BOUNDARY BEHAVIOUR OF ANALYTIC FUNCTIONS IN SPACES OF DIRICHLET TYPE

DANIEL GIRELA AND JOSÉ ÁNGEL PELÁEZ

ABSTRACT. For $0 and <math>\alpha > -1$ we let \mathcal{D}^p_{α} be the space of all analytic functions f in $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ such that f' belongs to the weighted Bergman space A^p_{α} . We obtain a number of sharp results concerning the existence of tangential limits for functions in the spaces \mathcal{D}^p_{α} . We also study the size of the exceptional set $E(f) = \{e^{i\theta} \in \partial \mathbb{D} :$ $V(f, \theta) = \infty\}$, where $V(f, \theta)$ denotes the radial variation of f along the radius $[0, e^{i\theta})$, for functions $f \in \mathcal{D}^p_{\alpha}$.

1. INTRODUCTION AND MAIN RESULTS

Let \mathbb{D} denote the open unit disk of the complex plane \mathbb{C} . If 0 < r < 1and f is an analytic function in \mathbb{D} (abbreviated $f \in Hol(\mathbb{D})$), we set

$$M_p(r,f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt\right)^{1/p}, \quad I_p(r,f) = M_p^p(r,f), \ (0
$$M_\infty(r,f) = \sup_{0 \le t \le 2\pi} |f(re^{it})|.$$$$

For $0 the Hardy space <math>H^p$ consists of those functions $f \in \mathcal{H}ol(\mathbb{D})$ for which $||f||_{H^p} \stackrel{\text{def}}{=} \sup_{0 < r < 1} M_p(r, f) < \infty$. We refer to [10] for the theory of Hardy spaces.

The weighted Bergman space A^p_{α} (0 -1) is the space of all functions $f \in \mathcal{H}ol(\mathbb{D})$ such that

$$\|f\|_{A^p_\alpha} \stackrel{\text{def}}{=} \left(\int_{\mathbb{D}} (1-|z|)^{\alpha} |f(z)|^p \, dA(z) \right)^{1/p} < \infty,$$

where $dA(z) = \frac{1}{\pi} dx \, dy$ denotes the normalized Lebesgue area measure in \mathbb{D} . We mention [11] and [16] as general references for the theory of Bergman spaces.

We shall write \mathcal{D}^p_{α} (0 -1) for the space of all functions $f \in \mathcal{H}ol(\mathbb{D})$ such that $\int_{\mathbb{D}} (1 - |z|)^{\alpha} |f'(z)|^p dA(z) < \infty$. In other words,

$$f \in \mathcal{D}^p_\alpha \Leftrightarrow f' \in A^p_\alpha.$$

Date: October 11, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 30D50, 30D55, 32A36.

Key words and phrases. Dirichlet spaces, Bergman spaces, Tangential limits, Radial variation.

D. GIRELA AND J.A. PELÁEZ

If $p < \alpha + 1$, it is well known that $\mathcal{D}^p_{\alpha} = A^p_{\alpha-p}$ with equivalence of norms (see Theorem 6 of [12]). If p > 1 and $\alpha = p - 2$ we are considering the Besov spaces \mathcal{B}^p which have been extensively studied in [3], [9] and [29]. Specially relevant is the space $\mathcal{B}^2 = \mathcal{D}^2_0$, which coincides the classical Dirichlet space \mathcal{D} .

The space \mathcal{D}^p_{α} is said to be a Dirichlet space if $p \geq \alpha + 1$. Specially interesting are the spaces in the "limit case" $p = \alpha + 1$, that is, the spaces \mathcal{D}^p_{p-1} , 0 . These spaces are closely related to Hardy spaces. Indeed, a di $rect calculation with Taylor coefficients gives that <math>H^2 = \mathcal{D}^2_1$. Furthermore, we have

(1)
$$H^p \subset \mathcal{D}_{p-1}^p, \quad 2 \le p < \infty,$$

and

(2)
$$\mathcal{D}_{p-1}^p \subset H^p \quad 0$$

The relation (1) is a classical result of Littlewood and Paley [21], and (2) can be found in [28]. A good number of results on the spaces \mathcal{D}_{p-1}^p have been recently obtained in [4], [13], [14], [15] and [28]. We remark that the spaces \mathcal{D}_{p-1}^p are not nested. Actually, it is easy to see that if $p \neq q$ then there is no relation of inclusion between \mathcal{D}_{p-1}^p and \mathcal{D}_{q-1}^q .

Fatou's theorem asserts that if $0 and <math>f \in H^p$ then f has a finite non-tangential limit $f(e^{i\theta})$ for a.e. $e^{i\theta} \in \partial \mathbb{D}$. Bearing in mind (2), we see that this is true if $f \in \mathcal{D}_{p-1}^p$ and 0 . In view of (1), it is natural $to ask whether or not Fatou's theorem remains true for the spaces <math>\mathcal{D}_{p-1}^p$, 2 . The answer to this question is negative. Indeed, Theorem 3.5 $of [13] asserts that if <math>2 , then there exists a function <math>f \in \mathcal{D}_{p-1}^p$ such that

(3)
$$\lim_{r \to 1^{-}} \frac{|f(re^{it})|}{\left(\log \frac{1}{1-r}\right)^{\frac{1}{2}-\frac{1}{p}} \left(\log \log \frac{1}{1-r}\right)^{-1}} = \infty, \quad \text{for a.e. } e^{it} \in \partial \mathbb{D}.$$

This function has a non-tangential limit almost nowhere in ∂D .

Fatou's theorem is best possible for Hardy spaces, in the sense that it cannot be extended further to give the existence of "tangential limits". Indeed, Lohwater and Piranian [22] (see also p. 43 of [8] and [20], [31] and p. 280 in Vol. I of [32] for some related results) proved that if γ_0 is a Jordan curve, internally tangent to $\partial \mathbb{D}$ at z = 1, and having no other point in common with $\partial \mathbb{D}$, and γ_{θ} ($\theta \in \mathbb{R}$) denotes the rotation of γ_0 through an angle θ around the origin, then there exists a function $f \in H^{\infty}$ such that, for every $\theta \in \mathbb{R}$, f does not approach a limit as $z \to e^{i\theta}$ along γ_{θ} .

In spite of this, a number of "tangential-Fatou's theorems" have been proved for certain spaces of Dirichlet type.

For $A > 0, \gamma \ge 1$ and $\xi \in \partial \mathbb{D}$, we define

$$R(A, \gamma, \xi) = \{ z \in \mathbb{D} : |1 - \xi z|^{\gamma} \le A(1 - |z|) \}.$$

 $\mathbf{2}$

When $\gamma = 1$ and A > 1, the region $R(A, \gamma, \xi)$ is basically a Stolz angle. When $\gamma > 1$, $R(A, \gamma, \xi)$ is a region contained in \mathbb{D} which touches $\partial \mathbb{D}$ at ξ tangentially. As γ increases, the degree of tangency increases.

We define also, for A > 1 and $\beta > 0$,

$$R_{\exp}(A,\beta,\xi) = \left\{ z \in \mathbb{D} : \exp\left(-|1-\overline{\xi}z|^{-\beta}\right) \le \frac{(1-|z|)}{A} \right\},\,$$

and

$$R_{\log}(A,\beta,\xi) = \left\{ z \in \mathbb{D} : |1 - \overline{\xi}z| \le A(1 - |z|) \left(\log \frac{2}{1 - |z|} \right)^{\beta} \right\}.$$

As β increases, the degree of tangency increases in both types of tangential regions.

If $f \in \mathcal{H}ol(\mathbb{D})$ we say that f has the γ -limit L at $e^{i\theta}$, if $f(z) \to L$ as $z \to e^{i\theta}$ within $R(A, \gamma, \xi)$ for every A. Notice that saying that f has the 1-limit L at $e^{i\theta}$ is the same as saying that f has the non-tangential limit L at $e^{i\theta}$. Substituting the regions $R(A, \gamma, \xi)$ with the regions $R_{\exp}(A, \beta, \xi)$ and $R_{\log}(A, \beta, \xi)$, we have the notions of β_{\exp} -limits and β_{\log} -limits. We observe that these definitions of tangential limits are equivalent to those considered in [2], [7], [23] and [26].

Among other results Kinney [19] and Nagel, Rudin and Shapiro [23] (see also [26]) proved the following:

(i) If $0 < \alpha < 1$ and $f \in D^2_{\alpha}$, then f has a finite α^{-1} -limit at a.e. $e^{i\theta} \in \partial \mathbb{D}$. (ii) If $f \in D^2_0 = \mathcal{D}$, then f has a finite 1_{\exp} -limit almost everywhere.

In view of these results, it is natural to ask whether results of this kind can be proved for the spaces \mathcal{D}^p_{α} for other choices of p and α . We start with a negative result.

THEOREM 1. (a) Suppose that A > 1 and $\beta > 1$. Then there exists a function $f \in \bigcap_{1 \le p < \infty} \mathcal{D}_{p-1}^p$ such that for almost every $e^{i\theta} \in \partial \mathbb{D}$, f does not approach a limit as $z \to e^{i\theta}$ inside $R_{\log}(A, \beta, e^{i\theta})$.

(b) Suppose that A > 0 and $\gamma > 1$. Then there exists a function $f \in \bigcap_{0 such that for almost every <math>e^{i\theta} \in \partial \mathbb{D}$, f does not approach a limit as $z \to e^{i\theta}$ inside $R(A, \gamma, e^{i\theta})$

Next we turn our attention to the spaces \mathcal{D}^p_{α} with $1 \leq p \leq 2$ and $-1 < \alpha \leq p - 1$. We will prove the following theorem.

THEOREM 2. (a) Suppose that $1 \le p \le 2, p-2 < \alpha \le p-1$ and $f \in \mathcal{D}^p_{\alpha}$. Then f has an $(\alpha - p + 2)^{-1}$ -limit at a.e. $e^{i\theta} \in \partial \mathbb{D}$.

(b) Suppose that $1 and <math>f \in \mathcal{D}_{p-2}^p = \mathcal{B}^p$. Then f has a $(p'-1)_{\exp}$ -limit at a.e. $e^{i\theta} \in \partial \mathbb{D}$.

Here and throughout the paper, if p > 1 we write p' for the exponent conjugate of p, $\frac{1}{p} + \frac{1}{p'} = 1$.

D. GIRELA AND J.A. PELÁEZ

We will prove that part (a) of Theorem 2 is sharp in the sense that the degree of potential tangency $(\alpha - p + 2)^{-1}$ cannot be substituted by any larger one.

THEOREM 3. Suppose that $1 \leq p \leq 2, p-2 < \alpha \leq p-1, A > 0$ and $\gamma > (\alpha - p + 2)^{-1}$ Then there exists a function $f \in \mathcal{D}^p_{\alpha}$ such that for almost every $e^{i\theta} \in \partial \mathbb{D}$, f does not approach a limit as $z \to e^{i\theta}$ inside $R(A, \gamma, e^{i\theta})$

Now we turn to questions related to radial variation of analytic functions. If $f \in \mathcal{H}ol(\mathbb{D})$ and $\theta \in [-\pi, \pi)$, we define

(4)
$$V(f,\theta) \stackrel{\text{def}}{=} \int_0^1 |f'(re^{i\theta})| \, dr.$$

Then $V(f, \theta)$ denotes the radial variation of f along the radius $[0, e^{i\theta})$, that is, the length of the image of this radius under the mapping f. We define the exceptional set E(f) associated to f as

(5)
$$E(f) = \{ e^{i\theta} \in \partial \mathbb{D} : V(f,\theta) = \infty \}.$$

It is clear that if f has finite radial variation at $e^{i\theta}$ then f has a finite radial limit at $e^{i\theta}$. Even though every H^p -function, 0 , has finite radial $limits a.e., if we take <math>f \in \mathcal{H}ol(\mathbb{D})$ given by a power series with Hadamard gaps

(6)
$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k} \text{ with } n_{k+1} \ge \lambda n_k, \text{ for all } k \quad (\lambda > 1),$$

such that

$$\sum_{k=1}^{\infty} |a_k|^2 < \infty \quad \text{but} \quad \sum_{k=1}^{\infty} |a_k| = \infty,$$

then $f \in \bigcap_{0 , but a result of Zygmund (see Theorem 1 on p. 194 of [30]) shows that <math>V(f, \theta) = \infty$ for every $\theta \in [-\pi, \pi)$.

We will prove a positive result for \mathcal{D}_{p-1}^p -functions, 0

THEOREM 4. If $0 and <math>f \in \mathcal{D}_{p-1}^p$ then E(f) has measure 0.

We note that this result cannot be extended to p > 1. Indeed, if we take f given by a power series with Hadamard gaps as in (6) with $\sum_{k=1}^{\infty} |a_k|^p < \infty$ and $\sum_{k=1}^{\infty} |a_k| = \infty$, we have that $f \in \mathcal{D}_{p-1}^p$ (see Proposition A of [13]) and so $V(f, \theta) = \infty$ for every $\theta \in [-\pi, \pi)$.

On the other hand, we have the following well known result of Beurling [5] for functions in \mathcal{D}^2_{α} .

THEOREM A. Let f be an analytic function in \mathbb{D} . (a) If $f \in \mathcal{D}$, then E(f) has logarithmic capacity 0. (b) If $0 < \alpha < 1$ and $f \in \mathcal{D}^2_{\alpha}$, then E(f) has α -capacity 0.

See [17] for the definitions of logarithmic capacity and α -capacity and [27] for an extension of Theorem A.

We will prove the following result for other values of p.

THEOREM 5. Suppose that $f \in \mathcal{D}^p_{\alpha}$.

(a) If $0 and <math>-1 < \alpha < p - 1$, then E(f) has Lebesgue measure 0.

(b) If $1 and <math>p - 2 < \alpha < p - 1$, then E(f) has Lebesgue measure 0.

(c) If $1 and <math>\alpha = p - 2$, then E(f) has logarithmic capacity 0. (d) If $2 and <math>p - 1 > \alpha \ge \frac{p}{2} - 1$, then E(f) has β -capacity 0 for all $\beta > \frac{2}{p}(1 + \alpha) - 1$.

(e) If $2 and <math>\alpha < \frac{p}{2} - 1$, then E(f) has logarithmic capacity 0.

2. On the membership of Blaschke products in spaces of Dirichlet type

We remark that $H^{\infty} \not\subset \mathcal{D}_{\alpha}^{p}$, if $0 and <math>-1 < \alpha < p-1$ (see, e.g., section 3 of [14] for explicit examples). Clearly, (1) gives that $H^{\infty} \subset \mathcal{D}_{p-1}^{p}$, if $2 \leq p < \infty$. However, this does not remain true for 0 . Indeed, Vinogradov [28, p. 3822-3823] has shown that there exist Blaschke products <math>B which do not belong to $\bigcup_{0 . In this section we shall find a number of sufficient conditions for the membership of a Blaschke product in some of the spaces <math>\mathcal{D}_{\alpha}^{p}$. These results will be basic in the proofs of Theorem 1 and Theorem 3.

We recall that if a sequence of points $\{a_n\}$ in \mathbb{D} satisfies the *Blaschke* condition: $\sum_{n=1}^{\infty} (1 - |a_n|) < \infty$, the corresponding Blaschke product *B* is defined as

$$B(z) = \prod_{n=1}^{\infty} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a_n} z}$$

Such a product is analytic in \mathbb{D} , bounded by one, and with non-tangential limits of modulus one almost everywhere on the unit circle. We start obtaining sufficient conditions for the membership of a Blaschke product in the spaces \mathcal{D}_{p-1}^{p} , improving the first part of Lemma 2.11 of [28].

LEMMA 1. Let B be a Blaschke product with sequence of zeros $\{a_n\}$. (a) If $\{a_n\}$ satisfies

(7)
$$\sum_{n=1}^{\infty} (1-|a_n|) \log\left(\frac{1}{1-|a_n|}\right) < \infty,$$

then $B \in \bigcap_{1 \le p < \infty} \mathcal{D}_{p-1}^p$.

(b) If there exists $q \in (0, 1)$ such that

(8)
$$\sum_{n=1}^{\infty} (1-|a_n|)^q < \infty$$

D. GIRELA AND J.A. PELÁEZ

then $B \in \bigcap_{0 .$

Proof. A result of Rudin's ([25, Theorem I]) shows that (7) implies that $B \in \mathcal{D}_0^1$. Then (a) follows from the Cauchy estimate $|B'(z)| \leq 1/(1-|z|)$.

We turn now to part (b). Suppose that $\{a_n\}$ satisfies (8) for a certain $q \in (0,1)$. Assume for now that $p \in (0,1]$. Using Theorem 3.1 of [18] we see that $B' \in A^{2-q}$. Using this, Hölder's inequality with exponents $\frac{2-q}{p}$ and $\frac{2-q}{2-q-p}$ and the fact that $\frac{(2-q)(1-p)}{2-q-p} < 1$, we obtain

$$\begin{split} &\int_{\mathbb{D}} |B'(z)|^p (1-|z|^2)^{p-1} \, dA(z) \\ &\leq \left(\int_{\mathbb{D}} |B'(z)|^{2-q} \, dA(z) \right)^{\frac{p}{2-q}} \left(\int_{\mathbb{D}} (1-|z|^2)^{\frac{(2-q)(p-1)}{2-q-p}} \, dA(z) \right)^{\frac{2-q-p}{2-q}} < \infty. \end{split}$$

Hence, we have shown that $B \in \mathcal{D}_{p-1}^p$, for all $p \in (0, 1]$. Using the Cauchy estimate again, we obtain that $B \in \mathcal{D}_{p-1}^p$ for all $p \in (0, \infty)$, as desired. \Box

We next give a simplified proof of a result that essentially is Theorem 3.1(i) for $\beta = 1$ and $p \ge 1$ in [18].

LEMMA 2. Let p and α be such that $p \ge 1$ and $p - 2 < \alpha < p - 1$. If B is a Blaschke product whose sequence of zeros $\{a_n\}$ satisfies

(9)
$$\sum_{n=1}^{\infty} (1-|a_n|)^{\alpha+2-p} < \infty,$$

then $B \in \mathcal{D}^p_{\alpha}$.

Proof. We shall use the notation and terminology of [1, pp. 332-333].

Let p, α and B be as in the statement. Notice that $0 < \alpha + 2 - p < 1$, and then, using Theorem 1 of [24], we deduce that $B' \in B^{1/(\alpha-p+3)}$ or, equivalently, $B \in \mathcal{D}^1_{\alpha-p+1}$. Then as in the proof of Lemma 1, the Cauchy estimate implies $B \in \mathcal{D}^p_{\alpha}$ since $p-1 \ge 0$. \Box

3. Tangential limits for \mathcal{D}^p_{α} -functions

Proof of Theorem 1(a). We are going to use an argument which is similar to the one used in the proof of Theorem 7.44 of [32], Vol I, Chapter VII.

Take M with 1 < M < A and let Let C_{θ} be the boundary of $R_{\log}(M, \beta, e^{i\theta})$, $(\theta \in [0, 2\pi))$. For all sufficiently large n, let l_n denote the length of the arc of the circle $|z| = 1 - \frac{1}{n}$ which lies in $R_{\log}(M, \beta, 1)$ and let $m_n = E[\frac{2\pi}{l_n}] + 1$, where, for $x \in \mathbb{R}$, E[x] denotes the greatest integer that is smaller than or equal to x. Let $S_n = \{z_{n,1}, z_{n,2}, \ldots, z_{n,m_n}\}$ be any collection of m_n points equally spaced on $|z| = 1 - \frac{1}{n}$. Since the circular distance between any two consecutive points of S_n is smaller than l_n , for every θ the set $R_{\log}(M, \beta, e^{i\theta})$ contains a point of S_n .

We define

$$\sigma_n = \sum_{k=1}^{m_n} (1 - |z_{n,k}|) \log\left(\frac{1}{1 - |z_{n,k}|}\right) = \frac{m_n \log(n)}{n}.$$

Notice that $l_n \approx \frac{1}{n} \log^{\beta} n$. Then it is easy to see that there exists a positive constant C (which does not depend on n) such that

$$\sigma_n = \frac{m_n \log(n)}{n} \le \frac{\left(1 + \frac{2\pi}{l_n}\right) \log(n)}{n} \le C \frac{\log(n)}{n l_n}$$
$$\le C \frac{1}{\log^{\beta - 1} n} \to 0, \quad \text{as } n \to \infty.$$

Let us take then an increasing sequence n_k satisfying that $\sum_{k=1}^{\infty} \sigma_{n_k} < \infty$ and let B be the Blaschke product with zeros at the points of $\bigcup_{k=1}^{\infty} S_{n_k}$. By part (a) of Lemma 1, $B \in \bigcap_{1 \leq p < \infty} \mathcal{D}_{p-1}^p$. Notice that for each $\theta \in \mathbb{R}$, B has infinitely many zeros in the set $R_{\log}(M, \beta, e^{i\theta})$. Thus for every θ , the limit of B(z) as $z \to e^{i\theta}$ inside of $R_{\log}(M, \beta, e^{i\theta})$ must be zero if it exists at all. Since the radial limit of B has absolute value 1 a.e., it follows that for almost every $e^{i\theta} \in \partial \mathbb{D}$, the the limit of B(z) as $z \to e^{i\theta}$ inside of $R_{\log}(M, \beta, e^{i\theta})$ does not exist. \Box

Part (b) of Theorem 1 can be proved in a similar way using part (b) of Lemma 1. We omit the details.

Next we shall obtain a representation formula for functions f in the space \mathcal{D}^p_{α} , $-1 < \alpha$, $1 \le p \le 2$ which will play a basic role in the proof of Theorem 2.

THEOREM 6. Suppose that either $1 \leq p \leq 2$ and $-1 < \alpha < p - 1$ or $1 and <math>\alpha = p - 2$, and that $f \in \mathcal{D}^p_{\alpha}$. Then there exists a function $h(e^{i\theta}) \in L^p(\partial \mathbb{D})$ such that

(10)
$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{h(e^{i\theta})}{(1 - e^{-i\theta}z)^{\frac{\alpha+1}{p}}} d\theta, \quad z \in \mathbb{D}.$$

Proof. Let p and α be as in the statement and $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{D}^p_{\alpha}$. Then $zf'(z) = \sum_{n=0}^{\infty} na_n z^n \in A^p_{\alpha}$. Since $\mathcal{D}^p_{\alpha} \subset A^p_{\alpha}$ we also have that $f \in A^p_{\alpha}$. Then it follows that

$$zf'(z) + \frac{\alpha+1}{p}f(z) = \sum_{n=0}^{\infty} \left(n + \frac{\alpha+1}{p}\right) a_n z^n \in A^p_{\alpha}.$$

So using Lemma 1.1 of [6] (see also part (iii) of Theorem 5 of [12]) and Corollary 3.5 of [6], we deduce that the fractional integral

$$h(z) \stackrel{\text{def}}{=} \tilde{I}^{\frac{\alpha+1}{p}} \left(zf'(z) + \frac{\alpha+1}{p} f(z) \right)$$
$$= \sum_{n=0}^{\infty} \left(n + \frac{\alpha+1}{p} \right) B\left(n+1, \frac{\alpha+1}{p} \right) a_n z^n$$

belongs to H^p since $p \leq 2$. Here B(., .) is the classical beta function. Note that

$$B(u,v) = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}$$

and recall that $\Gamma(s+1) = s\Gamma(s)$, for all $s \neq 0, -1, \ldots$ Then it is easy to see that

$$h(z) = \sum_{n=0}^{\infty} \frac{n! \Gamma(\frac{\alpha+1}{p})}{\Gamma(n+\frac{\alpha+1}{p})} a_n z^n.$$

Then,

$$h(e^{i\theta}) = \sum_{n=0}^{\infty} \frac{n! \Gamma(\frac{\alpha+1}{p})}{\Gamma(n+\frac{\alpha+1}{p})} a_n e^{in\theta} \in L^p(\partial \mathbb{D}).$$

By the Binomial Theorem,

$$\frac{1}{\left(1-e^{-i\theta}z\right)^{\frac{\alpha+1}{p}}} = \sum_{k=0}^{\infty} \frac{\Gamma\left(k+\frac{\alpha+1}{p}\right)}{k!\Gamma\left(\frac{\alpha+1}{p}\right)} e^{-ik\theta}z^k.$$

Thus,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{h(e^{i\theta})}{(1 - e^{-i\theta}z)^{\frac{\alpha+1}{p}}} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{n=0}^{\infty} \frac{n!\Gamma(\frac{\alpha+1}{p})}{\Gamma(n + \frac{\alpha+1}{p})} a_n e^{in\theta} \right) \left(\sum_{k=0}^{\infty} \frac{\Gamma(k + \frac{\alpha+1}{p})}{k!\Gamma(\frac{\alpha+1}{p})} e^{-ik\theta} z^k \right) d\theta$$

$$= \sum_{n=0}^{\infty} a_n z^n = f(z).$$

This finishes the proof. \Box

Proof of Theorem 2. We need to consider three cases.

Case al: $1 \leq p \leq 2$ and $\alpha = p - 1$. Then $\mathcal{D}^p_{\alpha} = \mathcal{D}^p_{p-1} \subset H^p$ and the result in this case follows from Fatou's theorem for H^p .

Case a2: $1 \leq p \leq 2$ and $p-2 < \alpha < p-1$. If $f \in \mathcal{D}^p_{\alpha}$ then, using Theorem 6 we have that there exists $h(e^{i\theta}) \in L^p(\partial \mathbb{D})$ such that

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{h(e^{i\theta})}{\left(1 - e^{-i\theta}z\right)^{\frac{\alpha+1}{p}}} dt, = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{h(e^{i\theta})}{\left(1 - e^{-i\theta}z\right)^{1 - \frac{p-\alpha-1}{p}}} dt.$$

Notice that $p\left(\frac{p-\alpha-1}{p}\right) < 1$, so by part (a) of Theorem A of [23] we have that f has $(\alpha - p + 2)^{-1}$ -limit at a.e. $e^{i\theta} \in \partial \mathbb{D}$.

Case b: $1 and <math>\alpha = p - 2$. Using again Theorem 6 we have that if $f \in \mathcal{D}^p_{\alpha}$ then there exists $h(e^{i\theta}) \in L^p(\partial \mathbb{D})$ such that

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{h(e^{i\theta})}{(1 - e^{-i\theta}z)^{1 - \frac{1}{p}}} dt.$$

Using part (b) of Theorem A of [23] we deduce that f has $(p'-1)_{exp}$ -limit at a.e. $e^{i\theta} \in \partial \mathbb{D}$. \Box

BOUNDARY BEHAVIOUR

Theorem 3 can be proved arguing as in the proof of part (a) of Theorem 1, using Lemma 2 instead of Lemma 1. Again, we shall omit the details.

4. Radial Variation of functions in the spaces \mathcal{D}^p_{α}

Proof of Theorem 4. Let $0 and <math>f \in \mathcal{D}_{p-1}^p$. Set

 $F_f = \{\theta \in [-\pi, \pi] : f \text{ has a finite non-tangential limit at } e^{i\theta}\}.$

By (2) and Fatou's theorem, $[-\pi, \pi] \setminus F_f$ has Lebesgue measure 0. On the other hand, Zygmund proved in p. 81 of [30] that

$$(1-r)|f'(re^{i\theta})| \to 0$$
, as $r \to 1^-$,

for all $\theta \in F_f$. Consequently the set

$$F_f^{\star} = \{ \theta \in [-\pi, \pi] : (1 - r) | f'(re^{i\theta}) | \to 0 \}$$

is such that $[-\pi,\pi] \setminus F_f^*$ has Lebesgue measure 0. Since $f \in \mathcal{D}_{p-1}^p$, we deduce that the set

$$T_f = \{\theta \in [-\pi, \pi] : \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \, dr < \infty\}$$

is such that $[-\pi, \pi] \setminus T_f$ has Lebesgue measure 0. Thus, $[-\pi, \pi] \setminus (F_f^* \cap T_f)$ has Lebesgue measure 0. Furthermore, if $\theta \in F_f^* \cap T_f$ there exists a positive constant C_{θ} such that

$$V(f,\theta) = \int_0^1 |f'(re^{i\theta})|^p |f'(re^{i\theta})|^{1-p} \, dr \le C_\theta \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \, dr < \infty.$$

Proof of Theorem 5. Since

$$\mathcal{D}^p_{\alpha} \subset \mathcal{D}^p_{\beta}, \quad -1 < \alpha \le \beta, \quad 0 < p < \infty,$$

(a) follows from Theorem 4.

Suppose now that $1 , <math>p - 2 < \alpha < p - 1$ and $f \in \mathcal{D}^p_{\alpha}$. Then the set

$$T_{f}^{\alpha} = \{\theta \in [-\pi, \pi] : \int_{0}^{1} (1-r)^{\alpha} |f'(re^{i\theta})|^{p} dr < \infty\}$$

is such that $[-\pi,\pi] \setminus T_f^{\alpha}$ has Lebesgue measure 0. Now, using Hölder's inequality we see that there exists a positive constant $C_{\alpha,p}$ such that

$$\begin{aligned} V(f,\theta) &= \int_0^1 (1-r)^{\alpha/p} |f'(re^{i\theta})| (1-r)^{-\alpha/p} \, dr \\ &\leq \left(\int_0^1 (1-r)^{\alpha} |f'(re^{i\theta})|^p \, dr \right)^{1/p} \left(\int_0^1 (1-r)^{-p'\alpha/p} \, dr \right)^{1/p'} \\ &\leq C_{\alpha,p} \left(\int_0^1 (1-r)^{\alpha} |f'(re^{i\theta})|^p \, dr \right)^{1/p} < \infty, \end{aligned}$$

for all $\theta \in T_f^{\alpha}$. (We have used that $-p'\alpha/p > -1$ since $\alpha .) Thus, (b) is proved.$

(c) follows from the well known inclusion

 $\mathcal{D}_{p-2}^p = \mathcal{B}^p \subset \mathcal{B}^q = \mathcal{D}_{q-2}^q, \quad 1$

(see, e. g., [3, p 112]), Theorem A and the fact that $\mathcal{B}^2 = \mathcal{D}$.

Finally, suppose that $2 and <math>f \in \mathcal{D}^p_{\alpha}$. Using Hölder's inequality with exponents $\frac{p}{p-2}$ and p/2, we have that

(11)
$$\int_{\mathbb{D}} (1-|z|)^{\beta} |f'(z)|^2 \, dA(z) = \int_{\mathbb{D}} (1-|z|)^{\beta-\frac{2\alpha}{p}} |f'(z)|^2 \, (1-|z|)^{\frac{2\alpha}{p}} \, dA(z)$$
$$\leq \left(\int_{\mathbb{D}} (1-|z|)^{\frac{p\beta-2\alpha}{p-2}} \, dA(z) \right)^{\frac{p-2}{p}} \left(\int_{\mathbb{D}} (1-|z|)^{\alpha} |f'(z)|^p \, dA(z) \right)^{2/p}.$$

Letting $\beta = 0$, we see that the condition $\alpha < \frac{p}{2} - 1$ implies that $f \in \mathcal{D}$. Hence, (e) follows from part (a) of Theorem A. On the other hand, if $p - 1 > \alpha \geq \frac{p}{2} - 1$ then β can be chosen so that $\beta > \frac{2}{p}(1 + \alpha) - 1$ and $0 < \beta < 1$. Then (11) implies that $f \in \mathcal{D}_{\beta}^2$, and (d) follows from part (b) of Theorem A. \Box

Acknowledgements

We wish to thank the referee for his helpful remarks, specially for those regarding the proof of Theorem 6.

The authors are partially supported by grants from "El Ministerio de Educación y Ciencia, Spain" and FEDER (MTM2004-00078 and MTM2004-21420-E) and by a grant from "La Junta de Andalucía" (FQM-210).

References

- P. Ahern, The mean modulus of the derivative of an inner function, Indiana Univ. Math. J. 28 (1979), no. 2, 311–347.
- [2] P. Ahern and D. Clark, On inner functions with H^p derivative, Michigan Math. J., 21 (1974), 115-127.
- [3] J. Arazy, S. D. Fisher and J. Peetre, *Möbius invariant function spaces*, J. Reine Angew. Math. **363** (1985), 110–145.
- [4] A. Baernstein II, D. Girela and J. A. Peláez, Univalent functions, Hardy spaces and spaces of Dirichlet type, Illinois Journal of Math. 48 (2004), no. 3, 837–859.
- [5] A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940) 1–13.
- [6] S. M. Buckley, P. Koskela and D. Vukotić, Fractional integration, differentiation and weighted Bergman spaces, Math. Proc. Camb. Phil. Soc. 126 (1999), 369–385.
- [7] G.T. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Canad. J. Math. 14 (1962), 334-348.
- [8] E. F. Collingwood and A. J. Lohwater, *The Theory of Cluster sets*, Cambridge University Press, 1966.
- [9] J. J. Donaire, D. Girela and D. Vukotić, On univalent functions in some Möbius invariant spaces, J. Reine. Angew. Math. 553 (2002), 43–72.

- [10] P. L. Duren, *Theory of H^p Spaces*, Academic Press, New York-London 1970. Reprint: Dover, Mineola, New York, 2000.
- [11] P. L. Duren and A. P. Schuster, *Bergman Spaces*, Math. Surveys and Monographs, Vol. 100, American Mathematical Society, Providence, RI, 2004.
- [12] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746–765.
- [13] D. Girela and J. A. Peláez, Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type, to appear in Journal of the Australian Mathematical Society.
- [14] D. Girela and J. A. Peláez, Non-stable classes of analytic functions, Int. J. Pure Appl. Math. 21 (2005), no. 4, 553–563.
- [15] D. Girela and J. A. Peláez, *Carleson measures for spaces of Dirichlet type*, to appear in Integral Equations and Operator Theory.
- [16] H. Hedenmalm, B. Korenblum, and K. Zhu, *Theory of Bergman Spaces*, Graduate Texts in Mathematics, Vol. **199**, Springer, New York, Berlin, etc., 2000.
- [17] J. P. Kahane and R. Salem, Ensembles parfaits et series trigonometriques, Actualites Sci. Ind. No. 1301 (Herman, Paris, 1963).
- [18] H. O. Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175–190.
- [19] J. R. Kinney, Tangential limits of functions in the class S_{α} , Proc. Amer. Math. Soc. 14 (1963), 68–70.
- [20] J. E. Littlewood, On a theorem of Fatou, J. London Math. Soc. 2 (1927), 172–176.
- [21] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series. II, Proc. London Math. Soc. 42 (1936), 52–89.
- [22] A. J. Lohwater and G. Piranian, The boundary behavior of functions analytic in a disk, Ann. Acad. Sci. Fenn. Ser. A. I. 239 (1957), 17 pp.
- [23] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behaviour of function in Dirichlet spaces, Annals of Mathematics 116 (1982), 331–360.
- [24] D. Protas, Blaschke products with derivative in H^p and B^p, Michigan Math. J. 20 (1973), 393–396.
- [25] W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235-242.
- [26] J. B. Twomey, Tangential limits for certain classes of analytic functions, Mathematika 36 (1989), 39–49.
- [27] J. B. Twomey, Radial variation of functions in Dirichlet-type spaces, Mathematika 44 (1997), 267–277.
- [28] S. A. Vinogradov, Multiplication and division in the space of analytic functions with area integrable derivative, and in some related spaces (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), Issled. po Linein. Oper. i Teor. Funktsii 23, 45–77, 308; translation in J. Math. Sci. (New York) 87, no. 5 (1997), 3806–3827.
- [29] K. Zhu, Analytic Besov spaces, J. Math. Anal. Appl. 157 (1991), 318–336.
- [30] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.
- [31] A. Zygmund, On a theorem of Littlewood, Summa Brasil. Math. 2 (1949), 51–57.
- [32] A. Zygmund, *Trigonometric Series* Vol. I and Vol. II, Second edition, Camb. Univ. Press, Cambridge, (1959).

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE CIENCIAS, UNIVERSI-DAD DE MÁLAGA, CAMPUS DE TEATINOS, 29071 MÁLAGA, SPAIN *E-mail address*: girela@uma.es

DEPARTAMENTO DE MATEMÁTICA APLICADA, ESCUELA POLITÉCNICA, UNIVERSI-DAD DE MÁLAGA, CAMPUS DE EL EJIDO, 29071 MÁLAGA, SPAIN *E-mail address*: pelaez@anamat.cie.uma.es