REMARKS ON THE AREA THEOREM IN THE THEORY OF UNIVALENT FUNCTIONS

M. PAVLOVIĆ AND JOSÉ ÁNGEL PELÁEZ

Abstract. We prove an integral extension of the classical area theorem for univalent functions. We give an application finding geometric conditions on the image domain of a univalent function \(f \) which imply that \(f \) belongs to the Hardy space \(H^p, 0 < p < \infty \).

1. Introduction and main results

Let \(\mathbb{D} \) denote the open unit disk of the complex plane \(\mathbb{C} \). A complex-valued function defined in \(\mathbb{D} \) is said to be univalent if it is analytic and one-to-one there. We refer to [5] and [8] for the theory of these functions. Throughout the paper, \(\mathcal{U} \) will stand for the class of all univalent functions in \(\mathbb{D} \). The classical area theorem [5, p. 29], which is a key in the proof of a good number of results in the theory of univalent functions, can be stated as follows:

Theorem A. If \(\varphi(z) = \sum_{n=0}^{\infty} b_n z^n, b_0 \neq 0 \), is an analytic function in \(\mathbb{D} \) such that the meromorphic function \(\varphi(z)/z \) is one-to-one in \(\mathbb{D} \), then

\[
\sum_{n=1}^{\infty} \frac{n^2|b_n|^2}{n+1} \leq \sum_{n=0}^{\infty} \frac{|b_n|^2}{n+1}
\]

or, equivalently,

\[
\int_{\mathbb{D}} |z\varphi'(z)|^2 \, dm(z) \leq \int_{\mathbb{D}} |\varphi(z)|^2 \, dm(z).
\]

Here, \(dm(z) = dx dy \) denotes the usual Lebesgue area measure.

In this paper we generalize Theorem A in the following way.

Theorem 1. Let \(p > 0 \). If \(\varphi \) is a function as in Theorem A and \(\varphi(z) \neq 0 \) for all \(z \in \mathbb{D} \), then

\[
(1.1) \quad \int_{\mathbb{D}} |z|^p |\varphi(z)|^{p-2} |\varphi'(z)|^2 \, dm(z) \leq \int_{\mathbb{D}} |z|^{p-2} |\varphi(z)|^p \, dm(z).
\]

2000 Mathematics Subject Classification. 30C55, 30D55.

Key words and phrases. Area theorem, Univalent functions, Hardy spaces.

The first author is supported by MNZSZ Serbia, Project ON144010. The second author is partially supported by the Ramón y Cajal program of MICINN (Spain), the Spanish (Grants MTM2007-60854 and MTM2006-26627) and regional Andalusian (Grants FQM210 and P06-FQM01504) Governments.
Consequently, we deduce the following theorem on univalent functions.

Theorem 2. If f is univalent in \mathbb{D}, $f(0) = 0$ and $p > 0$, then

\[
\int_{\mathbb{D}} |z|^{2p-2} |f(z)|^{-p} \left(1 - \left| \frac{zf'(z)}{f(z)} \right|^2 \right) \, dm(z) \leq \int_{\mathbb{D}} |z|^{2p-2} |f(z)|^{-p} \, dm(z),
\]

or equivalently

\[
\int_{\mathbb{D}} |z|^{2p-2} |f(z)|^{-p} \left| \frac{zf'(z)}{f(z)} \right|^2 \, dm(z) \leq 2 \int_{\mathbb{D}} |z|^{2p-2} |f(z)|^{-p} \, \operatorname{Re} \left(\frac{zf'(z)}{f(z)} \right) \, dm(z).
\]

Given an space X of analytic functions, one of the most interesting problems in the theory of univalent functions is finding geometric conditions on a domain Ω which imply that Ω is an X-domain, that is, any analytic function f defined on \mathbb{D} with $f(\mathbb{D}) \subset \Omega$ belongs to X. This problem has been solved for a good number of spaces, such as the Bloch space, Besov spaces B_p, $1 < p < \infty$, . . . (see [1], [3]). However, this is an open problem for H^p spaces (see [4]). We shall use Theorem 2 to find geometric conditions on the image domain of a function $f \in U$ which imply its membership in H^p.

For simplicity, we shall assume that $0 \in f(\mathbb{D})$.

Given a domain $\Omega \subset \mathbb{C}$ and a point w in Ω, we shall write $d_\Omega(w)$ to denote the (Euclidean) distance from w to the boundary $\partial \Omega$. The following inequalities play an essential role in the proof of our results (see, e.g., [9], Corollary 1.4).

If Ω is a simply connected proper subdomain of \mathbb{C} and F is a conformal mapping from Δ onto Ω then we have

\[
d_\Omega(F(z)) \leq |F'(z)|(1 - |z|^2) \leq 4d_\Omega(F(z)), \quad z \in \mathbb{D}.
\]

The following result is proved in [2, Corollary 7].

Corollary B. Suppose that $1/2 \leq p < \infty$ and $f \in A^{2p} \cap U$. Set $\Omega = f(\mathbb{D})$ and suppose that $0 \in \Omega$. For $\varepsilon > 0$, set $\Omega_\varepsilon = \{w \in \Omega : |w| > \varepsilon\}$. If

\[
\int_{\Omega_\varepsilon} \frac{d_\Omega(w)^{2p-2}}{|w|^{2p}} \, dm(w) < \infty,
\]

for all sufficiently small $\varepsilon > 0$, then $f \in H^p$.

Here, we shall prove the following extension of this result.

Theorem 3. Suppose that $0 < \beta < 1$, $1 - \frac{\beta}{2} < p < \infty$, and $f \in A^{2p} \cap U$. Set $\Omega = f(\mathbb{D})$ and suppose that $0 \in \Omega$. If

\[
\int_{\Omega_\varepsilon} \frac{d_\Omega(w)^{2p-2}}{|w|^{2p-2 - \beta + \frac{\beta}{2} - \frac{\beta}{2}} \, dm(w) < \infty,
\]

for some δ, $0 < \delta < \frac{1+p}{2}$ and all sufficiently small $\varepsilon > 0$, then $f \in H^p$.

Moreover, we shall prove that this result is sharp in certain sense.

The paper is organized as follows. Section 2 is devoted to prove Theorem 1 and Theorem 2. Corollary 3 and some other results are proved in section 3.

2. Proof of the main results

The proof of Theorem 1 is based on the following fact due to Prawitz [10]. The proof is borrowed from [7] (see also [6]).

THEOREM C. Let \(f : \mathbb{D} \rightarrow \mathbb{C} \) be a univalent function and \(f(0) = 0 \), and let
\[
J_p(r) = J_p(r, f) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^{-p} d\theta, \quad p > 0, \quad 0 < r < 1.
\]

Then
\[
2\pi J'_p(r) = -(p/r) \text{Im} \int_{\Gamma_r} |w|^{-p-2} \bar{w} dw \quad (w = u + iv)
\]
\[
= -(p/r) \int_{\Gamma_r} |w|^{-p-2}(vdv - udu)
\]
\[
< 0,
\]
for all \(r \in (0, 1) \), where \(\Gamma_r \) is the image under \(f \) of the circle \(\{ \zeta \in \mathbb{C} : |\zeta| = r \} \) and \(\Gamma_r \) is positively oriented.

Proof. We have
\[
2\pi J'_p(r) = -p \int_0^{2\pi} |f(re^{i\theta})|^{-p-2} \text{Re}\{\overline{f(re^{i\theta})}f'(re^{i\theta})e^{i\theta}\} d\theta
\]
\[
= -(p/r) \text{Im} \int_{|\zeta|=r} |f(\zeta)|^{-p-2} \overline{f(\zeta)}f'(\zeta) d\zeta
\]
\[
= -(p/r) \text{Im} \int_{\Gamma_r} |w|^{-p-2} \bar{w} dw \quad (w = u + iv)
\]
\[
= -(p/r) \int_{\Gamma_r} |w|^{-p-2}(vdv - udu),
\]
where \(\Gamma_r \) is the image under \(f \) of the circle \(|\zeta| = r \) and the curve \(\Gamma_r \) is positively oriented. Now we apply Green’s formula to the domain \(\Omega_{r,R} \) bounded by \(\Gamma_r \) and the circle \(|w| = R \), where \(R > \max_{|z|=r}|f(z)| \). Since
\[
\partial(|w|^{-p-2}u)/\partial u - \partial(-|w|^{-p-2}v)/\partial v = -p|w|^{-p-2},
\]
we have
\[
\int_{|w|=R} |w|^{-p-2}(vdv - udu) - \int_{\Gamma_r} |w|^{-p-2}(vdv - udu)
\]
\[
= -p \int_{\Omega_{r,R}} |w|^{-p-2} du dv.
\]
The first integral is equal to $2\pi R^{-p}$, and therefore

$$J'_p(r) = -(p/r)R^{-p} - (p^2/2\pi r)\int_{\Omega_{r,R}} |w|^{-p-2} \, du \, dv.$$

Letting R tend to ∞ we get

$$J'_p(r) = -(p^2/2\pi r)\int_{\Omega_r} |w|^{-p-2} \, du \, dv,$$

where Ω_r is the exterior of the curve Γ_r. This concludes the proof.

\textbf{Proof of Theorem 1.} With the hypotheses of Theorem 1, let $g(z) = \varphi(z)/z$ and $f(z) = 1/g(z) = z/\varphi(z)$. Let

$$I_p(r) = I_p(r, g) = \frac{1}{2\pi} \int_0^{2\pi} |g(re^{i\theta})|^p \, d\theta = J_p(r, f), \quad p > 0.$$

The function f satisfies the hypotheses of Theorem C and therefore

$$2\pi I'_p(r) = 2\pi J'_p(r) = -(p/r)\int_{\Gamma_r} |w|^{-p-2}(u \, dv - v \, du) < 0.$$

By the change $w \mapsto 1/w$ we get

$$2\pi I'_p(r) = (p/r)\int_{\gamma_r} |w|^{-p-2}(u \, dv - v \, du) < 0,$$

where γ_r denotes the curve $w = g(re^{it})$, $0 \leq t \leq 2\pi$, which is a curve of negative orientation. Now we try to parameterize γ_r by $w = F(e^{it})$, where $F(e^{it}) \equiv g(re^{it})$, indeed we choose

$$F(z) = \overline{z}/r \varphi(rz).$$

Then we have

$$\int_{\gamma_r} |w|^{-p-2}(u \, dv - v \, du) = \Im \int_{|\zeta|=1} |F(\zeta)|^{-p-2} F(\zeta) \, dF(\zeta).$$

Now, we choose a circle T_ρ of radius ρ centered at 0 ($0 < \rho < \frac{1}{2}$), and apply Green’s formula to the annulus $A_\rho := \{z : \rho \leq |z| \leq 1\}$ to get

$$\Im \int_{|\zeta|=1} |F(\zeta)|^{-p-2} F(\zeta) \, dF(\zeta) = p \int_{A_\rho} |F|^{-p-2} J_F \, dm + \Im \int_{T_\rho} |F|^{-p-2} F \, dF,$$

where $J_F(z)$ is the Jacobian of F,

$$J_F(z) = |\partial F/\partial z|^2 - |\partial F/\partial \overline{z}|^2 = |z\varphi'(rz)|^2 - |\varphi(rz)|^2/r^2,$$

here the circles are positively oriented. From the properties of φ it follows that

$$\Im \int_{T_\rho} |F|^{-p-2} F \, dF \leq C\rho^p,$$
and
\[\int_D |F|^{p-2} |J_F| \, dm \leq C \int_D |z|^{p-2} \, dm(z) < \infty. \]
Hence, by passing to the limit as \(\rho \to 0 \), we get
\[\text{Im} \int_{|z|=1} |F(\zeta)|^{p-2} \overline{F(\zeta)} \, dF(\zeta) = p \int_D |F|^{p-2} J_F \, dm. \]
From this, (2.1) and (2.2) it follows that
\[\int_D |F(z)|^{p-2} J_F(z) \, dm(z) < 0, \]
that is
\[
\int_D |z\varphi(rz)|^{p-2} |z\varphi'(rz)|^2 \, dm(z) < r^{-2} \int_D |z|^{p-2} \varphi(rz) \, dm(z) \tag{2.3}
\]
\[= 2\pi r^{-2} \int_0^1 t^{p-1} I_p(rt, \varphi) \, dt, \]
where, as above,
\[I_p(s, \varphi) = \frac{1}{2\pi} \int_0^{2\pi} |\varphi(se^{i\theta})|^p \, d\theta. \]
As it is well known, \(I_p(s, \varphi) \) increases with \(s \) and so we can apply the monotone convergence theorem to get
\[\lim_{r \to 1^-} \int_0^1 t^{p-1} I_p(rt, \varphi) \, dt = \int_0^1 t^{p-1} \lim_{r \to 1^-} I_p(rt, \varphi) \, dt \]
\[= \int_0^1 t^{p-1} I_p(t, \varphi) \, dt. \]
From this and (2.3), via Fatou’s lemma, we obtain (1.1). This completes the proof of Theorem 1.

Proof of Theorem 2. If \(f \) is univalent in \(\mathbb{D} \), \(f(0) = 0 \), then let \(\varphi(z) = z/f(z) \). Since
\[\varphi'(z) = \frac{f(z) - zf'(z)}{f(z)^2}, \]
we see, by Theorem 1, that
\[\int_D |z|^{2p-2} |f(z)|^{2-p} \left| \frac{f(z) - zf'(z)}{f(z)^2} \right|^2 \, dm(z) \leq \int_D |z|^{p-2} \left| \frac{z}{f(z)} \right|^p \, dm(z). \]
The result follows.

Remark 1. Equality is possible in (1.1), (1.2) and (1.3). In the case of (1.1) we take
\[\varphi(z) = (1 - e^{-i\theta} z)^2, \quad \theta \in [0, 2\pi]. \]
Then
\[\text{Im} \int_{|\zeta|=1} |F(\zeta)|^{p-2} \overline{F(\zeta)} \, dF(\zeta) = 0, \]
where
\[F(z) = z\varphi(z) = \bar{z}(1 - e^{-i\theta}z)^2. \]

Now an application of Green’s formula as above shows that
\[\int_{D} |F|^{p-2} J_{F} \, dm = 0, \]
which implies (1.1).

The above deduction of Theorem 2 from Theorem 1 shows that equality in (1.2) and (1.3) is attained if \(f_\theta \) is any rotation of Koebe function:
\[f_\theta(z) = \frac{z}{(1 - e^{-i\theta}z)^2}. \]

3. Applications

First, we present the following simple but useful lemma.

Lemma 1. If \(f \) is univalent in \(\mathbb{D} \), \(f(0) = 0 \) and \(p > 0 \), then
\[\int_{\mathbb{D}} |z|^{2p} |f(z)|^{-p} \left| \frac{f'(z)}{f(z)} \right|^2 \, dm(z) < \infty. \]

Proof.
Observe that if \(f \in \mathcal{U} \) with \(f(0) = 0 \), then
\[\int_{\mathbb{D}} |z|^{2p} |f(z)|^{-p} \, dm(z) < \infty \quad \text{for any } p > 0, \]
which together with Theorem 2 gives that
\[
\begin{align*}
&\int_{\mathbb{D}} |z|^{2p} |f(z)|^{-p} \left| \frac{f'(z)}{f(z)} \right|^2 \, dm(z) \\
&\leq 2 \int_{\mathbb{D}} |z|^{2p-2} |f(z)|^{-p} \left| 1 - \frac{zf'(z)}{f(z)} \right|^2 \, dm(z) + 2 \int_{\mathbb{D}} |z|^{2p-2} |f(z)|^{-p} \, dm(z) \\
&\leq 4 \int_{\mathbb{D}} |z|^{2p-2} |f(z)|^{-p} \, dm(z) \quad \text{< } \infty.
\end{align*}
\]
This finishes the proof. \(\square \)

Now, we are ready to obtain our result on \(H^p \)-univalent functions.

Proof of Theorem 3. Bearing in mind [2, Theorem 1] it is enough to prove that
\[\int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-1} \, dm(z) \quad < \infty. \]

Take \(\eta > 0 \) such that \(\{|w| < \eta\} \subset \Omega \) and take \(\varepsilon \) with \(0 < \varepsilon < \eta \) and set \(\mathbb{D}_\varepsilon = f^{-1}(\Omega_\varepsilon) \).
By Hölder’s inequality (with conjugate exponents $\frac{2}{1+\beta} > 1$ and $\frac{2}{1-\beta}$), and Lemma 1, we deduce that

\[(3.2)\]
\[\int_{D_{\epsilon}} |f'(z)|^{p} (1 - |z|^2)^{p-1} \, dm(z) \]
\[= \int_{D_{\epsilon}} \left[(1 - |z|^2) |f'(z)|^p \right]^{p-1} \left| f'(z) \right|^{\beta} |z|^{-2\delta} |f(z)|^{1-\beta + \delta} \left[|f(z)|^{-\delta} |z|^{2\delta} \frac{f'(z)}{f(z)} \right]^{1-\beta} \, dm(z) \]
\[\leq \left(\int_{D_{\epsilon}} \left[(1 - |z|^2) |f'(z)| \right]^{\frac{2(p-1)}{1+\beta}} \left| f'(z) \right|^{\frac{2\beta}{1+\beta}} |z|^{-\frac{4\delta}{1+\beta}} |f(z)|^{\frac{2(1-\beta+\delta)}{1+\beta}} \, dm(z) \right)^{\frac{1+\beta}{2}} \]
\[\times \left(\int_{D_{\epsilon}} \left| f'(z) \right|^{\frac{2\delta}{1+\beta}} |z|^{-\frac{4\delta}{1+\beta}} \frac{f'(z)}{f(z)}^2 \, dm(z) \right)^{\frac{1-\beta}{2}} \]
\[\leq C \left(\int_{D_{\epsilon}} \left[(1 - |z|^2) |f'(z)| \right]^{\frac{2(p-1)}{1+\beta}} \left| f'(z) \right|^{\frac{2\beta}{1+\beta}} |z|^{-\frac{4\delta}{1+\beta}} |f(z)|^{\frac{2(1-\beta+\delta)}{1+\beta}} \, dm(z) \right)^{\frac{1+\beta}{2}}.
\]

On the other hand, if $0 < \delta < \frac{1+p}{2}$, using Hölder’s inequality (with conjugate exponents $\frac{1+\beta}{\beta}$ and $1+\beta$), making the change of variable $w = f(z)$ and bearing in mind (1.4) and that $f \in A^{2p}$, we deduce that

\[\int_{D_{\epsilon}} \left[(1 - |z|^2) |f'(z)| \right]^{\frac{2(p-1)}{1+\beta}} \left| f'(z) \right|^{\frac{2\beta}{1+\beta}} |z|^{-\frac{4\delta}{1+\beta}} |f(z)|^{\frac{2(1-\beta+\delta)}{1+\beta}} \, dm(z) \]
\[= \int_{D_{\epsilon}} \frac{\left[(1 - |z|^2) |f'(z)| \right]^{\frac{2(p-1)}{1+\beta}}}{\left| f(z) \right|^{\frac{2(p+\beta-1-\delta)}{1+\beta}}} \left| f'(z) \right|^{\frac{2\beta}{1+\beta}} |z|^{-\frac{4\delta}{1+\beta}} |f(z)|^{\frac{2p}{1+\beta}} \, dm(z) \]
\[= \left(\int_{D_{\epsilon}} \frac{\left[(1 - |z|^2) |f'(z)| \right]^{\frac{2(p-1)}{1+\beta}}}{\left| f(z) \right|^{\frac{2(p+\beta-1-\delta)}{1+\beta}}} \left| f'(z) \right|^2 \, dm(z) \right)^{\frac{1}{1+\beta}} \]
\[\times \left(\int_{D} |z|^{-\frac{4\delta}{1+\beta}} |f(z)|^{2p} \, dm(z) \right)^{\frac{1}{1+\beta}} \]
\[\leq C \left(\int_{\Omega} \frac{d\Omega(z)^{2p-2}}{|w|^{\frac{2p-2}{\beta} + 2\frac{\beta}{1+\beta}}} \, dm(z) \right)^{\frac{1}{1+\beta}} < \infty,
\]

which together with (3.1) and (3.2), finishes the proof.

Moreover, we are able to prove that this result is sharp in the following sense.

Theorem 4. If $0 < \beta < 1$ and $1 - \frac{2}{2p} < p < \infty$, then there exists a univalent function $g \in A^{2p} \setminus H^p$ with $g(0) = 0$ and such that, setting $\Omega = g(\mathbb{D})$ and
\(\Omega_\varepsilon = \{ w \in \Omega : |w| > \varepsilon \} \),

\[
\int_{\Omega_\varepsilon} \frac{d\Omega(w)^{2p-2}}{|w|^{2p-2 + 2 + \kappa}} \, dm(w) < \infty, \quad \varepsilon > 0,
\]

for every \(\kappa > 0 \).

Proof of Theorem 4. We shall follow the lines of the proof of [2, Thorem 8]. Take \(p \in (1/2, \infty) \) and let \(f \) be the function defined in the proof of [2, Theorem 3], that is,

\[
f(z) = \left[\frac{1}{(1 - z) \log \frac{2e}{1-z}} \right]^{\frac{1}{p}}, \quad z \in \mathbb{D}.
\]

Set

\[
g(z) = f(z) - f(0), \quad z \in \mathbb{D}.
\]

Then \(g \) is univalent, \(g(0) = 0 \) and \(g \in A^{2p} \setminus H^p \). Finally, we shall see that (3.3) holds.

Take \(\varepsilon > 0 \). Since \(g(0) = 0 \), there exists \(\eta \) with \(0 < \eta < 1 \) such that

\[
g^{-1}(\Omega_\varepsilon) \subset \mathbb{D}_\eta = \{ z \in \mathbb{D} : |z| > \eta \}.
\]

We have that

\[
g'(z) = \frac{1}{p(1 - z)^{1 + \frac{1}{2}}} \left[\left(\frac{1}{\log \frac{2e}{1-z}} \right)^{\frac{1}{p}} \left(1 - \frac{1}{\log \frac{2e}{1-z}} \right) \right], \quad z \in \mathbb{D},
\]

and that there exists a positive constant \(C \) such that

\[
|g(z)| \geq C \left| \frac{1}{(1 - z) \log \frac{2e}{1-z}} \right|^{\frac{1}{p}} \quad z \in \mathbb{D}_\eta.
\]

So, using (1.4), and assuming without loss of generality that \(\kappa < p \left(\frac{2p-2}{p^2} + 1 \right) \), we obtain

\[
\int_{\Omega_\varepsilon} \frac{d\Omega(w)^{2p-2}}{|w|^{2p-2 + 2 + \kappa}} \, dm(w)
\]

\[
\leq C \int_{\mathbb{D}_\eta} (1 - |z|^2)^{\frac{2p-2}{p}} \left| g'(z) \right|^{\frac{2p-2 + 2}{p}} \left| \log \frac{2e}{1-z} \right|^{\frac{2p-2 + 2 + \kappa}{p}} \, dm(z)
\]

\[
\leq C \int_{\mathbb{D}_\eta} (1 - |z|^2)^{\frac{2p-2}{p}} \left| (1 - z) \log \frac{2e}{1-z} \right|^{\frac{2p-2 + 2 + \kappa}{p}} \left| \log \frac{2e}{1-z} \right|^{\frac{2p-2 + 2 + \kappa}{p}} \, dm(z)
\]

\[
\times \left| 1 - \frac{1}{\log \frac{2e}{1-z}} \right|^{\frac{2p-2 + 2}{p}} \, dm(z)
\]
\[
\leq C \int_{D_\rho} (1 - |z|^2)^\frac{2p-2}{\beta} \left| \frac{1}{1-z} \right|_p \frac{\log \left| \frac{2e^{1-z}}{1-z} \right|}{1 - z^2} \ dm(z) \\
\leq C \int_0^1 (1 - r)^{-1 + \frac{2p}{\beta}} \left(\log \left| \frac{2e^{1-r}}{1-r} \right| \right) \frac{1}{p} \ dr < \infty.
\]
This finishes the proof.

REFERENCES

MIROSŁAV PAVLOVIĆ, Matematički fakultet, Studentski trg 16, 11001 Belgrade, p.p. 550, Serbia
E-mail address: pavlovic@matf.bg.ac.yu

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE MÁLAGA, CAMPUS DE TEATINOS, 29071 MÁLAGA, SPAIN
E-mail address: japelaez@uma.es