any unital ring containing an associative ring R as a two-sided ideal. The
following definitions can be found in [54]. A column vector b = (bi)

n
i=1 is called

R-unimodular if b1− 1, bi ∈ R for i > 1 and there exist a1− 1, ai ∈ R (i > 1)
such that

∑n
i=1 aibi = 1. The stable rank of R (denoted by sr(R)) is the least

natural number m for which for any R-unimodular vector b = (bi)
m+1
i=1 there

exist vi ∈ R such that the vector (bi + vibm+1)mi=1 is R-unimodular. If such
a natural m does not exist we say that the stable rank of R is infinite. The
definition does not depend on the choice of S. Stable rank of R enjoys the
following properties:

1. If R =
∏

λ∈ΛRλ, then sr(R) = maxλ{sr(Rλ)} [54, Lemma 2].

2. For every n ∈ N, sr(Mn(R)) = 1 −
⌊
−sr(R)− 1

n

⌋
, where bac denotes

the integral part of a [54, Theorem 3].

3. For any two-sided ideal I of R,

max{sr(I), sr(R/I)} ≤ sr(R) ≤ max{sr(I), sr(R/I) + 1}

[54, Theorem 4].

It is easy to see from [54] that if R = limRn, then sr(R) ≤ lim inf
n→∞

sr(Rn).

Thus, from this and [54, Corollary to Theorem 3], we get that sr(R) = 1 for
any locally matricial algebra. Also it is well-known (see e.g. [14, Proposition
2.1]) that if R is a unital purely infinite simple ring, then sr(R) =∞.

Two facts that are interesting with respect to stable rank of rings are:

1. Stable rank is not a Morita invariant property: for any ring R such
that sr(R) = n > 2, sr(Mn(R)) = 2, but both rings are trivially
Morita equivalent.

2. Because of Evans’ Theorem [34], sr(R) = 1 implies that V (R) is a
cancellative monoid. The converse is not true in general (e.g.: sr(Z) =
2, but V (Z) = Z+).
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We recall the following definition from [48]. Let A be a C∗-algebra, and
let A∼ be its minimal unitization. Then, the topological stable rank of A,
denoted by tsr(A), is the least integer n such that the set of n-tuples in (A∼)n

that generate A as a left ideal is dense in (A∼)n. If such an integer does not
exist, then tsr(A) =∞. Because of [35, Theorem], for any unital C∗-algebra
A we have tsr(A) = sr(A), so that the properties enjoyed by tsr(A) [48] are
consequence of these enjoyed by general rings [54].

It has an special interest the case of stable C∗-algebras. A C∗-algebra A
is stable if and only if A ∼= A ⊗ K, where K is the C∗-algebra of compact
operators over a separable Hilbert space. Notice that this is equivalent to the
fact that A is isomorphic to the completion of the pre-C∗-algebra M∞(A).
Thus, for any C∗-algebra A, sr(A⊗K) = 2 unless sr(A) = 1, in which case
sr(A⊗K) = 1 [48, Theorem 6.4].

Now, the strategy for computing the stable rank of a Leavitt path algebra
L(E) is quite similar to that of [31], except for a technical problem about
bounding the stable rank of an extension of rings, which turns out to be
trivial in case of graph C∗-algebras, but not in case of Leavitt path algebras.
The reason is that, if E is an isolated cycle, then sr(C∗(E)) = 1 while
sr(L(E)) = 2, so that the reduction argument used in [31] for graph C∗-
algebras (via extensions) do not work correctly for Leavitt path algebras.

In the concrete case of exchange Leavitt path algebras this difficulty can
be avoided, as shown by Aranda, Pardo and Siles in [19]. The general case
was solved by Ara and Pardo in [16]. The main result is

Theorem 4.3.9 ([16, Theorem 2.8]) Let E be a row-finite graph. Then the
values of the stable rank of L(E) are:

1. sr(L(E)) = 1 if E is acyclic.

2. sr(L(E)) = ∞ if there exists H ∈ HE such that the quotient graph
E/H is nonempty, finite, cofinal, contains no sinks and each cycle has
an exit.

3. sr(L(E)) = 2 otherwise.

which contrast with

Theorem 4.3.10 ([31, Theorem 3.4]) Let E be a row-finite graph. Then the
values of the stable rank of C∗(E) are:

1. sr(L(E)) = 1 if every cycle of E has no exits.
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2. sr(L(E)) = ∞ if there exists H ∈ HE such that the quotient graph
E/H is nonempty, finite, cofinal, contains no sinks and each cycle has
an exit.

3. sr(L(E)) = 2 otherwise.
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[1] G. Abrams, P. N. Ánh, A. Louly, E. Pardo, The classification
question for Leavitt algebras, J. Algebra 320 (2008), 1983–2026.

[2] G. Abrams, G. Aranda Pino, The Leavitt path algebra of a
graph, J. Algebra 293 (2005), 319-334.

[3] G. Abrams, G. Aranda Pino, Purely infinite simple Leavitt path
algebras, J. Pure Appl. Algebra, 207 (2006), 553-563.

[4] G. Abrams, G. Aranda Pino, The Leavitt path algebras of ar-
bitrary graphs, Houston J. Math. 34 (2) (2008), 423–442.

[5] G. Abrams, G. Aranda Pino, F. Perera, M. Siles Molina,
Chain conditions for Leavitt path algebras. Forum Math. (to ap-
pear).

[6] G. Abrams, G. Aranda Pino, M. Siles Molina, Finite-
dimensional Leavitt path algebras, J. Pure Appl. Algebra. 209 (3)
(2007), 753–762.

[7] G. Abrams, G. Aranda Pino, M. Siles Molina, Locally finite
Leavitt path algebras, Israel J. Math. 165 (2008), 329–348.

[8] G. Abrams, A. Louly, E. Pardo, C. Smith, Flow invariants
in the classification of Leavitt path algebras, Preprint (2008).

[9] P. Ara, Extensions of Exchange Rings, J. Algebra 197 (1997),
409–423.

[10] P. Ara, The exchange property for purely infinite simple rings,
Proc. A.M.S. 132 (9) (2004), 2543–2547.

[11] P. Ara, M. Brustenga, K1 of corner skew Laurent polynomial
rings and applications, Comm. Algebra, 33 (7) (2005), 2231–2252.

61



62 Bibliography
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[44] C. Nǎstǎsescu, F. van Oystaeyen, Graded ring theory, North-
Holland, Amsterdam (1982).

[45] W. L. Paschke, The crossed product of a C∗-algebra by an endo-
morphism, Proc. Amer. Math. Soc. 80 (1980), no. 1, 113–118.

[46] N.C. Phillips, A classification theorem for nuclear purely infinite
simple C*-algebras, Doc. Math. 5 (2000), 49-114.

[47] I. Raeburn, Graph algebras. CBMS Regional Conference Series
in Mathematics, 103, American Mathematical Society, Providence,
2005. ISBN 0-8218-3660-9

[48] M.A. Rieffel, Dimension and stable rank in the K-theory of C∗-
algebras, Proc. London Math. Soc. 46 (1983), 301–333.

[49] M. Rørdam, Classification of certain infinite simple C∗-algebras,
J. Funct. Anal. 131 (1995), no. 2, 415–458.

[50] M. Rørdam, F. Larsen, N.J. Laustsen, “An Introduction to
K-Theory for C∗-Algebras”, Cambridge University Press, LMS Stu-
dent Texts 49, 2000.

[51] J. Rosenberg, Algebraic K-Theory and Its Applications, Springer-
Verlag, GTM 147, 1994.

[52] M. Siles Molina, Algebras of quotients of Leavitt path algebra,
J. Algebra 319 (12) (2008), 329–348.



Bibliography 65

[53] M. Tomforde, Uniqueness theorems and ideal structure for Leav-
itt path algebras, J. Algebra 318 (2007), 270-299.

[54] L.N. Vaserstein, Stable rank of rings and dimensionality of topo-
logical spaces, Funct. Anal. Appl. 5 (1971), 102–110.

[55] N. E. Wegge-Olsen, K-theory and C∗-algebras, Oxford Univer-
sity Press, Oxford, 1993.

[56] S. Zhang, A property of purely infinite C*-algebras, Proc. Amer.
Math. Soc. 109 (1990), 717–720.

[57] S. Zhang, Certain C∗-algebras with real rank zero and their corona
and multiplier algebras I, Pacific J. Math. 155 (1992), 169–197.


