
Carleson measures for spaces of Dirichlet type

Daniel Girela and José Ángel Peláez
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Abstract. If 0 < p < ∞ and α > −1, the space Dp
α consists of those functions

f which are analytic in the unit disc D and have the property that f ′ belongs to
the weighted Bergman space Ap

α. In 1999, Z. Wu obtained a characterization
of the Carleson measures for the spaces Dp

α for certain values of p and α.
In particular, he proved that, for 0 < p ≤ 2, the Carleson measures for the
space Dp

p−1 are precisely the classical Carleson measures. Wu also conjectured
that this result remains true for 2 < p < ∞. In this paper we prove that
this conjecture is false. Indeed, we prove that if 2 < p < ∞, then there
exists g analytic in D such that the measure µg,p on D defined by dµg,p(z) =
(1−|z|2)p−1|g′(z)|p dx dy is not a Carleson measure for Dp

p−1 but is a classical
Carleson measure. We obtain also some sufficient conditions for multipliers of
the spaces Dp

p−1.
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1. Introduction

We denote by D the unit disc {z ∈ C : |z| < 1} and by Hol(D) the space of all
analytic functions in D. Also, Hp (0 < p ≤ ∞) are the classical Hardy spaces of
analytic functions in D (see [6] and [10]).

If E is a measurable subset of the unit circle T = ∂D, we write |E| for the
Lebesgue measure of E. If I ⊂ T is an interval, the Carleson square S(I) is defined
as

S(I) = {reit : eit ∈ I, 1− |I|
2π

≤ r < 1} .

The authors are partially supported by grants from “El Ministerio de Educación y Ciencia,

Spain” and FEDER (MTM2004-00078 and MTM2004-21420-E) and by a grant from “La Junta
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Carleson [5] (see also Theorem 9.3 of [6]) proved that if 0 < p < ∞ and µ is a
positive Borel measure in D then Hp ⊂ Lp(dµ) if and only if there exists a positive
constant C such that

µ
(
S(I)

)
≤ C|I|, for every interval I ⊂ T. (1.1)

The measures µ which satisfy this condition will be called classical Carleson mea-
sures.

If 0 < p < ∞ and α > −1, the weighted Bergman space Ap
α consists of those

f ∈ Hol(D) such that

‖f‖Ap
α

def=
(

(α + 1)
∫

D
(1− |z|)α|f(z)|p dA(z)

)1/p

< ∞.

The unweighted Bergman space Ap
0 is simply denoted by Ap. Here, dA(z) = 1

π dx dy
denotes the normalized Lebesgue area measure in D. We refer to [7] and [15] for
the theory of these spaces.

The space Dp
α (0 < p < ∞, α > −1) consists of those f ∈ Hol(D) such that

f ′ ∈ Ap
α. Hence, if f is analytic in D, then f ∈ Dp

α if and only if

‖f‖p
Dp

α

def= |f(0)|p + ‖f ′‖p
Ap

α
< ∞.

If p < α + 1 then it is well known that Dp
α = Ap

α−p (see, e. g. Theorem 6 of [9]).
It is trivial that D2

1 = H2. The spaces Dp
α are called Dirichlet spaces if p ≥ α + 1.

In particular, the space D2
0 is the classical Dirichlet space.

A positive Borel measure µ in D is said to be a Carleson measure for Ap
α

(respectively, a Carleson measure for Dp
α) if Ap

α ⊂ Lp(dµ) (respectively, Dp
α ⊂

Lp(dµ)).
The Carleson measures for Ap

α are characterized in the following theorem.

Theorem A. Suppose that 0 < p < ∞ and α > −1, and let µ be a positive Borel
measure on D. Then µ is a Carleson measure for Ap

α if and only if there exists a
positive constant C such that µ (S(I)) ≤ C|I|α+2, for every interval I ⊂ T.

Theorem A was obtained by Oleinik and Pavlov [19, 20] (see also the works of
Stegenga [21] and Hastings [14] where the result is proved for certain values of p and
α). Luecking [16, 17] (see also Section 2.10 of [7]) obtained another characterizazion
of the Carleson measures for Ap

α which involves the pseudohyperbolic metric.
Z. Wu [23] and Arcozzi, Rochberg and Sawyer [1] obtained a characterization

of the Carleson measures for the spaces Dp
α for certain values of p, α. In particular,

parts (c) and (d) of Theorem 1 of [23] (see also Theorem 2.1 of [22]), yield the
following result.

Theorem B. Suppose that 0 < p ≤ 2 and let µ be a positive Borel measure on
D, then µ is a Carleson measure for Dp

p−1 if and only if µ is a classical Carleson
measure.



Carleson measures for spaces of Dirichlet type 3

2. The main result

Wu conjectured in p. 149 of [23] that the conclusion of Theorem B is also true for
2 < p < ∞. In this paper we shall see that this conjecture is not true. Indeed, we
shall prove the following result.

Theorem 2.1. Suppose that 2 < p < ∞. Then there exists a function g ∈ Hol(D)
such that the measure µg,p on D given by dµg,p(z) = (1− |z|2)p−1|g′(z)|p dA(z) is
not a Carleson measure for Dp

p−1 but is a classical Carleson measure.

Note that if µ is a Carleson measure for Dp
p−1 then it is a classical Carleson

measure (see [23, Lemma 3. 1]). Theorem 2.1 shows that µ being a classical Car-
leson measure is not enough to deduce that µ is a Carleson measure for Dp

p−1

(2 < p < ∞). However, it is easy to prove the following result.

Proposition 2.2. Suppose that 2 < p < ∞ and let µ be a positive Borel measure
on D. If there exist C > 0 and ε > 0 such that

µ (S(I)) ≤ C|I|1+ε, (2.1)

for all intervals I ⊂ T, then µ is a Carleson measure for Dp
p−1.

Theorem 2.1 and Proposition 2.2 will be proved in Section 4. Section 3 will be
devoted to obtain several results that will be needed in the proof of Theorem 2.1
and which may be of independent interest. In particular, Theorem 3.1 and Theo-
rem 3.2 will be used in Section 5 to obtain sufficient conditions for multipliers of
the spaces Dp

p−1, 0 < p < 2.
As usual, throughout this paper the letter C denotes a positive constant that

may change from one step to the next.

3. Preliminary results

We start obtaining a condition on the Taylor coefficients of a function g ∈ Hol(D)
which implies that the measure µg,p on D defined as in Theorem 2.1 is a classical
Carleson measure.

Theorem 3.1. Let g be an analytic function in D, g(z) =
∑∞

n=0 anzn (z ∈ D). If
0 < p < ∞ and

∞∑
n=0

( ∑
k∈I(n)

|ak|

)p

< ∞, (3.1)

then the measure µg,p on D defined by dµg,p = (1 − |z|2)p−1|g′(z)|p dA(z) is a
classical Carleson measure.

Here and all over the paper, for n = 0, 1, . . . , we let I(n) be the set of the
integers k such that 2n ≤ k < 2n+1.

Theorem 3.1 improves part (i) of Theorem 1 of [12] which asserts that (3.1)
implies that g ∈ Dp

p−1.
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Proof of Theorem 3.1. Using Lemma 3.3 in p. 239 of [10], we see that it suffices
to prove that

sup
a∈D

∫
D

(1− |a|2)(1− |z|2)p−1

|1− az|2
|g′(z)|p dA(z) < ∞. (3.2)

Now, using Theorem 1 of [18], we deduce that there is a constant Cp which depends
only on p such that, for every a ∈ D,∫

D

(1− |a|2)(1− |z|2)p−1

|1− az|2
|g′(z)|p dA(z)

≤ Cp

∫ 1

0

(1− |a|2)(1− r2)p−1

( ∞∑
n=1

n|an|rn−1

)p(∫ 2π

0

1
|1− areit|2

dt

)
dr

≤ Cp

∫ 1

0

(1− |a|2)(1− r2)p−1

1− |a|2r2

( ∞∑
n=1

n|an|rn−1

)p

dr

≤ Cp

∫ 1

0

(1− r2)p−1

( ∞∑
n=1

n|an|rn−1

)p

dr

≤ Cp

∞∑
n=0

2−np

( ∑
k∈I(n)

k|ak|

)p

≤ Cp

∞∑
n=0

( ∑
k∈I(n)

|ak|

)p

= Ap < ∞.

Hence, we have proved (3.2). This finishes the proof. �

Using Proposition 2.1 of [4] (see also Proposition A of [12]), we obtain that
if g ∈ Hol(D) is given by a power series with Hadamard gaps,

g(z) =
∞∑

k=1

akznk (z ∈ D), with nk+1 ≥ λnk for all k, for some λ > 1,

then, for every p ∈ (0,∞),

g ∈ Dp
p−1 ⇐⇒

∞∑
k=1

|ak|p < ∞.

Our next theorem is an improvement of this result.

Theorem 3.2. Suppose that 0 < p < ∞ and let g be an analytic function in D
which is given by a power series with Hadamard gaps,

g(z) =
∞∑

k=1

akznk (z ∈ D) with nk+1 ≥ λnk, for all k (λ > 1),

then, the following conditions are equivalent:
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(a) The measure µg,p on D defined by dµg,p = (1 − |z|2)p−1|g′(z)|p dA(z) is
a classical Carleson measure.

(b) g ∈ Dp
p−1.

(c)
∑∞

k=1 |ak|p < ∞.

Proof. We already know that (b) ⇔ (c). Trivially, (a) implies that µg,p is a finite
measure and, hence, g ∈ Dp

p−1. Thus, we have seen that (a) ⇒ (b). Consequently,
it only remains to prove that (c) ⇒ (a).

So take g ∈ Hol(D) which is given by a power series with Hadamard gaps

g(z) =
∞∑

k=1

akznk , with
nk+1

nk
≥ λ > 1, for all k, (3.3)

and suppose that
∑∞

k=1 |ak|p < ∞. Using the gap condition, we see that there are
at most Cλ = logλ 2 + 1 of the nk

′s in the set I(n). Then there exists a constant
Cλ,p > 0 such that

∞∑
n=0

( ∑
k∈I(n)

|ak|

)p

≤ Cλ,p

∞∑
k=1

|ak|p < ∞.

Using Theorem 3.1, we deduce that µg,p is a classical Carleson measure. Thus, we
have proved that (c) ⇒ (a), as needed. This finishes the proof. �

We need to introduce some notation to state our last result in this section.
If f ∈ Hol(D), 0 < p < ∞ and 0 ≤ r < 1, we set, as usual,

Mp(r, f) =
(

1
2π

∫ π

−π

|f(reit)|p dt

)1/p

.

Notice that

g ∈ Dp
p−1 ⇔

∫ 1

0

(1− r)p−1Mp
p (r, g′) dr < ∞.

It is well known (see Theorem 8.20 in p. 215 of Vol. I of [26]) that if f ∈ Hol(D)
is given by a power series with Hadamard gaps and 0 < p < ∞, then M2(r, f) �
Mp(r, f). It follows that if g ∈ Hol(D) is given by a power series with Hadamard
gaps then

g ∈ Dp
p−1 ⇔

∫ 1

0

(1− r)p−1Mp
2 (r, g′) dr < ∞.

Our next theorem asserts that this result is sharp in a strong sense.

Theorem 3.3. Suppose that 0 < p < ∞ and let φ be a positive and increasing
function defined in (0, 1) such that∫ 1

0

(1− r)p−1φp(r) dr < ∞. (3.4)

Then there exists a function g ∈ Dp
p−1 given by a power series with Hadamard

gaps such that
M2(r, g′) ≥ φ(r) for all r ∈ (0, 1). (3.5)
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The proof of Theorem 3.3 is very similar to that of Theorem D of [11].

Proof of Theorem 3.3. Set rk = 1− 2−k, k = 1, 2, . . . . Since φ is increasing∫ 1

0

(1− r)p−1φp(r)dr ≥
∞∑

k=1

∫ rk+1

rk

(1− r)p−1φp(r) dr

≥
∞∑

k=1

(rk+1 − rk)(1− rk+1)p−1φp(rk)

=2−p
∞∑

k=1

2−kpφp(rk).

Hence,
∞∑

k=1

2−kpφp(rk) < ∞. (3.6)

Set

g(z) = φ(r1)z + e4
∞∑

k=1

2−kφ(rk)z2k

, z ∈ D.

Then g is an analytic function in D which is given by a power series with Hadamard
gaps. Using Theorem 3.2 and (3.6), we deduce that g ∈ Dp

p−1.
We have

M2
2 (r, g′) = φ2(r1)+e8

∞∑
k=1

φ2(rk)r2k+1−2 ≥ φ2(r1)+e8
∞∑

k=1

φ2(rk)r2k+1
, 0 < r < 1.

Since φ is increasing, we deduce that

M2
2 (r, g′) ≥ φ2(r1) ≥ φ2(r), 0 < r ≤ r1. (3.7)

Now, using the elementary inequality (1 − n−1)n ≥ e−2 (n ≥ 2) and bearing in
mind that φ is increasing, we see that, for j ≥ 1 and rj ≤ r ≤ rj+1,

M2
2 (r, g′) ≥ e8

∞∑
k=1

φ2(rk)r2k+1
≥ e8φ2(rj+1)r2j+2

≥ e8φ2(r)(1− 2−j)4·2
j

≥ φ2(r).

This together with (3.7) implies that M2(r, g′) ≥ φ(r), for all r ∈ (0, 1), and
finishes the proof. �

4. Proof of the main results

Proof of Proposition 2.2. Suppose p, µ, C and ε are as in Proposition 2.2. Take
f ∈ Dp

p−1. Then it is easy to see that

Mp(r, f ′) = o
(

1
1− r

)
, as r → 1.
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Then it follows easily that Mp(r, f) = O
(
log 1

1−r

)
, as r → 1. Actually, Theorem 1

of [13] implies that

Mp(r, f) = O

((
log

1
1− r

)β
)

, as r → 1,

for all β > 1
2 . Then it is clear that f ∈ Ap

α, for every α > −1. Consequently, we
have proved that Dp

p−1 ⊂ Ap
α, for every α > −1. In particular, Dp

p−1 ⊂ Ap
−1+ε.

Now, Theorem A implies that µ is a Carleson measure for Ap
−1+ε and then it

follows that µ is also a Carleson measure for Dp
p−1. �

Proof of Theorem 2.1. Suppose that 2 < p < ∞. Take two positive numbers α and
ε such that 1

p < α < 1
2 and 0 < ε < 1

2 − α and define

f(z) =
∞∑

k=0

1

k
1
p +ε

z2k

, z ∈ D.

Using Theorem 3.2 we see that f ∈ Dp
p−1. Also, it is easy to see that there exist

r0 ∈ (0, 1) and C > 0 such that

M2(r, f) ≥ C

(
log

1
1− r

) 1
2−

1
p−ε

r0 ≤ r < 1. (4.1)

Since f is given by a power series with Hadamard gaps, using Theorem 8.25 in
chapter V of Vol. I of [26], we see that there exist two absolute constants A > 0
and B > 0 such that for every r ∈ (0, 1) the set

Er = {t ∈ [0, 2π] : |f(reit)| > BM2(r, f)} (4.2)

has Lebesgue measure greater than or equal to A,

|Er| ≥ A, 0 < r < 1. (4.3)

Define
φ(r) =

1

(1− r)
[
log
(

eα

1−r

)]α , 0 ≤ r < 1. (4.4)

Then φ is an increasing function defined in (0, 1) and
∫ 1

0
(1 − r)p−1φp(r) dr < ∞.

Using Theorem 3.3, we see that there exists a function g ∈ Dp
p−1 which is given

by a power series with Hadamard gaps and such that

M2(r, g′) ≥ φ(r), r ∈ (0, 1). (4.5)

Now, Theorem 3.2 implies that the measure µg,p is a classical Carleson mea-
sure. Using Hölder’s inequality, Lemma 6.5 in Chapter V of Vol. I of [26] and (4.3),
we deduce that there exists a positive constant C1 such that∫

Er

|g′(reit)|p dt ≥ |Er|1−
p
2

(∫
Er

|g′(reit)|2 dt

)p/2

≥C1|Er|Mp
2 (r, g′) ≥ C1AMp

2 (r, g′), 0 < r < 1.
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Hence, setting C = C1A, we have∫
Er

|g′(reit)|p dt ≥ CMp
2 (r, g′), 0 < r < 1. (4.6)

Bearing in mind the definition of the sets Er (0 < r < 1) and using (4.6), (4.1),
(4.5) and the fact that α < 1

2 − ε, we obtain∫
D
(1− |z|2)p−1|g′(z)|p|f(z)|p dA(z)

≥ C

∫ 1

r0

(1− r)p−1

∫
Er

|g′(reit)|p|f(reit)|p dtdr

≥ C

∫ 1

r0

(1− r)p−1Mp
2 (r, f)

∫
Er

|g′(reit)|p dtdr

≥ C

∫ 1

r0

(1− r)p−1Mp
2 (r, f)Mp

2 (r, g′) dr

≥ C

∫ 1

r0

(1− r)p−1

(
log

1
1− r

) p
2−1−pε

φp(r) dr

≥ C

∫ 1

r0

dr

(1− r)
(
log 1

1−r

)pα− p
2 +1+pε

= ∞.

Since f ∈ Dp
p−1, this shows that µg,p is not a Carleson measure for Dp

p−1 and
finishes the proof. �

5. Multipliers

A function g ∈ Hol(D) is a multiplier for the space Dp
α if gDp

α ⊂ Dp
α, that is, if

fg ∈ Dp
α, for all f ∈ Dp

α. By the closed-graph theorem, g is a multiplier for Dp
α if

and only if there exists a constant C > 0 such that

‖fg‖Dp
α
≤ C‖f‖Dp

α
, for all f ∈ Dp

α.

The space of all multipliers of the space Dp
α will be denoted by m(Dp

α). Since Dp
α

contains the constant functions, we have m(Dp
α) ⊂ Dp

α. Wu obtained in Theo-
rem 4.2 of [23] a characterization of the multipliers of the spaces Dp

α (α > 1, 0 <
p < ∞). In particular, he proved the following result.

Theorem C. Suppose that 0 < p < ∞ and g is an analytic function in D. Then g ∈
m(Dp

p−1) if and only if g ∈ H∞ and the measure µg,p on D defined by dµg,p(z) =
(1− |z|)p−1|g′(z)|p dA(z) is a Carleson measure for Dp

p−1.

Theorem C and Theorem B yield the following theorem (see also Theorem 2.2
of [22]).



Carleson measures for spaces of Dirichlet type 9

Theorem D. Suppose that 0 < p < 2 and g is an analytic function in D. Then g ∈
m(Dp

p−1) if and only if g ∈ H∞ and the measure µg,p on D defined by dµg,p(z) =
(1− |z|)p−1|g′(z)|p dA(z) is a classical Carleson measure.

Since D2
1 = H2, we have m(D2

1) = m(H2) = H∞. We remark also that even
though there is no relation of inclusion beteween Dp

p−1 and Dq
q−1 (p 6= q), it is easy

to see that
m(Dp

p−1) ⊂ m(Dq
q−1), if 0 < p ≤ q ≤ 2. (5.1)

Indeed, if 0 < p ≤ q ≤ 2 and g ∈ m(Dp
p−1), then g ∈ H∞ and then it follows that

supz∈D(1− |z|)|g′(z)| = A < ∞. Then, for every interval I ⊂ T, we have∫
S(I)

(1− |z|)q−1|g′(z)|q dA(z) ≤ Aq−p

∫
S(I)

(1− |z|)p−1|g′(z)|p dA(z).

Since µg,p is a classical Carleson measure, it follows that µg,q is also a classical
Carleson measure. This and the fact that g ∈ H∞ yield that g ∈ m(Dq

q−1).
Using Theorem D and our results of Section 3 we can obtain sufficient con-

ditions for multipliers of the spaces Dp
p−1, 0 < p < 2.

Theorem 5.1. Suppose that 0 < q < 2 and let g be an analytic function in D,
g(z) =

∑∞
n=0 anzn (z ∈ D), satisfying

∞∑
n=0

( ∑
k∈I(n)

|ak|

)q

< ∞. (5.2)

(i) If 0 < q ≤ 1 and q ≤ p < 2, then g ∈ m(Dp
p−1).

(ii) If 0 < q ≤ p < 2 and g ∈ H∞, then g ∈ m(Dp
p−1).

Proof. Notice that if 0 < q ≤ p then (5.2) implies that
∞∑

n=0

( ∑
k∈I(n)

|ak|

)p

< ∞.

Then, using Theorem 3.1 and Theorem D we deduce (ii).
Now, if 0 < q ≤ 1 then (5.2) implies

∑∞
k=1 |ak| < ∞ and, hence, g ∈ H∞.

Then (i) follows from (ii). �

Similarly, using Theorem 3.2, we obtain the following.

Theorem 5.2. Suppose that 0 < q ≤ 1 and q ≤ p < 2. Let g be an analytic function
in D which is given by a power series with Hadamard gaps,

g(z) =
∞∑

k=1

akznk (z ∈ D) with nk+1 ≥ λnk, for all k (λ > 1),

with
∞∑

k=1

|ak|q < ∞.

Then g ∈ m(Dp
p−1).
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We will close the paper studying the connection between the multipliers of
the spaces Dq

q−1 and the spaces Qp.
When 0 < p < ∞, an analytic function f in D belongs to the space Qp if

sup
a∈D

∫
D
|f ′(z)|2g(z, a)p dA(z) < ∞ ,

where g denotes the Green function for the disc given by

g(z, a) = log
∣∣∣∣1− az

a− z

∣∣∣∣ , z, a ∈ D , z 6= a .

The spaces Qp are conformally invariant. They have their origin in the papers [24]
where it was shown that Q2 = B (the Bloch space) and [2] where this result was
extended by showing that Qp = B for all p > 1. The space Q1 coincides with
BMOA. When 0 < p < 1, Qp is a proper subspace of BMOA and has many
interesting properties (see, [8], [3], or the recent detailed monograph [25]).

There are various characterizations of Qp spaces. The one that will be useful
for us is expressed in terms of p-Carleson measures. Given a positive Borel measure
µ on D, we say that µ is a p-Carleson measure if there exists a positive constant
C such that

µ
(
S(I)

)
≤ C|I|p, for every interval I ⊂ T. (5.3)

The special case p = 1 yields the classical Carleson measures. The following char-
acterization of Qp spaces was obtained by Aulaskari, Stegenga and Xiao [3].

Theorem E. Let 0 < p < ∞. A function f holomorphic in D is a member of Qp if
and only if the measure µ on D defined by dµ(z) = (1 − |z|2)p|f ′(z)|2 dA(z) is a
p-Carleson measure.

Vinogradov [22] proved that, for 0 < s < 2, there are Blaschke products
which do not belong to the space Ds

s−1. Hence,

H∞ 6⊂ Ds
s−1, and Q1 6⊂ Ds

s−1, 0 < s < 2.

However, we can prove the following result.

Theorem 5.3. (i)
⋃

0<p<1 Qp (
⋂

0<s≤2Ds
s−1.

(ii) If 0 < p < 1 and 0 < s < 2 then H∞ ∩Qp ( m
(
Ds

s−1

)
.

Proof of (i). Take p and s with 0 < p < 1 and 0 < s < 2, and f ∈ Qp. We have∫
D
|f ′(z)|s(1− |z|2)s−1 dA(z)

=
∫

D

[
|f ′(z)|s(1− |z|2)

sp
2
][

1− |z|2
] s(2−p)−2

2 dA(z).
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Applying Hölder’s inequality with the exponents 2/s and 2
2−s , we obtain∫

D
|f ′(z)|s(1− |z|2)s−1 dA(z)

≤
[ ∫

D
|f ′(z)|2(1− |z|2)p dA(z)

]s/2[ ∫
D
(1− |z|2)

s(2−p)−2
2−s dA(z)

] 2−s
2

.

(5.4)

Theorem E implies that
∫

D |f
′(z)|2(1 − |z|2)p dA(z) < ∞. Also, s(2−p)−2

2−s > −1

and then it follows that
∫

D(1−|z|2)
s(2−p)−2

2−s dA(z) < ∞. Consequently, we see that∫
D |f

′(z)|s(1 − |z|2)s−1 dA(z) < ∞, that is, f ∈ Ds
s−1. Thus we have proved that⋃

0<p<1 Qp ⊂
⋂

0<s≤2Ds
s−1. To see that the inclusion is strict, let S be the atomic

singular inner function defined by

S(z) = exp
(

z + 1
z − 1

)
, z ∈ D. (5.5)

Then Theorem 2.7 of [22] implies that S ∈
⋂

0<s≤2 m(Ds
s−1) ⊂

⋂
0<s≤2Ds

s−1 but
Theorem 2.2 of [8] shows that S /∈

⋃
0<p<1 Qp. �

The following simple lemma will be used to prove (ii).

Lemma 5.4. If α > −1 then there exists a constant C > 0 (which depends only on
α) such that ∫

S(I)

(1− |z|2)α dA(z) ≤ C|I|α+2,

for all intervals I ⊂ T.

The proof of the lemma is elementary and will be omitted.

Proof of (ii). Suppose that 0 < p < 1 and 0 < s < 2 and take f ∈ H∞ ∩Qp. Let
I ⊂ T be an interval. Applying Hölder’s inequality with the exponents 2/s and

2
2−s , we obtain∫

S(I)

|f ′(z)|s(1− |z|2)s−1 dA(z)

≤
[ ∫

S(I)

|f ′(z)|2(1− |z|2)p dA(z)
]s/2[ ∫

S(I)

(1− |z|2)
s(2−p)−2

2−s dA(z)
] 2−s

2

.

(5.6)

Since f ∈ Qp, there is a constant C1 such that∫
S(I)

|f ′(z)|2(1− |z|2)p dA(z) ≤ C1|I|p. (5.7)

On the other hand, since s(2−p)−2
2−s > −1, Lemma 5.4 implies that∫

S(I)

(1− |z|2)
s(2−p)−2

2−s dA(z) ≤ C|I|
s(2−p)−2

2−s +2,
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which, together with (5.6) and (5.7), gives that there is a constant C2 such that∫
S(I)

|f ′(z)|s(1− |z|2)s−1 dA(z) ≤ C2|I|.

Thus, the measure µf,s is a classical Carleson measure. Since f ∈ H∞, using
Theorem D we deduce that f ∈ m(Ds

s−1). Hence, we have proved that Qp∩H∞ ⊂
m(Ds

s−1). As noticed above, if S is the atomic singular inner function defined by
(5.5) then S belongs to m(Ds

s−1) but not to H∞ ∩ Qp. Hence, the inclusion is
strict. �
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