NON-STABLE CLASSES OF ANALYTIC FUNCTIONS

DANIEL GIRELA AND JOSÉ ÁNGEL PELÁEZ

ABSTRACT. If f and g are analytic functions in the unit disc \mathbb{D} , then f is said to be weakly subordinate to g, written $f \prec^w g$, if there exist analytic functions ϕ and $\omega : \mathbb{D} \to \mathbb{D}$, with ϕ an inner function, so that $f \circ \phi = g \circ \omega$. A class X of analytic functions in \mathbb{D} is said to be stable if it is closed under weak subordination, that is, if $f \in X$ whenever f and g are analytic functions in \mathbb{D} with $g \in X$ and $f \prec^w g$. For $0 and <math>\alpha > -1$, we let A^p_α denote the weighted Bergman space of all functions f, analytic in \mathbb{D} , such that $f \in L^p\left((1 - |z|^2)^\alpha dxdy\right)$ and the space of Dirichlet type \mathcal{D}^p_α consists of those f such that $f' \in A^p_\alpha$. Among other results, we prove that all the Bergman spaces A^p_α (0 -1) and all the \mathcal{D}^p_α -spaces except the space $\mathcal{D}^2_1 = H^2$ are non-stable classes of analytic functions in \mathbb{D} .

1. INTRODUCTION AND FIRST RESULTS.

We denote by \mathbb{D} the unit disc $\{z \in \mathbb{C} : |z| < 1\}$ and by $\mathcal{H}ol(\mathbb{D})$ the space of all analytic functions in \mathbb{D} . As usual, H^p (0 are the classical $Hardy spaces of analytic functions in <math>\mathbb{D}$ (see [14] and [18]) and N is the Nevanlinna class (see [14] and [24]). A function I, analytic in \mathbb{D} , is said to be an inner function if $I \in H^{\infty}$ and I has a radial limit $I(e^{i\theta})$ of modulus one for almost every $e^{i\theta} \in \partial \mathbb{D}$. We recall that an inner function I can be factored in the form I = BS where B is a Blaschke product and S is a singular inner function, that is, S is of the form

$$S(z) = \exp\left(-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \, d\mu(t)\right), \quad z \in \mathbb{D},$$

Date: November 10, 2004.

The authors are partially supported by a grant from "El Ministerio de Educación y Ciencia, Spain" (MTN2004-00078) and by a grant from "La Junta de Andalucía" (FQM-210).

where, μ is a finite positive Borel measure on $[0, 2\pi)$ that is singular with respect to Lebesgue measure.

K. Stephenson introduced in [26] the notion of weak subordination: if f and g are meromorphic functions in \mathbb{D} , then f is said to be *weakly* subordinate to g, written $f \prec^w g$, if there exist analytic functions ϕ and $\omega : \mathbb{D} \to \mathbb{D}$, with ϕ an inner function, so that $f \circ \phi = g \circ \omega$. If $\phi(z) \equiv z$ and $\omega(0) = 0$, we have the classical concept of subordination, and we shall simply write $f \prec g$. A class X of meromorphic functions in \mathbb{D} is said to be stable if it is closed under weak subordination, that is, if $f \in X$ whenever $f \prec^w g$ and $g \in X$.

Stephenson [25] proved in that the Hardy spaces H^p , 0 , and theNevanlinna class <math>N are stable classes, although this terminology was not used there. Furthermore, K. Stephenson also proved in [26] that the space BMOA is stable while the the Bloch space \mathcal{B} and the space VMOA are not stable.

We recall that the space BMOA consists of those functions $f \in H^1$ whose boundary values have bounded mean oscillation on $\partial \mathbb{D}$ and, VMOA is the closed subspace of BMOA which consists of those $f \in H^1$ whose boundary values have vanishing mean oscillation on $\partial \mathbb{D}$. Alternatively, VMOA is the closure of the polynomials in BMOA. We mention [8], [18] and [19] for the theory of the spaces BMOA and VMOA.

If f is an analytic function in \mathbb{D} , then f is said to be a Bloch function if

$$||f||_{\mathcal{B}} \stackrel{\text{def}}{=} |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

The space of all Bloch functions is denoted by \mathcal{B} . The little Bloch space \mathcal{B}_0 consists of those $f \in \mathcal{B}$ such that $\lim_{|z|\to 1}(1-|z|^2)|f'(z)|=0$. Alternatively, \mathcal{B}_0 is the closure of the polynomials in the Bloch norm. A very good reference for the theory of Bloch functions is [4].

Stephenson's arguments can be used to obtain the following improvement of his results. THEOREM 1. Let X be a space of analytic functions in \mathbb{D} which satisfies any of the two following conditions:

(A) X contains the polynomials and there is some inner function I such that $I \notin X$.

(B) $X \neq \mathcal{H}ol(\mathbb{D})$ and $\mathcal{B} \subset X$.

Then X is a non-stable class of analytic functions in \mathbb{D} .

Proof. Suppose that X satisfies condition (A) and let I be an inner function which does not belong to X. Take $g(z) = \phi(z) = z$ and $\omega(z) = I(z)$ ($z \in \mathbb{D}$). Then ϕ and ω are inner functions and $I = I \circ \phi = g \circ \omega$. Hence, $I \prec^w g$, $g \in X$ and $I \notin X$. Thus X is not stable.

Suppose now that $X \neq \mathcal{H}ol(\mathbb{D})$ and $\mathcal{B} \subset X$. Let f be an analytic function in \mathbb{D} such that $f \notin X$. Let $E = \{m + ni : m, n \in \mathbb{Z}\}$ and $F = \{z \in \mathbb{D} : f(z) \in E\}$. Since F is a countable subset of \mathbb{D} , it has capacity zero and therefore the universal covering map I from \mathbb{D} onto $\mathbb{D} \setminus F$ is an inner function (see, for instance, Chapter 2 of [11]). Set $g = f \circ I$. Then the image of g is contained in $\mathbb{C} \setminus E$ and, hence, it does not contain arbitrarily large discs. Consequently, see [4], g is a Bloch function. Since $\mathcal{B} \subset X$, we have that $g = f \circ I \in X$ even though $f \notin X$. Thus, X is not stable. \Box

In addition to VMOA, among other, the following well known spaces satisfy condition (A) and, hence, are non-stable classes:

The little Bloch space \mathcal{B}_0 , [4]; the spaces Q_p and $Q_{p,0}$, $0 , ([6, 7, 16, 28]; the Besov spaces and <math>B^p$, $1 \leq p < \infty$, [5, 12, 29]; the Dirichlet space \mathcal{D} of those f analytic in \mathbb{D} with finite Dirichlet integral.

If $0 and <math>\alpha > -1$, the weighted Bergman space A^p_{α} consists of those $f \in \mathcal{H}ol(\mathbb{D})$ such that $\int_{\mathbb{D}} (1 - |z|)^{\alpha} |f(z)|^p dA(z) < \infty$. Here, $dA(z) = \frac{1}{\pi} dx \, dy$ denotes the normalized Lebesgue area measure in \mathbb{D} . We refer to [15] and [21] for the theory of these spaces.

If $\varphi : [0,1) \longrightarrow [0,\infty)$ is an increasing function with $\lim_{r \to 1} \varphi(r) = \infty$, we define

(1)
$$A(\varphi) = \{ f \in \mathcal{H}ol(\mathbb{D}) : |f(z)| = \mathcal{O}(\varphi(|z|)), \text{ as } |z| \to 1 \},\$$

(2)
$$A_0(\varphi) = \{ f \in \mathcal{H}ol(\mathbb{D}) : |f(z)| = o(\varphi(|z|)), \text{ as } |z| \to 1 \}.$$

If $f \in \mathcal{B}$ then

$$|f(z)| = O\left(\log \frac{1}{1-|z|}\right), \text{ as } |z| \to 1,$$

and then it follows that

(3)
$$\mathcal{B} \subset A^p_{\alpha}, \quad \alpha > -1, \ 0$$

(4)
$$\mathcal{B} \subset A(\varphi), \text{ if } \log \frac{1}{1-r} = \mathcal{O}(\varphi(r)), \text{ as } r \to 1,$$

and,

(5)
$$\mathcal{B} \subset A_0(\varphi), \text{ if } \log \frac{1}{1-r} = o(\varphi(r)), \text{ as } r \to 1.$$

Using (3), (4), (5) and Theorem 1, we obtain the following result.

COROLLARY 1. (i) If $\alpha > -1$ and $0 then the weighted Bergman space <math>A^p_{\alpha}$ is a non-stable class of analytic functions in \mathbb{D} .

(ii) If $\varphi : [0,1) \longrightarrow [0,\infty)$ is an increasing function with $\log \frac{1}{1-r} = O(\varphi(r))$, as $r \to 1$, then the space $A(\varphi)$ is a non-stable class of analytic functions in \mathbb{D} .

(iii) If $\varphi : [0,1) \longrightarrow [0,\infty)$ is an increasing function with $\log \frac{1}{1-r} = o(\varphi(r))$, as $r \to 1$, then the space $A_0(\varphi)$ is a non-stable class of analytic functions in \mathbb{D} .

We remark that part (iii) of Corollary 1 improves Example II in pp. 575-576 of [26] which asserts that $A_0(\varphi)$ is not stable for $\varphi(r) = \exp\left(\frac{1+r}{1-r}\right)$, (0 < r < 1).

The next two sections will be devoted to the main purpose of this paper which is finding other types of non-stable classes of analytic functions in \mathbb{D} . More precessly, we wish to study the possibility of finding a space Xof analytic functions in \mathbb{D} which is a not stable and does not satisfy either condition (A) or condition (B). In order to do so we shall consider spaces of Dirichlet type.

2. The spaces \mathcal{D}_{p-1}^p .

For $0 , the space of Dirichlet type <math>\mathcal{D}_{p-1}^p$ consists of all analytic functions in \mathbb{D} whose derivative belongs to A_{p-1}^p , that is,

(6)
$$\mathcal{D}_{p-1}^p = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \int_{\mathbb{D}} (1 - |z|^2)^{p-1} |f'(z)|^p \, dA(z) < \infty \right\}.$$

The spaces \mathcal{D}_{p-1}^p are closely related to the Hardy spaces. Indeed, a direct calculation with power series shows that $H^2 = \mathcal{D}_1^2$. A classical result of Littlewood and Paley [22] (see also [23]) asserts that

(7)
$$H^p \subset \mathcal{D}_{p-1}^p, \quad 2 \le p < \infty.$$

On the other hand, we have

(8)
$$\mathcal{D}_{p-1}^p \subset H^p, \quad 0$$

The inclusion (7) can be proved by Riesz-Thorin interpolation. The same method gives (8) for $1 \leq p \leq 2$, since the inclusion $\mathcal{D}_0^1 \subset H^1$ is trivial. Vinogradov ([27], Lemma 1.4) extended (8) to the range 0 . Werefer to [27], [13], [9] and [20] for distinct aspects of the theory of the spaces $<math>\mathcal{D}_{p-1}^p$. In particular, we mention that using Proposition 2.1 of [10] (see also Proposition A of [20]), we obtain the following result.

PROPOSITION A. If f is given by a power series with Hadamard gaps,

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k} \ (z \in \Delta) \ with \ n_{k+1} \ge \lambda n_k \ for \ all \ k \ (\lambda > 1),$$

then, for every $p \in (0, \infty)$,

$$f \in \mathcal{D}_{p-1}^p \quad \Longleftrightarrow \quad \sum_{k=1}^{\infty} |a_k|^p < \infty.$$

Since for Hadamard gap series we have, for 0 ,

$$f \in H^p \quad \Longleftrightarrow \quad \sum_{k=1}^{\infty} |a_k|^2 < \infty,$$

we immediately deduce that $\mathcal{D}_{p-1}^p \neq H^p$ if $p \neq 2$.

We remark also that if $p \neq q$ then there is no relation of inclusion between \mathcal{D}_{p-1}^p and \mathcal{D}_{q-1}^q . However, it is easy to show (see Lemma 2 of [20]) that

(9)
$$\mathcal{B} \cap \mathcal{D}_{p-1}^p \subset \mathcal{B} \cap \mathcal{D}_{q-1}^q, \quad 0$$

We can now prove the following result.

THEOREM 2. If $0 and <math>p \neq 2$, then \mathcal{D}_{p-1}^p is a non-stable class of analytic functions in \mathbb{D} .

REMARK 1. Using (7), we see that if $2 , then <math>\mathcal{D}_{p-1}^p$ contains all the inner functions. On the other hand, if we take the lacunary power series

$$f(z) = \sum_{k=1}^{\infty} z^{2^k}, \quad z \in \mathbb{D},$$

we have that $f \in \mathcal{B}$, (see [4]), while Proposition (A) shows that $f \notin \mathcal{D}_{p-1}^p$. Consequently, if $2 , the space <math>\mathcal{D}_{p-1}^p$ is not stable and does not satisfy either condition (A) or condition (B).

Proof of Theorem 2. Suppose first that 0 . Then, using Theorem 3.11 of [27], we see that there exists a Blaschke product <math>B such that $B \notin \mathcal{D}_{p-1}^p$, and then the fact that \mathcal{D}_{p-1}^p is not stable follows from Theorem 1.

Suppose now that $2 . Take <math>f \in H^2 \setminus \mathcal{D}_{p-1}^p$, (for example, take $f(z) = \frac{1}{(1-z)^{1/p}}, z \in \mathbb{D}$). Now we argue as in the proof of Theorem 1: We set $E = \{m + ni : m, n \in \mathbb{Z}\}$ and $F = \{z \in \mathbb{D} : f(z) \in E\}$ and we let I be the universal covering map from \mathbb{D} onto $\mathbb{D} \setminus F$. Since the set F is countable, I is an inner function. The function $g = f \circ I$ is a Bloch function because its image does not contain arbitrarily large discs. Also, $g \in H^2$ because H^2 is closed under subordination. Thus, we have that $g = f \circ I \in \mathcal{B} \cap H^2 = \mathcal{B} \cap \mathcal{D}_1^2$. Using (9), we deduce that $g = f \circ I \in \mathcal{B} \cap \mathcal{D}_{p-1}^p$ even though $f \notin \mathcal{D}_{p-1}^p$. Consequently, \mathcal{D}_{p-1}^p is not stable. This finishes the proof. \Box

REMARK 2. If 2 and g is the function constructed in the proof of $Theorem 2 then, bearing in mind that <math>H^p$ is stable, we see that $g \in \mathcal{D}_{p-1}^p \setminus H^p$. For these values of p, most of the known examples of functions in $\mathcal{D}_{p-1}^p \setminus H^p$ are given by lacunary power series.

3. The spaces \mathcal{D}^p_{α} (0 -1).

For $0 and <math>\alpha > -1$ the space of Dirichlet type \mathcal{D}^p_{α} consists of all functions f which are analytic in \mathbb{D} and satisfy

$$\int_{\mathbb{D}} (1-|z|^2)^{\alpha} |f'(z)|^p \, dA(z) < \infty$$

We have proved in Theorem 2 that if $p \neq 2$ then the spaces \mathcal{D}_{p-1}^p are not stable. In this section we shall extend our work considering the spaces \mathcal{D}_{α}^p for all admissible values of p and α . We shall prove the following result.

THEOREM 3. If $0 , <math>\alpha > -1$ and $(p, \alpha) \neq (2, 1)$ then \mathcal{D}^p_{α} is a non-stable class of analytic functions in \mathbb{D} .

In other words, Theorem 3 asserts that all the \mathcal{D}^p_{α} -spaces ($0 , <math>\alpha > -1$) except the space $\mathcal{D}^2_1 = H^2$ are non-stable classes of analytic functions in \mathbb{D} .

Proof of Theorem 3. We shall distinguish several cases.

(a) If $0 , <math>p \neq 2$ and $\alpha = p - 1$ then the result follows from Theorem 2.

(b) If $0 and <math>\alpha > p - 1$ then it is well known that $\mathcal{D}^p_{\alpha} = A^p_{\alpha-p}$ (see, e. g., Theorem 6 of [17]) and then the fact that \mathcal{D}^p_{α} is not stable follows using Corollary 1.

(c) Suppose now that $0 and <math>-1 < \alpha < p - 1$. As noticed above, Theorem 3.11 of [27] implies that there exists an inner function Iwith $I \notin \mathcal{D}_{p-1}^p$. Since $\alpha , <math>\mathcal{D}_{\alpha}^p \subset \mathcal{D}_{p-1}^p$. Then we see that there is an inner function I which does not belong to \mathcal{D}_{α}^p . Now Theorem 1 yields that \mathcal{D}_{α}^p is not stable.

(d) Suppose now that $1 and <math>-1 < \alpha \leq p - 2$. Notice that the space \mathcal{D}_{p-2}^p is the Besov space B^p . Hence $\mathcal{D}_{\alpha}^p \subset B^p$. Now, there are inner functions which do not belong to B^p . Indeed, Theorem 3.1 of [12] asserts that the only inner functions in the space B^p are the finite Blaschke products. Since $\mathcal{D}_{\alpha}^p \subset B^p$, the same is true for the space \mathcal{D}_{α}^p . This implies that \mathcal{D}_{α}^p is not stable. It only remains to prove that \mathcal{D}^p_{α} is not stable for $2 \leq p < \infty$ and $p-2 < \alpha < p-1$. Using again Theorem 1, this will follow from the following result. \Box

THEOREM 4. If $1 \leq p < \infty$ and $p - 2 < \alpha < p - 1$, then there exists an inner function I such that $I \notin \mathcal{D}^p_{\alpha}$.

We need to introduce some notation and several results to prove Theorem 4.

If I is an inner function, we shall write

(10)
$$\Delta(r,I) = \frac{1}{2\pi} \int_0^{2\pi} \left(1 - |I(re^{it})|^2\right) dt$$

The quantity $\Delta(r, I)$ plays a very important role to study the membership of the derivative of an inner function in classical spaces of analytic functions in \mathbb{D} , (see [1], [2], [3]).

The following result is a special case of Theorem 6 of [2].

THEOREM A. Suppose that $\alpha > -1$, $p > 1 + \alpha$ and I is an inner function. Then $I \in \mathcal{D}^p_{\alpha}$ if and only if

$$\int_0^1 (1-r)^{\alpha-p} \frac{1}{2\pi} \int_0^{2\pi} \left(1 - |I(re^{it})|^2\right)^p dt dr < \infty.$$

Now, if μ is a finite positive Borel measure on $[0, 2\pi]$, the modulus of continuity ω_{μ} of μ is defined by

$$\omega_{\mu}(\delta) = \sup\{\mu\left([\theta, \theta + \delta)\right) : \theta \in [0, 2\pi]\}, \quad 0 \le \delta.$$

If $0 < \beta < 1$ we let S_{β} denote the class of all inner functions I whose singular inner factor S is the singular inner function associated to a singular measure μ whose modulus of continuity ω_{μ} satisfies that $\omega_{\mu}(\delta) = O(\delta^{\beta})$, as $\delta \to 0$. Ahern proved in Theorem 2.5 of [1] the following result.

THEOREM B. Suppose that $0 < \beta < 1$ and $I \in S_{\beta}$. Then there exist a constant $\varepsilon > 0$ and $r_0 \in (0, 1)$ such that

(11)
$$\Delta(r,I) \ge \varepsilon(1-r)^{\frac{1-\beta}{2-\beta}}, \quad r \in (r_0,1).$$

Proof of Theorem 4. Take and fix p with $1 \leq p < \infty$. Since the spaces \mathcal{D}^p_{α} grow with α , it suffices to prove the theorem for those α such that $\max\{p-2, \frac{p-2}{2}\} < \alpha < p-1$. So, take such an α and set

(12)
$$\beta = 2 - \frac{p}{1+a}.$$

Observe that $0 < \beta < 1$. Let *I* be an inner function with $I \in S_{\beta}$. Using Theorem B we see that there exist $\varepsilon > 0$ and $r_0 \in (0, 1)$ such that

(13)
$$\Delta(r,I) \ge \varepsilon (1-r)^{\frac{1-\beta}{2-\beta}}, \quad r \in (r_0,1).$$

Since $p \ge 1$, we have that

$$\frac{1}{2\pi} \int_0^{2\pi} \left(1 - |I_\alpha(re^{it})|^2 \right)^p dt$$

$$\geq \left(\frac{1}{2\pi} \int_0^{2\pi} \left(1 - |I_\alpha(re^{it})|^2 \right) dt \right)^p = \Delta^p(r, I), \quad 0 < r < 1,$$

which, together with (13), implies

(14)

$$\int_{r_0}^{1} (1-r)^{\alpha-p} \frac{1}{2\pi} \int_{0}^{2\pi} \left(1 - |I(re^{it})|^2\right)^p dt dr$$

$$\geq \int_{r_0}^{1} (1-r)^{\alpha-p} \Delta^p(r, I_\alpha) dr$$

$$\geq \varepsilon^p \int_{r_0}^{1} (1-r)^{\alpha-p} (1-r)^{\frac{p(1-\beta)}{2-\beta}} dr$$

$$= \varepsilon^p \int_{r_0}^{1} (1-r)^{-1} dr$$

$$= \infty.$$

Using Theorem A we deduce that $I \notin \mathcal{D}^p_{\alpha}$. This finishes the proof. \Box

References

- P. Ahern, The mean modulus and the derivative of an inner function, Indiana Univ. Math. J. 28 (1979), no. 2, 311–347.
- P. Ahern, The Poisson integral of a singular measure, Canad. J. Math. 35 (1983), no. 4, 735–749.
- [3] P. Ahern and D. Clark, On inner functions with B^p derivative, Michigan Math. J. 23 (1976), no. 2, 107–118.

- [4] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
- [5] J. Arazy, S.D. Fisher, and J. Peetre, *Möbius invariant function spaces*, J. Reine Angew. Math. **363** (1985), 110–145.
- [6] R. Aulaskari and P. Lappan Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex analysis and its applications, Pitman Research Notes in Mathematics, 305, Longman Scientific & Technical, Harlow (1994), 136–146
- [7] R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), 101–121.
- [8] A. Baernstein II, Analytic functions of bounded mean oscillation, Aspects of Contemporary Complex Analysis, (D. Brannan and J. Clunie, eds.), Academic Press, (1980), pp. 3–36.
- [9] A. Baernstein II, D. Girela and J. A. Peláez, Univalent functions, Hardy spaces and spaces of Dirichlet type, to appear in Illinois J. Math..
- [10] S. M. Buckley, P. Koskela and D. Vukotić, Fractional integration, differentiation, and weighted Bergman spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999), 369–385.
- [11] E. F. Collingwood and A. H. Lohwater, *The Theory of Cluster Sets*, Cambdridge Tracts in Math. Phys. 56, Cambridge Univ. Press, New York, 1966.
- [12] J. J. Donaire, D. Girela and D. Vukotic, On univalent functions in some Möbius invariant spaces, J. Reine Angew. Math. 553 (2002), 43–72.
- [13] E. S. Doubtsov, Corrected outer functions, Proc. Amer. Math. Soc. 126 (1998), no. 2, 515-522.
- [14] P. L. Duren, Theory of H^p Spaces, Second edition, Dover, Mineola, New York, (2000).
- [15] P. L. Duren and A. P. Schuster, *Bergman Spaces*, Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, (2004).
- [16] M. Essén and J. Xiao, Some results on Q_p spaces, 0 , J. Reine Angew.Math.**485**(1997), 173–195.
- [17] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Aanl. Appl. 38 (1972), 746–765.
- [18] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, London, etc. (1981)

- [19] D. Girela, Analytic functions of bounded mean oscillation, Complex functions spaces, (R. Aulaskari, ed.), Univ. Joensuu Dept. Math. Report Series No. 4 (2001), pp. 61–171.
- [20] D. Girela and J. A. Peláez, Growth properties and sequences of zeros of analytic functions in Dirichlet type spaces, Preprint.
- [21] H. Hedenmalm, B. Korenblum and K. Zhu, *Theory of Bergman Spaces*, Graduate Texts in Mathematics **199**, Springer, New York, Berlin, etc. (2000).
- [22] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series. II, Proc. London Math. Soc. 42 (1936), 52–89.
- [23] D. H. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 103 (1988), n. 3, 887–893.
- [24] R. Nevalinna, Analytic Functions, Springer-Verlag, (1970).
- [25] K. Stephenson, Functions which follows inner functions, Illinois J. Math. 23, (1979), 259–266.
- [26] K. Stephenson, Weak subordination and stable classes of meromorphic functions, Trans. Amer. Math. Soc. 262, n. 2, (1979), 565–577.
- [27] S. A. Vinogradov, Multiplication and division in the space of the analytic functions with area integrable derivative, and in some related spaces, Zap. Nauchn. Sem.
 S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 222, (1995), (45-77), 308 (In Russian). English translation in J. Math. Sci. 87, (1997), (3806-3827).
- [28] J. Xiao, Holomorphic Q classes, Lecture Notes in Math. 1767, Springer Verlag (2001).
- [29] K. Zhu, Analytic Besov Spaces, J. Math. Anal. Appl. 157, (1991), 318–336.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE CIENCIAS, UNIVERSI-DAD DE MÁLAGA, CAMPUS DE TEATINOS, 29071 MÁLAGA, SPAIN

E-mail address: girela@uma.es

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain

E-mail address: pelaez@anamat.cie.uma.es