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Abstract. The derivative of a Blaschke product whose zeros lie in

a Stolz domain belongs to all Hardy spaces with exponent smaller

than one-half and this exponent cannot be improved even when

the zeros belong to a single radius. For Bergman spaces and under

the same assumption on the zeros, a striking phenomenon occurs:

the derivative belongs to all such spaces with exponent less than

three-halves, which is more than one may expect. Although we do

not know whether or not this result is sharp, we solve the prob-

lem for interpolating Blaschke products: Indeed, if B is an inter-

polating Blaschke product whose zeros lie in a Stolz angle then

B′ ∈ ∩0<p<1H
p ⊂ ∩0<p<2A

p.

On the other hand, we prove that there exists an interpolating

Blaschke product B such that B′ /∈ ∪0<pH
p.
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1. Introduction and Main Results

If f is a function which is analytic in ∆ = {z : |z| < 1} and 0 < r < 1,

we set

Mp(r, f) =
(

1
2π

∫ π

−π
|f(reit)|p dt

)1/p

, 0 < p < ∞,

Ip(r, f) = Mp
p (r, f), 0 < p < ∞,

M∞(r, f) = sup|z|=r |f(z)|.

For 0 < p ≤ ∞, the Hardy space Hp consists of all analytic functions

f in the disc for which

‖f‖Hp
def
= sup

0<r<1
Mp(r, f) < ∞.

The Nevanlinna characteristic T (r, f) is defined by

T (r, f) =
1

2π

∫ π

−π

log+ |f(reit)| dt, 0 ≤ r < 1.

The Nevanlinna class, denoted by N , is the space of those f analytic

in ∆ for which

sup
0≤r<1

T (r, f) < ∞.

It is known that Hp ⊂ N , 0 < p ≤ ∞. We refer the reader to [9] for

the theory of Hardy spaces and of the Nevanlinna class.

The Bergman space Ap (0 < p < ∞) is the space of all analytic

functions f in the ∆ satisfying

‖f‖Ap
def
=

(∫

∆

|f(z)|p dA(z)

)1/p

< ∞,

where dA(z) denotes the normalized Lebesgue measure in ∆. For the

theory of these spaces, we refer the reader to [5], [16] and to the forth-

coming text [10].
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A sequence {ak}∞k=1 of points in the unit disc is said to be a Blaschke

sequence if ∑
(1− |ak|) < ∞.

The corresponding Blaschke product B is defined as

B(z) =
∏

k

ak

|ak|
ak − z

1− akz
.

Such a product is analytic in ∆, bounded by one, and with radial limits

of modulus one almost everywhere on the unit circle.

One of the central questions about Blaschke products is that of the

membership of their derivatives in the classical function spaces such as

Hardy spaces and Bergman spaces. This problem was studied in many

papers as [3], [2], [17] and [21] in the 70’s and 80’s. More recently, mean

growth of the derivative of Blaschke products has been investigated by

Girela - González [13], Kutbi [18], and also by the author and Girela

in [14].

Let us recall the following well known result of Privalov (see Theorem

3.11 of [9]).

Theorem A. Let f be an analytic function in ∆, f has a continuous

extension to the closed unit disc ∆ whose boundary values are absolutely

continuous on ∂∆ if and only if f ′ ∈ H1.

In particular,

f ′ ∈ H1 =⇒ f ∈ A,

where, as usual, A denotes the disc algebra, that is, the space of all

functions f which are analytic in ∆ and have a continuous extension

to the closed unit disc ∆.

Since the boundary values of a Blaschke product have modulus 1

almost everywhere, it is clear that if B is an infinite Blaschke product
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then B /∈ A and, hence, B′ /∈ H1. Consequently if B is an infinite

Blaschke product the best result, that we could obtain is the following

B′ ∈ ∩0<p<1H
p.

Nevertheless there exist many Blaschke products B which do not verify

this condition. Indeed, Frostman in [12] proved that there exists a

Blaschke product B such that B′ /∈ N and, hence, B′ /∈ ∪0<p<∞Hp.

The proof of this fact is difficult and non-constructive. In section 4 we

are going to prove in a easier and constructive way the following two

results:

Proposition 1. The Blaschke product B with zeros ak = rke
itk , where

rk = 1− 1

k log2 k
, tk =

1

k log2 k
, k = 3, 4, . . .

verifies that B′ /∈ ∪0<pH
p.

Theorem 2. There exists an interpolating Blaschke product B such

that B′ /∈ ∪0<pH
p.

We recall that a Blaschke product B is said to be an interpolating

Blaschke product if its sequence of zeros {ak} is uniformly separated

or interpolating, that is, if there exists a positive constant δ > 0 such

that
∞∏

j=1,j 6=k

∣∣∣∣∣
aj − ak

1− ajak

∣∣∣∣∣ ≥ δ, for all k.

The Schwarz-Pick lemma readily implies that the derivative of any

Blaschke product belongs to ∩0<p<1A
p. On the other hand, H. O. Kim

proved in p. 176 of [17] the following result.

Theorem B. If B is an infinite Blaschke product then B′ /∈ A2.
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Consequently if B is an infinite Blaschke product the best result,

that we could have is the following

B′ ∈ ∩0<p<2A
p.

However there exist a lot of Blaschke products which do not satisfy

this condition. Indeed, Rudin [22] showed that there exists a Blaschke

product whose derivative does not belong to A1 and Piranian [20] gave

a more explicit example.

We are mainly interested in Blaschke products B whose sequence of

zeros lie in some Stolz angle.

Given ξ ∈ ∂∆ and σ ∈ (1,∞) we set

Ωσ(ξ) = {z ∈ ∆ : |1− ξz| ≤ σ(1− |z|)} .

The domains Ωσ(ξ) (1 < σ < ∞) are called Stolz angles with vertex at

ξ. The domain Ωσ(1) will be simply denoted by Ωσ.

Ahern and Clark proved in [3] the following result.

Theorem C. Let be B a Blaschke product with zeros in a Stolz angle,

then B′ ∈ ∩0<p<1/2H
p and the exponent one-half is sharp.

A different and very short proof of this result is presented in [15]. The

positive part is proved in a perhaps unexpected way, by generalizing a

known exercise in [23]. For the negative one, we show that the Blaschke

product B with zeros ak = 1 − 1/(k log2 k) (k ≥ 2) has the property

that B′ 6∈ H1/2. So the exponent 1/2 cannot be improved even when

the zeros belong to a single radius. The proof is based on the following

lemma of Ahern and Clark [3]:
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Lemma D. If a Blaschke product B has zeros ak = rke
itk then B′ ∈ Hp

if and only if the function f defined on the unit circle by

f(t) =
∞∑

k=1

1− |ak|
(1− |ak|)2 + (t− tk)2

belongs to Lp(0, 2π).

By a theorem of Hardy and Littlewood, Hp ⊂ A2p and the exponent

2p cannot be improved (see Theorem 5.6 of [9], or [25] for a simple

proof). It is, thus, natural to ask whether the exponent one in the

inclusion B′ ∈ ∩0<p<1A
p is sharp if the zeros of B converge nontan-

gentially to a point in the unit circle. A rather surprising phenomenon

occurs here:

Theorem E. If the zeros of a Blaschke product B all lie in some Stolz

angle, then B′ ∈ ∩0<p<3/2A
p.

This result which can be deduced from Theorem 6.1 of Ahern’s paper

[1] is proved in [15] using Theorem C and the following proposition.

Proposition F. Let ϕ be an arbitrary analytic function in ∆ for which

ϕ
(
∆

) ⊂ ∆. If ϕ′ ∈ Hp then ϕ′ ∈ Ap+1−ε for any positive and suffi-

ciently small ε.

In section 2, we give another completely different proof of Theorem E

by following in part an idea from a paper by Vinogradov [24]. We do

not know whether or not the exponent 3/2 is sharp. However Theorem

4 of [15] solves the problem for interpolating Blaschke products.

Theorem G. If B is an interpolating Blaschke product whose sequence

of zeros {ak} is contained in a Stolz angle, then
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(1)

∞∑

k=1

(1− |ak|)p < ∞, for all p > 0,

(2) B′ ∈ ∩0<q<1H
q ⊂ ∩0<q<2A

q.

Consequently, if there is a Blaschke product with zeros in a Stolz

angle which does not belong to A3/2 then it is not an interpolating

Blaschke product.

2. A new proof of Theorem E

The following observation can be found in [24]: if z ∈ ∆ and λ ∈ Ωσ,

then

|1− λz|
|1− |λ|z| =

|(1− |λ|z) + z(1− λ)− z(1− |λ|)|
|1− |λ|z|

≤ 1 +
|1− λ|+ (1− |λ|)

|1− |λ|z|

≤ 1 +
(1 + σ)(1− |λ|)

1− |λ|
= 2 + σ .

By symmetry, a similar lower bound can be obtained, whence:

(1)
1

2 + σ
≤ |1− λz|
|1− |λ|z| ≤ 2 + σ , whenever z ∈ ∆, λ ∈ Ωσ .

These inequalities will be the key for many calculations in what follows.

An analytic function f belongs to Ap if and only if |f |p is area inte-

grable in some annulus AR = {z ∈ ∆ : R ≤ |z| < 1}. The following fact

will be useful for integration over such annuli. It appears on p. 3814 of

[24].
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Lemma 3. Given a constant R ∈ (0, 1), there exists a C ∈ (0, 1) such

that

(2) C
[
(1− r) + (1− %) + |t|] ≤ |1− %reit| ≤ (1− r) + (1− %) + |t| ,

whenever r, % ∈ [R, 1), t ∈ [−π, π].

Proof. On the one hand, the elementary inequalities 1 + %r ≥ % + r

and cos t ≥ 1− t2/2 imply

[
(1− %) + (1− r) + |t|]2 ≥ [

(1− %r) + |t|]2

≥ (1− %r)2 + t2

≥ (1− %r)2 + %rt2

≥ (1− %r)2 + 2%r(1− cos t)

= |1− %reit|2 .

On the other hand, when R ≤ r, % < 1 we have

1− %r =
(1− %)(1 + r) + (1 + %)(1− r)

2
≥ 1 + R

2

[
(1− %) + (1− r)

]
.

By the well known Jordan inequality:

sin(t/2) ≥ t/π when 0 ≤ t ≤ π ,

we deduce that for all t ∈ [−π, π] and r, % ∈ [R, 1),

|1− %reit|2 = (1− %r)2 + 4%r sin2 (t/2)

≥
(

1 + R

2

)2

[(1− %) + (1− r)]2 +
4R2

π2
t2

≥ α(R) · ([(1− %) + (1− r)]2 + t2
)

≥ 1

2
α(R) · [(1− %) + (1− r) + |t|]2 ,
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where

α(R) = min

((
1 + R

2

)2

,
4R2

π2

)
.

Hence the lemma is proved with C = α(R)/2. ¤
Proof of Theorem E. The Ap spaces decrease as the exponent increases,

so without loss of generality we may assume that p ≥ 1. In what follows

we are guided by an idea similar to that of Theorem 2.9 of [24].

Let us assume without loss of generality that B(0) 6= 0 and that all

the zeros ak of B lie in the Stolz angle Ωσ for a certain σ ≥ 1. Let us

agree to write

(3) bk(z) =
|ak|
ak

ak − z

1− akz
, B(z) =

∞∏

k=1

bk(z) , Bk(z) =
B(z)

bk(z)
.

Take R ∈ (0, 1) such that |ak| ≥ R for all k. The elementary inequality

log(1− x) ≤ −x, 0 < x < 1, yields

(4) log |bk(z)| = 1

2
log

(
1− (1− |bk(z)|2)) ≤ −1

2
(1− |bk(z)|2)

for all z ∈ ∆. Summing up over all j 6= k and using the well known

identity

(5) 1− |bj(z)|2 =
(1− |z|2)(1− |aj|2)

|1− ajz|2 ,

we get from (4) that

(6) log |Bk(z)| ≤ −1

2

∑

j 6=k

(1− |z|2)(1− |aj|2)
|1− ajz|2 .
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Taking into account inequalities (6) and (1), as well as Lemma 3, we

have

|B′(reit)| ≤
∞∑

k=1

1− |ak|2
|1− akreit|2 |Bk(re

it)|

≤
∞∑

k=1

1− |ak|2
|1− akreit|2 exp

(
− 1

2

∑

j 6=k

(1− r2)(1− |aj|2)
|1− ajreit|2

)

≤ e
1
2

∞∑

k=1

1− |ak|2
|1− akreit|2 · exp

(
− 1

2

∞∑

k=1

(1− r2)(1− |ak|2)
|1− akreit|2

)

≤ e
1
2 (2 + σ)2

∞∑

k=1

1− |ak|2
|1− |ak|reit|2 ·

· exp

(
− 1

2(2 + σ)2

∞∑

k=1

(1− r2)(1− |ak|2)
|1− |ak|reit|2

)

≤ A

∞∑

k=1

1− |ak|2[
(1− |ak|) + (1− r) + |t|]2 ·

· exp

(
−K

∞∑

k=1

(1− r2)(1− |ak|2)[
(1− |ak|) + (1− r) + |t|]2

)

≤ Aϕ
(
(1− r) + |t|) exp

(
−K(1− r)ϕ

(
(1− r) + |t|)

)
,

whenever r ∈ [R, 1), t ∈ [−π, π]. Here A and K are two constants that

depend only upon σ and R and

ϕ(u) =
∞∑

k=1

1− |ak|2[
u + (1− |ak|)

]2 , u ∈ (0,∞) .

Observe that

(7) ϕ(u) ≤ 1

u2

∞∑

k=1

(1− |ak|2) .

After two changes of variable: first θ = θ(t) = 1 − r + t and then

u = u(r) = 1 − r, some obvious estimates, and Fubini’s theorem, we



BLASCHKE PRODUCTS WITH ZEROS IN A STOLZ ANGLE 11

obtain

∫
R≤|z|<1

|B′(z)|p dA(z)

≤ A
∫ 1

R

(
∫ π

−π
ϕp

(
(1− r) + |t|) exp

(
−Kp(1− r)ϕ

(
(1− r) + |t|)

)
dt

)
dr

= 2A
∫ 1

R

(
∫ π

0
ϕp

(
(1− r) + t

)
exp

(
−Kp(1− r)ϕ

(
(1− r) + t

))
dt

)
dr

= 2A
∫ 1

R

(
∫ 1−r+π

1−r
ϕp(θ) exp

(−Kp(1− r)ϕ(θ)
)
dθ

)
dr

≤ 2A
∫ 1

R

(
∫ 2π

0
ϕp(θ) exp

(−Kp(1− r)ϕ(θ)
)
dθ

)
dr

= 2A
∫ 1−R

0

(
∫ 2π

0
ϕp(θ) exp

(−Kpuϕ(θ)
)
dθ

)
du,

≤ 2A
∫ 2π

0

(
∫ 1

0
ϕp(θ) exp

(−Kpuϕ(θ)
)
du

)
dθ,

Making yet another change of variable x = x(u) = uϕ(θ) and using

(7), we get

∫

R≤|z|<1

|B′(z)|p dA(z) ≤ 2A

∫ 2π

0

( ∫ ϕ(θ)

0

ϕp(θ) exp(−Kpx)
1

ϕ(θ)
dx

)
dθ,

= 2A

( ∫ 2π

0

ϕp−1(θ) dθ

)(∫ ϕ(θ)

0

exp(−Kpx) dx

)

≤ 2A

(∫ 2π

0

ϕp−1(θ) dθ

)( ∫ ∞

0

exp(−Kpx) dx

)

≤ 2A

Kp

( ∫ 2π

0

ϕp−1(θ) dθ

)

≤ 2A

Kp

( ∞∑

k=1

(1− |ak|2)
)p−1 ∫ 2π

0

1

u2p−2
du < ∞,

(8)

because the points ak satisfy the Blaschke condition and 0 < p < 3
2
.

This ends the proof. ¤
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3. Interpolating Blaschke products

with zeros in a Stolz angle

The following result was proved by Protas.

Theorem H. If 1/2 < p < 1 and B is a Blaschke product whose

sequence of zeros {ak} satisfies

(9)
∞∑

k=1

(1− |ak|)1−p < ∞,

then B′ ∈ Hp.

For a generalization, see Ahern [1], Cohn [7] proved the converse of

Theorem H for interpolating Blaschke products.

The following result is due to H. O. Kim [17].

Theorem I. Let {ak} be the zero set of a Blaschke product B and

suppose that also

(10)
∞∑

k=1

(1− |ak|)2−p < ∞,

for a certain p ∈ (1, 2). Then B′ ∈ Ap.

In a joint work with D. Girela and D. Vukotić [15], we have proved

the converse for interpolating Blaschke products.

Theorem J. If 0 < p < 2 and B is an interpolating Blaschke product

with zeros {ak} such that B′ ∈ Ap then

∞∑

k=1

(1− |ak|)2−p < ∞.

In the proof of this result several results on Qp spaces are used.
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When 0 < p < ∞, a function f , analytic in ∆, belongs to the space

Qp if

sup
a∈∆

∫

∆

|f ′(z)|2g(z, a)p dA(z) < ∞,

where g denotes the Green function for the disc given by

g(z, a) = log

∣∣∣∣∣
1− az

a− z

∣∣∣∣∣, z 6= a.

The Qp spaces are nested,

Qp ( Qs ( Q1 = BMOA ( Qt = B 0 < p < s < 1 < t,

where B is the Bloch space. There are various characterizations of Qp

spaces. The one that will be useful for us is expressed in terms of

p-Carleson measures.

A positive Borel measure µ is said to be a p-Carleson measure on ∆

if there exists a positive constant C such that for all interval I ⊂ T

µ
(
S(I)

) ≤ C|I|p,

where |I| is the length of I and S(I) is the Carleson square

S(I) = {reit : eit ∈ I, 1− |I|
2π

≤ r < 1}.

The special case p = 1 yields the classical Carleson measures (cf.[9]).

The following characterization of Qp spaces was obtained by Aulaskari,

Stegenga and Xiao [4].

Theorem K. Let 0 < p < ∞. A function f holomorphic in ∆ is a

member of Qp if and only if the measure µ on ∆ defined by

dµ(z) = (1− |z|2)p|f ′(z)|p dA(z)

is a p-Carleson measure.
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Essén and Xiao [11] used this result to characterize the inner func-

tions that belong to Qp spaces (0 < p < 1). In particular, their result

can be stated for Blaschke products as follows.

Theorem L. Let p ∈ (0, 1) and let B be the Blaschke product with

zeros {ak}. Then B ∈ Qp if and only if the measure

dµp(z) =
∑

(1− |ak|2)pδak

is a p-Carleson measure. As usual, δak
denotes the point mass at ak.

Danikas and Mouratides [8] obtained a sufficient condition for mem-

bership of a Blaschke product in ∩0<p<1Qp expressed in term of the

sequence of the moduli of its zeros. They introduced the following con-

cept: A sequence {αn}∞n=1 such that αn ≥ 0, αn ≥ αn+1, n = 1, 2, . . . ,

and limn→∞ αn = 0, is said to be asymptotically concentrated if for

each k = 1, 2, . . . there exists an increasing sequence np of positive

integers that only depends on k, with the property that

lim
p→∞

αnp

αnp+k

= 1.

Sometimes it is difficult to manage this definition, so this lemma will

be very useful for us.

Lemma M. Suppose {αn}∞n=1 such that αn ≥ 0, αn ≥ αn+1, n =

1, 2, . . . , and limn→∞ αn = 0. Then the sequences

cn = αn

n∑

k=1

α−1
k

and

dn = α−1
n

∞∑

k=n+1

αk

are both bounded if and only if the sequence {αn}∞n=1 is not asymptoti-

cally concentrated.
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Using Theorem L, Danikas and Mouratides [8] were able to prove

the following result.

Theorem N. Let B be a Blaschke product with ordered sequence of

zeros {ak}∞k=1. If the sequence {1 − |ak|}∞k=1 is not asymptotically

concentrated, then B ∈ ∩0<p<1Qp.

The inequalities (1), the above theorem and Lemma 1 on p. 150 of

[9] are used in [15] to obtain a sufficient condition for membership of a

Blaschke product in ∩0<p<1Qp.

Theorem O. Let B be an interpolating Blaschke product whose ordered

sequence of zeros {ak}∞k=1 is contained in a Stolz angle. Then

B ∈ ∩0<p<1Qp.

We include the proof of Theorem G, which can be found in [15], for

the sake of completeness.

Proof of Theorem G. Let B be an interpolating Blaschke product

whose sequence of zeros {ak} is contained in a Stolz angle. Using

Theorem O we see that

B ∈ ∩0<p<1Qp,

and then Theorem L implies that for all 0 < p < 1

dµp(z) =
∑

(1− |ak|2)pδak

is a p-Carleson measure.

So it is clear that dµp(z) is a finite measure for all 0 < p < 1, that

is,
∞∑

k=1

(1− |ak|)p < ∞,

for all 0 < p < 1.
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Consequently by Theorem H, B′ ∈ ∩0<q<1H
q ⊂ ∩0<q<2A

q. ¤

4. Two constructions of a Blaschke product whose

derivative does not belong to any Hardy space

Proof of Proposition 1. Let p > 0, by Lemma D, it suffices to prove

that

f(t) =
∞∑

k=3

(k log2 k)−1

(k log2 k)−2 +
(
t− log−2 k

)2

=
∞∑

k=3

k log2 k

1 + k2
(
t log2 k − 1

)2

(11)

does not belong Lp(0, 2π).

For each t ∈ [0, 1
4
], we set xt = e

1√
t , which is the solution of the

equation

t log2 x− 1 = 0,

and let Kt be the biggest integer ≤ xt.

Then there exist C > 0 and A > 0, indepedent of t, such that

f(t) ≥ C
(
Kt log2 Kt

) ≥ CA
(
xt log2 xt

)
= CA

e
1√
t

t
.

Consequently
∫ 2π

0

fp(t) dt = ∞,

and this finishes the proof. ¤
A basic tool in the proof of Theorem 2 will be this deep result of

Naftalevich.

Theorem P. For any Blaschke sequence {ak}, there exists an inter-

polating sequence {zk} such that |zk| = |ak| for each k.
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The original paper [19] is not easily accessible, but a detailed and

constructive proof can be found in Cochran’s paper [6].

Proof of Theorem 2. Let the sequence {ak} be defined by

ak = 1− (k log2 k)−1, k = 2, 3 . . . .

Since {ak} is a Blaschke sequence, using Cochran’s construction, we

obtain an interpolating sequence {zk}, such that |zk| = ak, for all

k = 2, 3 . . . .

Now whenever p > 1, we have

∞∑

k=1

(1− |zk|)2−p =
∞∑

k=1

1

k2−p log2(2−p) k
= ∞,

then by Theorem J, the interpolating Blaschke product whose sequence

of zeros is {zk} satisfies that B′ /∈ ∪1<pA
p.

Consequently by Proposition F, B′ /∈ ∪0<pH
p. ¤
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[15] D. Girela. J. A. Peláez and D. Vukotić, On the integrability of the derivative

of a Blaschke product, preprint, (2003).

[16] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Grad-

uate Texts in Mathematics, Vol. 199, Springer, New York, Berlin, etc. 2000.

[17] H.O. Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984),

175–190.

[18] M.A. Kutbi, Integral means for the first derivative of Blaschke products, Kodai

Math. J 24 (2001), no. 1, 86–97.

[19] A. G. Naftalevich, On interpolation by functions of bounded characteristic,

(In Russian), Vilniaus Valst. Univ. Mokslu Darbai. Mat. Fiz. Chem. Mokslku

Ser., 5, (1956), 5-27.

[20] G. Piranian, Bounded functions with large circular variation, Proc. Amer.

Math. Soc. 19, no. 6 (1968), 1255–1257.

[21] D. Protas, Blaschke products with derivative in Hp and Bp, Michigan Math.

J. 20 (1973), 393–396.



BLASCHKE PRODUCTS WITH ZEROS IN A STOLZ ANGLE 19

[22] W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955),

235–242.

[23] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, St. Louis,

etc. 1974.

[24] S.A. Vinogradov, Multiplication and division in the space of analytic functions

with area integrable derivative, and in some related spaces (In Russian), Zap.

Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995),

Issled. po Linein. Oper. i Teor. Funktsii 23, 45–77, 308; translation in J. Math.

Sci. (New York) 87, no. 5 (1997), 3806–3827.
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