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In [l] Amitsur proved, following an argument due to Baxter [2] involving 
the Lie structure of simple rings, that if R is a simple ring which is an 
algebra over a field Ff GF(2), and if R contains an idempotent 
e* = e # 0, 1, then, if A c R is a subspace over F such that 
(1 + t)A(a + t)-’ CA for all t E R such that t* = 0, A must be contained in 
Z, the center of R, or A 3 [R, R], the additive subgroup of R generated by 
all [x, y] = xy -yx. This result generalizes an earlier result of Hattori 141, 
which had been proved for simple artinian rings. In particular, if A should 
also happen to be a subring of R then it follows that A c Z or A = R. 

We complete the story here, when A is a subring of R, when F = GF(2). In 
carrying out our proof we do not divide the argument according as 
F = GF(2) or F # GF(2). Furthermore, instead of working in the context of a 
simple ring we work in that of a prime ring; we also do not require that A be 
a subalgebra over F. When F # GF(2) these generalizations follow easily 
from the argument given by Amitsur. We shall make several applications of 
the result that we prove here in a joint paper with Bergen [3]. 

In what follows R will be a prime ring with center Z, and possessing a 
non-trivial idempotent e, where e* = e # 0, 1. Suppose that A is a subring of 
R such that (l+t)A(l+t)-‘CA for all tER such that t’=O (that is, 
evenifRdoesnothave l,(l+t)a(l-r)=a+ta--at-ftatisinAforal1 
UEA). 

We shall prove the 

THEOREM. Either A c Z or A contains a non-zero ideal of R, except in 
the one case where R is the ring of all 2 x 2 matrices over GF(2), the 
integers mod 2. 
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If t’=O and aEA then (1 +t)a(l +t)-‘---EEA; hence 

ta -at - tat E A for all a E A, all t E R such that t* = 0. (1) 

We begin with 

LEMMA 1. (a) Suppose that u E R commutes with all t such that t* = 0; 
then u E 2. 

(b) If u E R commutes with all idempotents in R then u E Z. 

Proof (a) If u commutes with all f such that t* = 0 then, for any x E R, 
and e # 0, 1 an idempotent of R, since ex(1 - e), (1 - e) ye have square 0, u 
commutes with all these; hence u centralizes eR( 1 - e) and (1 - e) Re. 
Therefore u centralizes eR (1 - e) Re. Let W = R (1 - e) R; W # 0 is an ideal 
of R and, as we have seen, u centralizes e We. Also, since e W( 1 - e) c 
eR( 1 - e), u centralizes e W( 1 - e). We thus get that u centralizes e W, 
similarly u centralizes We, and so u centralizes the non-zero ideal WeW of 
R. Since R is prime this forces u to be in Z. 

(b) If u commutes with all idempotents in R, and if e* = e # 0, 1 then, 
for any x E R, f = e $ xe - exe is an idempotent, so u commutes with 
f - e = xe - exe = (1 - e) xe. Similarly u commutes with all ey( 1 - e). The 
argument in the paragraph above then shows that u f Z. 

Recall that a ring is said to be semi-prime if it has no non-zero nilpotent 
ideals. 

LEMMA 2. A is semi-prime. 

Proof. Suppose that a E A is such that aAa = 0, u* = 0. If t* = 0, by (1) 
we have that ta - at - tat E A; hence a(ta - at - tat) a E aAa = 0, resulting 
in at&a = 0. However, if t2 = 0 then (trt)’ = 0 for all r E R; thus we have 
atrtatrta = 0, so every element in Rtat is nilpotent of index of nilpotence at 
most 3; by a result of Levitzki (Lemma 1.1 [5]), since R is prime, we have 
that tat = 0. 

If et = e # 0, I then c = ex(l - e) has square 0, therefore 
ex(1 - e) aex(1 - e) = 0, for all x E R. This gives, as above, using the result 
of Levitzki, that (1 - e) ae = 0, that is, ae = eae. Using the elements 
t = (1 - e) ye of square 0 leads us to ea = eae. Thus ae = cue = ea, and so a 
commutes with all idempotents; by Lemma 1, a E Z. However, since a2 = 0, 
and Z is an integral domain, we have that a = 0. Hence A is semi-prime. 

We now come to the stickiest part of the proof. 

LEMMA 3. If A commutative and A Q Z, then R is the ring of all 2 x 2 
matrices over GF(2). 
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Proof Since A is semi-prime by Lemma 2, and commutative, A has no 
nilpotent elements. We claim that if a # 0 E A then a is not a zero divisor in 
R. For, suppose that ax = 0 for some x E R; thus t = xra has square 0, so by 
(l), (xru) a - a(xra) - (xra) a(xra) E A, that is, xra* E A for all r E R. 
However, (xru’)’ = 0, so we have xRa* = 0. Since R is prime and a* # 0, we 
must have that x = 0. 

If t* = 0 and r, s E R then (t + trt)* = 0 and (trt + tst)2 = 0; using these 
values in (1) gives us 

for all r, s E R. 

tatrt + trtat E A, (2) 

trtatst + tstatrt E A (3) 

Since the elements in (2) and (3) are nilpotent and in A, we must have 

tatrt + trtat = 0 and trtatst + tstatrt = 0 (4) 

for all r, s E R. 
By a result of Martindale (see Lemma 1.3.2 in [6]) we get that tat = at, 

where a E C, the extended centroid of R. If a = 0 for all t such that t* = 0, 
then (1) tells us that ta - at E A; but (ta-at)2=-ta2tEA and is 
nilpotent, hence (ta -at)* = 0, and so ta -at = 0. Thus, by Lemma 1, we 
would have that a E Z. . 

So, since A or Z, if a E A, a @ Z then tat = at # 0 for some t such that 
t* = 0. But then (4) tells us that trtst + tstrt = 0 for all r, s E R. By a result 
of Martindale [6], trt = a(r) t, where a(r) E C, for all r E R. In addition, 
char R = 2 follows. Pick r such that trt # 0, that is, a(r) # 0. 

Now a(r) t E R has square 0; hence 

(1 +t)a=a,(l +t), 

(1 + a(r) t) a = a,( 1 + a(r) t), 

(5) 

where ui, a2 E A. Since tat # 0, we have ta # at; hence a, # a. From (5) we 

get 

(a(r) - 1) a = a(r) a, -a, - a(r)(a, - a,) t. 

Commuting this with a, since A is commutative, yields 
a(r)(a, - a,)(& - ta) = 0. But at - ta # 0, a(r) # 0, so a, - a2 E A is a zero 
divisor, therefore a, - a2 = 0. So (a(r) - 1) a = a(r) a, - a2 = (a(r) - 1) a, ; 
since a # a, we must have a(r) = 1. In particular, since tat # 0, we have 
tat = t. 

If j?+O, 1 EC then, for some ideal W of R, 02 Wj3cR [6], and since 
t Wt # 0, twt = t for some w E W. Thus t(jlw) t = Ptwt = Pt, so a(pw) = 
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/3 # 0, 1, a contradiction. In short, C = GF(2), and tRt = GF(2) t. If f= at 

then f * =f, fRf = GF(2)J Hence R is a primitive ring with minimal right 
ideal fR, and fRf z GF(2). 

Since char R=2, by (l), tu+at+tutEA, that is, tu+ut+tEA; thus 
(tu + at)* = (tu + at + t)* E A, giving us that tu + at + tu*t E A. Hence 
t + tu*t E A and since t + tu*t is nilpotent, we have tu*t = t. Thus 
t(u* + a) t = 0, which implies that t(u* + a) = (a2 + a) t. Therefore u* + a 
commutes with all t such that t2 = 0, so, by Lemma 1, a* + a E Z. But 
u* # u, otherwise a = 1 (since a is not a zero-divisor), so a2 + a # 0 is in 
Z c C = GF(2). So u2 + a = 1. We see, in this way, that A is the field of 
four elements. 

We claim that R is simple, for, if W # 0 is an ideal of R then t Wt # 0; 
hence twt = t for some w  E W. Thus t E W. But then b = ta + at + t # 
0 E A n W, since b is invertible, being in A, we conclude that W = R. So R 
is simple, with 1, and minimal right ideal fR, where fRf = GF(Z)f, this 
forces R to be artinian, and so by Wedderburn’s theorem, R z (GF(2)),, the 
k x k matrices over GF(2). In this case it is easy to see that k = 2. For, if 
k > 2 and t* = 0, rank t = 1 then for a E A, b2 = (ta + at)* E A is of rank 2 
at most, and is therefore not invertible; his gives b2 = 0 and so tu = at. In 
particular a centralizes all eij, i # j; this forces a E Z. 

With this the lemma is proved. 
We may thus assume henceforth that R # (GF(2)),. 

LEMMA 4. IfB#OisusubsetofRsuchthut(l+t)B(l+t)-’cBfor 
all t E R such that t* = 0, then, tf XB = 0, we must have x = 0. 

Proof Let T be the subring generated by all t such that t* = 0. As we 
saw in the proof of Lemma 1, TX WeW, where W= R(l -e)R #O is an 
ideal of R. 

Now, if xB=O then x(1 +t)B(l +t)-‘cxB=O; hence xtB=O. 
Continuing we get xTB = 0 and so xWe WB = 0. By the primeness of R we 
conclude that x = 0. 

Recall that C is the extended centroid of R [6]. 

LEMMA 5. If ACZ and tfxAy=O for some x,yERC, then x=0 or 
y = 0. 

Proof By the properties of RC [6] there is an ideal W of R such that 
WxcR and yWcR. If x#O,y#O then WxfO and yW#O, and 
(Wx) A( yw) = 0. So, without loss of generality, we may assume that x and 
y are in R. 

If bEA, rER then (yrxb)*=O, so for uEA, by (l), yrxba-uyrxb- 
yrxbayrx E A. Because xAy = 0 this relation above reduces to 
c = yrxbu - uyrxb E A; since XAy = 0 we see that cAc = 0, so, by Lemma 2, 
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c = 0. In other words, yRxA c C,(A) = {u E R 1 ua = au, all c1 E A}. Since 
(xA) Ay = 0, by the same argument as that just given shows that 
yR(xA) A c C,(A). Thus we get that yRxA[A, A] = 0; since 
(1 +t)A[A,A](l +t)-’ c A [A, A] for all t such that t* = 0, by Lemma 4 we 
get that yRx = 0 or A[A, A] = 0. If A[A, A] = 0 then, by Lemma 4 again, we 
end up with [A, A] = 0, that is, A is commutative. In this case we are done 
by Lemma 3. Therefore yRx = 0. Since R is prime we conclude that x = 0 or 
y = 0. 

If f * = f # 0, 1 E RC, there is an ideal W # 0 of R with 0 # Wf c R and 
0 ff W c R. Using this notation we have 

LEMMA 6. Zf f Wn A # 0 and Wf n A # 0 then A contains a non-zero 
ideal of R. 

Proof: Let fw # 0 E A nfw, if V= W* then, for u E V, fv(1 -f) E R 
has square 0, so by (l), for all a E A, sincefwa E A, 

(fwa)fu(l -f) -fu(l -f )(fwa) -fo(l -f )(fwa)fu(l -f) E A, 

which is to say, fwaf V( 1 -f) c A. Therefore AfwAf V( 1 -f) c A. 
If 0 z uf E Wf n A, as above we get that (1 -f) VfAufc A. By Lemma 5, 

fAufAfwAf # 0; hence U = VfAufAfwAf Vf 0 is a non-zero ideal of R, 
U c Vc W. However, by what we obtained above, (( 1 -f) vfAuf) 
(A[wAfv(l -f)cA, that is, (1 -fiu(l -f)cA. 

Thus we have 0 # (1 -f) wn A and W( 1 --A n A # 0; the argument 
just given for f applied to 1 -f gives us that f V, f c A for some ideal U,, # 0 
of R, where U,c W. Thus (1 -f)U(l -f)AfU,,fcA, and since 
(1 -f)Af#O by Lemma5, we have (1 -fl U,fcA andfl,fCfUOfCA, 
where U, = U( 1 -f) Af U,. Thus U, f c A. Similarly we get an ideal U, # 0 
with f U, c A. We then have 0 # U,ffU, = U, f U, c A, so A contains the 
non-zero ideal U, f U, of R. This proves the lemma. 

We keep the notation of Lemma 6. 

LEMMA 7. Zf f Wn A = 0 then fRC is a minimal right ideal of RC. 
Similarly, if Wf n A = 0 then fRC is a minimal right ideal of RC. 
Furthermore, char R = 2, and if M = f RC then Hom,,(M, M) = C. 

ProoJ: By Lemma 5 there is an a E A such that (1 -f) af # 0. If x, 
u E V = W* using (4) in the proof of Lemma 3, 

fu(1 -f)afx(l -f)+fx(l -f)afv(l -f)EAnfW=O. 

so 

fv(1 -f)afx(l -f)+fx(l -f)afu(l -f)=O 
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for X, u E V. By a result of Martindale [6], fx(1 -f) uf = a(x)f, a(x) E C, 
for all x E V, and, also, char R = 2. Hence fV(1 -f) ufc Cf; now 
fx( 1 --a uf = a(x)f# 0 for some x E V since R is prime. If y E V then 

a!!)f=fb!!)(1 -n u-4 = 4x)./x 

there fuf= (4vfiY4x>> f, w ence fRCf = Cf: Thus fRC is a minimal right h 
ideal of RC and if A4 = fRC then Hom,,(M, M) = C. 

PROOF OF THE THEOREM 

If e2 = e # 0, 1 is in R and if e is not a minimal idempotent of RC then, by 
Lemma 7, eR nA # 0 and Re nA # 0 (since W = R is an ideal of R such 
that Re c R, eR c R). Thus, by Lemma 6, A contains a non-zero ideal of R. 

So, if A vz Z and A does not contain a non-zero ideal of R, we saw in the 
paragraph above that eRC is a minimal right ideal of RC; thus RC is a 
primitive ring with minimal right ideal, IV, and Horn&V, M) = C. If 
f E RC, f * =f # 0, 1 is not a minimal idempotent then, by Lemmas 6 and 7, 
we are done. So every non-trivial idempotent in RC is minimal. This trivially 
forces RC to be the ring of all 2 x 2 matrices over C. So RC = C,. 

By Lemma 3 we may assume that A is not commutative, and by Lemma 5 
we have that A is prime. Since A c C,, A satisfies the polynomial identities 

of c,, hence Z(A) # 0, where Z(A) is the center of A. Since 

(1 + t)A(l + t)-’ c A, and gives an automorphism of A for t such that 
tZ = 0, we have that (1 + t) Z(A)(l + t)-’ c Z(A). So, if R # (GF(2)),, by 
Lemma 3, Z(A) c z the center of R. 

By Posner’s theorem [5], A ‘localized at Z(A) is a 4-dimensional simple 
algebra over the field of quotients, K, of Z(A), and since Z(A) c Z, lies in 
RC = C,. Call this localization Q(A); if Q(A) is a 2 x 2 matrix algebra over 
K then there is an idempotent f, f2 =f # 0, 1 in Q(A). But f = u/a, where 
uEA,aEZ(A);hencefWnA#O,whereO#WisanidealofRsuchthat 
f W c R, since 0 # af E f W n A and af E Wf n A. By Lemma 6, A contains 
a non-zero ideal of R. 

Suppose then that Q(A) is a 4-dimensional division algebra over K. 
Therefore K is infinite and so Z(A) is infinite. If y # 0, 1 E Z(A) and t2 = 0, 
then tu - at - tat E A and (yt) a - u(yt) - (yt) u(yt) E A, that is, y(tu - at) - 
y’tut EA. However, yu E A, so t(yu) - (yu) t - t(yu) t E A, that is, 
y(tu-ut)- ytut EA. We therefore get that (y’-y) tat EA. But A is a 
domain, so (y2 - y) tat = 0, and since y2 - y # 0 E Z(A), we have tat = 0 
thus tu - utE A; but (tu -~at)~ = -tu’t E A is nilpotent, so we get tu 
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- at = 0. Thus A centralizes all t such that t2 = 0. By Lemma 1 we conclude 
that A c Z. This finishes the proof of the theorem. 

A special case of this theorem is of interest, namely, 

THEOREM 2. If R is a simple ring having an idempotent e, e2 = e # 0, 1, 
andifAisasubringofRsuchthat(l+t)A(l+t)-’cAforalltERsuch 
that t2 = 0, then either A c Z or A = R, except in the one case where R is the 
ring of ail 2 x 2 matrices over the integers mod 2. 

It might be of some interest to find the analogous theorems if, instead of 
assuming that A is a subring of R, we merely suppose that A is an additive 
subgroup of R such that (1 + t) A(1 + t) * c A for all t such that t2 = 0; if 
R is prime with ez = e # 0, 1 in R it might be natural to conjecture that 
either A c Z or A contains a non-central Lie ideal of R. 
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