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Abstract. If 0 < p < co and o > —1, the space DY, consists of those functions
f which are analytic in the unit disc D and have the property that f’ belongs to
the weighted Bergman space AL. In 1999, Z. Wu obtained a characterization
of the Carleson measures for the spaces DE for certain values of p and a.
In particular, he proved that, for 0 < p < 2, the Carleson measures for the
space D£71 are precisely the classical Carleson measures. Wu also conjectured
that this result remains true for 2 < p < oo. In this paper we prove that
this conjecture is false. Indeed, we prove that if 2 < p < oo, then there
exists g analytic in D such that the measure ug, on D defined by dug ,(2) =
(1—12]2)P71|¢g'(2)|? dx dy is not a Carleson measure for D?_, but is a classical
Carleson measure. We obtain also some sufficient conditions for multipliers of
the spaces ng-
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1. Introduction

We denote by D the unit disc {z € C : |z] < 1} and by Hol(D) the space of all
analytic functions in D. Also, H? (0 < p < c0) are the classical Hardy spaces of
analytic functions in I (see [6] and [10]).

If F is a measurable subset of the unit circle T = 9D, we write |F| for the
Lebesgue measure of E. If I C T is an interval, the Carleson square S(I) is defined
as

. . I
S(I) = {re" e €1, 1—u§r<1}.
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Carleson [5] (see also Theorem 9.3 of [6]) proved that if 0 < p < co and p is a
positive Borel measure in D then H? C LP(dy) if and only if there exists a positive
constant C' such that

w(S(I)) < C|1|, for every interval I C T. (1.1)

The measures p which satisfy this condition will be called classical Carleson mea-
sures.

If 0 < p < oo and a > —1, the weighted Bergman space AP, consists of those
f € Hol(D) such that

1/p
nﬂmﬁgQa+nAu—ku@dea) < co.

The unweighted Bergman space Aj is simply denoted by AP. Here, dA(z) = %dm dy
denotes the normalized Lebesgue area measure in D. We refer to [7] and [15] for
the theory of these spaces.

The space D? (0 < p < 0o, a > —1) consists of those f € Hol(D) such that
f' € AP Hence, if f is analytic in D, then f € D2 if and only if

def

1£12, £ + 11711, < oo.

If p < a+ 1 then it is well known that D%, = A?_, (see, e. g. Theorem 6 of [9]).
It is trivial that D? = H?2. The spaces D? are called Dirichlet spaces if p > o + 1.
In particular, the space D3 is the classical Dirichlet space.

A positive Borel measure p in D is said to be a Carleson measure for AL
(respectively, a Carleson measure for D) if A2 C LP(du) (respectively, D2 C
LP (dp).

The Carleson measures for AP, are characterized in the following theorem.

Theorem A. Suppose that 0 < p < co and o > —1, and let p be a positive Borel
measure on . Then p is a Carleson measure for AY if and only if there exists a
positive constant C such that i (S(I)) < C|I|*T2, for every interval I C T.

Theorem A was obtained by Oleinik and Pavlov [19, 20] (see also the works of
Stegenga [21] and Hastings [14] where the result is proved for certain values of p and
«). Luecking [16, 17] (see also Section 2.10 of [7]) obtained another characterizazion
of the Carleson measures for A? which involves the pseudohyperbolic metric.

Z. Wu [23] and Arcozzi, Rochberg and Sawyer [1] obtained a characterization
of the Carleson measures for the spaces D? for certain values of p, «. In particular,
parts (¢) and (d) of Theorem 1 of [23] (see also Theorem 2.1 of [22]), yield the
following result.

Theorem B. Suppose that 0 < p < 2 and let p be a positive Borel measure on
D, then p is a Carleson measure for Dg_l if and only if p is a classical Carleson
measure.
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2. The main result

Wu conjectured in p. 149 of [23] that the conclusion of Theorem B is also true for
2 < p < oo. In this paper we shall see that this conjecture is not true. Indeed, we
shall prove the following result.

Theorem 2.1. Suppose that 2 < p < co. Then there exists a function g € Hol(D)
such that the measure g, on D given by dug,(z) = (1 — [2|?)P7|g'(2)[P dA(2) is
not a Carleson measure for Dy, but is a classical Carleson measure.

Note that if 41 is a Carleson measure for D), then it is a classical Carleson
measure (see [23, Lemma 3. 1]). Theorem 2.1 shows that p being a classical Car-
leson measure is not enough to deduce that p is a Carleson measure for Dg_l
(2 < p < 00). However, it is easy to prove the following result.

Proposition 2.2. Suppose that 2 < p < oo and let u be a positive Borel measure
on D. If there exist C > 0 and € > 0 such that

p(S(I)) < Cl|', (2.1)
for all intervals I C T, then u is a Carleson measure for Dg_l.

Theorem 2.1 and Proposition 2.2 will be proved in Section 4. Section 3 will be
devoted to obtain several results that will be needed in the proof of Theorem 2.1
and which may be of independent interest. In particular, Theorem 3.1 and Theo-
rem 3.2 will be used in Section 5 to obtain sufficient conditions for multipliers of
the spaces D _;, 0 < p < 2.

As usual, throughout this paper the letter C' denotes a positive constant that
may change from one step to the next.

3. Preliminary results

We start obtaining a condition on the Taylor coefficients of a function g € Hol(D)
which implies that the measure p , on I defined as in Theorem 2.1 is a classical
Carleson measure.

Theorem 3.1. Let g be an analytic function in D, g(z) = Y.)" janz" (z € D). If

0 <p<oo and
Z( > |ak|> < o0, (3.1)

n=0 \ kel(n)
then the measure pig, on D defined by dug, = (1 — |2[*)P71 ¢ (2)[P dA(z) is a
classical Carleson measure.

Here and all over the paper, for n = 0,1,..., we let I(n) be the set of the
integers k such that 2" < k < 27+1,

Theorem 3.1 improves part (i) of Theorem 1 of [12] which asserts that (3.1)
implies that g € DJ_,.
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Proof of Theorem 3.1. Using Lemma 3.3 in p. 239 of [10], we see that it suffices
to prove that

Sup/D (1= Jal)A = |2 oy gaz) < oo, (3.2)

acD |1—az|2

Now, using Theorem 1 of [18], we deduce that there is a constant C}, which depends
only on p such that, for every a € D,

/ (1- a|1)(1a_2||22 )P~ ' (2)[P dA(z)
_la —r 3 n|ay|r" 1 ’ QW; r
<G, / 1—|a]®)(1 —r?)P~ (nz_:l |an| ) (/0 l_are¢t|2dt>d

1 - |a2)(1 - r2)p—1 [ & N
<C, / 1= a2 Zn\anh' dr
n=1
o0 P
<C / (1 — 2Pt nlan|r™t | dr
v/ >

n=1

[e%e] p
gcp22np< > k|ak>
n=0

kel(n)
P
<C, Z( Z |ak|> =A, < oo.
kel(n)

Hence, we have proved (3.2). This finishes the proof. O

Using Proposition 2.1 of [4] (see also Proposition A of [12]), we obtain that
if g € Hol(D) is given by a power series with Hadamard gaps,

g(z) = Zakz”k (z € D), with ngy1 > Any for all k, for some A > 1,
k=1
then, for every p € (0, 00),
€DV, = Y |mlf <.
k=1

Our next theorem is an improvement of this result.

Theorem 3.2. Suppose that 0 < p < oo and let g be an analytic function in D
which is given by a power series with Hadamard gaps,

z) = Zakz”’“ (z€D) with ngy1 > Ang, forallk (A>1),

then, the following conditions are equivalent:
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(a) The measure g, on D defined by dug, = (1 — |2|*)P71 g (2)|P dA(z) is
a classical Carleson measure.
(b) g € D2

p—1°

(0) 52, lanlP < oo.
Proof. We already know that (b) < (c). Trivially, (a) implies that y, , is a finite
measure and, hence, g € D}_,. Thus, we have seen that (a) = (b). Consequently,
it only remains to prove that (¢) = (a).

So take g € Hol(D) which is given by a power series with Hadamard gaps

oo
n
g(z) = > arz™, with = > X >1, for all k, (3.3)
n

k=1
and suppose that Y p- ; |ax|? < oo. Using the gap condition, we see that there are

at most C = log, 2+ 1 of the ny's in the set I(n). Then there exists a constant
Cx,p > 0 such that

oo P 0
Z( Z |ak|> SC/\,pZ|ak|p<oo.

n=0 \ kel(n) k=1

Using Theorem 3.1, we deduce that p, , is a classical Carleson measure. Thus, we
have proved that (¢) = (a), as needed. This finishes the proof. O

We need to introduce some notation to state our last result in this section.
If f € Hol(D),0<p<ooand0<r <1, we set, as usual,

Mpy(r, f) = (1 /7T |f(re”)|pdt> 1/17'

2 J_,
Notice that

1

gD | & / (1—r)P"'ME(r,g') dr < cc.
0

It is well known (see Theorem 8.20 in p. 215 of Vol. I of [26]) that if f € Hol(D)

is given by a power series with Hadamard gaps and 0 < p < oo, then My(r, f) =

M,y(r, f). It follows that if g € Hol(D) is given by a power series with Hadamard

gaps then
1

geDh | & (1 —r)P~*ME(r,g") dr < .
0
Our next theorem asserts that this result is sharp in a strong sense.

Theorem 3.3. Suppose that 0 < p < oo and let ¢ be a positive and increasing
function defined in (0,1) such that

/0 (1 —r)P~ P (r) dr < . (3.4)

Then there exists a function g € Dg_l given by a power series with Hadamard
gaps such that
Ms(r,g') > ¢(r)  for all r € (0,1). (3.5)
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The proof of Theorem 3.3 is very similar to that of Theorem D of [11].
Proof of Theorem 3.3. Set rp, =1 —27% k=1,2,.... Since ¢ is increasing

/ (1_T)p 1¢p dr>z/rk+1 p 1¢p( )
Z i1 — 1e) (1 — 7g1)P 0P (1)
k=1

=277 Z 27kP P (ry,).

Hence,

Z 2 kPP (1)) < 0. (3.6)
k=1
Set

9(2) = 6(r)z +¢* 327 o(n)2>, 2 €D,
k=1
Then g is an analytic function in D which is given by a power series with Hadamard
gaps. Using Theorem 3.2 and (3.6), we deduce that g € DII;1
We have

M3(r.g") = 2 (r1) +€3 > ¢*(m)r? T 2= g2 (r) +¢2 Y P(r)r? T 0<r <1.

Since ¢ is increasing, we deduce that
MZ(r,g') > ¢*(r1) > ¢*(r), 0<r <ry. (3.7)

Now, using the elementary inequality (1 —n~=1)" > e~2 (n > 2) and bearing in
mind that ¢ is increasing, we see that, for j > 1 and r; <7 <744,

k+

M3(r,g') > e S" ()i > ()T > E(r)(1 - 279)4 > (),
k=1

This together with (3.7) implies that Msy(r,g’) > ¢(r), for all » € (0,1), and
finishes the proof. [J

4. Proof of the main results

Proof of Proposition 2.2. Suppose p, u, C' and € are as in Proposition 2.2. Take
f €D} . Then it is easy to see that

1—r

Mp(r,f’)—o< ! >, asr — 1.
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Then it follows easily that M,(r, f) = O (log ﬁ), as r — 1. Actually, Theorem 1
of [13] implies that

1 B
Mp(r,f):O<(log1_T> ), asr — 1,

for all g > % Then it is clear that f € AP, for every a > —1. Consequently, we
have proved that D) ; C A%, for every a > —1. In particular, Dy, C A” .
Now, Theorem A implies that p is a Carleson measure for A” 4o and then it
follows that p is also a Carleson measure for Dg_l. O

Proof of Theorem 2.1. Suppose that 2 < p < co. Take two positive numbers o« and
ssuchthat%<a<%and0<5<%faanddeﬁne

f(z)zz ! 2 zeD.

1
14
k=0 k»

Using Theorem 3.2 we see that f € D;Ll. Also, it is easy to see that there exist
ro € (0,1) and C > 0 such that

1 \? 5 °°
My(r, f) > C <log 1 ) ro <1< 1. (4.1)

Since f is given by a power series with Hadamard gaps, using Theorem 8.25 in
chapter V of Vol. T of [26], we see that there exist two absolute constants A > 0
and B > 0 such that for every r € (0,1) the set

E, = {t €0,2n] : |f(re")| > BMy(r, f)} (4.2)
has Lebesgue measure greater than or equal to A,
|E-| > A, 0<r<]l. (4.3)
Define
o(r) = ! 0<r<Ll (4.4)

e (E

Then ¢ is an increasing function defined in (0,1) and fol(l — )P LGP (r) dr < oo.
Using Theorem 3.3, we see that there exists a function g € DZ’;1 which is given
by a power series with Hadamard gaps and such that

Ms(r,g") > ¢(r), 7€ (0,1). (4.5)

Now, Theorem 3.2 implies that the measure 4, is a classical Carleson mea-
sure. Using Holder’s inequality, Lemma 6.5 in Chapter V of Vol. T of [26] and (4.3),
we deduce that there exists a positive constant C; such that

p/2
[ geeopanz st ([ eena)
B, E

r

>Ch|E MY (r,g") > C1AME (r,¢"), 0<r<1.
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Hence, setting C' = C1 A, we have
/ lg'(re’) [P dt > CME(r,g"), 0<r<1. (4.6)
B,

Bearing in mind the definition of the sets E, (0 < r < 1) and using (4.6), (4.1),
(4.5) and the fact that o < 3 — &, we obtain

/D (1= [P g/ (2)PIf ()P dA(2)
1
e / (1! / g (re) P F (re)|P ditdr

T0 Er
1

>C [ (1—r)P M2 (r, f)/ lg’ (re®)|P dtdr

0 E,

1
e, / (1 — )P~ ME(r, f)ME(r, ') dr

1 L—1-pe
o[ a-m (o) ema

dr

0
1
>C
o (1—-r) (log 1;

)pa—§+1+p€

= Q.

Since f € D, _,, this shows that s, , is not a Carleson measure for Dy , and
finishes the proof. [J

5. Multipliers

A function g € Hol(D) is a multiplier for the space D? if ¢D? C DP, that is, if
fg € DP, for all f € DP. By the closed-graph theorem, ¢ is a multiplier for D? if
and only if there exists a constant C' > 0 such that

I fgllpr < C|fllpr, forall f e DE.

The space of all multipliers of the space DE will be denoted by m(D2). Since DE
contains the constant functions, we have m(D2) C DE. Wu obtained in Theo-
rem 4.2 of [23] a characterization of the multipliers of the spaces DE (o > 1,0 <
p < 00). In particular, he proved the following result.

Theorem C. Suppose that 0 < p < 0o and g is an analytic function inD. Then g €
m(Dg_l) if and only if g € H™ and the measure g, on D defined by dug p(2) =
(1 —|2[)P7!g'(2)[P dA(z) is a Carleson measure for D}_,.

Theorem C and Theorem B yield the following theorem (see also Theorem 2.2
of [22]).
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Theorem D. Suppose that 0 < p < 2 and g is an analytic function in D. Then g €
m(Dy_y) if and only if g € H* and the measure iy, on D defined by dpug ,(2) =

(1 — |z])P~Y ¢ (2)|P dA(2) is a classical Carleson measure.

Since D? = H?, we have m(D}) = m(H?) = H*. We remark also that even
though there is no relation of inclusion beteween Dg_l and DZ_1 (p # q), it is easy
to see that

m(DP_) cm(DL_,), f0<p<q<2 (5.1)
Indeed, if 0 <p <g<2and gem(D}_,), then g € H* and then it follows that
sup,cp(1 — |2])|¢'(2)] = A < co. Then, for every interval I C T, we have

/ (1 27 g/ (2)|? dA(z) < AT / (1= |2 1g' (=) P dA(2).
s(I)

S(I)
Since pg,, is a classical Carleson measure, it follows that pg 4 is also a classical
Carleson measure. This and the fact that g € H* yield that g € m(Dgfl).
Using Theorem D and our results of Section 3 we can obtain sufficient con-

ditions for multipliers of the spaces DZ?D 0<p<2.

Theorem 5.1. Suppose that 0 < q < 2 and let g be an analytic function in D,
g(z) = >0  ganz" (2 € D), satisfying

i ( > |ak>q < 0. (5.2)

n=0 \ kel(n)
(i) If 0<q<1andq<p<2, then gcm(D;_,).
(i) If 0 <q<p<2andge H>, then g € m(D;_,).
Proof. Notice that if 0 < ¢ < p then (5.2) implies that
00 P
>3 i) <
n=0 \ k€l(n)

Then, using Theorem 3.1 and Theorem D we deduce (ii).
Now, if 0 < ¢ < 1 then (5.2) implies >, |ax| < oo and, hence, g € H®.
Then (i) follows from (ii). O

Similarly, using Theorem 3.2, we obtain the following.

Theorem 5.2. Suppose that 0 < ¢ <1 and q < p < 2. Let g be an analytic function
in D which is given by a power series with Hadamard gaps,

g(z) = Zakz"k (z€D)  with ngt1 > Mg, forallk (A>1),
k=1

with

o0
Z lag]? < oo.
k=1

Then g € m(Djy_,).
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We will close the paper studying the connection between the multipliers of
the spaces Dg_l and the spaces @,,.
When 0 < p < oo, an analytic function f in DD belongs to the space @), if

sup / £ (2) 29z, a)? dA(2) < oo,
acD JD

where g denotes the Green function for the disc given by

1—az

g(z,a) = log , za€eD, z#a.

a—z

The spaces @, are conformally invariant. They have their origin in the papers [24]
where it was shown that Q2 = B (the Bloch space) and [2] where this result was
extended by showing that @), = B for all p > 1. The space @1 coincides with
BMOA. When 0 < p < 1, Q, is a proper subspace of BMOA and has many
interesting properties (see, [8], [3], or the recent detailed monograph [25]).

There are various characterizations of @), spaces. The one that will be useful
for us is expressed in terms of p-Carleson measures. Given a positive Borel measure
©oon D, we say that u is a p-Carleson measure if there exists a positive constant
C such that

n(S(I)) < C|I|P,  for every interval I C T. (5.3)

The special case p = 1 yields the classical Carleson measures. The following char-
acterization of @), spaces was obtained by Aulaskari, Stegenga and Xiao [3].

Theorem E. Let 0 < p < co. A function f holomorphic in D is a member of Qp if
and only if the measure u on D defined by du(z) = (1 — |z|*)P|f'(2)|? dA(z) is a

p-Carleson measure.

Vinogradov [22] proved that, for 0 < s < 2, there are Blaschke products
which do not belong to the space D:_;. Hence,

H>*¢D; ;, and Q1 ¢D;_;, 0<s<2.

However, we can prove the following result.

Theorem 5.3. (7) U0<p<1 Qp & ﬂo<s§2 D;_,.
(it)) If 0<p<1and 0<s<2then H°NQ, C m(D:_,).

Proof of (i). Take p and s with 0 <p <1 and 0 < s <2, and f € Q,. We have
/D ()1 = 221 dA(2)
sp s(2—p)—2
- / 17 P = F] [ 42 dAC).
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Applying Hélder’s inequality with the exponents 2/s and %, we obtain

L=yt aac)
" e (54
<[/ If’(Z)IQ(l—ZIQ)”dA(Z)y[ [ aae) Y

Theorem E implies that ;| f/(2)[*(1 — |2|*)? dA(z) < oco. Also, % > —1
s(2—p)—2

and then it follows that [, (1—z[*)” 2= dA(z) < co. Consequently, we see that
Jo lf'(2)]F(1 = |2?)*7 1 dA(2) < oo, that is, f € D_;. Thus we have proved that
Uo<p<1 @» C MNo<s<a Ds—1- To see that the inclusion is strict, let S be the atomic
singular inner function defined by

S(2) = exp (”1), 2eD. (5.5)

z—1

Then Theorem 2.7 of [22] implies that S € Ny <o m(D;_1) C Ng<so Di—1 but
Theorem 2.2 of [8] shows that S ¢ (Jy,; Qp- O

The following simple lemma will be used to prove (ii).

Lemma 5.4. If a > —1 then there exists a constant C' > 0 (which depends only on
a) such that

|- ppraae) < el
S(I)
for all intervals I C T.

The proof of the lemma is elementary and will be omitted.

Proof of (ii). Suppose that 0 < p <1 and 0 < s <2 and take f € H® N Q,. Let
I C T be an interval. Applying Holder’s inequality with the exponents 2/s and

QL, we obtain
—S

/ PP — |22 dA(2)
S0 (5.6)
5/2 2;5‘ .
(121 = |2|2)P z 7225(227272 z .
s[/mv()ul |>dA<>} [/Sma 122) 2 A (2)

Since f € ), there is a constant C such that

/ [F'(2)P(1 = |2*)P dA(2) < Ci|IPP. (5.7)
S(I)

On the other hand, since % > —1, Lemma 5.4 implies that

s(2—p)—2

|- ) < o,
S(I)
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which, together with (5.6) and (5.7), gives that there is a constant Cy such that
[ 1@l -yt aae) < ol
S(I)

Thus, the measure jy s is a classical Carleson measure. Since f € H°°, using
Theorem D we deduce that f € m(D:_;). Hence, we have proved that Q, NH> C
m(D:_,). As noticed above, if S is the atomic singular inner function defined by
(5.5) then S belongs to m(D;_;) but not to H> N Q,. Hence, the inclusion is
strict. OJ
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