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Abstract. We completely describe those positive Borel measures µ in
the unit disc D such that the Bergman space Ap(w) ⊂ Lq(µ), 0 < p, q <

∞, where w belongs to a large class W of rapidly decreasing weights
which includes the exponential weights wα(r) = exp

(
−1

(1−r)α

)
, α > 0,

and some double exponential type weights.
As an application of that result, we characterize the boundedness and

the compactness of Tg : Ap(w) → Aq(w), 0 < p, q < ∞, w ∈ W, where
Tg is the integration operator

(Tgf)(z) =
∫ z

0

f(ζ) g′(ζ) dζ.

The particular choice of the weight wα(r) answers an open question
posed by A. Aleman and A. Siskakis. We also describe those analytic
functions in D for which Tg belongs to the Schatten p-class of A2(w),
0 < p < ∞.

1. Introduction and main results

Let D be the unit disc in the complex plane, dm(z) = dx dy
π

be the normal-
ized area measure on D, and denote by H(D) the space of all analytic func-
tions in D. A positive function w(r), 0 ≤ r < 1, which is integrable in (0, 1),
will be called a weight function. We extend w to D setting w(z) = w(|z|),
z ∈ D.

For 0 < p < ∞, the weighted Bergman space Ap(w) is the space of
functions f ∈ H(D) such that

‖f‖p
Ap(w) =

∫
D
|f(z)|pw(z) dm(z) <∞.
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Note that Ap(w) is the closed subspace of Lp(D, w dm) consisting of analytic
functions. If w(r) = (1 − r)α, α > −1, the standard Bergman spaces Ap

α

are obtained.
In this work we are going to study Carleson measures and integration op-

erators on Bergman spaces with rapidly decreasing weights, that is, weights
that are going to decrease faster than any standard weight (1− r)α, α > 0.
Concretely, we consider a decreasing weight of the form w(z) = e−ϕ(z),
where ϕ ∈ C2(D) is a radial function such that ∆ϕ(z) ≥ Bϕ > 0 for some
positive constant Bϕ depending only on the function ϕ. Here ∆ denotes the
standard Laplace operator.

We will assume that (∆ϕ(z))−1/2 � τ(z), where τ(z) is a radial positive
function that decreases to 0 as |z| → 1−, and limr→1− τ

′(r) = 0.
Furthermore, we shall also suppose that either there exist a constant

C > 0 such that τ(r)(1− r)−C increases for r close to 1 or

lim
r→1−

τ ′(r) log
1

τ(r)
= 0.

If the weight w satisfies all the previous conditions, we shall say that the
weight w belongs to the class W . The class W includes (see Section 7) the
exponential type weights

wγ,α(r) = (1− r)γ exp

(
−c

(1− r)α

)
, γ ≥ 0, α > 0, c > 0,

and the double exponential weights

w(r) = exp

(
−γ exp

( β

(1− r)α

))
, α, β, γ > 0.

For the weights w considered in this paper, the point evaluations La at
the point a ∈ D, are bounded linear functionals on A2(w). Therefore, there
are reproducing kernels Ka ∈ A2(w) with ‖La‖ = ‖Ka‖A2(w) such that

Laf = 〈f,Ka〉 =

∫
D
f(z)Ka(z)w(z) dm(z), f ∈ A2(w).

Some basic properties of the Bergman spaces Ap(w), w ∈ W , are not yet
well-understood and have attracted some attention in recent years. The
interest in such spaces arises from the fact that the usual techniques for
the standard Bergman spaces fail to work in this context. For example, the
natural Bergman projection

Pf(a) =

∫
D
f(z)Ka(z)w(z) dm(z), a ∈ D,

is not necessarily bounded on Lp(D, w dm) if p 6= 2 (see [9]). This carries
that the dual spaces of Ap(w), w ∈ W have not been identified.
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Let X be an space of analytic functions on the unit disc D. A positive
Borel measure µ in D is said to be a q-Carleson measure for X if the em-
bedding X ⊂ Lq(µ), 0 < q <∞, is continuous. After the pioneering works
of L. Carleson (see [7] and [8]), there has been a great amount of research
on this topic, and these measures have found many applications in other re-
lated areas. A description of those measures have been obtained for several
spaces of analytic functions (see e.g. [5], [11], [14] and [19]). Here we obtain
a complete description of the q-Carleson measures for Ap(w), 0 < p, q <∞,
for weights w in the class W .

Let D(a, r) be the Euclidean disc centered at a with radius r > 0, and for
easy of notation, for any δ > 0 we write D(δτ(a)) for the disc D(a, δτ(a)).

Theorem 1. Let w ∈ W and let µ be a finite positive Borel measure on D.

(I) Let 0 < p ≤ q <∞.
(a) The embedding Id : Ap(w) → Lq(µ) is bounded if and only if for

each sufficiently small δ > 0 we have

(1.1) Kµ,w := sup
a∈D

1

τ(a)2q/p

∫
D(δτ(a))

w(z)−q/p dµ(z) <∞.

Moreover, if any of the two equivalent conditions holds, then

Kµ,w � ‖Id‖q
Ap(w)→Lq(µ).

(b) The embedding Id : Ap(w) → Lq(µ) is compact if and only if for
each sufficiently small δ > 0 we have

(1.2) lim
r→1−

sup
|a|>r

1

τ(a)2q/p

∫
D(δτ(a))

w(z)−q/p dµ(z) = 0.

(II) Let 0 < q < p <∞. The following conditions are equivalent:
(a) Id : Ap(w) → Lq(µ) is compact;
(b) Id : Ap(w) → Lq(µ) is bounded;
(c) For each sufficiently small δ > 0, the function

z 7→ 1

τ(z)2

∫
D(δτ(z))

w(ζ)−q/p dµ(ζ)

belongs to L
p

p−q (D, dm).

For the standard Bergman spaces Ap
α, the statement of Theorem 1 also

holds, and in that case the condition can be simplified (see [17, Theorem 2.2]
for the case 0 < p ≤ q <∞, and [20] for the case 0 < q < p <∞). Related
results can be found in [21] and [22].

The above result can be used in order to study several related questions.
Here we put our attention on the operators Tg defined by

(Tgf)(z) =

∫ z

0

f(ζ) g′(ζ) dζ,



4 JORDI PAU AND JOSÉ ÁNGEL PELÁEZ

where g is an analytic function on D. The boundedness and compactness
of Tg on classical spaces has attracted a lot of attention in recent years (see
[2], [3] for Hardy spaces, [4], [10], [25] for weighted Bergman spaces, and
[13], [14] for Dirichlet type spaces). We also mention the surveys [1] and
[27] for an account of results and open questions on the operator Tg. Note
that as special choices of the symbol g one gets several important operators:
the Volterra operator (Tg with g(z) = z) and the Cesáro operator (Tg with
g(z) = log(1/(1− z))). In particular, A. Aleman and A. Siskakis proved in
[4] the following result.

Theorem A. Suppose that w is a weight satisfying the following conditions:
(P1) There is a positive constant C such that

1

w(r)

∫ 1

r

w(s) ds ≤ C(1− r).

(P2) There are s ∈ (0, 1) and a positive constant C such that

w(sr + 1− s) ≥ Cw(r), 0 < r < 1.

Then for 1 ≤ p < ∞ Tg is bounded (compact) on Ap(w) if and only if g
belongs to the Bloch space (little Bloch space).

Recall that an analytic function f in D belongs to the Bloch space if
supz∈D(1 − |z|)|f ′(z)| < ∞, and f belongs to the little Bloch space if
lim|z|→1−(1− |z|)|f ′(z)| = 0.

The large class of radial weights w satisfying conditions (P1) and (P2)
of Theorem A includes the standard weights w(r) = (1− r)α, α > −1, but
excludes the exponential ones

(1.3) wα(r) = exp

(
−c

(1− r)α

)
, c > 0, α > 0,

(they do no satisfy condition (P2)). In relation with the exponential weights,
A. Aleman and A. Siskakis in [4] proved that, for 1 ≤ p <∞, Tg is bounded
on Ap (wα) if

(1− |z|)α+1|g′(z)| = O(1), as |z| → 1,

and the operator Tg is compact on Ap(wα) whenever the corresponding
“ little oh”condition holds, and raised the open problem of whether this
condition is necessary for the boundedness (compactness) of Tg. A positive
answer for p = 2, c > 0 and α ∈ (0, 1] has been given recently by Dostanić in
[10] by using precise and specific techniques which involve the exponential
weight defined in (1.3). In this paper we shall give a positive answer to
that question (see Theorem 2 below). Indeed, we completely describe the
boundedness and compactness of Tg : Ap(w) → Aq(w), 0 < p, q < ∞, for
weights w ∈ W .

In the proof of Theorem A given in [4], two facts play an essential role.
First, for some 0 < s < 1 the composition operator induced by the symbol
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ψs(z) = sz − s + 1 is bounded on Ap(w). Since this does not remain true
for rapidly decreasing weights such that wα (see [15, Theorem 1.1]) their
method cannot be applied in our case. The second key step in the proof of
Theorem A consists of proving that

(1.4) f ∈ Ap(w) ⇔ (1− |z|)|f ′(z)| ∈ Lp(w),

consequently it will be useful for our class of weights to establish a result
analogous to (1.4) replacing the quantity (1 − |z|) for a suitable distortion
function. So, following Siskakis [26], for a given weight w, we define the
distortion function of w by

ψw(r) =
1

w(r)

∫ 1

r

w(u) du, 0 ≤ r < 1.

The next result is the case q = p of Theorem 1.1 of [24].

Theorem B. Suppose that w is a differentiable weight, and there is L > 0
such that

(1.5) sup
0<r<1

w′(r)

w(r)2

∫ 1

r

w(x) dx ≤ L,

then for each p ∈ (0,∞) and g ∈ H(D)∫
D
|g(z)|pw(z) dm(z) � |g(0)|p +

∫
D
|g′(z)|p ψw(z)pw(z) dm(z).

It is clear that condition (1.5) is satisfied for any decreasing differentiable
weight.

Finally, we are going to state the promised result about the description
of the boundedness and compactness of Tg : Ap(w) → Aq(w), 0 < p, q <∞,
w ∈ W .

Theorem 2. Let 0 < p, q <∞, g ∈ H(D), and w ∈ W with

(1.6) ∆ϕ(z) �
(
(1− |z|)t ψw(z)

)−1
, z ∈ D, for some t ≥ 1.

(I) (a) Tg is bounded on Ap(w) if and only if

sup
z∈D

ψw(z) |g′(z)| <∞.

(b) Tg is compact on Ap(w) if and only if

lim
r→1−

sup
|z|>r

ψw(z) |g′(z)| = 0.

(II) Let 0 < p < q < ∞. Then Tg : Ap(w) → Aq(w) is bounded if and
only if g is constant.

(III) Let 0 < q < p <∞. The following conditions are equivalent:
(a) Tg : Ap(w) → Aq(w) is compact;
(b) Tg : Ap(w) → Aq(w) is bounded;
(c) The function g ∈ Ar(w), where r = pq

p−q
.
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The corresponding result for the standard Bergman spaces Ap
α can be

found in [4] and [25]. The particular choice of the exponential weight wα

defined in (1.3) solves the problem posed in [4, p. 353], since the distorsion
function of wα is comparable to (1− |z|)1+α (see e.g. [26, Example 3.2]).

If T is a compact operator on a separable Hilbert space H, then there
exist orthonormal sets {en} and {σn} in H such that

Tx =
∑

n

λn〈x, en〉σn, x ∈ H,

where λn is the nth singular value of T .
Given 0 < p <∞, let Sp(H) denote the Schatten p-class of operators on

H. The class Sp(H) consists of those compact operators T on H with its
sequence of singular numbers λn belonging to `p, the p-summable sequence
space. It is also well known that, if λn are the singular numbers of an
operator T , then

λn = λn(T ) = inf{‖T −K‖ : rankK ≤ n}.

Thus finite rank operators belong to every Sp(H), and the membership of
an operator in Sp(H) measures in some sense the size of the operator. It is
also clear that the use of two equivalent norms in H does not change the
class Sp(H). In the case when 1 ≤ p < ∞, Sp(H) is a Banach space with
the norm

‖T‖p =

(∑
n

|λn|p
)1/p

,

while for 0 < p < 1 we have the following inequality

‖T + S‖p
p ≤ ‖T‖p

p + ‖S‖p
p.

We refer to [28] for more information about Sp(H).
In [3], using a result D. Luecking [18] concerning the Schatten classes

of certain Toeplitz operators, (see also [2] and [16] for related results), a
description of those g ∈ H(D) for which Tg ∈ Sp(A

2
α) is obtained. In this

paper we give a direct proof of the following result.

Theorem 3. Let g ∈ H(D) and w ∈ W satisfying (1.6).

(a) If 1 < p <∞ then Tg ∈ Sp(A
2(w)) if and only if

ψw |g′| ∈ Lp(D,∆ϕdm).

(b) If 0 < p ≤ 1 then Tg ∈ Sp(A
2(w)) if and only if g is constant.

The paper is organized as follows: Section 2 is devoted to some prelimi-
naries needed for the proofs of the main results. In Section 3 we construct
the test functions which are used in the proof of Theorem 1 in Section 4.
We prove Theorem 2 in Section 5 and Theorem 3 in Section 6. Finally, in
Section 7 several examples of weights w in the class W are given.
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Throughout the paper, the letter C will denote an absolute constant
whose value may change at different occurrences. We also use the notation
a . b to indicate that there is a constant C > 0 with a ≤ Cb, and the
notation a � b means that a . b and b . a.

2. Preliminaries

In this section we present some previous results, that can be of indepen-
dent interest, which are needed to prove the main results.

Let τ be a positive function on D. We say that τ ∈ L if there exist
constants c0 > 0 and c1 > 0 such that

(2.1) τ(z) ≤ c0(1− |z|) for z ∈ D;

(2.2)
∣∣τ(z)− τ(ζ)

∣∣ ≤ c1 |z − ζ|, for z, ζ ∈ D.

Throughout this paper, we will always use the notation

mτ =
min

(
1, c−1

0 , c−1
1

)
4

,

where c0 and c1 are the constants in (2.1) and (2.2).

Lemma 1. Suppose that τ ∈ L, 0 < δ ≤ mτ and a ∈ D. Then,

1

2
τ(a) ≤ τ(z) ≤ 2 τ(a) if z ∈ D(δτ(a)).

Proof. Note that, by condition (2.2) we have

τ(a) ≤ τ(z) + c1|z − a| ≤ τ(z) +
1

4
τ(a) if |z − a| ≤ δτ(a).

Therefore τ(a) ≤ 2 τ(z) if |z − a| ≤ δτ(a). Similarly it can be proved that
τ(z) ≤ 2 τ(a). �

The following result, where the fact that |f(z)|pw(z) verifies a certain
sub-mean-value property is proved, will play an essential role in the proof
of the main theorems of this paper.

Lemma 2. Let ϕ be a subharmonic function, w = e−ϕ, and let τ ∈ L such
that τ(z)2 ∆ϕ(z) ≤ c2 for some constant c2 > 0. If β ∈ R, there exists a
constant M ≥ 1 such that

|f(a)|pw(a)β ≤ M

δ2 τ(a)2

∫
D(δτ(a))

|f(z)|pw(z)β dm(z),

for all 0 < δ ≤ mτ and f ∈ H(D).

Proof. By Green’s formula we have

1

2π

∫
|ζ−a|=r

ϕ(ζ) dζ = rϕ(a) +
r

2

∫
|z−a|≤r

∆ϕ(z) log
r

|z − a|
dm(z).
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Integrating the last identity between zero and δ τ(a), using that τ(z)2∆ϕ(z) ≤
c2, and Lemma 1, we obtain

1

τ(a)2

∫
D(δτ(a))

ϕ(ζ) dm(ζ)

≤ δ2ϕ(a) +
c2

τ(a)2

∫ δτ(a)

0

∫
|z−a|≤r

τ(z)−2 log
r

|z − a|
dm(z) rdr

≤ δ2ϕ(a) +
4c2
τ(a)4

∫ δτ(a)

0

∫
|z−a|≤r

log
r

|z − a|
dm(z) r dr

= δ2ϕ(a) +
2c2
τ(a)4

∫ δτ(a)

0

r3 dr

= δ2ϕ(a) +
c2δ

4

2
.

So if β > 0, rewriting the previous equation in terms of the weight w, and
multiplying by β, we obtain

(2.3) logw(a)β ≤ 1

δ2 τ(a)2

∫
D(δτ(a))

logw(ζ)β dm(ζ) + logM,

with M = exp(βc2δ
2/2) ≥ 1. Also, the subharmonicity of log |f | gives

(2.4) log |f(a)|p ≤ 1

δ2τ(a)2

∫
D(δτ(a))

log |f(z)|p dm(z).

Now, adding equations (2.4) and (2.3), and using the arithmetic-geometric
inequality we get the desired result.

If β ≤ 0, then wβ is a logarithmic subharmonic function, so (2.3) holds
with M = 1, and arguing as in the previous case the conclusion is obtained.
This finishes the proof. �

We note that if a weight w belongs to the class W , then its associated
function τ(z) belongs to the class L. Thus Lemma 2 proves that for weights
w in the class W , the point evaluations La are bounded linear functionals
on Ap(w). Another consequence is that norm convergence implies uniform
convergence on compact subsets of D. It follows that for w ∈ W , the space
Ap(w) is complete.

The next result proves that the weights in the class W decrease faster
than the standard weights (1− |z|)α, α > 0.

Lemma 3. Consider a weight of the form w(z) = e−ϕ(z), where ϕ ∈ C2(D)

is a radial function with (∆ϕ(z))−1/2 � τ(z), and τ(z) is a radial positive
differentiable function that decreases to 0 as |z| → 1−. If limr→1 τ

′(r) = 0,
then

lim
|z|→1−

w(z)

τ(z)α
= 0

for each α > 0.
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Proof. We may assume without loss of generality that ϕ(0) = ϕ′(0) = 0.
Since

w(z)

τ(z)α
= e−ϕ(z)−α log τ(z),

it is enough to show that

lim
|z|→1−

ϕ(z)

log 1
τ(z)

= +∞.

Write r = |z|. Use the fact that τ ′(r) is negative in some interval (r0, 1),
the formula

ϕ ′(r) =
1

r

∫ r

0

s∆ϕ(s) ds,

and the assumption limr→1 τ(r) = limr→1 τ
′(r) = 0, to obtain

ϕ′(r) ≥ C

∫ r

r0

s ds

τ(s)2
≥ C

∫ r

r0

(−τ ′(s)) ds
τ(s)2

≥ C

τ(r)

for r close to 1. This, together with Bernouilli-l’Hôpital theorem gives

lim
r→1−

ϕ(r)

log 1
τ(r)

= lim
r→1−

ϕ ′(r) τ(r)

−τ ′(r)
≥ lim

r→1−

C

−τ ′(r)
= +∞.

This finishes the proof. �

The following lemma on coverings is due to Oleinik, see [21].

Lemma C. Let τ be a positive function in D in the class L, and let δ ∈
(0,mτ ). Then there exists a sequence of points {zj} ⊂ D, such that the
following conditions are satisfied:

(i) zj /∈ D(δτ(zk)), j 6= k.

(ii)
⋃

j D(δτ(zj)) = D.

(iii) D̃(δτ(zj)) ⊂ D(3δτ(zj)), where D̃(δτ(zj)) =
⋃

z∈D(δτ(zj))
D(δτ(z)),

j = 1, 2, . . .

(iv)
{
D(3δτ(zj))

}
is a covering of D of finite multiplicity N .

3. Test functions

It is known that having an appropriate family of test functions in an
space of analytic functions X can be a good help in order to characterize
the q-Carleson measures for X. In this section we will do the job for the
spaces Ap(w). The following result, partially proved in [6], will be a key in
the proof of Theorem 1.

Lemma 4. Assume that 0 < p <∞, n ∈ N \ {0} with np ≥ 1 and w ∈ W.
Then, there is a number ρ0 ∈ (0, 1) such that for each a ∈ D with |a| ≥ ρ0,
there is a function Fa,n,p analytic in D with

(3.1) |Fa,n,p(z)|pw(z) � 1 if |z − a| < τ(a),
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and

(3.2) |Fa,n,p(z)|w(z)1/p . min

(
1,

min
(
τ(a), τ(z)

)
|z − a|

)3n

, z ∈ D.

Proof. If 1 ≤ p <∞, and n = 1 the result follows directly from Lemma 3.3
in [6]. Now, if 0 < p <∞ and np ≥ 1 applying the previous case, we have

|Fa,1,np(z)|npw(z) � 1 if |z − a| < τ(a),

and

|Fa,1,np(z)|w(z)
1

np . min

(
1,

min
(
τ(a), τ(z)

)
|z − a|

)3

, z ∈ D.

That is, if we choose Fa,n,p = F n
a,1,np

|Fa,n,p(z)|pw(z) � 1 if |z − a| < τ(a),

and

|Fa,n,p(z)|w(z)1/p . min

(
1,

min
(
τ(a), τ(z)

)
|z − a|

)3n

, z ∈ D.

This finishes the proof. �

As an immediate consequence of that Lemma, as it is noticed also in [6],
we get an estimate for the reproducing kernels of A2(w).

Corollary 1. Let w ∈ W. There is a number ρ0 ∈ (0, 1) such that

(i) for 0 < p < ∞ and n ∈ N \ {0} with np ≥ 1 the function Fa,n,p in
Lemma 4 belongs to Ap(w) with

‖Fa,n,p‖p
Ap(w) � τ(a)2, ρ0 ≤ |a| < 1.

(ii) the reproducing kernel Ka of A2(w) satisfies the estimate

‖Ka‖2
A2(w)w(a) � τ(a)−2, ρ0 ≤ |a| < 1.

Proof. Let a ∈ D with ρ0 ≤ |a| < 1, and consider the functions Fa,n,p

obtained in Lemma 4. Write

Rk(a) =
{
z ∈ D : 2k−1τ(a) < |z − a| ≤ 2kτ(a)

}
, k = 1, 2 . . . .

Note that (3.1) gives∫
|z−a|<τ(a)

|Fa,n,p(z)|pw(z) dm(z) � τ(a)2,
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and, by (3.2) and the fact that 3np > 2,

∫
|z−a|>τ(a)

|Fa,n,p(z)|pw(z) dm(z) ≤
∞∑

k=1

∫
Rk(a)

|Fa,n,p(z)|pw(z) dm(z)

. τ(a)3np

∞∑
k=1

∫
Rk(a)

dm(z)

|z − a|3np

.
∞∑

k=1

2−3npkm
(
Rk(a)

)
. τ(a)2.

Therefore Fa,n,p ∈ Ap(w) with ‖Fa,n,p‖p
Ap(w) � τ(a)2, which gives (i).

The use of Lemma 2 (with β = 1) gives the upper estimate of (ii),

‖Ka‖2
A2(w)w(a) . τ(a)−2.

On the other hand, the functions Fa,1,2 obtained from the previous Lemma
satisfy (by (i)) that Fa,1,2 ∈ A2(w) with ‖Fa,1,2‖2

A2(w) � τ(a)2, and by (3.1)

this gives

|Fa,1,2(a)|2 � w(a)−1 �
(
w(a) τ(a)2

)−1 ‖Fa,1,2‖2
A2(w).

Since ‖Ka‖A2(w) = ‖La‖, where La is the point evaluation functional at the
point a, this proves the lower estimate of (ii). �

Proposition 1. Let w ∈ W, 0 < p < ∞ and n ∈ N such that n ≥
max {1/p, p}. If ρ0 is the number given in Lemma 4 and {zk} ⊂ D is the
sequence from Lemma C, the function

F (z) =
∑

zk:|zk|≥ρ0

ak
Fzk,n,p(z)

τ(zk)2/p

belongs to Ap(w) for every sequence {ak} ∈ `p. Moreover,

‖F‖Ap(w) .
(∑

k

|ak|p
)1/p

.

Proof. In what follows, we shall write

F (z) =
∑

zk:|zk|≥ρ0

ak
Fzk,n,p(z)

τ(zk)2/p
=
∑

k

ak
Fzk,n,p(z)

τ(zk)2/p
.
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If 0 < p ≤ 1, then bearing in mind Corollary 1, we have that

‖F‖p
Ap(w) =

∫
D

∣∣∣∣∣∑
k

ak
Fzk,n,p(z)

τ(zk)2/p

∣∣∣∣∣
p

w(z) dm(z)

≤
∑

k

|ak|p

τ(zk)2

∥∥Fzk,n,p

∥∥p

Ap(w)

≤ C
∑

k

|ak|p.

If p > 1, an application of Hölder’s inequality yields

|F (z)|p ≤
∑

k

|ak|p

τ(zk)2p
|Fzk,n,p(z)|

p(n−p+1)
n

(∑
k

τ(zk)
2 |Fzk,n,p(z)|p/n

)p−1

.

(3.3)

Now, we claim that∑
k

τ(zk)
2 |Fzk,n,p(z)|p/n .

τ(z)2

w(z)1/n
.(3.4)

In order to prove (3.4), note first that using the estimate (3.1), Lemma 1
and (iv) of Lemma C, we deduce that∑

{zk∈D(z,δ0τ(z))}

τ(zk)
2 |Fzk,n,p(z)|p/n

.
1

w(z)1/n

∑
{zk∈D(z,δ0τ(z))}

τ(zk)
2 .

τ(z)2

w(z)1/n
.

(3.5)

On the other hand, an application of (3.2) gives∑
{zk /∈D(z,δ0τ(z))}

τ(zk)
2 |Fzk,n,p(z)|p/n

.
τ(z)3p

w(z)1/n

∑
{zk /∈D(z,δ0τ(z))}

τ(zk)
2

|z − zk|3p

=
τ(z)3p

w(z)1/n

∞∑
j=0

∑
zk∈Rj(z)

τ(zk)
2

|z − zk|3p
,

where

Rj(z) =
{
ζ ∈ D : 2jδ0τ(z) < |ζ − z| ≤ 2j+1δ0τ(z)

}
, j = 0, 1, 2 . . .

Now observe that, using (2.2), it is easy to see that, for j = 0, 1, 2, . . . ,

D(zk, δ0τ(zk)) ⊂ D(z, 5δ02
jτ(z)) if zk ∈ D(z, 2j+1δ0τ(z)).



EMBEDDING THEOREMS AND INTEGRATION OPERATORS 13

This fact together with the finite multiplicity of the covering (see Lemma
C) gives ∑

zk∈Rj(z)

τ(zk)
2 . m

(
D(z, 5δ02

jτ(z))
)

. 22jτ(z)2.

Therefore ∑
{zk /∈D(z,δ0τ(z))}

τ(zk)
2|Fzk,n,p(z)|p/n .

τ(z)3p

w(z)1/n

∞∑
j=0

∑
zk∈Rj(z)

τ(zk)
2

|z − zk|3p

.
1

w(z)1/n

∞∑
j=0

2−3pj
∑

zk∈Rj(z)

τ(zk)
2

.
τ(z)2

w(z)1/n

∞∑
j=0

2(2−3p)j

.
τ(z)2

w(z)1/n
,

which together with (3.5), proves (3.4).

Now, joining (3.3) and (3.4), we obtain

‖F‖p
Ap(w) ≤

∑
k

|ak|p

τ(zk)2p

∫
D
|Fzk,n,p(z)|

p(n−p+1)
n τ(z)2p−2w(z)

n−p+1
n dm(z).

So, it is enough to show that∫
D
|Fzk,n,p(z)|

p(n−p+1)
n τ(z)2p−2w(z)

n−p+1
n dm(z) . τ(zk)

2p(3.6)

to obtain the desired estimate

‖F‖p
Ap(w) ≤

∑
k

|ak|p.

It follows from (3.1) that∫
|z−zk|<τ(zk)

|Fzk,n,p(z)|
p(n−p+1)

n τ(z)2p−2w(z)
n−p+1

n dm(z)

�
∫
|z−zk|<τ(zk)

τ(z)2p−2 dm(z) � τ(zk)
2p.

(3.7)

On the other hand, using (2.2), it follows that

τ(z) ≤ C2jτ(zk) if |z − zk| < 2jτ(zk).
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Thus, since n ≥ p, bearing in mind (3.2), we deduce that

∫
|z−zk|≥τ(zk)

|Fzk,n,p(z)|
p(n−p+1)

n τ(z)2p−2w(z)
n−p+1

n dm(z)

. τ(zk)
3p(n−p+1)

∫
|z−zk|≥τ(zk)

τ(z)2p−2

|z − zk|3p(n−p+1)
dm(z)

. τ(zk)
3p(n−p+1)

∞∑
j=0

∫
2jτ(zk)≤|z−zk|<2j+1τ(zk)

τ(z)2p−2

|z − zk|3p(n−p+1)
dm(z)

.
∞∑

j=0

2−3jp(n−p+1)

∫
2jτ(zk)≤|z−zk|<2j+1τ(zk)

τ(z)2p−2 dm(z)

. τ(zk)
2p

∞∑
j=0

2−jp (3n−3p+1) . τ(zk)
2p,

which together with (3.7) gives (3.6). This finishes the proof. �

4. Proof of Theorem 1

4.1. Proof of (I): boundedness. Suppose first that Id : Ap(w) → Lq(µ) is
bounded. It is enough to deal with the case |a| ≥ ρ0, where ρ0 ∈ (0, 1) is the
number given in Lemma 4. For a ∈ D with |a| ≥ ρ0, consider the function
Fa,n0,p obtained in Lemma 4, where n0 is the smallest natural number such
that n0p ≥ 1. By Corollary 1, we have ‖Fa,n0,p‖p

Ap(w) � τ(a)2. Then, using

the estimate (3.1) of Lemma 4,

∫
D(δτ(a))

w(z)−q/p dµ(z) .
∫

D(δτ(a))

|Fa,n0,p(z)|q dµ(z)

≤
∫

D
|Fa,n0,p(z)|q dµ(z)

. ‖Id‖q
Ap(w)→Lq(µ) ‖Fa,n0,p‖q

Ap(w)

. ‖Id‖q
Ap(w)→Lq(µ) τ(a)

2q
p ,

proving that Kµ,w ≤ C‖Id‖q
Ap(w)→Lq(µ).

Conversely, suppose that (1.1) holds. This implication was proved by
Oleinik in [21], but we give a proof here for the sake of completeness. Using
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Lemma C, Lemma 2 and Lemma 1, it follows that

∫
D
|f(z)|qdµ(z) ≤

∑
j

∫
D(δτ(zj))

|f(z)|q dµ(z)

.
∑

j

∫
D(δτ(zj))

(
1

τ(z)2

∫
D(δτ(z))

|f(ζ)|pw(ζ)dm(ζ)

) q
p

w(z)−
q
p dµ(z)

.
∑

j

(∫
D(3δτ(zj))

|f(ζ)|pw(ζ) dm(ζ)

) q
p ∫

D(δτ(zj))

w(z)−
q
p dµ(z)

τ(z)
2q
p

. Kµ,w

∑
j

(∫
D(3δτ(zj))

|f(ζ)|pw(ζ) dm(ζ)

) q
p

.

(4.1)

Now, using Minkowski inequality and the finite multiplicity N of the cov-
ering

{
D(3δ τ(zj))

}
, we have

∫
D
|f(z)|q dµ(z) . Kµ,w

(∑
j

∫
D(3δτ(zj))

|f(ζ)|pw(ζ) dm(ζ)

)q/p

. Kµ,w N
q/p ‖f‖q

Ap(w),

proving that Id : Ap(w) → Lq(µ) is continuous with ‖Id‖q
Ap(w)→Lq(µ) . Kµ,w.

4.2. Proof of (I): compactness. Suppose that (1.2) holds. Fixed δ ∈
(0,mτ ), consider the covering {D(δτ(zj)} given by Lemma C, and let {fn}
be a bounded sequence in Ap(w). By Lemma 2, {fn} is uniformly bounded
on compact sets, and by Montel’s theorem {fn} is a normal family. Then
we may extract a subsequence {fnk

} converging uniformly on compact sets
of D to some function f . Using Fatou’s lemma, it is easy to see that f must
be in Ap(w). Given ε > 0, fix 0 < r0 < 1 with

(4.2) sup
|a|>r0

1

τ(a)2q/p

∫
D(δτ(a))

w(z)−q/p dµ(z) < ε.

Observe that there is r′0 < 1 with r0 ≤ r′0 such that if a point zk of the
sequence {zj} belongs to {|z| ≤ r0}, then D(δτ(zk)) ⊂ {|z| ≤ r′0}. So,
take nk big enough such that sup|z|≤r′0

|fnk
(z) − f(z)| < ε. Then, setting
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gnk
= fnk

− f , and arguing as in (4.1), it follows that

‖gnk
‖q

Lq(µ) ≤
∫
|z|≤r′0

|gnk
(z)|q dµ(z) +

∑
|zj |>r0

∫
D(δτ(zj))

|gnk
(z)|q dµ(z)

≤ sup
|z|≤r′0

|gnk
(z)|q µ(D) +

∑
|zj |>r0

∫
D(δτ(zj))

|gnk
(z)|q dµ(z)

≤ Cε+ C‖gnk
‖q

Ap(w) sup
|zj |>r0

1

τ(zj)2q/p

∫
D(δτ(zj))

w(z)−q/p dµ(z)

< Cε.

In the last inequality we use (4.2) and the fact that {fnk
− f} is also a

bounded sequence in Ap(w). This proves that Id : Ap(w) → Lq(µ) is com-
pact.

Conversely, suppose that Id : Ap(w) → Lq(µ) is compact. Take the
smallest natural number n0 such that n0p ≥ 1 and let

fa,n0,p(z) =
Fa,n0,p(z)

τ(a)2/p
, ρ0 ≤ |a| < 1,

where ρ0 ∈ (0, 1) and Fa,n0,p are obtained from Lemma 4. By Corollary 1,
sup|a|≥ρ0

‖fa,n0,p‖Ap(w) ≤ C, and the compactness of the identity operator
implies that {fa,n0,p : ρ0 ≤ |a| < 1} is a compact set in Lq(µ). Thus

(4.3) lim
r→1

∫
r<|z|<1

|fa,n0,p(z)|q dµ(z) = 0 uniformly in a.

On the other hand, the estimate (3.2) gives

|fa,n0,p(z)|pw(z) .
τ(a)3n0p−2

(1− r)3n0p
, |z| ≤ r, |a| ≥ 1 + r

2
.

Thus fa,n0,p → 0 as |a| → 1 uniformly on compact subsets of D, which
together with (4.3) implies that lim|a|→1− ‖fa,n0,p‖Lq(µ) = 0. Therefore, using
the estimate (3.1) of Lemma 4,

sup
|a|>r

1

τ(a)2q/p

∫
D(δτ(a))

w(z)−q/pdµ(z) . sup
|a|>r

∫
D(δτ(a))

|fa,n0,p(z)|q dµ(z)

≤ sup
|a|>r

‖fa,n0,p‖q
Lq(µ),

and this tends to zero as r → 1−, completing the proof.

4.3. Proof of (II). The implication (a) ⇒ (b) is obvious. To prove that
(b) ⇒ (c), we use an argument of Luecking (see [20]). Let {zk} be the
sequence of points in D from Lemma C. Let n be a positive integer such
that n ≥ max (1/p, p), and for an arbitrary sequence {ak} ∈ `p, consider
the function

Gt(z) =
∑

zk:|zk|≥ρ0

ak rk(t)
Fzk,n,p(z)

τ(zk)2/p
, 0 < t < 1,
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where rk(t) is a sequence of Rademacher functions (see page 336 of [20], or
Appendix A of [12]). By Proposition 1, the function Gt belongs to Ap(w)
with

‖Gt‖Ap(w) ≤ C

(∑
k

|ak|p
)1/p

.

Thus, condition (b) gives∫
D
|Gt(z)|q dµ(z) ≤ C

(∑
k

|ak|p
)q/p

, 0 < t < 1.

Integrating with respect to t from 0 to 1, applying Fubini’s theorem, and
invoking Khinchine’s inequality (see [20]), we obtain

(4.4)

∫
D

 ∑
zk: |zk|≥ρ0

|ak|2
∣∣Fzk,n,p(z)

∣∣2
τ(zk)4/p

q/2

dµ(z) ≤ C

(∑
k

|ak|p
)q/p

.

Let δ ∈ (0,mτ ). If χE(z) denotes the characteristic function of a set
E, bearing in mind the estimate (3.1), and the finite multiplicity N of the
covering

{
D(3δτ(zk))

}
(see (iv) of Lemma C), we have∑

zk: |zk|≥ρ0

|ak|q

τ(zk)
2q
p

∫
D(3δτ(zk))

w(z)−q/p dµ(z)

.
∑

zk: |zk|≥ρ0

|ak|q

τ(zk)
2q
p

∫
D(3δτ(zk))

|Fzk,n,p(z)|q dµ(z)

=

∫
D

∑
zk: |zk|≥ρ0

|ak|q

τ(zk)
2q
p

|Fzk,n,p(z)|q χD(3δτ(zk))(z) dµ(z)

≤ max{1, N1−q/2}
∫

D

 ∑
zk: |zk|≥ρ0

|ak|2
∣∣Fzk,n,p(z)

∣∣2
τ(zk)4/p

q/2

dµ(z)

This, together with (4.4) yields

∑
|zk|≥ρ0

|ak|q

τ(zk)
2q
p

∫
D(3δτ(zk))

w(z)−q/p dµ(z) ≤ C

(∑
k

|ak|p
)q/p

.

Since the sequence {ak} ∈ `p is arbitrary and p
q
> 1, if we put bk = |ak|q,

then using the duality between `
p
q and `

p
p−q we conclude that the sequence{

1

τ(zk)
2q
p

∫
D(3δτ(zk))

w(z)−q/p dµ(z)

}
|zk|≥ρ0



18 JORDI PAU AND JOSÉ ÁNGEL PELÁEZ

belongs to `
p

p−q , that is

(4.5)
∑

|zk|≥ρ0

(
1

τ(zk)2

∫
D(3ατ(zk))

w(z)−q/p dµ(z)

) p
p−q

τ(zk)
2 <∞.

Note that there is ρ1 < 1, with ρ0 ≤ ρ1 such that if a point zk of the se-
quence {zj} belongs to {|z| < ρ0}, then D(δτ(zk)) ⊂ {|z| < ρ1}. Therefore,
using Lemma 1, (ii) and (iii) of Lemma C, and (4.5) we deduce that

∫
|z|≥ρ1

(
1

τ(z)2

∫
D(δτ(z))

w(ζ)−q/p dµ(ζ)

) p
p−q

dm(z)

≤
∑

|zk|≥ρ0

∫
D(δτ(zk))

(
1

τ(z)2

∫
D(δτ(z))

w(ζ)−q/p dµ(ζ)

) p
p−q

dm(z)

.
∑

|zk|≥ρ0

(
1

τ(zk)2

) p
p−q
∫

D(δτ(zk))

(∫
D(δτ(z))

w(ζ)−q/p dµ(ζ)

) p
p−q

dm(z)

.
∑

|zk|≥ρ0

(
1

τ(zk)2

∫
D(3δτ(zk))

w(ζ)−q/p dµ(ζ)

) p
p−q

τ(zk)
2 <∞.

This, together with the fact that the integral

∫
|z|<ρ1

(
1

τ(z)2

∫
D(δτ(z))

w(ζ)−q/p dµ(ζ)

) p
p−q

dm(z)

is clearly finite, proves that (c) holds.
Finally, we are going to prove that (c) implies (a). The argument is

standard, but it is included for the sake of completeness. It is enough to
prove that if {fn} is a bounded sequence in Ap(w) that converges to 0
uniformly on compact subsets of D then limn→∞ ‖fn‖Lq(dµ) = 0.

Let δ ∈ (0,mτ ). Bearing in mind (2.1), we deduce that for any r > 1
3

(4.6) D

(
δ

2
τ(z)

)
⊂
{
ζ ∈ D : |ζ| > r

2

}
, if |z| > r.

On the other hand, it follows from Lemma 2 that

|fn(z)|q ≤ C
w(z)−q/p

τ(z)2

∫
D( δ

2
τ(z))

|fn(ζ)|q w(ζ)q/p dm(ζ).
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Integrate respect to dµ, apply Fubini’s theorem, use (4.6) and Lemma 1 to
obtain

∫
{z∈D: |z|>r}

|fn(z)|q dµ(z)

≤ C

∫
{z∈D: |z|>r}

(
1

τ(z)2

∫
D( δ

2
τ(z))

|fn(ζ)|qw(ζ)q/pdm(ζ)

)
w(z)−q/pdµ(z)

≤ C

∫
{ζ∈D: |ζ|> r

2}
|fn(ζ)|qw(ζ)q/p

(∫
D(δτ(ζ))

w(z)−q/p

τ(z)2
dµ(z)

)
dm(ζ)

≤ C

∫
{ζ∈D: |ζ|> r

2}
|fn(ζ)|qw(ζ)q/p

(
1

τ(ζ)2

∫
D(δτ(ζ))

w(z)−q/p dµ(z)

)
dm(ζ).

(4.7)

If condition (c) holds, then for any fixed ε > 0, there is r0 ∈ (0, 1), such
that ∫

{ζ∈D: |ζ|> r0
2 }

(
1

τ(ζ)2

∫
D(δτ(ζ))

w(z)−q/pdµ(z)

) p
p−q

dm(ζ) < ε
p

p−q .

Then (4.7) and an application of Hölder’s inequality yields

∫
{ζ∈D: |z|>r0}

|fn(z)|q dµ(z)

≤ C‖fn‖q
Ap(w)

(∫
{ζ∈D: |ζ|> r0

2 }

(
1

τ(ζ)2

∫
D(δτ(ζ))

w(z)−q/pdµ(z)

) p
p−q

dm(ζ)

) p−q
p

≤ Cε sup ||fn||qAp(w)

≤ Cε.

(4.8)

Moreover, since {|z| ≤ r0} is a compact subset of D, we have

lim
n→∞

∫
|z|≤r0

|fn(z)|q dµ(z) = 0,

which together with (4.8), gives

lim
n→∞

‖fn‖Lq(dµ) = 0.

This completes the proof of Theorem 1.

5. Proof of Theorem 2

5.1. Proof of (I) and (II). Let 0 < p ≤ q <∞, and let δ ∈ (0,mτ ). Since
Tgf(0) = 0 and (Tgf)′(z) = f(z)g′(z), Theorem B gives

‖Tgf‖q
Aq(w) �

∫
D
|f(z)|q |g′(z)|q ψw(z)q w(z) dm(z).
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Therefore, the boundedness of the integration operator Tg : Ap(w) → Aq(w)
is equivalent to the continuity of the embedding Id : Ap(w) → Lq(µg,w) with

(5.1) dµg,w(z) = |g′(z)|q ψw(z)q w(z) dm(z).

By Theorem 1, this holds if and only if

(5.2) sup
a∈D

I(q, p, a) <∞,

where

I(q, p, a) =
1

τ(a)2q/p

∫
D(δτ(a))

|g′(z)|q ψw(z)q w(z)1−q/p dm(z).

Suppose that Tg : Ap(w) → Aq(w) is bounded. Note that, bearing in
mind that τ(z)2 � (∆ϕ(z))−1 and using Lemma 1, condition (1.6) gives

(5.3) ψw(z) � τ(z)2

(1− |z|)t
� τ(a)2

(1− |a|)t
� ψw(a) if z ∈ D(δτ(a)).

Write s = 1
p
− 1

q
. Then, using Lemma 2 (with β = 1 − q

p
) and Corollary 1

we obtain(
ψw(a) ‖Ka‖2s

A2(w) |g′(a)|
)q

.
ψw(a)q ‖Ka‖2qs

A2(w)

τ(a)2w(a)1− q
p

∫
D(δτ(a))

|g′(z)|q w(z)1− q
p dm(z)

.
‖Ka‖2qs

A2(w)

τ(a)2w(a)1− q
p

∫
D(δτ(a))

w(z)−
q
p dµg,w(z)

.
1

τ(a)2q/p

∫
D(δτ(a))

w(z)−
q
p dµg,w(z) = I(q, p, a).

Thus, if Tg : Ap(w) → Aq(w) is bounded, it follows from (5.2) that

(5.4) sup
a∈D

ψw(a) ‖Ka‖2s
A2(w) |g′(a)| <∞.

If q = p then s = 0, and (5.4) proves that if Tg is bounded on Ap(w), then

(5.5) sup
a∈D

ψw(a) |g′(a)| <∞.

Conversely, if (5.5) holds, then it follows directly that supa∈D I(p, p, a) <∞.
Thus Tg is bounded on Ap(w), and the proof of part (a) of (I) is complete.

If 0 < p < q < ∞, we are going to show that condition (5.4) implies
g′ ≡ 0. To prove this, it is enough to see that ψw(a) ‖Ka‖2s

A2(w) goes to

infinity as |a| → 1−. By Corollary 1 and condition (1.6)

ψw(a) ‖Ka‖2s
A2(w) �

τ(a)2−2s

(1− |a|)tw(a)s
,

and this tends to infinity as |a| → 1− by Lemma 3. This finishes the proof
of (II), since the other implication is trivial.
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Concerning the compactness part (b) of (I), note that using Theorem B,
the compactness of the operator Tg on Ap(w) is equivalent to the compact-
ness of the embedding Id : Ap(w) → Lp(µg,w), where µg,w is the measure
defined by (5.1) with q = p. By part (I) of Theorem 1, this holds if and
only if

lim
r→1−

sup
|a|>r

1

τ(a)2

∫
D(δτ(a))

|g′(z)|p ψw(z)p dm(z) = 0,

and proceeding as in the boundedness part, we see that this is equivalent to

lim
r→1−

sup
|a|>r

ψw(a) |g′(a)| = 0.

5.2. Proof of (III). By Theorem B one has

(5.6) ‖Tgf‖q
Aq(w) �

∫
D
|f(z)|q |g′(z)|qψw(z)q w(z) dm(z).

Using (5.6), we have that Tg : Ap(w) → Aq(w) is bounded if and only the
embedding Id : Ap(w) → Lq(µg,w) is bounded, where µg,w is the measure
defined by (5.1). Thus the equivalence (a) ⇔ (b) follows from part (II) of
Theorem 1.

(b) ⇒ (c). We also use part (II) of Theorem 1 to assert that (b) is
equivalent to

Cg,w :=

∫
D

(
1

τ(z)2

∫
D(τ(z))

|g′(ζ)|q ψw(ζ)q w(ζ)
p−q

p dm(ζ)

) p
p−q

dm(z) <∞.

Now, using Theorem B, Lemma 2 and (5.3), we obtain

‖g‖r
Ar(w) � |g(0)|r +

∫
D

(
|g′(z)|qψw(z)qw(z)q/r

)r/q
dm(z)

. |g(0)|r + Cg,w.

(c) ⇒ (b). If g ∈ Ar(w), then (5.6), Hölder’s inequality and Theorem B
gives

‖Tgf‖q
Aq(w) .

(∫
D
|f(z)|pw(z) dm(z)

)q/p(∫
D
|g′(z)|r ψw(z)r w(z) dm(z)

)q/r

. ‖g‖q
Ar(w) ‖f‖

q
Ap(w).

Thus Tg : Ap(w) → Aq(w) is bounded with ‖Tg‖ . ‖g‖Ar(w). This finishes
the proof.
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6. Schatten classes on A2(w)

If {en} is an orthonormal basis of a Hilbert space H of analytic functions
in D with reproducing kernel Kz, then

Kz(ζ) =
∑

n

en(ζ) en(z)

for all z and ζ in D (see e.g. [28, Theorem 4.19]). It follows that

(6.1)
∑

n

|en(z)|2 ≤ ‖Kz‖2
H

for any orthonormal set {en} of H. Also, by (6) we have

∂

∂z̄
Kz(ζ) =

∑
n

e′n(z)en(ζ), z, ζ ∈ D.

Thus Parseval’s identity gives

(6.2)

∣∣∣∣∣∣∣∣ ∂∂z̄Kz

∣∣∣∣∣∣∣∣2
H

=
∑

n

|e′n(z)|2.

Now, we are going to give the proof of Theorem 3 on the description of
the Schatten classes Sp := Sp(A

2(w)). First we consider the sufficiency part
of the case 1 < p <∞. We need the following lemma.

Lemma 5. Let w ∈ W satisfying (1.6). Then∣∣∣∣∣∣∣∣ ∂∂z̄Kz

∣∣∣∣∣∣∣∣
A2(w)

= O

(
‖Kz‖A2(w)

ψw(r)

)
, |z| = r

Proof. Let {en} be the orthonormal basis of A2(w) given by

en(z) = znδ−1
n , n ∈ N,

where δ2
n = 2

∫ 1

0
r2n+1w(r) dr. Using Corollary 1 and (1.6), we have that

∞∑
n=0

r2nδ−2
n =

∞∑
n=0

|en(z)|2 = ||Kz||2A2(w) � (1− r)−t

(∫ 1

r

w(s) ds)

)−1

,

for some t ≥ 1. So, if we consider the analytic function in D defined by

f(z) =
∞∑

n=0

znδ−1
n ,

then M2(r, f) =
(

1
2π

∫ π

−π

∣∣f(reiθ)
∣∣2 dθ) 1

2 � Φ(r), as r → 1−, where

Φ(r) = (1− r)−t/2

(∫ 1

r

w(s) ds

)−1/2

.
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Now, bearing in mind that ψw(r) ≤ (1− r) for a decreasing weight w, a
calculation shows that

Φ′(r) � Φ(r)

ψw(r)
, r → 1−.

Moreover, it is easy to see that for w ∈ W

(6.3) lim sup
r→1−

Φ′′(r)Φ(r)

(Φ′(r))2
<∞.

Thus we can apply Theorem 2.1 of [23], which says that

M2(r, f
′) = O (Φ′(r)) if M2(r, f) = O (Φ(r)) ,

when (6.3) holds (see condition (3.3) of [23]). Finally, since for r = |z|,∣∣∣∣∣∣∣∣ ∂∂z̄Kz

∣∣∣∣∣∣∣∣2
A2(w)

=
∞∑

n=0

|e′n(z)|2 =
∞∑

n=1

n2r2n−2δ−2
n = M2

2 (r, f ′)

we obtain∣∣∣∣∣∣∣∣ ∂∂z̄Kz

∣∣∣∣∣∣∣∣
A2(w)

= M2(r, f
′) = O (Φ′(r)) � Φ(r)

ψw(r)
� ‖Kz‖
ψw(z)

r → 1−.

�

Proposition 2. Let g ∈ H(D), 1 < p <∞ and w ∈ W satisfying (1.6). If
ψw |g′| ∈ Lp(D,∆ϕdm) then Tg ∈ Sp(A

2(w)).

Proof. By Theorem B, the inner product

〈f, g〉∗ = f(0)g(0) +

∫
D
f ′(z)g′(z)ψw(z)2w(z) dm(z)

gives a norm on A2(w) equivalent to the usual one. If 1 < p < ∞, the
operator Tg belongs to the Schatten p-class Sp if and only if∑

n

|〈Tgen, en〉∗|p <∞

for any orthonormal set {en} (see [28, Theorem 1.27]). Let {en} be an
orthonormal set of (A2(w), 〈, 〉∗). Note that Theorem B gives∫

D
|en(z)e′n(z)|ψw(z)w(z) dm(z) � ||e2n||A1(w) � ‖en‖2

A2(w) = 1.

This together with Hölder’s inequality yields∑
n

|〈Tgen, en〉∗|p ≤
∑

n

(∫
D
|g′(z)en(z)e′n(z)|ψw(z)2w(z) dm(z)

)p

.
∑

n

∫
D
|g′(z)|p|en(z)e′n(z)|ψw(z)p+1w(z) dm(z)

=

∫
D
|g′(z)|p

(∑
n

|en(z)e′n(z)|

)
ψw(z)p+1w(z) dm(z),
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and since ‖Kz‖2
A2(w)w(z) � ∆ϕ(z) (see Corollary 1), the result will be

proved if we are able to show that

(6.4)
∑

n

|en(z) e′n(z)| .
‖Kz‖2

A2(w)

ψw(z)
.

To prove (6.4), we use Cauchy-Schwarz inequality together with (6.1) and
(6.2) to obtain

∑
n

|en(z) e′n(z)| ≤

(∑
n

|en(z)|2
)1/2(∑

n

|e′n(z)|2
)1/2

≤ ||Kz||A2(w)

∣∣∣∣∣∣∣∣ ∂∂z̄Kz

∣∣∣∣∣∣∣∣
A2(w)

.

Now, the inequality (6.4) follows from Lemma 5. This completes the proof
of the Proposition. �

Now we turn to show the necessity for the case 0 < p <∞.

Proposition 3. Let g ∈ H(D), 0 < p <∞ and w ∈ W satisfying (1.6). If
Tg ∈ Sp(A

2(w)), then ψw|g′| ∈ Lp(D,∆ϕdm).

Proof. We split the proof in two cases.
Case 2 ≤ p <∞. Suppose that Tg is in Sp, and let {ek} be an or-

thonormal set in A2(w) and n ≥ max {1/p, p}. Let {zk} be the sequence
from Lemma 4, and consider the operator A taking ek(z) to fzk

(z) =
Fzk, n, p(z)/τ(zk). It follows from Proposition 1 that the operator A is
bounded on A2(w). Since Sp is a two-sided ideal in the space of bounded
linear operators on A2(w), then TgA belongs to Sp (see [28, p.27]). Thus,
by [28, Theorem 1.33]∑

k

‖Tg(fzk
)‖p

A2(w) =
∑

k

‖TgAek‖p
A2(w) <∞.

This together with Lemma 4 and Theorem B gives∑
k

1

τ(zk)p

(∫
D(τ(zk))

|g′(z)|2 ψw(z)2 dm(z)

)p/2

�
∑

k

(∫
D(τ(zk))

|fzk
(z)|2 |g′(z)|2 ψw(z)2w(z) dm(z)

)p/2

.
∑

k

(∫
D
|fzk

(z)|2 |g′(z)|2 ψw(z)2w(z) dm(z)

)p/2

�
∑

k

‖Tg(fzk
)‖p

A2(w) <∞.

(6.5)
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On the other hand, if δ is sufficiently small, applying Lemma 2, Lemma
1 and Lemma C and arguing as in (5.3), it follows that∫

D
|g′(z)|p ψw(z)p ∆ϕ(z) dm(z)

.
∑

k

∫
D(δτ(zk))

(
1

τ 2(z)

∫
D(δτ(z))

|g′(ζ)|2dm(ζ)

)p/2

ψw(z)p dm(z)

τ 2(z)

.
∑

k

1

τ(zk)p

∫
D(δτ(zk))

(∫
D̃(δτ(zk))

|g′(ζ)|2 ψw(ζ)2 dm(ζ)

)p/2
dm(z)

τ 2(z)

.
∑

k

1

τ(zk)p

(∫
D(3δτ(zk))

|g′(ζ)|2 ψw(ζ)2 dm(ζ)

)p/2

.

This together with (6.5) concludes the proof.
Case 0 < p < 2. If Tg ∈ Sp then the positive operator T ∗g Tg belongs to

Sp/2. Without loss of generality we may assume that g′ 6= 0. Suppose

T ∗g Tgf =
∑

n

λn〈f, en〉 en

is the canonical decomposition of T ∗g Tg. Then not only is {en} an orthonor-
mal set, it is also an orthonormal basis. Indeed, if there is an unit vector
e ∈ A2(w) such that e ⊥ en for all n ≥ 1, then∫

D
|g′(z)|2|e(z)|2ψw(z)2w(z) dm(z) � ‖Tge‖2

A2(w) = 〈T ∗g Tge, e〉 = 0

because T ∗g Tg is a linear combination of the vectors en. This would give
g′ ≡ 0.

Since {en} is an orthonormal basis of A2(w), then

‖Kz‖2 =
∑

n

|en(z)|2.

This identity together with Corollary 1 and Hölder’s inequality yields∫
D
|g′(z)|p ψw(z)p ∆ϕ(z) dm(z)

�
∫

D
|g′(z)|p ψw(z)p ‖Kz‖2w(z) dm(z)

=
∑

n

∫
D
|g′(z)|p ψw(z)p |en(z)|2w(z) dm(z)

≤
∑

n

(∫
D
|g′(z)|2 ψw(z)2 |en(z)|2w(z) dm(z)

)p/2

.
∑

n

〈T ∗g Tgen, en〉p/2 =
∑

n

λp/2
n = ‖T ∗g Tg‖p/2

Sp/2
.

This completes the proof. �
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Finally, we shall prove the main result in this section.

Proof of Theorem 3.
Part (a) follows directly from Proposition 2 and Proposition 3. Moreover,

if 0 < p ≤ 1 and Tg ∈ Sp(A
2(w)), Proposition 3, (2.1) and (1.6) imply that∫

D

|g′(z)|p dm(z)

(1− |z|)tp (1− |z|)2(1−p)
.
∫

D

|g′(z)|p dm(z)

(1− |z|)tp τ(z)2(1−p)

�
∫

D
|g′(z)|p ∆ϕ(z)1−p

(1− |z|)tp
dm(z)

�
∫

D
|g′(z)|p ψω(z)p ∆ϕ(z) dm(z) <∞.

Therefore, it follows that (t− 2)p + 2 ≥ 1, and consequently g′ ≡ 0, which
gives (b). The proof is complete. �

7. Some examples of weights in the class W

In this section, several examples of weights in the class W are given. We
check that they satisfy the condition (1.6) in Theorem 2, and by computing
the distorsion functions, we also offer the corresponding description for the
boundedness and compactness of the integration operator Tg in each case.

Example 1: The weights

wγ,α(r) = (1− r)γ exp

(
−c

(1− r)α

)
, γ ≥ 0, α > 0, c > 0,

are in the class W with associated subharmonic function

ϕγ,α(z) = −γ log(1− |z|) + c (1− |z|)−α.

We have that (
∆ϕγ,α(z)

)−1 � τ(z)2 = (1− |z|)2+α,

and it is easy to see that τ(z) satisfies the conditions in the definition of
the class W . Also, since ψwγ,α(r) � (1− r)1+α (see e.g. [26, Example 3.2]),
(1.6) is satisfied with t = 1. In particular, the case q = p of Theorem 2 says
that Tg is bounded on Ap(wγ,α) if and only if

sup
z∈D

(1− |z|)1+α |g′(z)| <∞,

and Tg is compact on Ap(wγ,α) whenever

lim
|z|→1−

(1− |z|)1+α |g′(z)| = 0.

As mentioned above, this answers a question raised in [4, p. 353]. We also
note that, by Theorem 3, the operator Tg belongs to the Schatten p-class
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of A2(wγ,α) if and only if g is in the Dirichlet-type space Dp
β with β =

p− 2 + α(p− 1), that is, the space of those g ∈ H(D) with∫
D
|g′(z)|p (1− |z|2)β dm(z) <∞.

Example 2: For α > 1 and A > 0 the weights

w(r) = exp

(
−A

(
log

e

1− r

)α)
,

with associated subharmonic function ϕ(z) = A
(
log e

1−|z|

)α

, belong to the

class W . Indeed, it is easy to see that

(7.1) ∆ϕ(z) � (1− |z|)−2

(
log

e

1− |z|

)α−1

,

so τ(z) = (1− |z|)
(
log e

1−|z|

) 1−α
2

, and since α > 1

τ ′(r) �
(

log
e

1− r

)−α+1
2

, r → 1−,

which implies that limr→1− τ(r) = limr→1− τ
′(r) = 0. Moreover, the function

τ(r)(1− r)−2 increases for r close to 1. This proves that w ∈ W .
On the other hand, since w has distorsion function (see [26, Example 3.4])

ψw(r) � 1− r(
log e

1−r

)α−1 ,

then (7.1) gives (∆ϕ(z))−1 � (1 − |z|)ψw(z). Therefore, (1.6) is satisfied
with t = 1. For this weight, Theorem 2 says that Tg is bounded on Ap(w)
if and only if

sup
z∈D

(1− |z|)
(

log
e

1− |z|

)1−α

|g′(z)| <∞,

and Tg is compact on Ap(w) whenever the corresponding “ little oh” condi-
tion holds.

Example 3: For α, β, γ > 0, the double exponential weight

w(r) = exp

(
−γ exp

(
β

(1− r)α

))
belongs to W . Indeed, the associated subharmonic function is ϕ(z) =

γ exp
(

β
(1−|z|)α

)
, and a straightforward computation gives

(7.2) ∆ϕ(z) � (1− |z|)−2α−2 exp

(
β

(1− |z|)α

)
.
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Then we can take τ(z) = (1− |z|)α+1 exp
(

−β/2
(1−|z|)α

)
. Since

τ ′(r) � exp

(
−β/2

(1− r)α

)
, r → 1−,

we obtain limr→1− τ(r) = limr→1− τ
′(r) = 0. Also, it is easy to see that

limr→1− τ
′(r) log 1

τ(r)
= 0. This proves that w ∈ W .

Moreover, since w has distorsion function (see [26, Example 3.3])

ψw(r) � (1− r)1+α exp

(
− β

(1− r)α

)
,

then (7.2) gives (∆ϕ(z))−1 � (1 − |z|)1+α ψw(z). So (1.6) is satisfied with
t = 1 + α. In this example, the case q = p of Theorem 2 says that Tg is
bounded on Ap(w) if and only if

sup
z∈D

(1− |z|)1+α exp

(
− β

(1− |z|)α

)
|g′(z)| <∞,

and Tg is compact on Ap(w) if the “ little oh” condition holds.
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