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Abstract. A result of D.J. Newman asserts that a uniformly sepa-
rated sequence contained in a Stolz angle is a finite union of exponential
sequences. We extend this by obtaining several equivalent characteriza-
tions of such sequences.

If the zeros of a Blaschke product B lie in a Stolz angle then B′ ∈ Ap

for all p < 3/2 and it has been recently shown that this result cannot
be improved. Also, Newman’s result can be used to prove that if B is
an interpolating Blaschke product whose zeros lie in a Stolz angle then
B′ ∈ ∩0<p<1H

p ⊂ ∩0<p<2A
p. In this paper we prove that if the zeros

of an interpolating Blaschke product lie in a disc internally tangent to
the unit circle then B′ ∈ ∩0<p<3/2A

p and show that this cannot be
improved. We also obtain sharp results concerning the membership in
Bergman spaces of the derivative of an interpolating Blaschke product
whose sequence of zeros lies in other regions internally tangent to the
unit circle.

1. Introduction and main results

In what follows, D(a, r) will denote the disc of radius r centered at the
point a in the complex plane, while D will be the unit disc: D = {z ∈ C :
|z| < 1}. If f is a function analytic in D and 0 ≤ r < 1, we set

Mp(r, f) =

(
1

2π

∫ π

−π

|f(reit)|p dt

)1/p

, 0 < p < ∞ ,

M∞(r, f) = sup
|z|=r

|f(z)| .

For 0 < p ≤ ∞, the Hardy space Hp is the set of all functions f analytic in
D and satisfying

‖f‖Hp
def
= sup

0<r<1
Mp(r, f) < ∞ .
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The Bergman space Ap (0 < p < ∞) is the space of all functions f analytic
in D such that

‖f‖Ap
def
=

(∫
D
|f(z)|p dA(z)

)1/p

< ∞ ,

where dA(z) = 1
π
dx dy denotes the normalized Lebesgue area measure in D.

We mention [11], [17], and [26] as general references for the theory of Hardy
spaces and [13] and [21] for the theory of Bergman spaces.

A sequence {ak} of points in D is said to be a Blaschke sequence if
∞∑

k=1

(1− |ak|) < ∞.

The corresponding Blaschke product B is defined as

B(z) =
∞∏

k=1

|ak|
ak

ak − z

1− akz
.

Such a product is analytic in D, bounded by one, and with radial limits of
modulus one almost everywhere on the unit circle. Its behavior is strongly
dependent on the location of its zeros.

A Blaschke sequence {ak} is uniformly separated if there exists a positive
constant δ such that∏

j 6=k

∣∣∣∣ aj − ak

1− ajak

∣∣∣∣ ≥ δ , k = 1, 2, . . . .

Uniformly separated sequences play a fundamental role in the theory of
interpolation in Hardy spaces. A sequence {ak} of points in D is said to be
a universal interpolation sequence if for each bounded sequence of complex
numbers {wk} there exists a function f ∈ H∞ such that f(ak) = wk for all
k. Carleson [5] proved that {ak} is a universal interpolating sequence if and
only if it is uniformly separated (see also Chapter VII of [17] or Chapter 9
of [11]); similar but less complete results were published slightly later by
Hayman [20] and Newman [30]. Shapiro and Shields [33] generalized the
theorem to Hp spaces (1 ≤ p < ∞) by showing that the operator Tp defined
by

Tp(f) = {(1− |ak|2)1/pf(ak)}
maps Hp onto `p if and only if {ak} is uniformly separated, a result that
Kabăıla [24] extended to 0 < p < 1 in a constructive way. Further con-
structive and most interesting proofs for different cases were given by Earl
[15], Jones (see [22] or Khavin’s Appendix I of [26]), and Schuster and Seip
(see [32] or § 6.2 of [13]). In view of these results, a Blaschke product whose
sequence of zeros is uniformly separated is called an interpolating Blaschke
product.

One of the central questions about Blaschke products is that of the mem-
bership of their derivatives in classical function spaces such as Hardy spaces
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and Bergman spaces. This problem was studied in a number of papers by
Ahern and his students in the 70’s and 80’s. We mention the papers of Pro-
tas [31], Ahern and Clark [2], [3], Ahern [1], Cohn [8] and Kim [25] among
the most relevant ones. The statements of many such results can be found
in Colwell’s monograph [9]. Since one cannot tell too much about the gen-
eral Blaschke products, all papers on this subject either place a restriction
on the moduli of the zeros or on their location (separation, belonging to a
Stolz angle, etc.).

In a recent work [19] the authors of this paper have obtained a number of
new results in the same spirit, paying special attention to Blaschke products
whose zeros lie in a Stolz angle and to interpolating Blaschke products. We
describe some of these results here.

Given ξ ∈ ∂D and σ ∈ (1,∞) we set

Ωσ(ξ) = {z ∈ D : |1− ξz| ≤ σ(1− |z|)} .

Any such domain Ωσ(ξ), 1 ≤ σ < ∞, will be called a Stolz angle with vertex
at ξ. The domain Ωσ(1) will be simply denoted by Ωσ. The following result
is proved in Theorem 3 of [19].

Theorem A. If the zeros of a Blaschke product B all lie in a Stolz angle
then B′ ∈ Ap for all p < 3/2.

We remark that this result can also be deduced from Theorem 6.1 of
Ahern’s paper [1] and Theorem 12 of [2] (see also Theorem B of [19]). The
first two authors have subsequently proved that the exponent three-halves
is sharp: Theorem 1 of [18] asserts that the Blaschke product B with zeros
an = 1 − 1/(n log2 n), n ≥ 2, has the property that B′ 6∈ A3/2. On the
other hand, no counterexample for the exponent three-halves is possible
with interpolating sequences in view of Theorem 4 of [19], which asserts
that if B is an interpolating Blaschke product whose zero sequence {ak}
lies in a Stolz angle, then B′ ∈ Ap for all p ∈ (0, 2).

Recall that the sequence {ak} ⊂ D is said to be an exponential sequence
if (1−|ak+1|) ≤ q (1−|ak|) for some fixed q, 0 < q < 1, and all k. As is well
known, every exponential sequence is uniformly separated; see Chapter 9 of
[11].

A key ingredient in the proof of Theorem 4 of [19] presented in Section 2.3
of [19] is a result of D.J. Newman [30] which asserts that a uniformly sep-
arated sequence contained in a Stolz angle is a finite union of exponential
sequences. We remark that Theorem 4 of [19] can also be obtained using
results of Essén and Xiao [16] and of Danikas and Mouratides [10] about
the zero sequences of functions in the spaces Qp, 0 < p < 1, (see Section 2.4
of [19]).

In the present paper we go beyond the results obtained in [19] and [18].
Our first result is an extension of Newman’s result: in Theorem 1 we find
a number of conditions on a sequence contained in a Stolz angle which
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are equivalent to being a finite union of exponential sequences. Before
formulating a precise statement, we need to introduce another concept. A
sequence {ak} of points in D is said to be uniformly discrete if it is separated
in the hyperbolic metric, that is, if there is a positive constant δ > 0 such
that ∣∣∣∣ aj − ak

1− ajak

∣∣∣∣ ≥ δ

for all j, k with j 6= k. The recent paper [14] gives a survey of results
about uniformly discrete sequences with a special emphasis on the important
role that they play in the theory of Bergman spaces. Obviously, every
uniformly separated sequence is uniformly discrete. The converse is not
true in general: it is not difficult to verify that a sequence consisting of 2n

points uniformly distributed on the circle of radius 1− 2−n centered at the
origin (n = 1, 2, . . . ) is a uniformly discrete sequence (see [14]) while it is
not even a Blaschke sequence. On the other hand, it is implicit in Newman’s
paper [30] that every uniformly discrete sequence lying in a Stolz angle is
uniformly separated. This was explicitly stated and proved by Tse [34].

We denote by |I| the length of an interval I on the unit circle ∂D = ∂D.
The Carleson square S(I) is defined as

S(I) = {reit : eit ∈ I, 1− |I|
2π

≤ r < 1} .

Given a positive Borel measure µ in D, we say that µ is a Carleson measure
if there exists a positive constant C such that

µ
(
S(I)

)
≤ C|I|, for every interval I ⊂ ∂D.

Carleson [6] (see also Theorem 9.3 of [11]) proved that µ is a Carleson
measure if and only if Hp ⊂ Lp(dµ) for one (equivalently, for all) p such
that 0 < p < ∞. A crucial step in the proof of his interpolation theorem
consists in showing that if {ak} is uniformly separated then the measure
µ =

∑∞
k=1(1−|ak|2)δak

is a Carleson measure. Here, as is usual, δak
denotes

the point mass at ak. Now we can state our first result.

Theorem 1. Let {ak}∞k=1 be a sequence of complex numbers which is con-
tained in a Stolz angle. Then the following conditions are equivalent.

(a) The measure µ =
∑∞

k=1(1− |ak|2)δak
is a Carleson measure.

(b) The measure µ∗ =
∑∞

k=1(1− |ak|2)δ|ak| is a Carleson measure.
(c) The sequence {ak}∞k=1 is a finite union of exponential sequences.
(d) The sequence {ak}∞k=1 is a finite union of uniformly separated se-

quences.
(e) The sequence {ak}∞k=1 is a finite union of uniformly discrete se-

quences.

Next we shall be mainly interested in Blaschke products with sequences
of zeros contained in regions internally tangent to ∂D. Our first result
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in this setting is an extension of Theorem A as it states that the inclusion
B′ ∈ ∩p<3/2A

p remains true if we substitute a Stolz angle by a disc internally
tangent to D, under the additional assumption of B being an interpolating
Blaschke product.

Theorem 2. Let B be an interpolating Blaschke product whose sequence of
zeros {ak} lies in a disc D1 that touches ∂D from the inside. Then

(i)
∑∞

k=1(1− |ak|)p < ∞, for all p > 1/2.
(ii) B′ ∈ ∩p<3/2A

p.

We also prove that this result is sharp.

Theorem 3. There exists an interpolating Blaschke product B whose se-
quence of zeros {ak} lies in a disc D1 that touches ∂D from the inside and
satisfies

(1)
∞∑

k=1

(1− |ak|)1/2 = ∞,

and

(2) B′ /∈ A3/2.

2. Uniformly separated sequences in a Stolz angle

The following result, proved by McDonald and Sundberg in [28], will be
used in our proof of Theorem 1. For further equivalent conditions, the
reader is referred to the semi-expository paper [12].

Theorem B. Let {ak} be a sequence in D. Then the measure µ =
∑∞

k=1(1−
|ak|2)δak

is a Carleson measure if and only if {ak} is a finite union of uni-
formly separated sequences.

Proof of Theorem 1. Assume without loss of generality that {ak} is con-
tained in the Stolz angle Ωσ(1) for a certain σ > 1 and that the ak’s are
ordered so that |ak| ≤ |ak+1| for all k.

[(a) ⇒ (b)]. Suppose that the measure
∑∞

k=1(1 − |ak|2)δak
is a Carleson

measure. Using Lemma 3.3 on p. 239 of [17] we see that this is equivalent
to saying that

sup
z∈D

∞∑
j=1

(1− |z|2)(1− |aj|2)
|1− ajz|2

< ∞.

Thus, there exists a constant A such that

(3)
∞∑

j=1

(1− |ak|2)(1− |aj|2)
|1− ajak|2

≤ A, for all k.

Since {ak} ⊂ Ωσ(1), using Lemma 2.8 of [35] we obtain

|1− ajak| ≤ (2 + σ)2(1− |aj||ak|),
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for all j, k which, together with (3), yields

(4)
∞∑

j=1

(1− |ak|2)(1− |aj|2)
(1− |aj||ak|)2

≤ A(2 + σ)4 = Aσ, for all k.

Using Theorem 1 of [27] we see that (4) implies (b). However, we give a
simple proof of this in our case.

We claim that, for all k, we have

(5) (1− |ak|2)
k∑

j=1

1

1− |aj|2
≤ Aσ and

1

1− |ak|2
∞∑

j=k+1

(1− |aj|2) ≤ Aσ .

Indeed, if 1 ≤ j ≤ k we have

1

1− |aj|2
≤ 1

1− |aj||ak|
,

which together with (4) implies

(1− |ak|2)
∑k

j=1
1

1−|aj |2 = (1− |ak|2)
∑k

j=1
1−|aj |2(
1−|aj |2

)2

≤ (1− |ak|2)
∑k

j=1
1−|aj |2(

1−|ak||aj |
)2 ≤

∑∞
j=1

(1−|aj |2)(1−|ak|2)(
1−|ak||aj |

)2 ≤ Aσ .

This is the first part of (5). Now, if k + 1 ≤ j then

1

1− |ak|2
≤ 1

1− |aj||ak|
.

Together with (4) this yields

1
1−|ak|2

∑∞
j=k+1(1− |aj|2) = (1− |ak|2)

∑∞
j=k+1

1−|aj |2(
1−|ak|2

)2

≤ (1− |ak|2)
∑∞

j=k+1
1−|aj |2(

1−|ak||aj |
)2 ≤

∑∞
j=1

(1−|aj |2)(1−|ak|2)(
1−|ak||aj |

)2 ≤ Aσ .

Hence, (5) is proved.
Using again Lemma 3.3 on p. 239 of [17], we see that (b) is equivalent to

saying that

(6) sup
z∈D

∞∑
j=1

(1− |z|2)(1− |aj|2)
|1− |aj|z|2

< ∞.

Proof of (6). We shall use an argument inspired by that of p. 204 of [10].
It is clear that

(7) sup
z∈D

∞∑
j=1

(1− |z|2)(1− |aj|2)
|1− |aj|z|2

= sup
0<r<1

∞∑
j=1

(1− r2)(1− |aj|2)
(1− |aj|r)2

.

We have

(8)
∞∑

j=1

(1− r2)(1− |aj|2)
(1− |aj|r)2

≤
∞∑

j=1

(1− |aj|2)
(1− |a1|)2

= C < ∞, 0 < r ≤ |a1|.
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Suppose now that |a1| < r < 1. Take k such that |ak| < r ≤ |ak+1|. Using
the elementary inequalities

(9) (1− x2) + (1− y2) ≤ 4(1− xy), 0 ≤ x, y < 1,

and

(10) a2 + b2 ≤ (a + b)2, a, b > 0,

and (5), we obtain

∞∑
j=1

(1− r2)(1− |aj|2)
(1− |aj|r)2

≤ 16
∞∑

j=1

(1− r2)(1− |aj|2)
(1− r2)2 + (1− |aj|2)2

= 16
∞∑

j=1

1
(1−r2)

(1−|aj |2)
+

(1−|aj |2)

(1−r2)

≤ 16
k∑

j=1

(1− r2)

(1− |aj|2)
+ 16

∞∑
j=k+1

(1− |aj|2)
(1− r2)

≤ 16(1− |ak|2)
k∑

j=1

1

(1− |aj|2)
+ 16

1

(1− |ak+1|2)

∞∑
j=k+1

(1− |aj|2)

≤ 16(2Aσ + 1).

This, (8) and (7) imply (6) and, hence, (b). �

[(b) ⇒ (c)]. Suppose (b). Using Theorem B we deduce that the sequence
{|ak|} is a finite union of uniformly separated sequences. Bearing in mind
that |ak| ≥ 0 and using Theorem 9.2 of [11], (c) follows.

[(c) ⇒ (a)]. Suppose (c). Then {ak} is a finite union of uniformly sepa-
rated sequences which implies that the measure µ =

∑∞
k=1(1 − |ak|2)δak

is
a finite sum of Carleson measures and hence also a Carleson measure.

The equivalence (a) ⇐⇒ (d) follows from Theorem B and, finally, the
above mentioned result of Newman and Tse shows that (d) ⇐⇒ (e). �

3. Uniformly separated sequences in tangential regions

Following Cargo [4] and Ahern and Clark [2], for A > 0, γ ≥ 1 and
ξ ∈ ∂D, we define

R(A, γ, ξ) = {z ∈ D : |1− ξz|γ ≤ A(1− |z|)}.

When γ = 1 and A > 1, the region R(A, γ, ξ) is simply the Stolz angle
ΩA(ξ). When γ > 1, R(A, γ, ξ) is a region contained in D which touches ∂D
at ξ tangentially. As γ increases, the degree of tangency also increases.

A simple computation shows that if A > 0 and ξ ∈ ∂D then

D
(

ξ

A + 1
,

A

A + 1

)
= {z ∈ C : |1− ξz|2 ≤ A(1− |z|2)},
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and then it follows easily that, if 0 < a < 1 and A is defined by a = 1/(A+1),
then

(11) R(A, 2, ξ) ⊂ D(aξ, 1− a) ⊂ R(2A, 2, ξ), ξ ∈ ∂D.

Using (11), it is clear that Theorem 2 and Theorem 3 will follow from the
case γ = 2 of Theorem 4 and Theorem 5, respectively.

Theorem 4. Let B be a Blaschke product whose sequence of zeros {ak}∞k=1

satisfies the following two conditions:

(a) The measure µ =
∑∞

k=1(1− |ak|2)δak
is a Carleson measure.

(b) There exist A > 0, γ ≥ 1, and ξ ∈ ∂D such that {ak} ⊂ R(A, γ, ξ).

Then

(12)
∞∑

k=1

(1− |ak|)p < ∞, for every p > 1− 1

γ
,

and

(13) B′ ∈ ∩0<p<1+ 1
γ
Ap.

Theorem 5. Let γ ≥ 2. Then there exist a positive constant A, a point
ξ ∈ ∂D and an interpolating Blaschke product B whose sequence of zeros
{zj}∞j=1 is contained in the region R(A, γ, ξ) and satisfies

(14)
∞∑

j=1

(1− |zj|)1− 1
γ = ∞

and

(15) B′ /∈ A1+1/γ.

The following lemma will be used in the proof of Theorem 4.

Lemma 6. Let {dk}∞k=1 be a sequence of real numbers with dk ∈ (0, 1), for
all k. Suppose that there exist C > 0 and γ ≥ 1 such that

(16)
∑

{k:dk≤εγ}

dk ≤ Cε

for all sufficiently small ε > 0. Then

(17)
∞∑

k=1

dp
k < ∞

for every p > 1− 1
γ
.

Proof of Lemma 6. Clearly, it suffices to prove the lemma for 1 − 1
γ

<

p < 1. So take p satisfying this condition. For n = 1, 2, . . . , set I(n) =
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(2−(n+1), 2−n] and let βn denote the number of terms of the sequence {dk}∞k=1

which are contained in I(n). Bearing in mind that p < 1, we have
∞∑

k=1

dp
k =

∑∞
n=0

( ∑
dk∈I(n) dp

k

)
=

∑∞
n=0

( ∑
dk∈I(n) dkd

p−1
k

)
≤

∑∞
n=0 2−(n+1)(p−1)

( ∑
dk∈I(n) dk

)
≤ 21−p

∑∞
n=0 2−npβn.(18)

Using (16) with ε = 2−n/γ, we obtain that there exists n0 such that

(19)
∑

{k: dk≤2−n}

dk ≤ C2−n/γ, n ≥ n0.

On the other hand,∑
{k: dk≤2−n}

dk =
∞∑

j=n

( ∑
dk∈I(j)

dk

)
≥

∞∑
j=n

2−(j+1)βj ≥ 2−(n+1)βn,

which, with (19), gives

βn ≤ 2C2n(1−(1/γ)), n ≥ n0,

and then, since p > 1− 1/γ,
∞∑

n=n0

2−npβn ≤ 2C
∞∑

n=n0

2n(1−(1/γ)−p) < ∞.

This and (18) imply that
∑∞

k=1 dp
k < ∞. �

Proof of Theorem 4. Suppose that γ > 1. Let B and {ak} be as in The-
orem 4. Choose A > 0, γ > 1 and ξ ∈ ∂D such that {ak} ⊂ R(A, γ, ξ).
Assume without loss of generality that ξ = 1 and that |ak| ≥ 1/2 for all k.
For simplicity, write R(A, γ) for R(A, γ, 1).

For every k, write ak in the form

ak = |ak|eitk = rke
itk , with −π ≤ tk ≤ π.

Since ak ∈ R(A, γ) and 1/2 ≤ rk < 1, we have

|1− ak|2 = (1− rk)
2 + 4rk sin2

(
tk/2

)
≥ 2

t2k
π2

and, hence,

(20) |tk|γ ≤
(

π√
2

)γ

|1− ak|γ ≤
(

π√
2

)γ

A(1− |ak|), k = 1, 2, . . . .

Set

ε0 = min

{
1

2
,

(
A

(
√

2)γ

)1/(γ−1)}
.

Take ε with 0 < ε < ε0. Notice that

(
√

2)γ

A
εγ =

(
√

2)γ

A
εγ−1ε < ε.
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Consequently, using (20), we see that the condition 1−|ak| < (
√

2)γ

A
εγ implies

(21) 1− |ak| < ε and |tk|γ ≤
(

π√
2

)γ

A
(
√

2)γ

A
εγ = (πε)γ .

For 0 < ε < ε0 set Iε = (−πε, πε). Since the measure µ =
∑∞

k=1(1−|ak|)δak

is a Carleson measure, there exists a constant M > 0 such that∑
{1−|ak|<ε, |tk|<πε}

(1− |ak|) = µ
(
S(Iε)

)
≤ M2πε,

for all ε ∈ (0, ε0). Together with (21), this implies∑
{1−|ak|< (

√
2)γ

A
εγ}

(1− |ak|) ≤ M2πε, 0 < ε < ε0 .

Using Lemma 6, we deduce that

(22)
∞∑

k=1

(1− |ak|)p < ∞, if p > 1− 1

γ
.

Finally, using Theorem 3.1 of [25], we see that (22) yields

(23) B′ ∈ Aq, if q < 1 + (1/γ).

This finishes the proof of Theorem 4 in the case γ > 1. A minor modification
of the above argument can be used to handle the case γ = 1. However, we
remark that the theorem in this case can also be deduced from Theorem 1.
Indeed, if γ = 1 (and A > 1), the region R(A, 1, ξ) is a Stolz angle and
then, using Theorem 1, we infer that {ak} is a finite union of exponential
sequences. Clearly, this implies that

∑
(1− |ak|)p < ∞, for all p > 0. This

is (12) in this case. Again, Theorem 3.1 of [25] gives (13). �

Remark 1. If γ < 2, using Theorem 2 of [31], we see that (22) actually
implies that

(24) B′ ∈ ∩0<q< 1
γ
Hq,

which is stronger than (23). We do not know whether or not (24) remains
true for γ ≥ 2.

Naftalevich [29] proved a deep result about the transformation of zero sets
of certain analytic functions by rotation. According to Shapiro and Shields
(p. 514 of [33]), it was Kabăıla [23] who pointed out that his method actually
allows to prove the following stronger result.

Theorem C. For any Blaschke sequence {an}, there exists an interpolating
sequence {zn} such that |zn| = |an| for each n.

The original papers [29] and [23] are not easily accessible but a detailed
proof can be found in Cochran’s paper [7]. The following result is proved
by Cochran in the course of his proof of Theorem C on p. 750 of [7].
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Theorem D. Let {αj}∞j=1 be a sequence in (0, 1), which satisfies the fol-
lowing conditions:

(i) {αj}∞j=1 is an increasing sequence.

(ii)
∑∞

j=1(1− αj) < 1
4
.

(iii) If for every k, we let Ik be the interval [1 − 2−(k−1), 1 − 2−k), then∑
αj∈Ik

(1− αj) > 2−k/2, for all sufficiently large k.

For each j, set zj = αje
itj , with

t1 = 0 and tj = 2π

j−1∑
k=1

(1− αk), if j ≥ 2 .

Then the sequence {zj}∞j=1 is an interpolating sequence.

We can now prove Theorem 5.

Proof of Theorem 5. Take γ ≥ 2. From now on we shall be using the con-
vention that Cγ will denote a positive constant which depends only on γ
but not necessarily the same at different occurrences. For η ≥ 1, define

(25) αj(η) = 1− ηj−
γ

γ−1 j = 1, 2 . . . .

Denote, as in Theorem D, Ik = [1− 2−(k−1), 1− 2−k), k = 1, 2 . . . . Then we
have ∑

αj(η)∈Ik

(1− αj(η)) =
∑

{j: 1−2−(k−1)≤1−ηj
− γ

γ−1 <1−2−k}

ηj−
γ

γ−1

=
∑

{j:(η2k−1)(γ−1)/γ≤j<(η2k)(γ−1)/γ}

ηj−
γ

γ−1

≥ Cγη

∫ (η2k)
γ−1

γ

(η2k−1)
γ−1

γ

x−
γ

γ−1 dx

= Cγηx−
1

γ−1

](η2k)
γ−1

γ

(η2k−1)
γ−1

γ

≥ Cγη
1−(1/γ)2−

k
γ .(26)

Since 2−
k
γ ≥ 2−

k
2 when γ ≥ 2, equation (26) implies that there exists η > 0

such that

(27)
∑

αj(η)∈Ik

(1− αj(η)) > 2−k/2, k ≥ 1.

Choose such an η. Since
∑∞

j=1(1− αj(η)) < ∞, there exists j0 such that

(28)
∞∑

j=j0

(1− αj(η)) <
1

4
.
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Define

(29) αj = αj+j0(η), j ≥ 1.

It is clear that {αj}∞j=1 is an increasing sequence contained in (0, 1). This
with, (28) and (27), shows that {αj}∞j=1 fulfills the conditions of Theorem D.
Then, setting

(30) t1 = 0 and tj = 2π

j−1∑
k=1

(1− αk), if j ≥ 2,

and

(31) zj = αje
itj , j ≥ 1 ,

it follows that the sequence {zj}∞j=1 is uniformly separated.
Let B be the Blaschke product whose sequence of zeros is {zj}∞j=1. Clearly,

∞∑
j=1

(1− |zj|)1− 1
γ =

∞∑
j=1

(1− αj)
1− 1

γ = ∞.

Hence (14) holds and then, using Theorem 5 of [19], (15) follows.
Set

(32) S = 2π
∞∑

k=1

(1− αk), ξ = eiS.

We shall show that there exists a constant A > 0 such that the sequence
{zj} is contained in the region R(A, γ, ξ). This will finish the proof.

We have

S − tj = 2π
∞∑

n=j

(1− αn) ≤ Cγ

∞∑
n=j+j0

n−
γ

γ−1 ≤ Cγ

∫ ∞

j+j0

x−
γ

γ−1 dx

≤ Cγ(j + j0)
− 1

γ−1 ≤ Cγ(1− αj)
1
γ = Cγ(1− |zj|)

1
γ ,(33)

for all j. On the other hand,

(34) |1− ξzj|2 = |1− |zj|ei(tj−S)|2 ≤ (1− |zj|)2 + (S − tj)
2, j ≥ 1.

Using (33), (34) and bearing in mind that γ ≥ 2, we obtain

|1− ξzj|γ =
(
|1− ξzj|2

)γ/2

≤
[
(1− |zj|)2 + (S − tj)2

]γ/2
,

≤ 2
γ
2
−1

[
(1− |zj|)γ + (S − tj)γ

]
≤ 2

γ
2
−1

[
(1− |zj|)γ + Cγ

γ (1− |zj|)
]

≤ 2
γ
2
−1(1 + Cγ

γ )(1− |zj|),

for all j. Thus, we have proved that {zj} ⊂ R(A, γ, ξ) with A = 2
γ
2
−1(1 +

Cγ
γ ). This finishes the proof. �
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[18] D. Girela and J. A. Peláez, On the membership in Bergman spaces of the derivative

of a Blaschke product with zeros in a Stolz domain, to appear in Canad. Math. Bull.
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