MIXED WEAK TYPE INEQUALITIES FOR ONE-SIDED OPERATORS

FRANCISCO J. MARTÍN-REYES AND SHELDY J. OMBROSI

Abstract

We discuss mixed weak type inequalities in weighted spaces for one-sided operators. In particular, we prove that if $T_{c} f(x)=(x-$ c) ${ }^{-1} \int_{c}^{x} f(y) d y, x>c$, is the Hardy averaging operator, $u \in A_{1}^{-}$(one-sided Muckenhoupt A_{1} class) and $v \in A_{1}^{+}$(the another one-sided Muckenhoupt A_{1} class) then there exists a constant C such that $\sup _{c \in \mathbb{R}} \int_{\left\{x:\left|T_{c} f(x)\right|>v(x)\right\}} u v \leq$ $C \int_{\mathbb{R}}|f| u$.

1. Introduction

Let T be a sublinear operator defined on measurable functions on \mathbb{R}^{n}, that is,

$$
|T(f+g)| \leq|T f|+|T g|, \quad|T(\lambda f)|=|\lambda||T f|,
$$

for all scalars λ and all measurable functions f. A mixed weak type (p, p) inequality for T is an inequality of the form

$$
\begin{equation*}
\int_{\{x:|T f(x)|>v(x)\}} u(x) v(x) d x \leq C \int|f(x)|^{p} w(x) d x \tag{1.1}
\end{equation*}
$$

where v, u and w are nonnegative measurable functions and C is independent of f. On one hand, this inequality contains the weighted weak type (p, p) inequality, since if $v \equiv 1$ and we take the functions $f / \lambda, \lambda>0$, the above inequality becomes

$$
\begin{equation*}
\int_{\{x:|T f(x)|>\lambda\}} u(x) d x \leq \frac{C}{\lambda^{p}} \int|f(x)|^{p} w(x) d x, \tag{1.2}
\end{equation*}
$$

that is, the weighted weak type (p, p) inequality for the operator T with respect to the weights u and w. On the other hand, mixed weak type inequalities are related to the two weighted norm inequalities [2] and, probably, that is the reason why they are more difficult to handle than the corresponding weak type inequalities.

[^0]Let M be the Hardy-Littlewood maximal operator defined by

$$
M f(x)=\sup _{Q: x \in Q} \frac{1}{|Q|} \int_{Q}|f|
$$

where the supremum is taken over all cubes with sides parallel to the axis such that $x \in Q$. It is known that the weighted weak type $(1,1)$ inequality

$$
\int_{\{x: M f(x)>\lambda\}} u(x) d x \leq \frac{C}{\lambda} \int|f|(x) u(x) d x
$$

holds if and only if the weight u satisfies the A_{1} condition $\left(u \in A_{1}\right)$, that is, there exists $C>0$ such that

$$
M u(x) \leq C u(x) \quad \text { a.e. }
$$

Andersen and Muckenhoupt [2] proved the mixed weak type $(1,1)$ inequality

$$
\begin{equation*}
\int_{\left\{x: M f(x)>|x|^{-d}\right\}}|x|^{-d} u(x) d x \leq C \int|f|(x) u(x) d x \tag{1.3}
\end{equation*}
$$

under the assumptions $n=1, d \neq 1$ and $u \in A_{1}$. The same inequality was established for the Hilbert transform [2] and it was extended to singular integral operators in $\mathbb{R}^{n}[5]$. Sawyer [7] proved that the mixed inequality holds for some general non-power weights v. More precisely, he established that if $n=1$, $u \in A_{1}$ and $v \in A_{1}$ then

$$
\begin{equation*}
\int_{\{x: M f(x)>v(x)\}} u(x) v(x) d x \leq C \int|f|(x) u(x) d x . \tag{1.4}
\end{equation*}
$$

The problem for the Hilbert transform was left open in that paper. Recently, the last inequality was proved [3] in \mathbb{R}^{n} not only for M but also and for singular integrals including the Hilbert transform.

This paper is devoted to the study of mixed weak type $(1,1)$ inequalities for one-sided operators. In the real line, the one-sided Hardy-Littlewood maximal operators M^{-}and M^{+}are defined by

$$
M^{-} f(x)=\sup _{h>0} \frac{1}{h} \int_{x-h}^{x}|f(x)| d x \quad \text { and } \quad M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f(x)| d x .
$$

Weighted inequalities for M^{-}and M^{+}were studied first in [8] (see also [6]). It was established $[6]$ that the weighted weak type $(1,1)$ inequality

$$
\int_{\{x: M-f(x)>\lambda\}} u(x) d x \leq \frac{C}{\lambda} \int|f|(x) u(x) d x
$$

holds if and only if the weight u satisfies the A_{1}^{-}condition, that is, there exists $C>0$ such that

$$
M^{+} u(x) \leq C u(x) \quad \text { a.e. }
$$

The analogous result hold for M^{+}and $u \in A_{1}^{+}$which means $M^{-} u(x) \leq C u(x)$ almost everywhere. Arguing as in [7] we conjecture that the mixed weak type $(1,1)$ inequality

$$
\begin{equation*}
\int_{\left\{x: M^{-f}(x)>v(x)\right\}} u(x) v(x) d x \leq C \int|f|(x) u(x) d x \tag{1.5}
\end{equation*}
$$

holds, under the assumptions $u \in A_{1}^{-}$and $v \in A_{1}^{+}$. In other words, the conjecture says that the mixed weak type $(1,1)$ inequality for M^{-}holds if M^{-}is of weak type $(1,1)$ with respect to $u(x) d x$ and M^{+}(the "adjoint" of M^{-}) is of weak type $(1,1)$ with respect to $v(x) d x$. So far, we have not been able to prove it. However we have found a proof of that inequality with M^{-}replaced by the Hardy averaging operators

$$
T_{c} f(x)= \begin{cases}\frac{1}{x-c} \int_{c}^{x} f(y) d y, & \text { if } x>c \\ 0, & \text { if } x \leq c .\end{cases}
$$

where c is any fixed real number. Clearly, the operators T_{c} are smaller than M^{-}and they are closely related to M^{-}since

$$
M^{-} f=\sup _{c \in \mathbb{R}} T_{c}|f| .
$$

For these operators we prove (see Corollary 2.8) that if $u \in A_{1}^{-}$and $v \in A_{1}^{+}$ then there exists a constant C such that

$$
\sup _{c \in \mathbb{R}} \int_{\left\{x:\left|T_{c} f(x)\right|>v(x)\right\}} u v \leq C \int_{\mathbb{R}}|f| u
$$

for all measurable functions f. We obtain this result as a consequence of Theorem 2.6, where we state that the mixed weak type inequality holds for T_{c} if T_{c} is of weak type $(1,1)$ with respect to $u(x) d x$ and the formal adjoint T_{c}^{*} is of weak type $(1,1)$ with respect to $v(x) d x$. In the next section we state and prove our results.

We shall use standard notations. In particular, if E is a measurable set $E \subset \mathbb{R}$ then $|E|$ is the lebesgue measure of E.

2. Mixed weak type inequalities for Hardy operators

We shall establish our results for the operators T_{c} for any number c but the proofs will be given in the case $c=0$, since the general case is proved in a completely similar way. In what follows, the Hardy operator T_{0} will be denoted by T.

We start with a characterization of the mixed weak type inequality for T_{c}. The next theorem is essentially contained in [5] although in that paper a more general setting is considered and the Hardy operator is the one in \mathbb{R}^{n} given by

$$
H f(x)=\frac{1}{|x|^{n}} \int_{B(0,|x|)} f(y) d y
$$

where $B(0,|x|)$ stands for the euclidian ball of center 0 and radius $|x|$. Observe that for $n=1$ the operator H is the two-sided operator

$$
H f(x)=\frac{1}{|x|} \int_{-|x|}^{|x|} f(y) d y
$$

We include the proof for completeness.
Theorem 2.1. Let u and v be nonnegative measurable functions defined on \mathbb{R}. Let $c \in \mathbb{R}$. The following statements are equivalent.
(a) There exists a constant C such that

$$
\int_{\left\{x:\left|T_{c} f(x)\right|>v(x)\right\}} u v \leq C \int_{\mathbb{R}}|f| u
$$

for all measurable functions.
(b) There exists a constant \widetilde{C} such that for all $a>c$

$$
\sup _{\lambda>0} \lambda \int_{\left\{x>a: \frac{1}{x-c}>\lambda v(x)\right\}} u v \leq \widetilde{C} u(x) \quad \text { for a.e. } x \in(c, a) .
$$

Further, if C and \widetilde{C} are the best constants in (a) and (b), respectively, then $\widetilde{C} \leq C \leq 4 \widetilde{C}$.
Proof. As we said above we work with $c=0$.
$(a) \Rightarrow(b)$. Let us fix $a>0$. Let E be any measurable subset of $(0, a)$ and consider $f=\frac{1}{|E|} \chi_{E}$. If $x>a$ then

$$
T f(x)=\frac{1}{x}
$$

Therefore

$$
\int_{\left\{x>a: \frac{1}{x}>v(x)\right\}} u v \leq \int_{\{x: T f(x)>v(x)\}} u v \leq \frac{C}{|E|} \int_{E} u,
$$

where the last inequality follows from statement (a). Since E is any measurable subset of $(0, a)$, we obtain

$$
\int_{\left\{x>a: \frac{1}{x}>v(x)\right\}} u v \leq C \operatorname{ess} \inf \{u(x): x \in(0, a)\},
$$

which is (b) for $\lambda=1$. The inequality for all λ follows in the same way since (a) holds for the pairs of functions $(u, \lambda v)$ for all $\lambda>0$ with the same constant.
$(b) \Rightarrow(a)$. We may assume without loss of generality that f is integrable, $f \geq 0$ and $\int_{0}^{a} f>0$ for all $a>0$. Let $\left\{x_{n}\right\}_{n}$ be the decreasing sequence defined by $x_{0}=+\infty$ and

$$
\int_{0}^{x_{n+1}} f=\int_{x_{n+1}}^{x_{n}} f
$$

It is clear that $\lim _{n \rightarrow \infty} x_{n}=0$. If $x \in\left[x_{n+1}, x_{n}\right)$ then

$$
T f(x) \leq \frac{1}{x} \int_{0}^{x_{n}} f=\frac{4}{x} \int_{x_{n+2}}^{x_{n+1}} f
$$

Therefore

$$
\{x: T f(x)>v(x)\} \subset \bigcup_{n=1}^{\infty}\left\{x \in\left[x_{n+1}, x_{n}\right): \frac{1}{x}>\frac{v(x)}{4 \int_{x_{n+2}}^{x_{n+1}} f}\right\} .
$$

If $\beta_{n}=\operatorname{ess} \inf \left\{u(x): x \in\left(0, x_{n+1}\right)\right\}$ we have by (b)

$$
\begin{aligned}
\int_{\{x: T f(x)>v(x)\}} u v & \leq 4 \widetilde{C} \sum_{n=1}^{\infty} \beta_{n} \int_{x_{n+2}}^{x_{n+1}} f \\
& \leq 4 \widetilde{C} \sum_{n=1}^{\infty} \int_{x_{n+2}}^{x_{n+1}} f u \leq 4 \widetilde{C} \int_{0}^{\infty} f u .
\end{aligned}
$$

Observe that taking $v=1$ in the theorem we obtain a characterization of the weights u such that T applies $L^{1}(u)$ into weak- $L^{1}(u)$. We state it as a corollary.

Corollary 2.2. Let u be a nonnegative measurable functions defined on \mathbb{R}. Let $c \in \mathbb{R}$. The following statements are equivalent.
(a) There exists a constant C such that

$$
\int_{\left\{x:\left|T_{c} f(x)\right|>\lambda\right\}} u \leq \frac{C}{\lambda} \int_{\mathbb{R}}|f| u
$$

for all measurable functions.
(b) u satisfies $A_{1}\left(T_{c}\right)$, that is, there exists $\widetilde{C}>0$ such that for all $a>c$

$$
\begin{equation*}
\sup _{y>a} \frac{1}{y-c} \int_{a}^{y} u \leq \widetilde{C} u(x) \quad \text { for a.e. } x \in(c, a) . \tag{2.3}
\end{equation*}
$$

Further, if C and \widetilde{C} are the best constants in (a) and (b), respectively, then $\widetilde{C} \leq C \leq 4 \widetilde{C}$.

The proof is direct from the theorem and the equality $\left\{x>a: \frac{1}{x-c}>\lambda\right\}=$ $\left(a, c+\frac{1}{\lambda}\right)$.
Remark 2.4. Notice that Andersen and Muckenhoupt [2] proved that statement (a) holds if and only if there exist $\alpha>0$ and $C(\alpha)$ such that for all $a>c$

$$
\int_{a}^{\infty}\left(\frac{a}{t-c}\right)^{\alpha} \frac{u(t)}{t-c} d t \leq C(\alpha) u(x) \quad \text { for a.e. } x \in(c, a)
$$

It is easy to see directly that this condition and $A_{1}\left(T_{c}\right)$ are equivalent.

It can be proved also that the formal adjoint operator T_{c}^{*} defined by

$$
T_{c}^{*} f(x)= \begin{cases}\int_{x}^{\infty} \frac{f(t)}{t-c} d t, & \text { if } x>c \\ 0, & \text { if } x \leq c\end{cases}
$$

is of weak type $(1,1)$ with respect to the measure $v(x) d x$ if and only if $v \in$ $A_{1}\left(T_{c}^{*}\right)$, that is, there exists $C>0$ such that

$$
\begin{equation*}
\frac{1}{x-c} \int_{c}^{x} v \leq C v(x) \quad \text { for almost every } x>c \tag{2.5}
\end{equation*}
$$

The proof is similar to the one for T_{c} and we omit it (alternatively, the result can be obtained from the theorems in [2]). With the help of these conditions we can establish the mixed weak type inequality for T_{c} for a wide class of weights.

Theorem 2.6. Let u and v be nonnegative measurable functions defined on \mathbb{R}. Let $c \in \mathbb{R}$. Assume that there exists $\varepsilon>0$ such that $u^{1+\varepsilon} \in A_{1}\left(T_{c}\right)$ and $v^{1+\varepsilon} \in A_{1}\left(T_{c}^{*}\right)$, i.e., there is a constant $C>0$ such that for all $a>c$

$$
\sup _{y>a} \frac{1}{y-c} \int_{a}^{y} u^{1+\varepsilon} \leq C u^{1+\varepsilon}(x) \quad \text { for a.e. } x \in(c, a),
$$

and

$$
\begin{equation*}
\frac{1}{x-c} \int_{c}^{x} v^{1+\varepsilon} \leq C v^{1+\varepsilon}(x) \quad \text { for almost every } x>c . \tag{2.7}
\end{equation*}
$$

Then there exists a constant C such that

$$
\int_{\left\{x:\left|T_{c} f(x)\right|>v(x)\right\}} u v \leq C \int_{\mathbb{R}}|f| u
$$

for all measurable functions.
As a corollary we obtain our result for weights in the one-sided Muckenhoupt classes.

Corollary 2.8. Let u and v nonnegative measurable functions defined on \mathbb{R}. Assume that $u \in A_{1}^{-}$and $v \in A_{1}^{+}$. Then there exists a constant C such that

$$
\sup _{c \in \mathbb{R}} \int_{\left\{x:\left|T_{c} f(x)\right|>v(x)\right\}} u v \leq C \int_{\mathbb{R}}|f| u
$$

for all measurable functions.
The corollary follows from the theorem, the easy implications $u \in A_{1}^{-} \Rightarrow u \in$ $A_{1}\left(T_{c}\right), v \in A_{1}^{+} \Rightarrow v \in A_{1}\left(T_{c}^{*}\right)$, and the well-known implications $u \in A_{1}^{-} \Rightarrow$ $u^{1+\varepsilon} \in A_{1}^{-}$and $v \in A_{1}^{+} \Rightarrow v^{1+\varepsilon} \in A_{1}^{+}$for some $\varepsilon>0$ (see $[8,6]$).

Proof of Theorem 2.6. We work with $c=0$. By Theorem 2.1, we only have to prove that

$$
\lambda \int_{\left\{x>a: \frac{1}{x}>\lambda v(x)\right\}} u v \leq C \operatorname{ess} \inf \{u(x): x \in(0, a)\}
$$

for all $a>0$ and all $\lambda>0$. Fix $\lambda>0$ and $a>0$ and set

$$
E=\left\{x>a: \frac{1}{x}>\lambda v(x)\right\} .
$$

We may assume that $|E|>0$. Let us take any $z \in E$ such that

$$
\begin{equation*}
\frac{1}{z} \int_{0}^{z} v^{1+\varepsilon} \leq C v^{1+\varepsilon}(z) \tag{2.9}
\end{equation*}
$$

We shall prove that

$$
\lambda \int_{E \cap(a, z)} u v \leq C \operatorname{ess} \inf _{(0, a)} u .
$$

Then letting z tend to the essential supremum of E we obtain the required inequality. Fix any number $\beta>1$ and choose $b \in(0, a)$ such that b is a Lebesgue point of $u^{1+\varepsilon}$ and $u(b) \leq \beta\left(\operatorname{essinf}_{(0, a)} u\right)$. Now choose α such that $1-\varepsilon<\alpha<\frac{1}{1+\varepsilon}$. Applying the definition of E and Hölder's inequality we obtain

$$
\begin{array}{r}
\int_{E \cap(a, z)} u v \leq \frac{1}{\lambda^{\alpha}} \int_{E \cap(a, z)} \frac{u(x)}{x^{\alpha}} v^{1-\alpha}(x) d x \\
\leq \frac{1}{\lambda^{\alpha}}\left(\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x\right)^{\frac{1}{1+\varepsilon}}\left(\int_{a}^{z} v^{(1-\alpha) \frac{1+\varepsilon}{\varepsilon}}(x) d x\right)^{\frac{\varepsilon}{1+\varepsilon}} \\
\leq \frac{1}{\lambda^{\alpha}}\left(\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x\right)^{\frac{1}{1+\varepsilon}}\left(\int_{a}^{z} v^{1+\varepsilon}(x) d x\right)^{\frac{1-\alpha}{1+\varepsilon}}(z-a)^{\frac{\varepsilon-1+\alpha}{1+\varepsilon}}
\end{array}
$$

Using (2.9), $z-a \leq z$ and $z \in E$ we obtain

$$
\begin{array}{r}
\int_{E \cap(a, z)} u v \leq C \\
\frac{z^{\frac{\varepsilon}{1+\varepsilon}}}{\lambda^{\alpha}}\left(\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x\right)^{\frac{1}{1+\varepsilon}} v^{1-\alpha}(z) \tag{2.10}\\
\leq C \frac{z^{\alpha-\frac{1}{1+\varepsilon}}}{\lambda}\left(\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x\right)^{\frac{1}{1+\varepsilon}}
\end{array}
$$

To estimate the last integral we take $c \in(b, a)$ and $f=\chi_{(b, c)}$. It is clear that for $x>a$

$$
T f(x)=\frac{c-b}{x}
$$

Applying this equality

$$
\begin{equation*}
\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x=\frac{1}{(c-b)^{\alpha(1+\varepsilon)}} \int_{a}^{z}(T f(x))^{\alpha(1+\varepsilon)} u^{1+\varepsilon}(x) d x \tag{2.11}
\end{equation*}
$$

Since $u^{1+\varepsilon}$ satisfies (2.3) we have that T applies $L^{1}\left(u^{1+\varepsilon}\right)$ into weak- $L^{1}\left(u^{1+\varepsilon}\right)$. Therefore, by Kolmogorov's inequality (for instance, see [4])

$$
\begin{align*}
& \int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x \\
& \quad \leq \frac{C}{(c-b)^{\alpha(1+\varepsilon)}}\left(\int_{a}^{z} u^{1+\varepsilon}(x) d x\right)^{1-\alpha(1+\varepsilon)}\left(\int_{b}^{c} u^{1+\varepsilon}(x) d x\right)^{\alpha(1+\varepsilon)} \tag{2.12}
\end{align*}
$$

Applying again the assumption on u we have
$\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x \leq C\left(\operatorname{essinf}_{(0, a)} u\right)^{(1+\varepsilon)(1-\alpha(1+\varepsilon))} z^{1-\alpha(1+\varepsilon)}\left(\frac{1}{c-b} \int_{b}^{c} u^{1+\varepsilon}\right)^{\alpha(1+\varepsilon)}$.
Since c is any point in (b, a) and b is a Lebesgue point of $u^{1+\varepsilon}$, we get

$$
\left(\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x\right)^{\frac{1}{1+\varepsilon}} \leq C\left(\operatorname{ess}_{\inf }^{(0, a)} \text { u}\right)^{1-\alpha(1+\varepsilon)} z^{\frac{1}{1+\varepsilon}-\alpha} u^{\alpha(1+\varepsilon)}(b)
$$

Now the property of b gives

$$
\left(\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x\right)^{\frac{1}{1+\varepsilon}} \leq C\left(\operatorname{ess}_{\inf }^{(0, a)}, u\right) z^{\frac{1}{1+\varepsilon}-\alpha} \beta^{\alpha(1+\varepsilon)} .
$$

Letting β tend to 1 we obtain

$$
\left(\int_{a}^{z} \frac{u^{1+\varepsilon}(x)}{x^{\alpha(1+\varepsilon)}} d x\right)^{\frac{1}{1+\varepsilon}} \leq C\left(\operatorname{essinf}_{(0, a)} u\right) z^{\frac{1}{1+\varepsilon}-\alpha}
$$

This inequality together with (2.10) gives

$$
\int_{E \cap(a, z)} u v \leq \frac{C}{\lambda}\left(\operatorname{ess} \inf _{(0, a)} u\right)
$$

as we wished to prove.

Remark 2.13. We point out that $v \in A_{1}\left(T_{c}^{*}\right)$ does not imply $v^{1+\varepsilon} \in A_{1}\left(T_{c}^{*}\right)$ for some $\varepsilon>0$. We shall give an example because we have not found it in the literature.

Example 2.1. Let $I_{i}=\left(2^{i}+\frac{1}{2^{i}}, 2^{i}+1\right)$, for all natural number i, and $\Omega=$ $\cup_{i=1}^{\infty} I_{i}$. Now, we define

$$
w(x)=\chi_{\Omega^{c}}(x)+\sum_{i=1}^{\infty} \frac{\chi_{I_{i}}(x)}{\left(x-2^{i}\right)^{2}} d x .
$$

We shall see that $w \in A_{1}\left(T_{0}^{*}\right)$ and $w^{1+\varepsilon} \notin A_{1}\left(T_{0}^{*}\right)$ for any $\varepsilon>0$. Observe that $w \geq 1$. A simple computation gives

$$
\begin{equation*}
\int_{I_{i}} w^{1+\varepsilon}=\int_{I_{i}} \frac{d x}{\left(x-2^{i}\right)^{2(1+\varepsilon)}}=\frac{1}{1+2 \varepsilon}\left(2^{i(1+2 \varepsilon)}-1\right) \sim 2^{i(1+2 \varepsilon)} \tag{2.14}
\end{equation*}
$$

We now show that w satisfies $A_{1}\left(T_{0}^{*}\right)$. Let $x>2$ (since $w(y)=1$ for $y \leq 2$, for $x \leq 2$ it is easy), we choose a natural number N such that $2^{N}<x \leq 2^{N+1}$. It is enough to see that $\frac{1}{x} \int_{0}^{x} w$ is uniformly bounded, because $w(x) \geq 1$ for every x. We have that

$$
\frac{1}{x} \int_{0}^{x} w \leq \frac{1}{2^{N}} \int_{\Omega^{c} \cap\left(0,2^{N+1}\right)} w+\frac{1}{2^{N}} \int_{\Omega \cap\left(0,2^{N+1}\right)} w .
$$

Since $w(x)=1$ for $x \in \Omega^{c}$, the first summand is bounded by 2 and the second one is bounded by

$$
\frac{1}{2^{N}} \sum_{i=1}^{N} \int_{I_{i}} w \leq \frac{1}{2^{N}} \sum_{i=1}^{N} 2^{i} \leq 2 .
$$

Now, we will see that for any $\varepsilon>0, w^{1+\varepsilon}$ does not satisfy $A_{1}\left(T_{0}^{*}\right)$. Fix $\varepsilon>0$. If $x=2^{N}+s$ (with $1 \leq s \leq 2$) we have that $w(x)=1$, and by (2.14) we have

$$
\frac{1}{x} \int_{0}^{x} w^{1+\varepsilon}>\frac{C}{2^{N}} \sum_{i=1}^{N} \int_{I_{i}} w^{1+\varepsilon} \geq \frac{C}{2^{N}} \sum_{i=1}^{N} 2^{i(1+2 \varepsilon)} \geq C 2^{2 N \varepsilon},
$$

which shows that $w^{1+\varepsilon}$ does not satisfy $A_{1}\left(T_{c}^{*}\right)$.
The same example shows that $u \in A_{1}\left(T_{c}\right)$ does not imply $u^{1+\varepsilon} \in A_{1}\left(T_{c}\right)$ for some $\varepsilon>0$. Keeping in mind this example, it is clear that the assumptions in Theorem 2.6 are stronger than $u \in A_{1}\left(T_{c}\right)$ and $v \in A_{1}\left(T_{c}^{*}\right)$. It is an open problem to know whether the conclusions of the theorem hold under these weaker assumptions. However, the answer is affirmative in the particular case of decreasing weights.

Theorem 2.15. Let $c \in \mathbb{R}$. Assume that u is a decreasing weight in (c, ∞) and the weight $v \in A_{1}\left(T_{c}^{*}\right)$. Then there exists a constant C such that

$$
\int_{\left\{x:\left|T_{c} f(x)\right|>v(x) \mid\right\}} u v \leq C \int_{\mathbb{R}}|f| u
$$

for all measurable functions.
Proof. Assume $c=0$. As in the proof of Theorem 2.6, we only have to prove that

$$
\begin{equation*}
\lambda \int_{\left\{x>a: \frac{1}{x}>\lambda v(x)\right\}} u v \leq C \operatorname{ess} \inf _{(0, a)} u \tag{2.16}
\end{equation*}
$$

for all $a>0$ and all $\lambda>0$. Since $v \in A_{1}\left(T_{c}^{*}\right)$ we obtain that

$$
\left\{x>a: \frac{1}{x}>\lambda v(x)\right\} \subset\left\{x>a: \frac{C}{\lambda}>\int_{0}^{x} v\right\}=E_{\lambda} .
$$

Let $s_{0}=\sup \left\{x: x \in E_{\lambda}\right\}$. We have that $E_{\lambda} \subset\left(a, s_{0}\right)$ and $\int_{0}^{s_{0}} v \leq \frac{C}{\lambda}$. Using that u is decreasing and we obtain

$$
\begin{align*}
& \lambda \int_{\left\{x>a: \frac{1}{x}>\lambda v(x)\right\}} u v \leq \lambda\left(\operatorname{essinf}_{(0, a)} u\right) \int_{E_{\lambda}} v \tag{2.17}\\
& \leq \lambda\left(\operatorname{essinf}_{(0, a)} u\right) \int_{0}^{s_{0}} v \leq C \operatorname{essinf}(0, a) \\
& u .
\end{align*}
$$

To finish the paper we show that for decreasing weights u, the natural condition A_{1}^{+}on the weight v is sufficient to obtain the mixed weak type inequality for M^{-}.

Theorem 2.18. Let u be decreasing in \mathbb{R}. Let $v \in A_{1}^{+}$. Then there exists $C>0$ such that

$$
\int_{\left\{x: M^{-} f(x)>v(x)\right\}} u v \leq C \int_{0}^{\infty}|f| u
$$

Proof. In fact, if $v \in A_{1}^{+}$then

$$
\left\{x: v(x)<M^{-} f(x)\right\} \subset\left\{x: M_{v}^{-}\left(f v^{-1}\right)(x)>\frac{1}{C}\right\}
$$

where

$$
M_{v}^{-} g(x)=\sup _{h>0} \frac{\int_{x-h}^{x}|g| v}{\int_{x-h}^{x} v}
$$

(M_{v}^{+}is defined reversing the orientation in the real line). Now we recall $[1,6]$ that M_{v}^{-}applies $L^{1}(u v)$ into weak- $L^{1}(u v)$ if and only if $M_{v}^{+} u \leq C u$ almost everywhere. It is clear that u satisfies that condition because u decreases. Therefore,

$$
\int_{\left\{x: M^{-f(x)>v(x)\}}\right.} u v \leq \int_{\left\{x: M_{v}^{-}\left(f v^{-1}\right)(x)>\frac{1}{C}\right\}} u v \leq C \int_{\mathbb{R}}|f| v^{-1} u v=C \int_{\mathbb{R}}|f| u,
$$

as we wanted to prove.

References

[1] K. Andersen, Weighted inequalities for maximal functions associated with general measures, Trans. Amer. Math. Soc. 326 (1991), no. 2, 907-920.
[2] K.F. Andersen, B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9-26.
[3] D. Cruz-Uribe, J.M. Martell and C. Pérez, Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not. 2005, no. 30, 1849-1871.
[4] J. García-Cuerva, J.L. Rubio de Francia Weighted Norm Inequalities and Related Topics, Mathematics Studies. (1985).
[5] F.J. Martín-Reyes, P. Ortega Salvador and M.D. Sarrión Gavilán, Boundedness of operators of Hardy type in $\Lambda^{p, q}$ spaces and weighted mixed inequalities for singular integral operators, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 1, 157-170.
[6] F.J. Martín-Reyes, P. Ortega Salvador and A. de la Torre, Weighted inequalities for onesided maximal functions, Trans. Amer. Math. Soc. 319 (1990), no. 2, 517-534.
[7] E. Sawyer, A weighted weak type inequality for the maximal function. Proc. Amer. Math. Soc. 93 (1985), no. 4, 610-614.
[8] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Amer. Math. Soc. 297 (1986), no. 1, 53-61.
(Francisco J. Martín-Reyes) Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: martin_reyes@uma.es
(Sheldy J. Ombrosi) Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina

Current address: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, 41080 Sevilla, Spain

E-mail address: sombrosi@uns.edu.ar

[^0]: The research of the first author has been partially supported by Junta de Andalucía grant FQM 354 and spanish goverment grant MTM2005-08350-C03-02. The research of the second author has been partially supported by Universidad Nacional del Sur, grant SGCyT-UNS PGI 24/L058 and by a grant of spanish goverment MEC Res. 26/05/2006.

