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Abstract. For 0 < p < ∞ and α > −1 we let Dp
α be the space of all

analytic functions f in D = {z ∈ C : |z| < 1} such that f ′ belongs to
the weighted Bergman space Ap

α. We obtain a number of sharp results
concerning the existence of tangential limits for functions in the spaces
Dp

α. We also study the size of the exceptional set E(f) = {eiθ ∈ ∂D :
V (f, θ) = ∞}, where V (f, θ) denotes the radial variation of f along the
radius [0, eiθ), for functions f ∈ Dp

α.

1. Introduction and main results

Let D denote the open unit disk of the complex plane C. If 0 < r < 1
and f is an analytic function in D (abbreviated f ∈ Hol(D)), we set

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reit)|p dt

)1/p

, Ip(r, f) = Mp
p (r, f), (0 < p < ∞),

M∞(r, f) = sup
0≤t≤2π

|f(reit)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions f ∈ Hol(D)

for which ||f ||Hp

def
= sup0<r<1 Mp(r, f) < ∞. We refer to [10] for the theory

of Hardy spaces.
The weighted Bergman space Ap

α (0 < p < ∞, α > −1) is the space of
all functions f ∈ Hol(D) such that

‖f‖Ap
α

def
=

(∫
D
(1− |z|)α|f(z)|p dA(z)

)1/p

< ∞,

where dA(z) = 1
π
dx dy denotes the normalized Lebesgue area measure in D.

We mention [11] and [16] as general references for the theory of Bergman
spaces.

We shall write Dp
α (0 < p < ∞, α > −1) for the space of all functions

f ∈ Hol(D) such that
∫

D(1− |z|)α|f ′(z)|p dA(z) < ∞. In other words,

f ∈ Dp
α ⇔ f ′ ∈ Ap

α.
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If p < α + 1, it is well known that Dp
α = Ap

α−p with equivalence of norms
(see Theorem 6 of [12]). If p > 1 and α = p−2 we are considering the Besov
spaces Bp which have been extensively studied in [3], [9] and [29]. Specially
relevant is the space B2 = D2

0, which coincides the classical Dirichlet space
D.

The space Dp
α is said to be a Dirichlet space if p ≥ α + 1. Specially inter-

esting are the spaces in the “limit case” p = α+ 1, that is, the spaces Dp
p−1,

0 < p < ∞. These spaces are closely related to Hardy spaces. Indeed, a di-
rect calculation with Taylor coefficients gives that H2 = D2

1. Furthermore,
we have

(1) Hp ⊂ Dp
p−1, 2 ≤ p < ∞,

and

(2) Dp
p−1 ⊂ Hp 0 < p ≤ 2.

The relation (1) is a classical result of Littlewood and Paley [21], and (2)
can be found in [28]. A good number of results on the spaces Dp

p−1 have
been recently obtained in [4], [13], [14], [15] and [28]. We remark that the
spaces Dp

p−1 are not nested. Actually, it is easy to see that if p 6= q then
there is no relation of inclusion between Dp

p−1 and Dq
q−1.

Fatou’s theorem asserts that if 0 < p ≤ ∞ and f ∈ Hp then f has a finite
non-tangential limit f(eiθ) for a.e. eiθ ∈ ∂D. Bearing in mind (2), we see
that this is true if f ∈ Dp

p−1 and 0 < p ≤ 2. In view of (1), it is natural
to ask whether or not Fatou’s theorem remains true for the spaces Dp

p−1,
2 < p < ∞. The answer to this question is negative. Indeed, Theorem 3.5
of [13] asserts that if 2 < p < ∞, then there exists a function f ∈ Dp

p−1

such that

(3) lim
r→1−

|f(reit)|(
log 1

1−r

) 1
2
− 1

p
(

log log 1
1−r

)−1
= ∞, for a.e. eit ∈ ∂D.

This function has a non-tangential limit almost nowhere in ∂D.

Fatou’s theorem is best possible for Hardy spaces, in the sense that it
cannot be extended further to give the existence of “tangential limits”.
Indeed, Lohwater and Piranian [22] (see also p. 43 of [8] and [20], [31] and
p. 280 in Vol. I of [32] for some related results) proved that if γ0 is a Jordan
curve, internally tangent to ∂D at z = 1, and having no other point in
common with ∂D, and γθ (θ ∈ R) denotes the rotation of γ0 through an
angle θ around the origin, then there exists a function f ∈ H∞ such that,
for every θ ∈ R, f does not approach a limit as z → eiθ along γθ.

In spite of this, a number of “tangential-Fatou’s theorems” have been
proved for certain spaces of Dirichlet type.

For A > 0, γ ≥ 1 and ξ ∈ ∂D, we define

R(A, γ, ξ) = {z ∈ D : |1− ξz|γ ≤ A(1− |z|)}.
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When γ = 1 and A > 1, the region R(A, γ, ξ) is basically a Stolz angle.
When γ > 1, R(A, γ, ξ) is a region contained in D which touches ∂D at ξ
tangentially. As γ increases, the degree of tangency increases.

We define also, for A > 1 and β > 0,

Rexp(A, β, ξ) =

{
z ∈ D : exp

(
−|1− ξz|−β

)
≤ (1− |z|)

A

}
,

and

Rlog(A, β, ξ) =

{
z ∈ D : |1− ξz| ≤ A(1− |z|)

(
log

2

1− |z|

)β
}

.

As β increases, the degree of tangency increases in both types of tangential
regions.

If f ∈ Hol(D) we say that f has the γ-limit L at eiθ, if f(z) → L as
z → eiθ within R(A, γ, ξ) for every A. Notice that saying that f has the
1-limit L at eiθ is the same as saying that f has the non-tangential limit L
at eiθ. Substituting the regions R(A, γ, ξ) with the regions Rexp(A, β, ξ) and
Rlog(A, β, ξ), we have the notions of βexp-limits and βlog-limits. We observe
that these definitions of tangential limits are equivalent to those considered
in [2], [7], [23] and [26].

Among other results Kinney [19] and Nagel, Rudin and Shapiro [23] (see
also [26]) proved the following:

(i) If 0 < α < 1 and f ∈ D2
α, then f has a finite α−1-limit at a.e eiθ ∈ ∂D.

(ii) If f ∈ D2
0 = D, then f has a finite 1exp-limit almost everywhere.

In view of these results, it is natural to ask whether results of this kind
can be proved for the spaces Dp

α for other choices of p and α. We start with
a negative result.

Theorem 1. (a) Suppose that A > 1 and β > 1. Then there exists a
function f ∈ ∩1≤p<∞Dp

p−1 such that for almost every eiθ ∈ ∂D, f does not

approach a limit as z → eiθ inside Rlog(A, β, eiθ).
(b) Suppose that A > 0 and γ > 1. Then there exists a function f ∈

∩0<p<∞Dp
p−1 such that for almost every eiθ ∈ ∂D, f does not approach a

limit as z → eiθ inside R(A, γ, eiθ)

Next we turn our attention to the spaces Dp
α with 1 ≤ p ≤ 2 and −1 <

α ≤ p− 1. We will prove the following theorem.

Theorem 2. (a) Suppose that 1 ≤ p ≤ 2, p− 2 < α ≤ p− 1 and f ∈ Dp
α.

Then f has an (α− p + 2)−1-limit at a.e. eiθ ∈ ∂D.
(b) Suppose that 1 < p ≤ 2 and f ∈ Dp

p−2 = Bp. Then f has a (p′−1)exp-

limit at a.e. eiθ ∈ ∂D.

Here and throughout the paper, if p > 1 we write p′ for the exponent
conjugate of p, 1

p
+ 1

p′
= 1.
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We will prove that part (a) of Theorem 2 is sharp in the sense that the
degree of potential tangency (α − p + 2)−1 cannot be substituted by any
larger one.

Theorem 3. Suppose that 1 ≤ p ≤ 2, p − 2 < α ≤ p − 1, A > 0 and
γ > (α− p + 2)−1 Then there exists a function f ∈ Dp

α such that for almost
every eiθ ∈ ∂D, f does not approach a limit as z → eiθ inside R(A, γ, eiθ)

Now we turn to questions related to radial variation of analytic functions.
If f ∈ Hol(D) and θ ∈ [−π, π), we define

(4) V (f, θ)
def
=

∫ 1

0

|f ′(reiθ)| dr.

Then V (f, θ) denotes the radial variation of f along the radius [0, eiθ), that
is, the length of the image of this radius under the mapping f . We define
the exceptional set E(f) associated to f as

(5) E(f) = {eiθ ∈ ∂D : V (f, θ) = ∞}.

It is clear that if f has finite radial variation at eiθ then f has a finite radial
limit at eiθ. Even though every Hp-function, 0 < p ≤ ∞, has finite radial
limits a.e., if we take f ∈ Hol(D) given by a power series with Hadamard
gaps

(6) f(z) =
∞∑

k=1

akz
nk with nk+1 ≥ λnk, for all k (λ > 1),

such that
∞∑

k=1

|ak|2 < ∞ but
∞∑

k=1

|ak| = ∞,

then f ∈ ∩0<p<∞Hp, but a result of Zygmund (see Theorem 1 on p. 194 of
[30]) shows that V (f, θ) = ∞ for every θ ∈ [−π, π).

We will prove a positive result for Dp
p−1-functions, 0 < p ≤ 1

Theorem 4. If 0 < p ≤ 1 and f ∈ Dp
p−1 then E(f) has measure 0.

We note that this result cannot be extended to p > 1. Indeed, if we take f
given by a power series with Hadamard gaps as in (6) with

∑∞
k=1 |ak|p < ∞

and
∑∞

k=1 |ak| = ∞, we have that f ∈ Dp
p−1 (see Proposition A of [13]) and

so V (f, θ) = ∞ for every θ ∈ [−π, π).
On the other hand, we have the following well known result of Beurling

[5] for functions in D2
α.

Theorem A. Let f be an analytic function in D.
(a) If f ∈ D, then E(f) has logarithmic capacity 0.
(b) If 0 < α < 1 and f ∈ D2

α, then E(f) has α-capacity 0.
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See [17] for the definitions of logarithmic capacity and α-capacity and
[27] for an extension of Theorem A.

We will prove the following result for other values of p.

Theorem 5. Suppose that f ∈ Dp
α.

(a) If 0 < p ≤ 1 and −1 < α < p − 1, then E(f) has Lebesgue measure
0.

(b) If 1 < p < 2 and p− 2 < α < p− 1, then E(f) has Lebesgue measure
0.

(c) If 1 < p ≤ 2 and α = p− 2, then E(f) has logarithmic capacity 0.
(d) If 2 < p < ∞ and p− 1 > α ≥ p

2
− 1, then E(f) has β-capacity 0 for

all β > 2
p
(1 + α)− 1.

(e) If 2 < p < ∞ and α < p
2
− 1, then E(f) has logarithmic capacity 0.

2. On the membership of Blaschke products in spaces of
Dirichlet type

We remark that H∞ 6⊂ Dp
α, if 0 < p < ∞ and −1 < α < p− 1 (see, e.g.,

section 3 of [14] for explicit examples). Clearly, (1) gives that H∞ ⊂ Dp
p−1,

if 2 ≤ p < ∞. However, this does not remain true for 0 < p < 2. Indeed,
Vinogradov [28, p. 3822-3823] has shown that there exist Blaschke products
B which do not belong to ∪0<p<2Dp

p−1. In this section we shall find a number
of sufficient conditions for the membership of a Blaschke product in some
of the spaces Dp

α. These results will be basic in the proofs of Theorem 1
and Theorem 3.

We recall that if a sequence of points {an} in D satisfies the Blaschke
condition:

∑∞
n=1(1 − |an|) < ∞, the corresponding Blaschke product B is

defined as

B(z) =
∞∏

n=1

|an|
an

an − z

1− anz
.

Such a product is analytic in D, bounded by one, and with non-tangential
limits of modulus one almost everywhere on the unit circle. We start ob-
taining sufficient conditions for the membership of a Blaschke product in
the spaces Dp

p−1, improving the first part of Lemma 2.11 of [28].

Lemma 1. Let B be a Blaschke product with sequence of zeros {an}.
(a) If {an} satisfies

(7)
∞∑

n=1

(1− |an|) log

(
1

1− |an|

)
< ∞,

then B ∈ ∩1≤p<∞Dp
p−1.

(b) If there exists q ∈ (0, 1) such that

(8)
∞∑

n=1

(1− |an|)q < ∞,
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then B ∈ ∩0<p<∞Dp
p−1.

Proof. A result of Rudin’s ([25, Theorem I]) shows that (7) implies that
B ∈ D1

0. Then (a) follows from the Cauchy estimate |B′(z)| ≤ 1/(1− |z|).
We turn now to part (b). Suppose that {an} satisfies (8) for a certain

q ∈ (0, 1). Assume for now that p ∈ (0, 1]. Using Theorem 3.1 of [18] we
see that B′ ∈ A2−q. Using this, Hölder’s inequality with exponents 2−q

p
and

2−q
2−q−p

and the fact that (2−q)(1−p)
2−q−p

< 1, we obtain we obtain∫
D
|B′(z)|p(1− |z|2)p−1 dA(z)

≤
(∫

D
|B′(z)|2−q dA(z)

) p
2−q
(∫

D
(1− |z|2)

(2−q)(p−1)
2−q−p dA(z)

) 2−q−p
2−q

< ∞.

Hence, we have shown that B ∈ Dp
p−1, for all p ∈ (0, 1]. Using the Cauchy

estimate again, we obtain that B ∈ Dp
p−1 for all p ∈ (0,∞), as desired. �

We next give a simplified proof of a result that essentially is Theo-
rem 3.1(i) for β = 1 and p ≥ 1 in [18].

Lemma 2. Let p and α be such that p ≥ 1 and p− 2 < α < p− 1. If B is
a Blaschke product whose sequence of zeros {an} satisfies

(9)
∞∑

n=1

(1− |an|)α+2−p < ∞,

then B ∈ Dp
α.

Proof. We shall use the notation and terminology of [1, pp. 332-333].
Let p, α and B be as in the statement. Notice that 0 < α + 2− p < 1,

and then, using Theorem 1 of [24], we deduce that B′ ∈ B1/(α−p+3) or,
equivalently, B ∈ D1

α−p+1. Then as in the proof of Lemma 1, the Cauchy
estimate implies B ∈ Dp

α since p− 1 ≥ 0. �

3. Tangential limits for Dp
α-functions

Proof of Theorem 1(a). We are going to use an argument which is similar
to the one used in the proof of Theorem 7.44 of [32], Vol I, Chapter VII.

Take M with 1 < M < A and let Let Cθ be the boundary of Rlog(M, β, eiθ),
(θ ∈ [0, 2π)). For all sufficiently large n, let ln denote the length of the arc
of the circle |z| = 1− 1

n
which lies in Rlog(M, β, 1) and let mn = E[2π

ln
] + 1,

where, for x ∈ R, E[x] denotes the greatest integer that is smaller than or
equal to x. Let Sn = {zn,1, zn,2, . . . zn,mn} be any collection of mn points
equally spaced on |z| = 1− 1

n
. Since the circular distance between any two

consecutive points of Sn is smaller than ln, for every θ the set Rlog(M, β, eiθ)
contains a point of Sn.
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We define

σn =
mn∑
k=1

(1− |zn,k|) log

(
1

1− |zn,k|

)
=

mn log(n)

n
.

Notice that ln � 1
n

logβ n. Then it is easy to see that there exists a positive
constant C (which does not depend on n) such that

σn =
mn log(n)

n
≤

(1 + 2π
ln

) log(n)

n
≤ C

log(n)

nln

≤C
1

logβ−1 n
→ 0, as n →∞.

Let us take then an increasing sequence nk satisfying that
∑∞

k=1 σnk
< ∞

and let B be the Blaschke product with zeros at the points of ∪∞k=1Snk
. By

part (a) of Lemma 1, B ∈ ∩1≤p<∞Dp
p−1. Notice that for each θ ∈ R, B has

infinitely many zeros in the set Rlog(M, β, eiθ). Thus for every θ, the limit
of B(z) as z → eiθ inside of Rlog(M, β, eiθ) must be zero if it exists at all.
Since the radial limit of B has absolute value 1 a.e., it follows that for almost
every eiθ ∈ ∂D, the the limit of B(z) as z → eiθ inside of Rlog(M, β, eiθ)
does not exist. �

Part (b) of Theorem 1 can be proved in a similar way using part (b) of
Lemma 1. We omit the details.

Next we shall obtain a representation formula for functions f in the space
Dp

α, −1 < α, 1 ≤ p ≤ 2 which will play a basic role in the proof of Theorem
2.

Theorem 6. Suppose that either 1 ≤ p ≤ 2 and −1 < α < p − 1 or
1 < p ≤ 2 and α = p − 2, and that f ∈ Dp

α. Then there exists a function
h(eiθ) ∈ Lp(∂D) such that

(10) f(z) =
1

2π

∫ π

−π

h(eiθ)

(1− e−iθz)
α+1

p

dθ, z ∈ D.

Proof. Let p and α be as in the statement and f(z) =
∑∞

n=0 anz
n ∈ Dp

α.
Then zf ′(z) =

∑∞
n=0 nanz

n ∈ Ap
α. Since Dp

α ⊂ Ap
α we also have that f ∈ Ap

α.
Then it follows that

zf ′(z) +
α + 1

p
f(z) =

∞∑
n=0

(
n +

α + 1

p

)
anz

n ∈ Ap
α.

So using Lemma 1.1 of [6] (see also part (iii) of Theorem 5 of [12]) and
Corollary 3.5 of [6], we deduce that the fractional integral

h(z)
def
= Ĩ

α+1
p

(
zf ′(z) +

α + 1

p
f(z)

)
=

∞∑
n=0

(
n +

α + 1

p

)
B

(
n + 1,

α + 1

p

)
anz

n
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belongs to Hp since p ≤ 2. HereB(., .) is the classical beta function. Note
that

B(u, v) =
Γ(u)Γ(v)

Γ(u + v)

and recall that Γ(s + 1) = sΓ(s), for all s 6= 0,−1, . . . . Then it is easy to
see that

h(z) =
∞∑

n=0

n!Γ(α+1
p

)

Γ(n + α+1
p

)
anz

n.

Then,

h(eiθ) =
∞∑

n=0

n!Γ(α+1
p

)

Γ(n + α+1
p

)
ane

inθ ∈ Lp(∂D).

By the Binomial Theorem,

1

(1− e−iθz)
α+1

p

=
∞∑

k=0

Γ(k + α+1
p

)

k!Γ(α+1
p

)
e−ikθzk.

Thus,

1

2π

∫ π

−π

h(eiθ)

(1− e−iθz)
α+1

p

dt

=
1

2π

∫ π

−π

(
∞∑

n=0

n!Γ(α+1
p

)

Γ(n + α+1
p

)
ane

inθ

)(
∞∑

k=0

Γ(k + α+1
p

)

k!Γ(α+1
p

)
e−ikθzk

)
dθ

=
∞∑

n=0

anz
n = f(z).

This finishes the proof. �

Proof of Theorem 2. We need to consider three cases.
Case a1: 1 ≤ p ≤ 2 and α = p − 1. Then Dp

α = Dp
p−1 ⊂ Hp and the

result in this case follows from Fatou’s theorem for Hp.
Case a2: 1 ≤ p ≤ 2 and p − 2 < α < p − 1. If f ∈ Dp

α then, using
Theorem 6 we have that there exists h(eiθ) ∈ Lp(∂D) such that

f(z) =
1

2π

∫ π

−π

h(eiθ)

(1− e−iθz)
α+1

p

dt, =
1

2π

∫ π

−π

h(eiθ)

(1− e−iθz)1− p−α−1
p

dt.

Notice that p
(

p−α−1
p

)
< 1, so by part (a) of Theorem A of [23] we have

that f has (α− p + 2)−1-limit at a.e. eiθ ∈ ∂D.
Case b: 1 < p ≤ 2 and α = p − 2. Using again Theorem 6 we have that

if f ∈ Dp
α then there exists h(eiθ) ∈  Lp(∂D) such that

f(z) =
1

2π

∫ π

−π

h(eiθ)

(1− e−iθz)1− 1
p

dt.

Using part (b) of Theorem A of [23] we deduce that f has (p′ − 1)exp-limit
at a.e. eiθ ∈ ∂D. �
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Theorem 3 can be proved arguing as in the proof of part (a) of Theorem 1,
using Lemma 2 instead of Lemma 1. Again, we shall omit the details.

4. Radial Variation of functions in the spaces Dp
α

Proof of Theorem 4. Let 0 < p < 1 and f ∈ Dp
p−1. Set

Ff = {θ ∈ [−π, π] : f has a finite non-tangential limit at eiθ}.

By (2) and Fatou’s theorem, [−π, π] \ Ff has Lebesgue measure 0. On the
other hand, Zygmund proved in p. 81 of [30] that

(1− r)|f ′(reiθ)| → 0, as r → 1−,

for all θ ∈ Ff . Consequently the set

F ?
f = {θ ∈ [−π, π] : (1− r)|f ′(reiθ)| → 0}

is such that [−π, π]\F ?
f has Lebesgue measure 0. Since f ∈ Dp

p−1, we deduce
that the set

Tf = {θ ∈ [−π, π] :

∫ 1

0

(1− r)p−1|f ′(reiθ)|p dr < ∞}

is such that [−π, π] \Tf has Lebesgue measure 0. Thus, [−π, π] \
(
F ?

f ∩ Tf

)
has Lebesgue measure 0. Furthermore, if θ ∈ F ?

f ∩Tf there exists a positive
constant Cθ such that

V (f, θ) =

∫ 1

0

|f ′(reiθ)|p|f ′(reiθ)|1−p dr ≤ Cθ

∫ 1

0

(1−r)p−1|f ′(reiθ)|p dr < ∞.

�

Proof of Theorem 5. Since

Dp
α ⊂ D

p
β, −1 < α ≤ β, 0 < p < ∞,

(a) follows from Theorem 4.
Suppose now that 1 < p < 2, p − 2 < α < p − 1 and f ∈ Dp

α. Then the
set

Tα
f = {θ ∈ [−π, π] :

∫ 1

0

(1− r)α|f ′(reiθ)|p dr < ∞}

is such that [−π, π] \ Tα
f has Lebesgue measure 0. Now, using Hölder’s

inequality we see that there exists a positive constant Cα,p such that

V (f, θ) =

∫ 1

0

(1− r)α/p|f ′(reiθ)|(1− r)−α/p dr

≤
(∫ 1

0

(1− r)α|f ′(reiθ)|p dr

)1/p(∫ 1

0

(1− r)−p′α/p dr

)1/p′

≤ Cα,p

(∫ 1

0

(1− r)α|f ′(reiθ)|p dr

)1/p

< ∞,
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for all θ ∈ Tα
f . (We have used that −p′α/p > −1 since α < p − 1.) Thus,

(b) is proved.
(c) follows from the well known inclusion

Dp
p−2 = Bp ⊂ Bq = Dq

q−2, 1 < p < q < ∞,

(see, e. g., [3, p 112]), Theorem A and the fact that B2 = D.
Finally, suppose that 2 < p < ∞ and f ∈ Dp

α. Using Hölder’s inequality
with exponents p

p−2
and p/2, we have that∫

D
(1− |z|)β|f ′(z)|2 dA(z) =

∫
D
(1− |z|)β− 2α

p |f ′(z)|2 (1− |z|)
2α
p dA(z)

≤
(∫

D
(1− |z|)

pβ−2α
p−2 dA(z)

) p−2
p
(∫

D
(1− |z|)α|f ′(z)|p dA(z)

)2/p

.

(11)

Letting β = 0, we see that the condition α < p
2
− 1 implies that f ∈ D.

Hence, (e) follows from part (a) of Theorem A. On the other hand, if
p − 1 > α ≥ p

2
− 1 then β can be chosen so that β > 2

p
(1 + α) − 1 and

0 < β < 1. Then (11) implies that f ∈ D2
β, and (d) follows from part (b) of

Theorem A. �
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References

[1] P. Ahern, The mean modulus of the derivative of an inner function, Indiana Univ.
Math. J. 28 (1979), no. 2, 311–347.

[2] P. Ahern and D. Clark, On inner functions with Hp derivative, Michigan Math. J.,
21 (1974), 115-127.

[3] J. Arazy, S. D. Fisher and J. Peetre, Möbius invariant function spaces, J. Reine
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