A Theorem on Invariant Subrings

I. N. HERSTEIN*

Department of Mathematics, The University of Chicago, Chicago, Illinois 60637

Communicated by the Editors

Received June 20, 1982

In [1] Amitsur proved, following an argument due to Baxter [2] involving the Lie structure of simple rings, that if R is a simple ring which is an algebra over a field $F \neq GF(2)$, and if R contains an idempotent $e^2 = e \neq 0, 1$, then, if $A \subset R$ is a subspace over F such that $(1 + t)A(a + t)^{-1} \subset A$ for all $t \in R$ such that $t^2 = 0, A$ must be contained in Z, the center of R, or $A \supset [R, R]$, the additive subgroup of R generated by all [x, y] = xy - yx. This result generalizes an earlier result of Hattori [4], which had been proved for simple artinian rings. In particular, if A should also happen to be a subring of R then it follows that $A \subset Z$ or A = R.

We complete the story here, when A is a subring of R, when F = GF(2). In carrying out our proof we do not divide the argument according as F = GF(2) or $F \neq GF(2)$. Furthermore, instead of working in the context of a simple ring we work in that of a prime ring; we also do not require that A be a subalgebra over F. When $F \neq GF(2)$ these generalizations follow easily from the argument given by Amitsur. We shall make several applications of the result that we prove here in a joint paper with Bergen [3].

In what follows R will be a prime ring with center Z, and possessing a non-trivial idempotent e, where $e^2 = e \neq 0, 1$. Suppose that A is a subring of R such that $(1+t)A(1+t)^{-1} \subset A$ for all $t \in R$ such that $t^2 = 0$ (that is, even if R does not have 1, (1+t)a(1-t) = a + ta - at - tat is in A for all $a \in A$).

We shall prove the

THEOREM. Either $A \subset Z$ or A contains a non-zero ideal of R, except in the one case where R is the ring of all 2×2 matrices over GF(2), the integers mod 2.

^{*} The research in this paper was supported by the NSF Grant, NSF-MCS810-2472 at the University of Chicago.

If $t^2 = 0$ and $a \in A$ then $(1 + t) a(1 + t)^{-1} - a \in A$; hence

$$ta - at - tat \in A$$
 for all $a \in A$, all $t \in R$ such that $t^2 = 0$. (1)

We begin with

LEMMA 1. (a) Suppose that $u \in R$ commutes with all t such that $t^2 = 0$; then $u \in Z$.

(b) If $u \in R$ commutes with all idempotents in R then $u \in Z$.

Proof. (a) If u commutes with all t such that $t^2 = 0$ then, for any $x \in R$, and $e \neq 0$, 1 an idempotent of R, since ex(1-e), (1-e) ye have square 0, u commutes with all these; hence u centralizes eR(1-e) and (1-e)Re. Therefore u centralizes eR(1-e)Re. Let W = R(1-e)R; $W \neq 0$ is an ideal of R and, as we have seen, u centralizes eWe. Also, since $eW(1-e) \subset$ eR(1-e), u centralizes eW(1-e). We thus get that u centralizes eW; similarly u centralizes We, and so u centralizes the non-zero ideal WeW of R. Since R is prime this forces u to be in Z.

(b) If u commutes with all idempotents in R, and if $e^2 = e \neq 0$, 1 then, for any $x \in R$, f = e + xe - exe is an idempotent, so u commutes with f - e = xe - exe = (1 - e) xe. Similarly u commutes with all ey(1 - e). The argument in the paragraph above then shows that $u \in Z$.

Recall that a ring is said to be *semi-prime* if it has no non-zero nilpotent ideals.

LEMMA 2. A is semi-prime.

Proof. Suppose that $a \in A$ is such that aAa = 0, $a^2 = 0$. If $t^2 = 0$, by (1) we have that $ta - at - tat \in A$; hence $a(ta - at - tat) a \in aAa = 0$, resulting in atata = 0. However, if $t^2 = 0$ then $(trt)^2 = 0$ for all $r \in R$; thus we have atrtatrta = 0, so every element in Rtat is nilpotent of index of nilpotence at most 3; by a result of Levitzki (Lemma 1.1 [5]), since R is prime, we have that tat = 0.

If $e^2 = e \neq 0, 1$ then t = ex(1 - e) has square 0, therefore ex(1 - e) aex(1 - e) = 0, for all $x \in R$. This gives, as above, using the result of Levitzki, that (1 - e) ae = 0, that is, ae = eae. Using the elements t = (1 - e) ye of square 0 leads us to ea = eae. Thus ae = eae = ea, and so a commutes with all idempotents; by Lemma 1, $a \in Z$. However, since $a^2 = 0$, and Z is an integral domain, we have that a = 0. Hence A is semi-prime.

We now come to the stickiest part of the proof.

LEMMA 3. If A commutative and $A \not\subset Z$, then R is the ring of all 2×2 matrices over GF(2).

Proof. Since A is semi-prime by Lemma 2, and commutative, A has no nilpotent elements. We claim that if $a \neq 0 \in A$ then a is not a zero divisor in R. For, suppose that ax = 0 for some $x \in R$; thus t = xra has square 0, so by (1), $(xra) a - a(xra) - (xra) a(xra) \in A$, that is, $xra^2 \in A$ for all $r \in R$. However, $(xra^2)^2 = 0$, so we have $xRa^2 = 0$. Since R is prime and $a^2 \neq 0$, we must have that x = 0.

If $t^2 = 0$ and $r, s \in R$ then $(t + trt)^2 = 0$ and $(trt + tst)^2 = 0$; using these values in (1) gives us

$$tatrt + trtat \in A, \tag{2}$$

$$trtatst + tstatrt \in A$$
 (3)

for all $r, s \in R$.

Since the elements in (2) and (3) are nilpotent and in A, we must have

$$tatrt + trtat = 0$$
 and $trtatst + tstatrt = 0$ (4)

for all $r, s \in R$.

By a result of Martindale (see Lemma 1.3.2 in [6]) we get that tat = at, where $a \in C$, the extended centroid of R. If a = 0 for all t such that $t^2 = 0$, then (1) tells us that $ta - at \in A$; but $(ta - at)^2 = -ta^2t \in A$ and is nilpotent, hence $(ta - at)^2 = 0$, and so ta - at = 0. Thus, by Lemma 1, we would have that $a \in Z$.

So, since $A \not\subset Z$, if $a \in A$, $a \notin Z$ then $tat = at \neq 0$ for some t such that $t^2 = 0$. But then (4) tells us that trtst + tstrt = 0 for all $r, s \in R$. By a result of Martindale [6], $trt = \alpha(r) t$, where $\alpha(r) \in C$, for all $r \in R$. In addition, char R = 2 follows. Pick r such that $trt \neq 0$, that is, $\alpha(r) \neq 0$.

Now $\alpha(r) t \in R$ has square 0; hence

$$(1+t) a = a_1(1+t),$$

$$(1+\alpha(r) t) a = a_2(1+\alpha(r) t),$$
(5)

where $a_1, a_2 \in A$. Since $tat \neq 0$, we have $ta \neq at$; hence $a_1 \neq a$. From (5) we get

$$(\alpha(r)-1) a = \alpha(r) a_1 - a_2 - \alpha(r)(a_1 - a_2) t.$$

Commuting this with a, since A is commutative, yields $\alpha(r)(a_1 - a_2)(at - ta) = 0$. But $at - ta \neq 0$, $\alpha(r) \neq 0$, so $a_1 - a_2 \in A$ is a zero divisor, therefore $a_1 - a_2 = 0$. So $(\alpha(r) - 1) a = \alpha(r) a_1 - a_2 = (\alpha(r) - 1) a_1$; since $a \neq a_1$ we must have $\alpha(r) = 1$. In particular, since $tat \neq 0$, we have tat = t.

If $\beta \neq 0$, $1 \in C$ then, for some ideal W of R, $0 \neq W\beta \subset R$ [6], and since $tWt \neq 0$, twt = t for some $w \in W$. Thus $t(\beta w) t = \beta twt = \beta t$, so $\alpha(\beta w) =$

 $\beta \neq 0, 1$, a contradiction. In short, C = GF(2), and tRt = GF(2)t. If f = at then $f^2 = f$, fRf = GF(2)f. Hence R is a primitive ring with minimal right ideal fR, and $fRf \approx GF(2)$.

Since char R = 2, by (1), $ta + at + tat \in A$, that is, $ta + at + t \in A$; thus $(ta + at)^2 = (ta + at + t)^2 \in A$, giving us that $ta + at + ta^2t \in A$. Hence $t + ta^2t \in A$ and since $t + ta^2t$ is nilpotent, we have $ta^2t = t$. Thus $t(a^2 + a) t = 0$, which implies that $t(a^2 + a) = (a^2 + a)t$. Therefore $a^2 + a$ commutes with all t such that $t^2 = 0$, so, by Lemma 1, $a^2 + a \in Z$. But $a^2 \neq a$, otherwise a = 1 (since a is not a zero-divisor), so $a^2 + a \neq 0$ is in $Z \subset C = GF(2)$. So $a^2 + a = 1$. We see, in this way, that A is the field of four elements.

We claim that R is simple, for, if $W \neq 0$ is an ideal of R then $tWt \neq 0$; hence twt = t for some $w \in W$. Thus $t \in W$. But then $b = ta + at + t \neq 0 \in A \cap W$; since b is invertible, being in A, we conclude that W = R. So R is simple, with 1, and minimal right ideal fR, where fRf = GF(2)f; this forces R to be artinian, and so by Wedderburn's theorem, $R \approx (GF(2))_k$, the $k \times k$ matrices over GF(2). In this case it is easy to see that k = 2. For, if k > 2 and $t^2 = 0$, rank t = 1 then for $a \in A$, $b^2 = (ta + at)^2 \in A$ is of rank 2 at most, and is therefore not invertible; his gives $b^2 = 0$ and so ta = at. In particular a centralizes all e_{ii} , $i \neq j$; this forces $a \in Z$.

With this the lemma is proved.

We may thus assume henceforth that $R \neq (GF(2))_2$.

LEMMA 4. If $B \neq 0$ is a subset of R such that $(1 + t) B(1 + t)^{-1} \subset B$ for all $t \in R$ such that $t^2 = 0$, then, if xB = 0, we must have x = 0.

Proof. Let T be the subring generated by all t such that $t^2 = 0$. As we saw in the proof of Lemma 1, $T \supset WeW$, where $W = R(1-e) R \neq 0$ is an ideal of R.

Now, if xB = 0 then $x(1+t)B(1+t)^{-1} \subset xB = 0$; hence xtB = 0. Continuing we get xTB = 0 and so xWeWB = 0. By the primeness of R we conclude that x = 0.

Recall that C is the extended centroid of R [6].

LEMMA 5. If $A \not\subset Z$ and if xAy = 0 for some $x, y \in RC$, then x = 0 or y = 0.

Proof. By the properties of RC [6] there is an ideal W of R such that $Wx \subset R$ and $yW \subset R$. If $x \neq 0, y \neq 0$ then $Wx \neq 0$ and $yW \neq 0$, and (Wx)A(yW) = 0. So, without loss of generality, we may assume that x and y are in R.

If $b \in A$, $r \in R$ then $(yrxb)^2 = 0$, so for $a \in A$, by (1), $yrxba - ayrxb - yrxbayrx \in A$. Because xAy = 0 this relation above reduces to $c = yrxba - ayrxb \in A$; since xAy = 0 we see that cAc = 0, so, by Lemma 2,

c = 0. In other words, $yRxA \subset C_R(A) = \{u \in R \mid ua = au, all a \in A\}$. Since (xA)Ay = 0, by the same argument as that just given shows that $yR(xA)A \subset C_R(A)$. Thus we get that yRxA[A, A] = 0; since $(1+t)A[A, A](1+t)^{-1} \subset A[A, A]$ for all t such that $t^2 = 0$, by Lemma 4 we get that yRx = 0 or A[A, A] = 0. If A[A, A] = 0 then, by Lemma 4 again, we end up with [A, A] = 0, that is, A is commutative. In this case we are done by Lemma 3. Therefore yRx = 0. Since R is prime we conclude that x = 0 or y = 0.

If $f^2 = f \neq 0$, $1 \in RC$, there is an ideal $W \neq 0$ of R with $0 \neq Wf \subset R$ and $0 \neq fW \subset R$. Using this notation we have

LEMMA 6. If $f W \cap A \neq 0$ and $Wf \cap A \neq 0$ then A contains a non-zero ideal of R.

Proof. Let $fw \neq 0 \in A \cap fW$; if $V = W^2$ then, for $v \in V$, $fv(1-f) \in R$ has square 0, so by (1), for all $a \in A$, since $fwa \in A$,

 $(fwa)fv(1-f) - fv(1-f)(fwa) - fv(1-f)(fwa)fv(1-f) \in A,$

which is to say, fwaf $V(1-f) \subset A$. Therefore AfwAf $V(1-f) \subset A$.

If $0 \neq uf \in Wf \cap A$, as above we get that $(1-f) VfAuf \subset A$. By Lemma 5, $fAufAfwAf \neq 0$; hence $U = VfAufAfwAfV \neq 0$ is a non-zero ideal of R, $U \subset V \subset W$. However, by what we obtained above, ((1-f)vfAuf) $(AfwAfV(1-f) \subset A$, that is, $(1-f)U(1-f) \subset A$.

Thus we have $0 \neq (1-f) W \cap A$ and $W(1-f) \cap A \neq 0$; the argument just given for f applied to 1-f gives us that $fU_0 f \subset A$ for some ideal $U_0 \neq 0$ of R, where $U_0 \subset W$. Thus $(1-f) U(1-f) A f U_0 f \subset A$, and since $(1-f) A f \neq 0$ by Lemma 5, we have $(1-f) U_1 f \subset A$ and $fU_1 f \subset fU_0 f \subset A$, where $U_1 = U(1-f) A f U_0$. Thus $U_1 f \subset A$. Similarly we get an ideal $U_2 \neq 0$ with $fU_2 \subset A$. We then have $0 \neq U_1 f f U_2 = U_1 f U_2 \subset A$, so A contains the non-zero ideal $U_1 f U_2$ of R. This proves the lemma.

We keep the notation of Lemma 6.

LEMMA 7. If $fW \cap A = 0$ then fRC is a minimal right ideal of RC. Similarly, if $Wf \cap A = 0$ then fRC is a minimal right ideal of RC. Furthermore, char R = 2, and if M = fRC then $Hom_{RC}(M, M) = C$.

Proof. By Lemma 5 there is an $a \in A$ such that $(1-f) af \neq 0$. If $x, v \in V = W^2$ using (4) in the proof of Lemma 3,

$$fv(1-f) afx(1-f) + fx(1-f) afv(1-f) \in A \cap fW = 0.$$

So

$$fv(1-f) afx(1-f) + fx(1-f) afv(1-f) = 0$$

for $x, v \in V$. By a result of Martindale [6], fx(1-f) af = a(x)f, $a(x) \in C$, for all $x \in V$, and, also, char R = 2. Hence $fV(1-f) af \subset Cf$; now $fx(1-f) af = a(x)f \neq 0$ for some $x \in V$ since R is prime. If $y \in V$ then

$$\alpha(yfx)f = f(yfx)(1-f) af = \alpha(x) fyf,$$

there $fyf = (\alpha(yfx)/\alpha(x)) f$, whence fRCf = Cf. Thus fRC is a minimal right ideal of RC and if M = fRC then $Hom_{RC}(M, M) = C$.

PROOF OF THE THEOREM

If $e^2 = e \neq 0$, 1 is in R and if e is not a minimal idempotent of RC then, by Lemma 7, $eR \cap A \neq 0$ and $Re \cap A \neq 0$ (since W = R is an ideal of R such that $Re \subset R$, $eR \subset R$). Thus, by Lemma 6, A contains a non-zero ideal of R.

So, if $A \not\subset Z$ and A does not contain a non-zero ideal of R, we saw in the paragraph above that eRC is a minimal right ideal of RC; thus RC is a primitive ring with minimal right ideal, M, and $\operatorname{Hom}_{RC}(M, M) = C$. If $f \in RC, f^2 = f \neq 0, 1$ is not a minimal idempotent then, by Lemmas 6 and 7, we are done. So every non-trivial idempotent in RC is minimal. This trivially forces RC to be the ring of all 2×2 matrices over C. So $RC = C_2$.

By Lemma 3 we may assume that A is not commutative, and by Lemma 5 we have that A is prime. Since $A \subset C_2$, A satisfies the polynomial identities of C_2 , hence $Z(A) \neq 0$, where Z(A) is the center of A. Since $(1+t)A(1+t)^{-1} \subset A$, and gives an automorphism of A for t such that $t^2 = 0$, we have that $(1+t)Z(A)(1+t)^{-1} \subset Z(A)$. So, if $R \neq (GF(2))_2$, by Lemma 3, $Z(A) \subset Z$ the center of R.

By Posner's theorem [5], A localized at Z(A) is a 4-dimensional simple algebra over the field of quotients, K, of Z(A), and since $Z(A) \subset Z$, lies in $RC = C_2$. Call this localization Q(A); if Q(A) is a 2×2 matrix algebra over K then there is an idempotent $f, f^2 = f \neq 0, 1$ in Q(A). But f = a/a, where $a \in A, a \in Z(A)$; hence $fW \cap A \neq 0$, where $0 \neq W$ is an ideal of R such that $fW \subset R$, since $0 \neq af \in fW \cap A$ and $af \in Wf \cap A$. By Lemma 6, A contains a non-zero ideal of R.

Suppose then that Q(A) is a 4-dimensional division algebra over K. Therefore K is infinite and so Z(A) is infinite. If $\gamma \neq 0, 1 \in Z(A)$ and $t^2 = 0$, then $ta - at - tat \in A$ and $(\gamma t) a - a(\gamma t) - (\gamma t) a(\gamma t) \in A$, that is, $\gamma(ta - at) - \gamma^2 tat \in A$. However, $\gamma a \in A$, so $t(\gamma a) - (\gamma a) t - t(\gamma a) t \in A$, that is, $\gamma(ta - at) - \gamma tat \in A$. We therefore get that $(\gamma^2 - \gamma) tat \in A$. But A is a domain, so $(\gamma^2 - \gamma) tat = 0$, and since $\gamma^2 - \gamma \neq 0 \in Z(A)$, we have tat = 0thus $ta - at \in A$; but $(ta - at)^2 = -ta^2t \in A$ is nilpotent, so we get ta

I. N. HERSTEIN

-at = 0. Thus A centralizes all t such that $t^2 = 0$. By Lemma 1 we conclude that $A \subset Z$. This finishes the proof of the theorem.

A special case of this theorem is of interest, namely,

THEOREM 2. If R is a simple ring having an idempotent e, $e^2 = e \neq 0, 1$, and if A is a subring of R such that $(1 + t)A(1 + t)^{-1} \subset A$ for all $t \in R$ such that $t^2 = 0$, then either $A \subset Z$ or A = R, except in the one case where R is the ring of all 2×2 matrices over the integers mod 2.

It might be of some interest to find the analogous theorems if, instead of assuming that A is a subring of R, we merely suppose that A is an additive subgroup of R such that $(1 + t)A(1 + t)^{-1} \subset A$ for all t such that $t^2 = 0$; if R is prime with $e^2 = e \neq 0, 1$ in R it might be natural to conjecture that either $A \subset Z$ or A contains a non-central Lie ideal of R.

References

- 1. S. A. AMITSUR, Invariant submodules of simple rings, Proc. Amer. Math. Soc. 7 (1958), 987-989.
- 2. W. E. BAXTER, "Lie simplicity of a special class of associative rings, Proc. Amer. Math. Soc. 7 (1958), 855-863.
- 3. JEFFREY BERGEN AND I. N. HERSTEIN, The algebraic hypercenter and some applications, to appear.
- 4. A. HATTORI, On invariant subrings, Japan. J. Math. 21 (1951), 121-129.
- 5. I. N. HERSTEIN, "Topics in Ring Theory," Chicago Lecture Notes in Mathematics, Univ. of Chicago Press, Chicago, 1969.
- 6. I. N. HERSTEIN, "Rings with Involution," Chicago Lecture Notes in Mathematics, Univ. of Chicago Press, Chicago, 1976.