A Theorem on Invariant Subrings

I. N. Herstein*
Department of Mathematics. The University of Chicago, Chicago, Illinois 60637
Communicated by the Editors

Received June 20, 1982

In [1] Amitsur proved, following an argument due to Baxter [2] involving the Lie structure of simple rings, that if R is a simple ring which is an algebra over a field $F \neq G F(2)$, and if R contains an idempotent $e^{2}=e \neq 0,1$, then, if $A \subset R$ is a subspace over F such that $(1+t) A(a+t)^{-1} \subset A$ for all $t \in R$ such that $t^{2}=0, A$ must be contained in Z, the center of R, or $A \supset[R, R]$, the additive subgroup of R generated by all $[x, y]=x y-y x$. This result generalizes an earlier result of Hattori [4], which had been proved for simple artinian rings. In particular, if A should also happen to be a subring of R then it follows that $A \subset Z$ or $A=R$.

We complete the story here, when A is a subring of R, when $F=G F(2)$. In carrying out our proof we do not divide the argument according as $F=G F(2)$ or $F \neq G F(2)$. Furthermore, instead of working in the context of a simple ring we work in that of a prime ring; we also do not require that A be a subalgebra over F. When $F \neq G F(2)$ these generalizations follow easily from the argument given by Amitsur. We shall make several applications of the result that we prove here in a joint paper with Bergen [3].

In what follows R will be a prime ring with center Z, and possessing a non-trivial idempotent e, where $e^{2}=e \neq 0,1$. Suppose that A is a subring of R such that $(1+t) A(1+t)^{-1} \subset A$ for all $t \in R$ such that $t^{2}=0$ (that is, even if R does not have $1,(1+t) a(1-t)=a+t a-a t-t a t$ is in A for all $a \in A$).

We shall prove the
Theorem. Either $A \subset Z$ or A contains a non-zero ideal of R, except in the one case where R is the ring of all 2×2 matrices over $\operatorname{Gr}(2)$, the integers mod 2.

[^0]If $t^{2}=0$ and $a \in A$ then $(1+t) a(1+t)^{-1}-a \in A$; hence

$$
\begin{equation*}
t a-a t-t a t \in A \text { for all } a \in A, \text { all } t \in R \text { such that } t^{2}=0 \tag{1}
\end{equation*}
$$

We begin with
Lemma 1. (a) Suppose that $u \in R$ commutes with all t such that $t^{2}=0$; then $u \in Z$.
(b) If $u \in R$ commutes with all idempotents in R then $u \in Z$.

Proof. (a) If u commutes with all t such that $t^{2}=0$ then, for any $x \in R$, and $e \neq 0,1$ an idempotent of R, since ex $(1-e),(1-e)$ ye have square $0, u$ commutes with all these; hence u centralizes $e R(1-e)$ and $(1-e) R e$. Therefore u centralizes $e R(1-e) R e$. Let $W=R(1-e) R ; W \neq 0$ is an ideal of R and, as we have seen, u centralizes $e W e$. Also, since $e W(1-e) \subset$ $e R(1-e), u$ centralizes $e W(1-e)$. We thus get that u centralizes $e W$; similarly u centralizes $W e$, and so u centralizes the non-zero ideal $W e W$ of R. Since R is prime this forces u to be in Z.
(b) If u commutes with all idempotents in R, and if $e^{2}=e \neq 0,1$ then, for any $x \in R, f=e+x e-e x e$ is an idempotent, so u commutes with $f-e=x e-e x e=(1-e) x e$. Similarly u commutes with all $e y(1-e)$. The argument in the paragraph above then shows that $u \in Z$.

Recall that a ring is said to be semi-prime if it has no non-zero nilpotent ideals.

Lemma 2. A is semi-prime.
Proof. Suppose that $a \in A$ is such that $a A a=0, a^{2}=0$. If $t^{2}=0$, by (1) we have that $t a-a t-t a t \in A$; hence $a(t a-a t-t a t) a \in a A a=0$, resulting in atata $=0$. However, if $t^{2}=0$ then $(t r t)^{2}=0$ for all $r \in R$; thus we have atrtatrta $=0$, so every element in Rtat is nilpotent of index of nilpotence at most 3; by a result of Levitzki (Lemma 1.1 [5]), since R is prime, we have that tat $=0$.

If $e^{2}=e \neq 0,1$ then $t=\operatorname{ex}(1-e)$ has square 0 , therefore $e x(1-e) a e x(1-e)=0$, for all $x \in R$. This gives, as above, using the result of Levitzki, that $(1-e) a e=0$, that is, $a e=e a e$. Using the elements $t=(1-e) y e$ of square 0 leads us to $e a=e a e$. Thus $a e=e a e=e a$, and so a commutes with all idempotents; by Lemma $1, a \in Z$. However, since $a^{2}=0$, and Z is an integral domain, we have that $a=0$. Hence A is semi-prime.

We now come to the stickiest part of the proof.
Lemma 3. If A commutative and $A \not \subset Z$, then R is the ring of all 2×2 matrices over GF(2).

Proof. Since A is semi-prime by Lemma 2, and commutative, A has no nilpotent elements. We claim that if $a \neq 0 \in A$ then a is not a zero divisor in R. For, suppose that $a x=0$ for some $x \in R$; thus $t=x r a$ has square 0 , so by (1), (xra) $a-a(x r a)-(x r a) a(x r a) \in A$, that is, $x r a^{2} \in A$ for all $r \in R$. However, $\left(x r a^{2}\right)^{2}=0$, so we have $x R a^{2}=0$. Since R is prime and $a^{2} \neq 0$, we must have that $x=0$.

If $t^{2}=0$ and $r, s \in R$ then $(t+t r t)^{2}=0$ and $(t r t+t s t)^{2}=0$; using these values in (1) gives us

$$
\begin{gather*}
\text { tatr } t+\text { trtat } \in A \tag{2}\\
\text { trtatst }+ \text { tstatrt } \in A \tag{3}
\end{gather*}
$$

for all $r, s \in R$.
Since the elements in (2) and (3) are nilpotent and in A, we must have

$$
\begin{equation*}
\text { tatrt }+ \text { trtat }=0 \quad \text { and } \quad \text { trtats } t+\text { tstatrt }=0 \tag{4}
\end{equation*}
$$

for all $r, s \in R$.
By a result of Martindale (see Lemma 1.3.2 in [6]) we get that tat $=\alpha t$, where $\alpha \in C$, the extended centroid of R. If $\alpha=0$ for all t such that $t^{2}=0$, then (1) tells us that $t a-a t \in A$; but $(t a-a t)^{2}=-t a^{2} t \in A$ and is nilpotent, hence $(t a-a t)^{2}=0$, and so $t a-a t=0$. Thus, by Lemma 1 , we would have that $a \in Z$.

So, since $A \not \subset Z$, if $a \in A, a \notin Z$ then $t a t=\alpha t \neq 0$ for some t such that $t^{2}=0$. But then (4) tells us that $t r t s t+t s t r t=0$ for all $r, s \in R$. By a result of Martindale [6], $\operatorname{tr} t=\alpha(r) t$, where $\alpha(r) \in C$, for all $r \in R$. In addition, char $R=2$ follows. Pick r such that trt $\neq 0$, that is, $\alpha(r) \neq 0$.

Now $\alpha(r) t \in R$ has square 0 ; hence

$$
\begin{align*}
(1+t) a & =a_{1}(1+t) \tag{5}\\
(1+\alpha(r) t) a & =a_{2}(1+\alpha(r) t)
\end{align*}
$$

where $a_{1}, a_{2} \in A$. Since tat $\neq 0$, we have $t a \neq a t$, hence $a_{1} \neq a$. From (5) we get

$$
(\alpha(r)-1) a=\alpha(r) a_{1}-a_{2}-\alpha(r)\left(a_{1}-a_{2}\right) t
$$

Commuting this with a, since A is commutative, yields $\alpha(r)\left(a_{1}-a_{2}\right)(a t-t a)=0$. But $a t-t a \neq 0, \alpha(r) \neq 0$, so $a_{1}-a_{2} \in A$ is a zero divisor, therefore $a_{1}-a_{2}=0$. So $(\alpha(r)-1) a=\alpha(r) a_{1}-a_{2}=(\alpha(r)-1) a_{1}$; since $a \neq a_{1}$ we must have $\alpha(r)=1$. In particular, since tat $\neq 0$, we have $t a t=t$.

If $\beta \neq 0,1 \in C$ then, for some ideal W of $R, 0 \neq W \beta \subset R$ [6], and since $t W t \neq 0, t w t=t$ for some $w \in W$. Thus $t(\beta w) t=\beta t w t=\beta t$, so $\alpha(\beta w)=$
$\beta \neq 0,1$, a contradiction. In short, $C=G F(2)$, and $t R t=G F(2) t$. If $f=a t$ then $f^{2}=f, f R f=G F(2) f$. Hence R is a primitive ring with minimal right ideal $f R$, and $f R f \approx G F(2)$.

Since char $R=2$, by (1), $t a+a t+t a t \in A$, that is, $t a+a t+t \in A$; thus $(t a+a t)^{2}=(t a+a t+t)^{2} \in A$, giving us that $t a+a t+t a^{2} t \in A$. Hence $t+t a^{2} t \in A$ and since $t+t a^{2} t$ is nilpotent, we have $t a^{2} t=t$. Thus $t\left(a^{2}+a\right) t=0$, which implies that $t\left(a^{2}+a\right)=\left(a^{2}+a\right) t$. Therefore $a^{2}+a$ commutes with all t such that $t^{2}=0$, so, by Lemma $1, a^{2}+a \in Z$. But $a^{2} \neq a$, otherwise $a=1$ (since a is not a zero-divisor), so $a^{2}+a \neq 0$ is in $Z \subset C=G F(2)$. So $a^{2}+a=1$. We see, in this way, that A is the field of four elements.

We claim that R is simple, for, if $W \neq 0$ is an ideal of R then $t W t \neq 0$; hence $t w t=t$ for some $w \in W$. Thus $t \in W$. But then $b=t a+a t+t \neq$ $0 \in A \cap W$; since b is invertible, being in A, we conclude that $W=R$. So R is simple, with 1 , and minimal right ideal $f R$, where $f R f=G F(2) f$; this forces R to be artinian, and so by Wedderburn's theorem, $R \approx(G F(2))_{k}$, the $k \times k$ matrices over $G F(2)$. In this case it is easy to see that $k=2$. For, if $k>2$ and $t^{2}=0$, rank $t=1$ then for $a \in A, b^{2}=(t a+a t)^{2} \in A$ is of rank 2 at most, and is therefore not invertible; his gives $b^{2}=0$ and so $t a=a t$. In particular a centralizes all $e_{i j}, i \neq j$; this forces $a \in Z$.

With this the lemma is proved.
We may thus assume henceforth that $R \neq(G F(2))_{2}$.
Lemma 4. If $B \neq 0$ is a subset of R such that $(1+t) B(1+t)^{-1} \subset B$ for all $t \in R$ such that $t^{2}=0$, then, if $x B=0$, we must have $x=0$.

Proof. Let T be the subring generated by all t such that $t^{2}=0$. As we saw in the proof of Lemma $1, T \supset W e W$, where $W=R(1-e) R \neq 0$ is an ideal of R.

Now, if $x B=0$ then $x(1+t) B(1+t)^{-1} \subset x B=0$; hence $x t B=0$. Continuing we get $x T B=0$ and so $x W e W B=0$. By the primeness of R we conclude that $x=0$.

Recall that C is the extended centroid of $R[6]$.
Lemma 5. If $A \not \subset Z$ and if $x A y=0$ for some $x, y \in R C$, then $x=0$ or $y=0$.

Proof. By the properties of $R C$ [6] there is an ideal W of R such that $W x \subset R$ and $y W \subset R$. If $x \neq 0, y \neq 0$ then $W x \neq 0$ and $y W \neq 0$, and $(W x) A(y W)=0$. So, without loss of generality, we may assume that x and y are in R.

If $b \in A, r \in R$ then $(y r x b)^{2}=0$, so for $a \in A$, by (1), $y r x b a-a y r x b-$ $y r x b a y r x \in A$. Because $x A y=0$ this relation above reduces to $c=y r x b a-a y r x b \in A$; since $x A y=0$ we see that $c A c=0$, so, by Lemma 2,
$c=0$. In other words, $y R x A \subset C_{R}(A)=\{u \in R \mid u a=a u$, all $a \in A\}$. Since ($x A$) $A y=0$, by the same argument as that just given shows that $y R(x A) A \subset C_{R}(A)$. Thus we get that $y R x A[A, A]=0$; since $(1+t) A[A, A](1+t)^{-1} \subset A[A, A]$ for all t such that $t^{2}=0$, by Lemma 4 we get that $y R x=0$ or $A[A, A]=0$. If $A[A, A]=0$ then, by Lemma 4 again, we end up with $[A, A]=0$, that is, A is commutative. In this case we are done by Lemma 3. Therefore $y R x=0$. Since R is prime we conclude that $x=0$ or $y=0$.

If $f^{2}=f \neq 0,1 \in R C$, there is an ideal $W \neq 0$ of R with $0 \neq W f \subset R$ and $0 \neq f W \subset R$. Using this notation we have

Lemma 6. If $f W \cap A \neq 0$ and $W f \cap A \neq 0$ then A contains a non-zero ideal of R.

Proof. Let $f w \neq 0 \in A \cap f W$; if $V=W^{2}$ then, for $v \in V, f v(1-f) \in R$ has square 0 , so by (1), for all $a \in A$, since fwa $\in A$,

$$
(f w a) f v(1-f)-f v(1-f)(f w a)-f v(1-f)(f w a) f v(1-f) \in A
$$

which is to say, fwaf $V(1-f) \subset A$. Therefore $A f w A f V(1-f) \subset A$.
If $0 \neq u f \in W f \cap A$, as above we get that $(1-f) V f A u f \subset A$. By Lemma 5, fAufAfwAf $\neq 0$; hence $U=V f A u f A f w A f V \neq 0$ is a non-zero ideal of R, $U \subset V \subset W$. However, by what we obtained above, $((1-f) v f A u f)$ $(A f w A f V(1-f) \subset A$, that is, $(1-f) U(1-f) \subset A$.

Thus we have $0 \neq(1-f) W \cap A$ and $W(1-f) \cap A \neq 0$; the argument just given for f applied to $1-f$ gives us that $f U_{0} f \subset A$ for some ideal $U_{0} \neq 0$ of R, where $U_{0} \subset W$. Thus $(1-f) U(1-f) A f U_{0} f \subset A$, and since $(1-f) A f \neq 0$ by Lemma 5 , we have $(1-f) U_{1} f \subset A$ and $f U_{1} f \subset f U_{0} f \subset A$, where $U_{1}=U(1-f)$ Af U_{0}. Thus $U_{1} f \subset A$. Similarly we get an ideal $U_{2} \neq 0$ with $f U_{2} \subset A$. We then have $0 \neq U_{1} f f U_{2}=U_{1} f U_{2} \subset A$, so A contains the non-zero ideal $U_{1} f U_{2}$ of R. This proves the lemma.

We keep the notation of Lemma 6.
Lemma 7. If $f W \cap A=0$ then $f R C$ is a minimal right ideal of $R C$. Similarly, if $W f \cap A=0$ then $f R C$ is a minimal right ideal of $R C$. Furthermore, char $R=2$, and if $M=f R C$ then $\operatorname{Hom}_{R C}(M, M)=C$.

Proof. By Lemma 5 there is an $a \in A$ such that $(1-f) a f \neq 0$. If x, $v \in V=W^{2}$ using (4) in the proof of Lemma 3,

$$
f v(1-f) a f x(1-f)+f x(1-f) a f v(1-f) \in A \cap f W=0 .
$$

So

$$
f v(1-f) a f x(1-f)+f x(1-f) a f v(1-f)=0
$$

for $x, v \in V$. By a result of Martindale [6], $f x(1-f) a f=\alpha(x) f, \alpha(x) \in C$, for all $x \in V$, and, also, char $R=2$. Hence $f V(1-f) a f \subset C f$; now $f x(1-f) a f=\alpha(x) f \neq 0$ for some $x \in V$ since R is prime. If $y \in V$ then

$$
\alpha(y f x) f=f(y f x)(1-f) a f=\alpha(x) f y f,
$$

there $f y f=(\alpha(y f x) / \alpha(x)) f$, whence $f R C f=C f$. Thus $f R C$ is a minimal right ideal of $R C$ and if $M=f R C$ then $\operatorname{Hom}_{R C}(M, M)=C$.

Proof of the Theorem

If $e^{2}=e \neq 0,1$ is in R and if e is not a minimal idempotent of $R C$ then, by Lemma $7, e R \cap A \neq 0$ and $R e \cap A \neq 0$ (since $W=R$ is an ideal of R such that $R e \subset R, e R \subset R$). Thus, by Lemma $6, A$ contains a non-zero ideal of R.

So, if $A \not \subset Z$ and A does not contain a non-zero ideal of R, we saw in the paragraph above that $e R C$ is a minimal right ideal of $R C$; thus $R C$ is a primitive ring with minimal right ideal, M, and $\operatorname{Hom}_{R C}(M, M)=C$. If $f \in R C, f^{2}=f \neq 0,1$ is not a minimal idempotent then, by Lemmas 6 and 7 , we are done. So every non-trivial idempotent in $R C$ is minimal. This trivially forces $R C$ to be the ring of all 2×2 matrices over C. So $R C=C_{2}$.

By Lemma 3 we may assume that A is not commutative, and by Lemma 5 we have that A is prime. Since $A \subset C_{2}, A$ satisfies the polynomial identities of C_{2}, hence $Z(A) \neq 0$, where $Z(A)$ is the center of A. Since $(1+t) A(1+t)^{-1} \subset A$, and gives an automorphism of A for t such that $t^{2}=0$, we have that $(1+t) Z(A)(1+t)^{-1} \subset Z(A)$. So, if $R \neq(G F(2))_{2}$, by Lemma 3, $Z(A) \subset Z$ the center of R.

By Posner's theorem [5], A localized at $Z(A)$ is a 4 -dimensional simple algebra over the field of quotients, K, of $Z(A)$, and since $Z(A) \subset Z$, lies in $R C=C_{2}$. Call this localization $Q(A)$; if $Q(A)$ is a 2×2 matrix algebra over K then there is an idempotent $f, f^{2}=f \neq 0,1$ in $Q(A)$. But $f=a / \alpha$, where $a \in A, \alpha \in Z(A)$; hencc $f W \cap A \neq 0$, where $0 \neq W$ is an ideal of R such that $f W \subset R$, since $0 \neq \alpha f \in f W \cap A$ and $\alpha f \in W f \cap A$. By Lemma $6, A$ contains a non-zero ideal of R.

Suppose then that $Q(A)$ is a 4-dimensional division algebra over K. Therefore K is infinite and so $Z(A)$ is infinite. If $\gamma \neq 0,1 \in Z(A)$ and $t^{2}=0$, then $t a-a t-t a t \in A$ and $(\gamma t) a-a(\gamma t)-(\gamma t) a(\gamma t) \in A$, that is, $\gamma(t a-a t)-$ γ^{2} tat $\in A$. However, $\gamma a \in A$, so $t(\gamma a)-(\gamma a) t-t(\gamma a) t \in A$, that is, $\gamma(t a-a t)-\gamma t a t \in A$. We therefore get that $\left(\gamma^{2}-\gamma\right)$ tat $\in A$. But A is a domain, so $\left(\gamma^{2}-\gamma\right)$ tat $=0$, and since $\gamma^{2}-\gamma \neq 0 \in Z(A)$, we have tat $=0$ thus $t a-a t \in A$; but $(t a-a t)^{2}=-t a^{2} t \in A$ is nilpotent, so we get $t a$
-at $=0$. Thus A centralizes all t such that $t^{2}=0$. By Lemma 1 we conclude that $A \subset Z$. This finishes the proof of the theorem.

A special case of this theorem is of interest, namely,
Theorem 2. If R is a simple ring having an idempotent $e, e^{2}=e \neq 0,1$, and if A is a subring of R such that $(1+t) A(1+t)^{-1} \subset A$ for all $t \in R$ such that $t^{2}=0$, then either $A \subset Z$ or $A=R$, except in the one case where R is the ring of all 2×2 matrices over the integers mod 2 .

It might be of some interest to find the analogous theorems if, instead of assuming that A is a subring of R, we merely suppose that A is an additive subgroup of R such that $(1+t) A(1+t)^{1} \subset A$ for all t such that $t^{2}=0$; if R is prime with $e^{2}=e \neq 0,1$ in R it might be natural to conjecture that either $A \subset Z$ or A contains a non-central Lie ideal of R.

References

1. S. A. Amitsur, Invariant submodules of simple rings, Proc. Amer. Math. Soc. 7 (1958), 987-989.
2. W. E. Baxter, "Lie simplicity of a special class of associative rings, Proc. Amer. Math. Soc. 7 (1958), 855-863.
3. Jeffrey Bergen and I. N. Herstein, The algebraic hypercenter and some applications, to appear.
4. A. Hattori, On invariant subrings, Japan. J. Math. 21 (1951), 121-129.
5. I. N. Herstein, "Topics in Ring Theory," Chicago Lecture Notes in Mathematics, Univ. of Chicago Press, Chicago, 1969.
6. I. N. Herstein, "Rings with Involution," Chicago Lecture Notes in Mathematics, Univ. of Chicago Press, Chicago, 1976.

[^0]: * The research in this paper was supported by the NSF Grant, NSF-MCS810-2472 at the University of Chicago.

