BOUNDARY BEHAVIOUR OF ANALYTIC FUNCTIONS IN SPACES OF DIRICHLET TYPE

DANIEL GIRELA AND JOSÉ ÁNGEL PELÁEZ

Abstract

For $0<p<\infty$ and $\alpha>-1$ we let \mathcal{D}_{α}^{p} be the space of all analytic functions f in $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ such that f^{\prime} belongs to the weighted Bergman space A_{α}^{p}. We obtain a number of sharp results concerning the existence of tangential limits for functions in the spaces \mathcal{D}_{α}^{p}. We also study the size of the exceptional set $E(f)=\left\{e^{i \theta} \in \partial \mathbb{D}\right.$: $V(f, \theta)=\infty\}$, where $V(f, \theta)$ denotes the radial variation of f along the radius $\left[0, e^{i \theta}\right)$, for functions $f \in \mathcal{D}_{\alpha}^{p}$.

1. Introduction and main results

Let \mathbb{D} denote the open unit disk of the complex plane \mathbb{C}. If $0<r<1$ and f is an analytic function in $\mathbb{D}($ abbreviated $f \in \mathcal{H o l}(\mathbb{D}))$, we set

$$
\begin{gathered}
M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t\right)^{1 / p}, \quad I_{p}(r, f)=M_{p}^{p}(r, f),(0<p<\infty) \\
M_{\infty}(r, f)=\sup _{0 \leq t \leq 2 \pi}\left|f\left(r e^{i t}\right)\right|
\end{gathered}
$$

For $0<p \leq \infty$ the Hardy space H^{p} consists of those functions $f \in \mathcal{H o l}(\mathbb{D})$ for which $\|f\|_{H^{p}} \stackrel{\text { def }}{=} \sup _{0<r<1} M_{p}(r, f)<\infty$. We refer to [10] for the theory of Hardy spaces.

The weighted Bergman space $A_{\alpha}^{p}(0<p<\infty, \alpha>-1)$ is the space of all functions $f \in \mathcal{H o l}(\mathbb{D})$ such that

$$
\|f\|_{A_{\alpha}^{p}} \stackrel{\text { def }}{=}\left(\int_{\mathbb{D}}(1-|z|)^{\alpha}|f(z)|^{p} d A(z)\right)^{1 / p}<\infty
$$

where $d A(z)=\frac{1}{\pi} d x d y$ denotes the normalized Lebesgue area measure in \mathbb{D}. We mention [11] and [16] as general references for the theory of Bergman spaces.

We shall write $\mathcal{D}_{\alpha}^{p}(0<p<\infty, \alpha>-1)$ for the space of all functions $f \in \mathcal{H o l}(\mathbb{D})$ such that $\int_{\mathbb{D}}(1-|z|)^{\alpha}\left|f^{\prime}(z)\right|^{p} d A(z)<\infty$. In other words,

$$
f \in \mathcal{D}_{\alpha}^{p} \Leftrightarrow f^{\prime} \in A_{\alpha}^{p} .
$$

Date: October 11, 2005.
2000 Mathematics Subject Classification. 30D50, 30D55, 32A36.
Key words and phrases. Dirichlet spaces, Bergman spaces, Tangential limits, Radial variation.

If $p<\alpha+1$, it is well known that $\mathcal{D}_{\alpha}^{p}=A_{\alpha-p}^{p}$ with equivalence of norms (see Theorem 6 of [12]). If $p>1$ and $\alpha=p-2$ we are considering the Besov spaces \mathcal{B}^{p} which have been extensively studied in [3], [9] and [29]. Specially relevant is the space $\mathcal{B}^{2}=\mathcal{D}_{0}^{2}$, which coincides the classical Dirichlet space \mathcal{D}.

The space \mathcal{D}_{α}^{p} is said to be a Dirichlet space if $p \geq \alpha+1$. Specially interesting are the spaces in the "limit case" $p=\alpha+1$, that is, the spaces \mathcal{D}_{p-1}^{p}, $0<p<\infty$. These spaces are closely related to Hardy spaces. Indeed, a direct calculation with Taylor coefficients gives that $H^{2}=\mathcal{D}_{1}^{2}$. Furthermore, we have

$$
\begin{equation*}
H^{p} \subset \mathcal{D}_{p-1}^{p}, \quad 2 \leq p<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{D}_{p-1}^{p} \subset H^{p} \quad 0<p \leq 2 \tag{2}
\end{equation*}
$$

The relation (1) is a classical result of Littlewood and Paley [21], and (2) can be found in [28]. A good number of results on the spaces \mathcal{D}_{p-1}^{p} have been recently obtained in [4], [13], [14], [15] and [28]. We remark that the spaces \mathcal{D}_{p-1}^{p} are not nested. Actually, it is easy to see that if $p \neq q$ then there is no relation of inclusion between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q}.

Fatou's theorem asserts that if $0<p \leq \infty$ and $f \in H^{p}$ then f has a finite non-tangential limit $f\left(e^{i \theta}\right)$ for a.e. $e^{i \theta} \in \partial \mathbb{D}$. Bearing in mind (2), we see that this is true if $f \in \mathcal{D}_{p-1}^{p}$ and $0<p \leq 2$. In view of (1), it is natural to ask whether or not Fatou's theorem remains true for the spaces \mathcal{D}_{p-1}^{p}, $2<p<\infty$. The answer to this question is negative. Indeed, Theorem 3.5 of [13] asserts that if $2<p<\infty$, then there exists a function $f \in \mathcal{D}_{p-1}^{p}$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 1^{-}} \frac{\left|f\left(r e^{i t}\right)\right|}{\left(\log \frac{1}{1-r}\right)^{\frac{1}{2}-\frac{1}{p}}\left(\log \log \frac{1}{1-r}\right)^{-1}}=\infty, \quad \text { for a.e. } e^{i t} \in \partial \mathbb{D} . \tag{3}
\end{equation*}
$$

This function has a non-tangential limit almost nowhere in ∂D.
Fatou's theorem is best possible for Hardy spaces, in the sense that it cannot be extended further to give the existence of "tangential limits". Indeed, Lohwater and Piranian [22] (see also p. 43 of [8] and [20], [31] and p. 280 in Vol. I of [32] for some related results) proved that if γ_{0} is a Jordan curve, internally tangent to $\partial \mathbb{D}$ at $z=1$, and having no other point in common with $\partial \mathbb{D}$, and $\gamma_{\theta}(\theta \in \mathbb{R})$ denotes the rotation of γ_{0} through an angle θ around the origin, then there exists a function $f \in H^{\infty}$ such that, for every $\theta \in \mathbb{R}, f$ does not approach a limit as $z \rightarrow e^{i \theta}$ along γ_{θ}.

In spite of this, a number of "tangential-Fatou's theorems" have been proved for certain spaces of Dirichlet type.

For $A>0, \gamma \geq 1$ and $\xi \in \partial \mathbb{D}$, we define

$$
R(A, \gamma, \xi)=\left\{z \in \mathbb{D}:|1-\bar{\xi} z|^{\gamma} \leq A(1-|z|)\right\} .
$$

When $\gamma=1$ and $A>1$, the region $R(A, \gamma, \xi)$ is basically a Stolz angle. When $\gamma>1, R(A, \gamma, \xi)$ is a region contained in \mathbb{D} which touches $\partial \mathbb{D}$ at ξ tangentially. As γ increases, the degree of tangency increases.

We define also, for $A>1$ and $\beta>0$,

$$
R_{\exp }(A, \beta, \xi)=\left\{z \in \mathbb{D}: \exp \left(-|1-\bar{\xi} z|^{-\beta}\right) \leq \frac{(1-|z|)}{A}\right\}
$$

and

$$
R_{\log }(A, \beta, \xi)=\left\{z \in \mathbb{D}:|1-\bar{\xi} z| \leq A(1-|z|)\left(\log \frac{2}{1-|z|}\right)^{\beta}\right\} .
$$

As β increases, the degree of tangency increases in both types of tangential regions.
If $f \in \mathcal{H o l}(\mathbb{D})$ we say that f has the γ-limit L at $e^{i \theta}$, if $f(z) \rightarrow L$ as $z \rightarrow e^{i \theta}$ within $R(A, \gamma, \xi)$ for every A. Notice that saying that f has the 1 -limit L at $e^{i \theta}$ is the same as saying that f has the non-tangential limit L at $e^{i \theta}$. Substituting the regions $R(A, \gamma, \xi)$ with the regions $R_{\exp }(A, \beta, \xi)$ and $R_{\log }(A, \beta, \xi)$, we have the notions of $\beta_{\exp }$-limits and $\beta_{\log }-$ limits. We observe that these definitions of tangential limits are equivalent to those considered in [2], [7], [23] and [26].

Among other results Kinney [19] and Nagel, Rudin and Shapiro [23] (see also [26]) proved the following:
(i) If $0<\alpha<1$ and $f \in D_{\alpha}^{2}$, then f has a finite α^{-1}-limit at a.e $e^{i \theta} \in \partial \mathbb{D}$.
(ii) If $f \in D_{0}^{2}=\mathcal{D}$, then f has a finite $1_{\exp }$-limit almost everywhere.

In view of these results, it is natural to ask whether results of this kind can be proved for the spaces \mathcal{D}_{α}^{p} for other choices of p and α. We start with a negative result.

Theorem 1. (a) Suppose that $A>1$ and $\beta>1$. Then there exists a function $f \in \cap_{1 \leq p<\infty} \mathcal{D}_{p-1}^{p}$ such that for almost every $e^{i \theta} \in \partial \mathbb{D}$, f does not approach a limit as $z \rightarrow e^{i \theta}$ inside $R_{\log }\left(A, \beta, e^{i \theta}\right)$.
(b) Suppose that $A>0$ and $\gamma>1$. Then there exists a function $f \in$ $\cap_{0<p<\infty} \mathcal{D}_{p-1}^{p}$ such that for almost every $e^{i \theta} \in \partial \mathbb{D}$, f does not approach a limit as $z \rightarrow e^{i \theta}$ inside $R\left(A, \gamma, e^{i \theta}\right)$

Next we turn our attention to the spaces \mathcal{D}_{α}^{p} with $1 \leq p \leq 2$ and $-1<$ $\alpha \leq p-1$. We will prove the following theorem.

Theorem 2. (a) Suppose that $1 \leq p \leq 2, p-2<\alpha \leq p-1$ and $f \in \mathcal{D}_{\alpha}^{p}$. Then f has an $(\alpha-p+2)^{-1}$-limit at a.e. $e^{i \theta} \in \partial \mathbb{D}$.
(b) Suppose that $1<p \leq 2$ and $f \in \mathcal{D}_{p-2}^{p}=\mathcal{B}^{p}$. Then f has a $\left(p^{\prime}-1\right)_{\exp ^{-}}$ limit at a.e. $e^{i \theta} \in \partial \mathbb{D}$.

Here and throughout the paper, if $p>1$ we write p^{\prime} for the exponent conjugate of $\mathrm{p}, \frac{1}{p}+\frac{1}{p^{\prime}}=1$.

We will prove that part (a) of Theorem 2 is sharp in the sense that the degree of potential tangency $(\alpha-p+2)^{-1}$ cannot be substituted by any larger one.

Theorem 3. Suppose that $1 \leq p \leq 2, p-2<\alpha \leq p-1$, $A>0$ and $\gamma>(\alpha-p+2)^{-1}$ Then there exists a function $f \in \mathcal{D}_{\alpha}^{p}$ such that for almost every $e^{i \theta} \in \partial \mathbb{D}, f$ does not approach a limit as $z \rightarrow e^{i \theta}$ inside $R\left(A, \gamma, e^{i \theta}\right)$

Now we turn to questions related to radial variation of analytic functions. If $f \in \mathcal{H o l}(\mathbb{D})$ and $\theta \in[-\pi, \pi)$, we define

$$
\begin{equation*}
V(f, \theta) \stackrel{\text { def }}{=} \int_{0}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d r . \tag{4}
\end{equation*}
$$

Then $V(f, \theta)$ denotes the radial variation of f along the radius $\left[0, e^{i \theta}\right)$, that is, the length of the image of this radius under the mapping f. We define the exceptional set $E(f)$ associated to f as

$$
\begin{equation*}
E(f)=\left\{e^{i \theta} \in \partial \mathbb{D}: V(f, \theta)=\infty\right\} \tag{5}
\end{equation*}
$$

It is clear that if f has finite radial variation at $e^{i \theta}$ then f has a finite radial limit at $e^{i \theta}$. Even though every H^{p}-function, $0<p \leq \infty$, has finite radial limits a.e., if we take $f \in \mathcal{H o l}(\mathbb{D})$ given by a power series with Hadamard gaps

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} a_{k} z^{n_{k}} \quad \text { with } n_{k+1} \geq \lambda n_{k}, \quad \text { for all } k \quad(\lambda>1), \tag{6}
\end{equation*}
$$

such that

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty \quad \text { but } \quad \sum_{k=1}^{\infty}\left|a_{k}\right|=\infty
$$

then $f \in \cap_{0<p<\infty} H^{p}$, but a result of Zygmund (see Theorem 1 on p. 194 of [30]) shows that $V(f, \theta)=\infty$ for every $\theta \in[-\pi, \pi)$.

We will prove a positive result for \mathcal{D}_{p-1}^{p}-functions, $0<p \leq 1$
Theorem 4. If $0<p \leq 1$ and $f \in \mathcal{D}_{p-1}^{p}$ then $E(f)$ has measure 0 .
We note that this result cannot be extended to $p>1$. Indeed, if we take f given by a power series with Hadamard gaps as in (6) with $\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}<\infty$ and $\sum_{k=1}^{\infty}\left|a_{k}\right|=\infty$, we have that $f \in \mathcal{D}_{p-1}^{p}$ (see Proposition A of [13]) and so $V(f, \theta)=\infty$ for every $\theta \in[-\pi, \pi)$.

On the other hand, we have the following well known result of Beurling [5] for functions in \mathcal{D}_{α}^{2}.

Theorem A. Let f be an analytic function in \mathbb{D}.
(a) If $f \in \mathcal{D}$, then $E(f)$ has logarithmic capacity 0 .
(b) If $0<\alpha<1$ and $f \in \mathcal{D}_{\alpha}^{2}$, then $E(f)$ has α-capacity 0 .

See [17] for the definitions of logarithmic capacity and α-capacity and [27] for an extension of Theorem A.

We will prove the following result for other values of p.
Theorem 5. Suppose that $f \in \mathcal{D}_{\alpha}^{p}$.
(a) If $0<p \leq 1$ and $-1<\alpha<p-1$, then $E(f)$ has Lebesgue measure 0 .
(b) If $1<p<2$ and $p-2<\alpha<p-1$, then $E(f)$ has Lebesgue measure 0.
(c) If $1<p \leq 2$ and $\alpha=p-2$, then $E(f)$ has logarithmic capacity 0 .
(d) If $2<p<\infty$ and $p-1>\alpha \geq \frac{p}{2}-1$, then $E(f)$ has β-capacity 0 for all $\beta>\frac{2}{p}(1+\alpha)-1$.
(e) If $2<p<\infty$ and $\alpha<\frac{p}{2}-1$, then $E(f)$ has logarithmic capacity 0 .

2. On the membership of Blaschke products in spaces of Dirichlet type

We remark that $H^{\infty} \not \subset \mathcal{D}_{\alpha}^{p}$, if $0<p<\infty$ and $-1<\alpha<p-1$ (see, e.g., section 3 of [14] for explicit examples). Clearly, (1) gives that $H^{\infty} \subset \mathcal{D}_{p-1}^{p}$, if $2 \leq p<\infty$. However, this does not remain true for $0<p<2$. Indeed, Vinogradov [28, p. 3822-3823] has shown that there exist Blaschke products B which do not belong to $\cup_{0<p<2} \mathcal{D}_{p-1}^{p}$. In this section we shall find a number of sufficient conditions for the membership of a Blaschke product in some of the spaces \mathcal{D}_{α}^{p}. These results will be basic in the proofs of Theorem 1 and Theorem 3.

We recall that if a sequence of points $\left\{a_{n}\right\}$ in \mathbb{D} satisfies the Blaschke condition: $\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)<\infty$, the corresponding Blaschke product B is defined as

$$
B(z)=\prod_{n=1}^{\infty} \frac{\left|a_{n}\right|}{a_{n}} \frac{a_{n}-z}{1-\overline{a_{n}} z}
$$

Such a product is analytic in \mathbb{D}, bounded by one, and with non-tangential limits of modulus one almost everywhere on the unit circle. We start obtaining sufficient conditions for the membership of a Blaschke product in the spaces \mathcal{D}_{p-1}^{p}, improving the first part of Lemma 2.11 of [28].

Lemma 1. Let B be a Blaschke product with sequence of zeros $\left\{a_{n}\right\}$.
(a) If $\left\{a_{n}\right\}$ satisfies

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right) \log \left(\frac{1}{1-\left|a_{n}\right|}\right)<\infty \tag{7}
\end{equation*}
$$

then $B \in \cap_{1 \leq p<\infty} \mathcal{D}_{p-1}^{p}$.
(b) If there exists $q \in(0,1)$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)^{q}<\infty \tag{8}
\end{equation*}
$$

then $B \in \cap_{0<p<\infty} \mathcal{D}_{p-1}^{p}$.
Proof. A result of Rudin's ([25, Theorem I]) shows that (7) implies that $B \in \mathcal{D}_{0}^{1}$. Then (a) follows from the Cauchy estimate $\left|B^{\prime}(z)\right| \leq 1 /(1-|z|)$.

We turn now to part (b). Suppose that $\left\{a_{n}\right\}$ satisfies (8) for a certain $q \in(0,1)$. Assume for now that $p \in(0,1]$. Using Theorem 3.1 of [18] we see that $B^{\prime} \in A^{2-q}$. Using this, Hölder's inequality with exponents $\frac{2-q}{p}$ and $\frac{2-q}{2-q-p}$ and the fact that $\frac{(2-q)(1-p)}{2-q-p}<1$, we obtain we obtain

$$
\begin{aligned}
& \int_{\mathbb{D}}\left|B^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p-1} d A(z) \\
& \leq\left(\int_{\mathbb{D}}\left|B^{\prime}(z)\right|^{2-q} d A(z)\right)^{\frac{p}{2-q}}\left(\int_{\mathbb{D}}\left(1-|z|^{2}\right)^{\frac{(2-q)(p-1)}{2-q-p}} d A(z)\right)^{\frac{2-q-p}{2-q}}<\infty
\end{aligned}
$$

Hence, we have shown that $B \in \mathcal{D}_{p-1}^{p}$, for all $p \in(0,1]$. Using the Cauchy estimate again, we obtain that $B \in \mathcal{D}_{p-1}^{p}$ for all $p \in(0, \infty)$, as desired.

We next give a simplified proof of a result that essentially is Theorem 3.1(i) for $\beta=1$ and $p \geq 1$ in [18].

Lemma 2. Let p and α be such that $p \geq 1$ and $p-2<\alpha<p-1$. If B is a Blaschke product whose sequence of zeros $\left\{a_{n}\right\}$ satisfies

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)^{\alpha+2-p}<\infty \tag{9}
\end{equation*}
$$

then $B \in \mathcal{D}_{\alpha}^{p}$.
Proof. We shall use the notation and terminology of [1, pp. 332-333].
Let p, α and B be as in the statement. Notice that $0<\alpha+2-p<1$, and then, using Theorem 1 of [24], we deduce that $B^{\prime} \in \mathrm{B}^{1 /(\alpha-p+3)}$ or, equivalently, $B \in \mathcal{D}_{\alpha-p+1}^{1}$. Then as in the proof of Lemma 1, the Cauchy estimate implies $B \in \mathcal{D}_{\alpha}^{p}$ since $p-1 \geq 0$.

3. Tangential limits for \mathcal{D}_{α}^{p}-FUnctions

Proof of Theorem 1(a). We are going to use an argument which is similar to the one used in the proof of Theorem 7.44 of [32], Vol I, Chapter VII.

Take M with $1<M<A$ and let Let C_{θ} be the boundary of $R_{\log }\left(M, \beta, e^{i \theta}\right)$, $(\theta \in[0,2 \pi))$. For all sufficiently large n, let l_{n} denote the length of the arc of the circle $|z|=1-\frac{1}{n}$ which lies in $R_{\log }(M, \beta, 1)$ and let $m_{n}=E\left[\frac{2 \pi}{l_{n}}\right]+1$, where, for $x \in \mathbb{R}, E[x]$ denotes the greatest integer that is smaller than or equal to x. Let $S_{n}=\left\{z_{n, 1}, z_{n, 2}, \ldots z_{n, m_{n}}\right\}$ be any collection of m_{n} points equally spaced on $|z|=1-\frac{1}{n}$. Since the circular distance between any two consecutive points of S_{n} is smaller than l_{n}, for every θ the set $R_{\log }\left(M, \beta, e^{i \theta}\right)$ contains a point of S_{n}.

We define

$$
\sigma_{n}=\sum_{k=1}^{m_{n}}\left(1-\left|z_{n, k}\right|\right) \log \left(\frac{1}{1-\left|z_{n, k}\right|}\right)=\frac{m_{n} \log (n)}{n} .
$$

Notice that $l_{n} \asymp \frac{1}{n} \log ^{\beta} n$. Then it is easy to see that there exists a positive constant C (which does not depend on n) such that

$$
\begin{aligned}
\sigma_{n} & =\frac{m_{n} \log (n)}{n} \leq \frac{\left(1+\frac{2 \pi}{l_{n}}\right) \log (n)}{n} \leq C \frac{\log (n)}{n l_{n}} \\
& \leq C \frac{1}{\log ^{\beta-1} n} \rightarrow 0, \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Let us take then an increasing sequence n_{k} satisfying that $\sum_{k=1}^{\infty} \sigma_{n_{k}}<\infty$ and let B be the Blaschke product with zeros at the points of $\cup_{k=1}^{\infty} S_{n_{k}}$. By part (a) of Lemma 1, $B \in \cap_{1 \leq p<\infty} \mathcal{D}_{p-1}^{p}$. Notice that for each $\theta \in \mathbb{R}, B$ has infinitely many zeros in the set $R_{\log }\left(M, \beta, e^{i \theta}\right)$. Thus for every θ, the limit of $B(z)$ as $z \rightarrow e^{i \theta}$ inside of $R_{\log }\left(M, \beta, e^{i \theta}\right)$ must be zero if it exists at all. Since the radial limit of B has absolute value 1 a.e., it follows that for almost every $e^{i \theta} \in \partial \mathbb{D}$, the the limit of $B(z)$ as $z \rightarrow e^{i \theta}$ inside of $R_{\log }\left(M, \beta, e^{i \theta}\right)$ does not exist.

Part (b) of Theorem 1 can be proved in a similar way using part (b) of Lemma 1. We omit the details.

Next we shall obtain a representation formula for functions f in the space $\mathcal{D}_{\alpha}^{p},-1<\alpha, 1 \leq p \leq 2$ which will play a basic role in the proof of Theorem 2.

Theorem 6. Suppose that either $1 \leq p \leq 2$ and $-1<\alpha<p-1$ or $1<p \leq 2$ and $\alpha=p-2$, and that $f \in \mathcal{D}_{\alpha}^{p}$. Then there exists a function $h\left(e^{i \theta}\right) \in L^{p}(\partial \mathbb{D})$ such that

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h\left(e^{i \theta}\right)}{\left(1-e^{-i \theta} z\right)^{\frac{\alpha+1}{p}}} d \theta, \quad z \in \mathbb{D} . \tag{10}
\end{equation*}
$$

Proof. Let p and α be as in the statement and $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{D}_{\alpha}^{p}$. Then $z f^{\prime}(z)=\sum_{n=0}^{\infty} n a_{n} z^{n} \in A_{\alpha}^{p}$. Since $\mathcal{D}_{\alpha}^{p} \subset A_{\alpha}^{p}$ we also have that $f \in A_{\alpha}^{p}$. Then it follows that

$$
z f^{\prime}(z)+\frac{\alpha+1}{p} f(z)=\sum_{n=0}^{\infty}\left(n+\frac{\alpha+1}{p}\right) a_{n} z^{n} \in A_{\alpha}^{p} .
$$

So using Lemma 1.1 of [6] (see also part (iii) of Theorem 5 of [12]) and Corollary 3.5 of [6], we deduce that the fractional integral

$$
\begin{aligned}
h(z) & \stackrel{\text { def }}{=} \tilde{I}^{\frac{\alpha+1}{p}}\left(z f^{\prime}(z)+\frac{\alpha+1}{p} f(z)\right) \\
& =\sum_{n=0}^{\infty}\left(n+\frac{\alpha+1}{p}\right) B\left(n+1, \frac{\alpha+1}{p}\right) a_{n} z^{n}
\end{aligned}
$$

belongs to H^{p} since $p \leq 2$. $\operatorname{Here} B(.,$.$) is the classical beta function. Note$ that

$$
B(u, v)=\frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)}
$$

and recall that $\Gamma(s+1)=s \Gamma(s)$, for all $s \neq 0,-1, \ldots$ Then it is easy to see that

$$
h(z)=\sum_{n=0}^{\infty} \frac{n!\Gamma\left(\frac{\alpha+1}{p}\right)}{\Gamma\left(n+\frac{\alpha+1}{p}\right)} a_{n} z^{n} .
$$

Then,

$$
h\left(e^{i \theta}\right)=\sum_{n=0}^{\infty} \frac{n!\Gamma\left(\frac{\alpha+1}{p}\right)}{\Gamma\left(n+\frac{\alpha+1}{p}\right)} a_{n} e^{i n \theta} \in L^{p}(\partial \mathbb{D}) .
$$

By the Binomial Theorem,

$$
\frac{1}{\left(1-e^{-i \theta} z\right)^{\frac{\alpha+1}{p}}}=\sum_{k=0}^{\infty} \frac{\Gamma\left(k+\frac{\alpha+1}{p}\right)}{k!\Gamma\left(\frac{\alpha+1}{p}\right)} e^{-i k \theta} z^{k} .
$$

Thus,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h\left(e^{i \theta}\right)}{\left(1-e^{-i \theta} z\right)^{\frac{\alpha+1}{p}}} d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{n=0}^{\infty} \frac{n!\Gamma\left(\frac{\alpha+1}{p}\right)}{\Gamma\left(n+\frac{\alpha+1}{p}\right)} a_{n} e^{i n \theta}\right)\left(\sum_{k=0}^{\infty} \frac{\Gamma\left(k+\frac{\alpha+1}{p}\right)}{k!\Gamma\left(\frac{\alpha+1}{p}\right)} e^{-i k \theta} z^{k}\right) d \theta \\
& =\sum_{n=0}^{\infty} a_{n} z^{n}=f(z) .
\end{aligned}
$$

This finishes the proof.
Proof of Theorem 2. We need to consider three cases.
Case a1: $1 \leq p \leq 2$ and $\alpha=p-1$. Then $\mathcal{D}_{\alpha}^{p}=\mathcal{D}_{p-1}^{p} \subset H^{p}$ and the result in this case follows from Fatou's theorem for H^{p}.

Case a2: $1 \leq p \leq 2$ and $p-2<\alpha<p-1$. If $f \in \mathcal{D}_{\alpha}^{p}$ then, using Theorem 6 we have that there exists $h\left(e^{i \theta}\right) \in L^{p}(\partial \mathbb{D})$ such that

$$
f(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h\left(e^{i \theta}\right)}{\left(1-e^{-i \theta} z\right)^{\frac{\alpha+1}{p}}} d t,=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h\left(e^{i \theta}\right)}{\left(1-e^{-i \theta} z\right)^{1-\frac{p-\alpha-1}{p}}} d t .
$$

Notice that $p\left(\frac{p-\alpha-1}{p}\right)<1$, so by part (a) of Theorem A of [23] we have that f has $(\alpha-p+2)^{-1}$-limit at a.e. $e^{i \theta} \in \partial \mathbb{D}$.

Case b: $1<p \leq 2$ and $\alpha=p-2$. Using again Theorem 6 we have that if $f \in \mathcal{D}_{\alpha}^{p}$ then there exists $h\left(e^{i \theta}\right) \in \mathrm{L}^{p}(\partial \mathbb{D})$ such that

$$
f(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h\left(e^{i \theta}\right)}{\left(1-e^{-i \theta} z\right)^{1-\frac{1}{p}}} d t .
$$

Using part (b) of Theorem A of [23] we deduce that f has $\left(p^{\prime}-1\right)_{\exp }$-limit at a.e. $e^{i \theta} \in \partial \mathbb{D}$.

Theorem 3 can be proved arguing as in the proof of part (a) of Theorem 1, using Lemma 2 instead of Lemma 1. Again, we shall omit the details.

4. Radial Variation of functions in the spaces \mathcal{D}_{α}^{p}

Proof of Theorem 4. Let $0<p<1$ and $f \in \mathcal{D}_{p-1}^{p}$. Set

$$
F_{f}=\left\{\theta \in[-\pi, \pi]: f \text { has a finite non-tangential limit at } e^{i \theta}\right\} .
$$

By (2) and Fatou's theorem, $[-\pi, \pi] \backslash F_{f}$ has Lebesgue measure 0 . On the other hand, Zygmund proved in p. 81 of [30] that

$$
(1-r)\left|f^{\prime}\left(r e^{i \theta}\right)\right| \rightarrow 0, \quad \text { as } r \rightarrow 1^{-}
$$

for all $\theta \in F_{f}$. Consequently the set

$$
F_{f}^{\star}=\left\{\theta \in[-\pi, \pi]:(1-r)\left|f^{\prime}\left(r e^{i \theta}\right)\right| \rightarrow 0\right\}
$$

is such that $[-\pi, \pi] \backslash F_{f}^{\star}$ has Lebesgue measure 0 . Since $f \in \mathcal{D}_{p-1}^{p}$, we deduce that the set

$$
T_{f}=\left\{\theta \in[-\pi, \pi]: \int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r<\infty\right\}
$$

is such that $[-\pi, \pi] \backslash T_{f}$ has Lebesgue measure 0 . Thus, $[-\pi, \pi] \backslash\left(F_{f}^{\star} \cap T_{f}\right)$ has Lebesgue measure 0 . Furthermore, if $\theta \in F_{f}^{\star} \cap T_{f}$ there exists a positive constant C_{θ} such that
$V(f, \theta)=\int_{0}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{1-p} d r \leq C_{\theta} \int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r<\infty$.

Proof of Theorem 5. Since

$$
\mathcal{D}_{\alpha}^{p} \subset \mathcal{D}_{\beta}^{p}, \quad-1<\alpha \leq \beta, \quad 0<p<\infty
$$

(a) follows from Theorem 4.

Suppose now that $1<p<2, p-2<\alpha<p-1$ and $f \in \mathcal{D}_{\alpha}^{p}$. Then the set

$$
T_{f}^{\alpha}=\left\{\theta \in[-\pi, \pi]: \int_{0}^{1}(1-r)^{\alpha}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r<\infty\right\}
$$

is such that $[-\pi, \pi] \backslash T_{f}^{\alpha}$ has Lebesgue measure 0 . Now, using Hölder's inequality we see that there exists a positive constant $C_{\alpha, p}$ such that

$$
\begin{aligned}
V(f, \theta) & =\int_{0}^{1}(1-r)^{\alpha / p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|(1-r)^{-\alpha / p} d r \\
& \leq\left(\int_{0}^{1}(1-r)^{\alpha}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r\right)^{1 / p}\left(\int_{0}^{1}(1-r)^{-p^{\prime} \alpha / p} d r\right)^{1 / p^{\prime}} \\
& \leq C_{\alpha, p}\left(\int_{0}^{1}(1-r)^{\alpha}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r\right)^{1 / p}<\infty
\end{aligned}
$$

for all $\theta \in T_{f}^{\alpha}$. (We have used that $-p^{\prime} \alpha / p>-1$ since $\alpha<p-1$.) Thus, (b) is proved.
(c) follows from the well known inclusion

$$
\mathcal{D}_{p-2}^{p}=\mathcal{B}^{p} \subset \mathcal{B}^{q}=\mathcal{D}_{q-2}^{q}, \quad 1<p<q<\infty
$$

(see, e. g., [3, p 112]), Theorem A and the fact that $\mathcal{B}^{2}=\mathcal{D}$.
Finally, suppose that $2<p<\infty$ and $f \in \mathcal{D}_{\alpha}^{p}$. Using Hölder's inequality with exponents $\frac{p}{p-2}$ and $p / 2$, we have that

$$
\begin{align*}
& \int_{\mathbb{D}}(1-|z|)^{\beta}\left|f^{\prime}(z)\right|^{2} d A(z)=\int_{\mathbb{D}}(1-|z|)^{\beta-\frac{2 \alpha}{p}}\left|f^{\prime}(z)\right|^{2}(1-|z|)^{\frac{2 \alpha}{p}} d A(z) \\
& \leq\left(\int_{\mathbb{D}}(1-|z|)^{\frac{p \beta-2 \alpha}{p-2}} d A(z)\right)^{\frac{p-2}{p}}\left(\int_{\mathbb{D}}(1-|z|)^{\alpha}\left|f^{\prime}(z)\right|^{p} d A(z)\right)^{2 / p} \tag{11}
\end{align*}
$$

Letting $\beta=0$, we see that the condition $\alpha<\frac{p}{2}-1$ implies that $f \in \mathcal{D}$. Hence, (e) follows from part (a) of Theorem A. On the other hand, if $p-1>\alpha \geq \frac{p}{2}-1$ then β can be chosen so that $\beta>\frac{2}{p}(1+\alpha)-1$ and $0<\beta<1$. Then (11) implies that $f \in \mathcal{D}_{\beta}^{2}$, and (d) follows from part (b) of Theorem A.

Acknowledgements

We wish to thank the referee for his helpful remarks, specially for those regarding the proof of Theorem 6 .

The authors are partially supported by grants from "El Ministerio de Educación y Ciencia, Spain" and FEDER (MTM2004-00078 and MTM2004-21420-E) and by a grant from "La Junta de Andalucía" (FQM-210).

References

[1] P. Ahern, The mean modulus of the derivative of an inner function, Indiana Univ. Math. J. 28 (1979), no. 2, 311-347.
[2] P. Ahern and D. Clark, On inner functions with H^{p} derivative, Michigan Math. J., 21 (1974), 115-127.
[3] J. Arazy, S. D. Fisher and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110-145.
[4] A. Baernstein II, D. Girela and J. A. Peláez, Univalent functions, Hardy spaces and spaces of Dirichlet type, Illinois Journal of Math. 48 (2004), no. 3, 837-859.
[5] A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940) 1-13.
[6] S. M. Buckley, P. Koskela and D. Vukotić, Fractional integration, differentiation and weighted Bergman spaces, Math. Proc. Camb. Phil. Soc. 126 (1999), 369-385.
[7] G.T. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Canad. J. Math. 14 (1962), 334-348.
[8] E. F. Collingwood and A. J. Lohwater, The Theory of Cluster sets, Cambridge University Press, 1966.
[9] J. J. Donaire, D. Girela and D. Vukotić, On univalent functions in some Möbius invariant spaces, J. Reine. Angew. Math. 553 (2002), 43-72.
[10] P. L. Duren, Theory of H^{p} Spaces, Academic Press, New York-London 1970. Reprint: Dover, Mineola, New York, 2000.
[11] P. L. Duren and A. P. Schuster, Bergman Spaces, Math. Surveys and Monographs, Vol. 100, American Mathematical Society, Providence, RI, 2004.
[12] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
[13] D. Girela and J. A. Peláez, Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type, to appear in Journal of the Australian Mathematical Society.
[14] D. Girela and J. A. Peláez, Non-stable classes of analytic functions, Int. J. Pure Appl. Math. 21 (2005), no. 4, 553-563.
[15] D. Girela and J. A. Peláez, Carleson measures for spaces of Dirichlet type, to appear in Integral Equations and Operator Theory.
[16] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, Vol. 199, Springer, New York, Berlin, etc., 2000.
[17] J. P. Kahane and R. Salem, Ensembles parfaits et series trigonometriques, Actualites Sci. Ind. No. 1301 (Herman, Paris, 1963).
[18] H. O. Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175-190.
[19] J. R. Kinney, Tangential limits of functions in the class S_{α}, Proc. Amer. Math. Soc. 14 (1963), 68-70.
[20] J. E. Littlewood, On a theorem of Fatou, J. London Math. Soc. 2 (1927), 172-176.
[21] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series. II, Proc. London Math. Soc. 42 (1936), 52-89.
[22] A. J. Lohwater and G. Piranian, The boundary behavior of functions analytic in a disk, Ann. Acad. Sci. Fenn. Ser. A. I. 239 (1957), 17 pp.
[23] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behaviour of function in Dirichlet spaces, Annals of Mathematics 116 (1982), 331-360.
[24] D. Protas, Blaschke products with derivative in H^{p} and B^{p}, Michigan Math. J. 20 (1973), 393-396.
[25] W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235-242.
[26] J. B. Twomey, Tangential limits for certain classes of analytic functions, Mathematika 36 (1989), 39-49.
[27] J. B. Twomey, Radial variation of functions in Dirichlet-type spaces, Mathematika 44 (1997), 267-277.
[28] S. A. Vinogradov, Multiplication and division in the space of analytic functions with area integrable derivative, and in some related spaces (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), Issled. po Linein. Oper. i Teor. Funktsii 23, 45-77, 308; translation in J. Math. Sci. (New York) 87, no. 5 (1997), 3806-3827.
[29] K. Zhu, Analytic Besov spaces, J. Math. Anal. Appl. 157 (1991), 318-336.
[30] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.
[31] A. Zygmund, On a theorem of Littlewood, Summa Brasil. Math. 2 (1949), 51-57.
[32] A. Zygmund, Trigonometric Series Vol. I and Vol. II, Second edition, Camb. Univ. Press, Cambridge, (1959).

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain

E-mail address: girela@uma.es
Departamento de Matemática Aplicada, Escuela Politécnica, Universidad de Málaga, Campus de El Ejido, 29071 Málaga, Spain

E-mail address: pelaez@anamat.cie.uma.es

