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Abstract. We study the membership of derivatives of Blaschke products in Hardy

and Bergman spaces, especially for interpolating Blaschke products and for those

whose zeros lie in a Stolz domain. We obtain new and very simple proofs of some

known results and prove new theorems that complement or extend the earlier works of

Ahern, Clark, Cohn, Kim, Newman, Protas, Rudin, Vinogradov, and other authors.

Introduction

One of the central questions about Blaschke products is that of the membership of
their derivatives in classical function spaces. This problem was studied by a number of
authors in the 70’s and 80’s:

(1) for Hardy spaces Hp by Protas [30], Ahern - Clark [3], Ahern [1], and Cohn [10];
(2) for the related Bp spaces, the Banach envelopes of the Hardy spaces with exponents

smaller than one, by Ahern and Clark [3], [4];
(3) for weighted Bergman spaces Ap

α by Ahern [1] and Kim [22].
The statements of many such results can be found in Colwell’s monograph [11]. More

recently, mean growth of the derivative of Blaschke products was investigated by Girela -
González [18], Kutbi [23], and also by the first two authors of the present paper in [19]. A
closely related question of the membership of Blaschke products in the Qp spaces, which
became an active area of study in the mid and late 90’s, was investigated by Essén and
Xiao [16] and Danikas and Mouratides [12], among others.

The Schwarz-Pick lemma readily implies that the derivative of any Blaschke product
belongs to ∩0<p<1A

p. Rudin [31] showed that there are Blaschke products whose deriv-
ative does not belong to A1; see Piranian [29] for an explicit example. Ahern [2] found
a necessary and sufficient condition for the membership of B′ in the weighted space Ap

α.
However, his criterion is expressed in terms of |B(z)| and is therefore difficult to verify
in practice. It is, thus, desirable to have criteria for membership of B′ in, say, Hardy
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and Bergman spaces based just on some information on the zeros of B. The papers
cited mainly considered conditions on the moduli of the zeros, as is the case of [30] and
[22]. Many results obtained there appear to be sharp but the sharpness issue was not
discussed.

In this paper we essentially determine the best possible exponents of integrability,
either with respect to the area measure in the disk or with respect to the normalized
arc length measure on the unit circle, of B′ for those Blaschke products B which are
either interpolating or have their zeros in a Stolz angle (or both). We obtain several
new results and very simple proofs of some other, essentially known, ones. Besides our
own new techniques we also employ those used earlier by Ahern, Clark, Naftalevich, and
Vinogradov, among others.

Ahern and Clark [3] considered the condition that the zeros of B converge to 1 non-
tangentially (which is equivalent to requiring that the zeros belong to a Stolz angle) in
Section 4 of op. cit., again in conjunction with a condition on the moduli. By putting
together various theorems from different sections of [3], one can readily deduce the fol-
lowing result: if the zeros of B belong to a Stolz angle, then B′ ∈ ∩0<p<1/2H

p and the
exponent one-half is sharp. While in our view the statement in this form deserves to be
better known, we present it together with a new and very short proof in Section 1.

By a theorem of Hardy and Littlewood, Hp ⊂ A2p and the exponent 2p cannot be
improved (see Theorem 5.6 of [13] and [24] or [34] for a simple proof). It is, thus, natural
to ask whether the exponent one in the inclusion B′ ∈ ∩0<p<1A

p is sharp if the zeros
of B converge nontangentially to a point in the unit circle. However, a rather surprising
phenomenon occurs here: B′ ∈ ∩0<p<3/2A

p, whenever the zeros of B lie in a Stolz angle.
Though this can easily be deduced from Ahern’s paper [1], we give a proof based only on
the Schwarz lemma and the fact that B′ ∈ ∩0<p<1/2H

p. This is also part of Section 1.
Our findings, thus, provide plenty of explicit examples of functions in a Hardy space that
belong to a Bergman space with roughly the triple exponent of integrability.

We devote Section 2 to the interpolating Blaschke products. This is the term commonly
used for those products whose zero sequences are uniformly separated (equivalently, in-
terpolating for H∞). For such products B and 1 < p < 2 we show that B′ ∈ Ap if and
only if

∑
n(1− |an|)2−p < ∞. This is a converse in this situation of a general result due

to Kim [22].
In the same section, we prove the existence of an interpolating Blaschke product whose

derivative does not belong to Ap for any p > 1. Nonetheless, for those interpolating
Blaschke products whose zeros lie in a Stolz angle, we show that their derivative belongs
to all Hp spaces with p < 1 and to all Ap spaces with p < 2, in accord with the usual
pattern. Originally, we proved this statement using results of Danikas and Mouratides
[12] and of Essén and Xiao [16] about the sequences of zeros of functions in Qp spaces,
0 < p < 1. Later on we found out that this can be deduced from the fact that an
interpolating sequence in a Stolz angle is a finite union of exponential sequences, which
is implicit in D.J. Newman’s paper [26] (in the proof of his Theorem 3).
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Throughout the paper the known lemmas and results that appear explicitly in other
papers will be denoted by block capital letters. The results that seem new and those for
which we do not have a specific reference will be enumerated.

1. Blaschke products with zeros in a Stolz angle

We consider the standard Hardy spaces Hp of analytic functions f in the unit disk D
for which the Hardy-Littlewood integral means

(1) Mp(r, f) =
(∫ 2π

0

|f(reiθ)|p dθ

2π

)1/p

remain bounded as r → 1−. The reader is referred to [13] or [17] for the basic theory
of these spaces. If a sequence of points {an} in D satisfies the Blaschke condition:∑∞

n=1(1− |an|) < ∞, the corresponding Blaschke product B is defined as

B(z) =
∞∏

n=1

|an|
an

an − z

1− anz
.

Such a product is analytic in D, bounded by one, and with radial limits of modulus one
almost everywhere on the unit circle.

1.1. Membership of the derivative in Hardy spaces. There are several ways of
saying that a point belongs to a Stolz angle. We will adopt the following one. Given
ξ ∈ ∂D (the unit circle) and σ ∈ [1,∞) we set

Ωσ(ξ) = {z ∈ D : |1− ξz| ≤ σ(1− |z|)} .

Any such domain Ωσ(ξ), 1 ≤ σ < ∞, will be called a Stolz angle with vertex at ξ. The
domain Ωσ(1) will be simply denoted by Ωσ. The following observation which can be
found in [33] will be useful in what follows:

(2)
1

2 + σ
≤ |1− λz|
|1− |λ|z|

≤ 2 + σ , whenever z ∈ D, λ ∈ Ωσ .

Lemma 1. Given σ ∈ [1,∞) there exists a constant Kσ > 0 such that, if a ∈ Ωσ then∣∣∣∣ 1− z

1− az

∣∣∣∣ ≤ Kσ , for every z ∈ D .

Proof. We first consider the case when a is real and 0 < a < 1. Set

S(z) =
1− z

1− az
, z ∈ D .

Bearing in mind that S is a Möbius transformation with real coefficients, we easily see
that S(D) is the disk of center 1/(1 + a) and radius 1/(1 + a) and is therefore contained
in the disk of radius 2/(1 + a) centered at the origin. Thus, we have∣∣∣∣ 1− z

1− az

∣∣∣∣ ≤ 2
1 + a

≤ 2 , z ∈ D , 0 < a < 1 .
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Now for arbitrary a in Ωσ, using (2) and the special case just considered, we obtain∣∣∣∣ 1− z

1− az

∣∣∣∣ =
∣∣∣∣ 1− z

1− |a|z

∣∣∣∣ · ∣∣∣∣1− |a|z1− az

∣∣∣∣ ≤ 2(2 + σ) .

Hence, we can choose Kσ = 2(2 + σ). �
Ahern and Clark ([3], Lemma 1, p. 121) found a very practical criterion for membership

of the derivative of a Blaschke product in a Hardy space.

Lemma A. If a Blaschke product B has zeros an = rneitn then B′ ∈ Hp if and only if
the function f defined on the unit circle by

f(t) =
∞∑

n=1

1− |an|
(1− |an|)2 + (t− tn)2

belongs to Lp(0, 2π).

We now combine the above lemmas to give a simple proof of a theorem on integrability
of the derivative of Blaschke products with zeros in a Stolz angle. The result is due to
Ahern and Clark [3] although it was not stated there in unified way. Part (a) follows
from their Theorem 12 in the case α = γ = 1, with minor modifications of the domain
R(δ, γ). Part (b) is contained in part (ii) of Theorem 8 in [3].

Our proof is based on a simple and direct idea. Namely, many complex analysts are
familiar with the following exercise: if the zeros of a Blaschke product B lie on the radius
(0, 1) and f(z) = (1 − z)2B(z), then f ′ is bounded in the unit disk (see, for example,
Exercise 18, Chapter 15 of [32]). This gives the obvious information about the growth of
B′ as z → 1 along the radius [0, 1). With the aid of Lemma 1 we can generalize the idea
of this statement to a Stolz angle to obtain the proof of part (a) of the theorem below.

Theorem B. (a) If the zeros of a Blaschke product B all lie in some Stolz angle, then
B′ ∈ ∩0<p<1/2H

p.
(b) The Blaschke product B with zeros an = 1− 1/(n log2 n), n ≥ 2, has the property

that B′ 6∈ H1/2.

Proof. (a) Without loss of generality we may assume that the Stolz angle has its vertex
at z = 1. Since the function given by f(z) = (1 − z)−2 is a member of Hp whenever
p < 1/2, it suffices to show that

(3) |B′(z)| ≤ C

|1− z|2
, whenever z ∈ D ,

for some universal constant C.
Denoting by an the zeros of B, let us agree to write

(4) bn(z) =
|an|
an

an − z

1− anz
, B(z) =

∞∏
n=1

bn(z) , Bn(z) =
B(z)
bn(z)

.

Then

B′(z) =
∞∑

n=1

b′n(z) ·Bn(z) ,
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whence

|B′(z)| ≤
∞∑

n=1

1− |an|2

|1− anz|2
|Bn(z)| .

Applying Lemma 1, we obtain

|(1− z)2B′(z)| ≤
∞∑

n=1

(1− |an|2)
∣∣∣∣ 1− z

1− anz

∣∣∣∣2 ≤ 2K2
σ

∞∑
n=1

(1− |an|) .

The statement follows since {an} is a Blaschke sequence by assumption.

(b) We use Lemma A. In this case all tn = 0, hence the function f becomes

f(t) =
∞∑

n=2

1/(n log2 n)
1/(n2 log4 n) + t2

=
∞∑

n=2

n log2 n

1 + t2n2 log4 n
.

For t > 0, let Nt be the unique number > 1 with the property that

tNt log2 Nt = 1 .

Then we have
f(t) ≥

∑
2≤n≤Nt

n log2 n � N2
t log2 Nt

by a standard argument involving summation by parts. Thus,

f(t)1/2 ≥ CNt log Nt =
C

t log Nt

for a fixed positive constant C. Recalling the definition of Nt, we see that

log Nt + 2 log log Nt = log
1
t

and then it follows that log Nt ∼ log 1
t , as t → 0. Consequently, there exist positive

constants α and t0 such that f(t)1/2 ≥ α/(t log 1
t ) for all t ∈ [0, t0]. Therefore∫ 2π

0

f(t)1/2dt ≥ α

∫ t0

0

1
t log 1

t

dt = ∞ ,

so B′ 6∈ H1/2 by Lemma A. �

It should be pointed out that the same exponent also seemed critical under other
assumptions on the zeros considered in [30], [3], and [22].

1.2. Membership of the derivative in Bergman spaces. Denote by dA the normal-
ized Lebesgue area measure on the disk: dA(z) = π−1rdrdθ = π−1dxdy and by Lp(dA)
the standard Lebesgue space equipped with the usual norm or metric, depending on
whether 1 ≤ p < ∞ or 0 < p < 1. The Bergman space Ap is the closed subspace of
Lp(dA) consisting of analytic functions in D. We refer the reader to [7], [21], and [14] for
the theory of these spaces.

Our goal in this subsection is to obtain a result analogous to part (a) of Theorem B
for Bergman spaces.
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By a holomorphic self-map of the disk we mean an analytic functions ϕ in D for which
ϕ(D) ⊂ D. The following simple statement based on the Schwarz-Pick lemma will be
useful throughout the paper.

Proposition 2. Let ϕ be an arbitrary holomorphic self-map of the disk. If ϕ′ ∈ Hp then
ϕ′ ∈ Ap+1−ε for any positive and sufficiently small ε.

Proof. By the Schwarz-Pick lemma we have∫
D
|ϕ′(z)|p+1−εdA(z) ≤

∫
D
|ϕ′(z)|p

(
1− |ϕ(z)|2

1− |z|2

)1−ε

dA(z)

≤
∫

D
|ϕ′(z)|p

(
1

1− |z|

)1−ε

dA(z)

= 2
∫ 1

0

Mp
p (r, ϕ′)

r

(1− r)1−ε
dr

≤ 2‖ϕ′‖p
Hp

∫ 1

0

1
(1− r)1−ε

dr

=
2
ε
· ‖ϕ′‖p

Hp ,

and the statement follows. �
Theorem B and Proposition 2 immediately yield the following slightly surprising result.

Theorem 3. If the zeros of a Blaschke product B all lie in some Stolz angle, then
B′ ∈ ∩0<p<3/2A

p.

One usually encounters the following type of examples regarding the membership in
Hardy and Bergman spaces: either (1) lacunary series which belong to many (or all)
Bergman spaces, but lie in no Hardy space, or (2) functions that follow the usual pattern
of belonging to Hp for p < p0 and to Aq when q < 2p0; for example, this happens with
the appropriate negative powers of 1−z and with conformal maps onto angular domains.

Theorem B can also be deduced from Theorem 6.1 of Ahern’s paper [1] and Theorem B
by means of the Schwarz-Pick lemma and integration in θ, and the proof works even for
arbitrary inner functions. In summary, our contribution here consists in giving an even
simpler proof using Proposition 2. This explains why 3/2 instead of simply 1 in the
exponent. Yet another proof, inspired by ideas from Vinogradov’s paper [33], can be
found in the second author’s thesis [28].

Is is natural to ask whether or not the exponent three-halves is sharp. Interpolating
Blaschke products do not help here. Indeed, the following result shows that no counterex-
ample (if any) for the exponent three-halves in Theorem 3 is possible with interpolating
sequences.

Theorem 4. Let B be an interpolating Blaschke product whose zero sequence lies in a
Stolz angle. Then

(i) B′ ∈ Hp for all p ∈ (0, 1).
(ii) B′ ∈ Ap for all p ∈ (0, 2).
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This is one of the results that we shall prove in the next section which will be mainly
devoted to interpolating Blaschke products.

2. Derivatives of interpolating Blaschke products

In order to see where we stand in a general situation, let us recall two results due to
Protas and Cohn respectively.

Protas [30] studied the membership of general Blaschke products in Hardy spaces in
terms of their zero sequences and proved the following.

Theorem C. Whenever {an} is the zero set of a Blaschke product B and

(5)
∞∑

n=1

(1− |an|)1−p < ∞ , 1/2 < p < 1 ,

then B′ ∈ Hp.

For a generalization, see Theorem 6.2 of Ahern [1]. Cohn [10] proved the converse of
Theorem C for interpolating Blaschke products. This will be discussed in Subsection 2.2.

The following result is due to H.O. Kim [22].

Theorem D. Let {an} be the zero set of a Blaschke product B and suppose that also

(6)
∞∑

n=1

(1− |an|)2−p < ∞ , 1 < p < 2 ,

Then B′ ∈ Ap.

The theorems above have the typical flavor of most results that appear in the literature
when only the absolute values of the zeros are taken into account. Imposing additional
conditions helps improve the exponent of integrability of the derivative in most situations;
that is precisely the leitmotiff of this article (and many others already published on this
topic).

We will show that Theorem D also has a converse for interpolating sequences.

2.1. Background on interpolating sequences. We first review some background on
interpolating sequences. Throughout this section, % will denote the pseudo-hyperbolic
metric in the unit disk:

%(z, w) =
∣∣∣∣ z − w

1− wz

∣∣∣∣ , z, w ∈ D .

The Schwarz-Pick lemma tells us that %(f(z), f(w)) ≤ %(z, w) whenever f is a holomor-
phic self-map of D and z, w ∈ D. Also, equality holds whenever f is a disk automorphism,
i.e. % is invariant under the conformal maps of the disk onto itself.

A pseudohyperbolic disk of (pseudohyperbolic) center a and radius r (a ∈ D, 0 < r < 1)
is the set ∆(a, r) = {z ∈ D : %(a, z) < r}. It coincides with the Euclidean disk whose
(Euclidean) radius and center are (see [7]):

(7) R =
1− |a|2

1− r2|a|2
r , c =

1− r2

1− r2|a|2
a .
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A sequence {an} of points in D is said to be uniformly separated if it satisfies the
condition:

(8) inf
n

∏
m6=n

%(am, an) = inf
n

Bn(an) ≥ δ > 0

(using our earlier notation Bn = B/bn as in (4)). By a celebrated theorem of Carleson [8]
(see also [13]), {an} is an interpolating sequence for the space H∞ of bounded analytic
functions in the disk if and only if it satisfies (8). The Blaschke products whose zeros
obey this condition are denominated interpolating Blaschke products and constitute an
important and much studied class of Blaschke products.

2.2. Interpolating Blaschke products. Cohn [10] proved the following converse of
Protas’ Theorem C for interpolating sequences.

Theorem E. If {an} is the zero set of an interpolating Blaschke product B such that
B′ ∈ Hp, 1/2 < p < 1, then

(9)
∞∑

n=1

(1− |an|)1−p < ∞ .

The following statement shows that our Theorem D allows for a converse in the case of
interpolating sequences. We use the notation & for signifying that one positive quantity
is greater than another times a fixed constant and � for saying that the quotient of two
positive quantities is bounded from above and away from zero.

Theorem 5. If B is an interpolating Blaschke product with zeros {an} then∫
D
|B′(z)|pdA(z) &

∞∑
n=1

(1− |an|)2−p .

In particular, if the series on the right diverges, then B′ 6∈ Ap.

This theorem is a converse of Theorem 3.1 in Kim’s paper [22]. The statement is
non-trivial only when 1 < p < 2. Of course, it adds nothing new when 0 < p ≤ 1 because
we already have the Blaschke condition. On the other hand, we know that if B is an
arbitrary infinite Blaschke product then B′ 6∈ Ap for any p ≥ 2, see Theorem 1.1 of [22].

In order to prove Theorem 5 we need the following lemma.

Lemma 6. Let {an}∞n=1 be a uniformly separated sequence of points in the unit disk D
with the constant δ as in (8), and let B be the Blaschke product whose sequence of zeros
is {an}∞n=1. Then there exist two positive constants α and β which depend only on δ such
that the pseudohyperbolic disks {∆(an, α)}∞n=1 are pairwise disjoint and

(10) |B′(z)| ≥ β

1− |an|
, for all z ∈ ∆(an, α), n = 1, 2, . . .
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Proof. Let bn and Bn = B/bn be defined as in (4). Using (8), the definition of %, the
triangle inequality, and the Schwarz-Pick lemma applied to the self-map Bn of D, we
obtain

δ ≤ |Bn(an)|
= %(Bn(an), 0)

≤ %(Bn(an), Bn(z)) + %(Bn(z), 0)

≤ %(an, z) + |Bn(z)| ,

for all z ∈ D. It follows that

(11) |Bn(z)| ≥ δ

2
, whenever z ∈ ∆(an,

δ

2
) .

We remark that a very similar proof of the above formula can be found in a recent paper
by Nolder ([27], p. 1800).

Continuing with the proof of the lemma, we have

|B′(z)| = |b′n(z)Bn(z) + bn(z)B′
n(z)|

≥ |b′n(z)||Bn(z)| − |bn(z)||B′
n(z)| .(12)

Now,

(13) |b′n(z)| = 1− |an|2

|1− anz|2
=

1− %(z, an)2

1− |z|2
≥ 1− %(z, an)

1− |z|2
.

Also, by the Schwarz-Pick lemma applied to Bn,

|B′
n(z)| ≤ 1

1− |z|2
, z ∈ D .

Together with (12), (13), and (11), this gives

(14) |B′(z)| ≥ 1
1− |z|2

((
1− δ

2

)
δ

2
− δ

4

)
≥ δ(1− δ)

4(1− |z|2)
≥ δ(1− δ)

8(1− |z|)
,

whenever z ∈ ∆(an, δ
4 ).

Set α = δ/4. Bearing in mind that ∆(an, α) is the Euclidean disk of center 1−α2

1−α2|an|2 ·an

and radius 1−|an|2
1−α2|an|2 · α, an easy calculation gives that

1− |z| ≤ 4
1− α

(1− |an|), z ∈ ∆(an, α) ,

and then (14) implies

|B′(z)| ≥ δ(1− δ)(1− α)
32

· 1
1− |an|

, z ∈ ∆(an, α) .

The sequence {an} satisfies

%(am, an) ≥ δ , whenever m 6= n .

Since α < δ/2, the triangle inequality implies that the pseudo-hyperbolic disks ∆(an, α)
are pairwise disjoint. Hence, the lemma is proved with α = δ/4 and β = δ (1 − δ) (1 −
α)/32. �
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Proof of Theorem 5. Let δ be the constant from the uniform separation condition (8).
Then the pseudo-hyperbolic disks ∆(an, α) chosen as in Lemma 6 are pairwise disjoint.
Denote by Rk the Euclidean radius of such a disk. Then

(15) Rk =
1− |an|2

1− α2|an|2
α � 1− |an| as n →∞ .

Using the property that the disks ∆(an, α) are pairwise disjoint, inequality (10), and
asymptotic relation (15), we obtain∫

D
|B′|pdA ≥

∞∑
n=1

∫
∆(an,α)

|B′|pdA

&
∞∑

n=1

( β

1− |an|

)p

·R2
k

�
∞∑

n=1

(1− |an|)2−p ,

and we are done. �

¿From Kim’s Theorem D and our Theorem 5 we easily derive the following character-
ization.

Corollary 7. Let {an} be an interpolating sequence, B the corresponding Blaschke
product, and 1 < p < 2. Then B′ ∈ Ap if and only if

∞∑
n=1

(1− |an|)2−p < ∞ .

2.3. Exponential zero sequences versus other interpolating sequences. We wish
to compare the results about integrability of the derivative of Blaschke products from
three distinguished classes.

The first class is that of exponential sequences. Recall that {an} is said to be an
exponential sequence in D if

(16) 1− |an+1| ≤ q (1− |an|)

for some fixed q, 0 < q < 1, and all n. As is well known, every exponential sequence is
interpolating (i.e., uniformly separated); see Chapter 9 of [13].

Kim [22] proved that if the zeros of B form an exponential sequence, then B′ ∈
∩0<p<2A

p. Actually, using Theorem C we can deduce the stronger result that B′ ∈
∩0<p<1H

p. This argument leads to a proof of Theorem 4.

Proof of Theorem 4. Let B be an interpolating Blaschke product whose sequence of
zeros {an}∞n=1 is contained in a Stolz angle. Using a result of Newman (see p. 506 of
[26]), we deduce that {an}∞n=1 is a finite union of exponential sequences and then it
follows that

∑∞
n=1(1 − |an|)p < ∞, for all positive p. Then Protas’ Theorem C yields

that B′ ∈ ∩0<p<1H
p. This is (a). The inclusion Hp ⊂ A2p (0 < p < ∞) yields (b). �
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We should point out that the exponents one and two in Theorem 4 are both sharp. We
have already seen this for Ap spaces; for Hp spaces this follows either from the inclusion
Hp ⊂ A2p or from a classical theorem of Privalov (see Theorem 3.11 of [13]).

It is a matter of simple calculus to check that every exponential sequence satisfies the
following condition:

(17)
∞∑

n=1

(1− |an|) log
1

1− |an|
< ∞ ,

which has also been considered by various authors. For example, Rudin [31] proved that
if the zeros of B satisfy condition (17) then B′ ∈ A1.

The following very useful theorem is due to Naftalevich [25]. Even though it is almost
50 years old and is mentioned in [11] and listed as an exercise in [17], it does not seem to
be widely used. The original paper [25] is not easily accessible, but the reader can find
a detailed proof in Cochran’s paper [9].

Theorem F. For any Blaschke sequence {an}, there exists an interpolating sequence
{zn} such that |zn| = |an| for each n.

Note that there are interpolating sequences which do not satisfy (17). This can be
seen by appealing to Naftalevich’s Theorem F: pick a sequence {an} for which (17) does
not hold but Blaschke condition does; then rotate its terms so as to get an interpolating
sequence {bn} with |bn| = |an|.

A sequence satisfying (17) need not be interpolating: for example, consider an =
1− n−2. Hence, the two classes are not comparable, but each of them contains the class
of exponential sequences as a relatively small subclass.

How large can the exponent of integrability for B′ be for an interpolating Blaschke
product? We already mentioned in the introduction that the derivative of any Blaschke
product necessarily belongs to all Ap, 0 < p < 1. Combining Naftalevich’s Theorem F
with our Theorem 5 we obtain the following result.

Theorem 8. There exists an interpolating Blaschke product B such that B′ 6∈ ∪1<p<∞Ap.

Proof. Note that the sequence an = 1 − (n log2 n)−1 satisfies the Blaschke condition.
By Naftalevich’s theorem, there exists a sequence {bn} which is interpolating for H∞

and such that |bn| = an for all n. Now whenever p > 1, we have
∞∑

n=1

(1− |bn|)2−p =
∞∑

n=1

1

n2−p log2(2−p) n
= ∞ ,

and the claim follows from Theorem 5 by choosing the interpolating Blaschke product
with zeros bn. �

To the best of our knowledge, it still seems an open question (and quite an interesting
one) whether there exists an interpolating Blaschke product whose derivative is not in
A1. Note that this Bergman space coincides with the Banach space B1/2 from the family
of spaces studied by a number of authors (see [15], for example). This case seems to have
been a stumbling block for a long time already.
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2.4. An approach via Qp spaces and Carleson measures. As we mentioned in the
introduction, there is a nice connection between the membership of B′ in Hardy and
Bergman spaces on the one hand, and of B in Qp spaces on the other hand.

When 0 < p < ∞, an analytic function f in D belongs to the space Qp if

sup
a∈D

∫
D
|f ′(z)|2g(z, a)p dA(z) < ∞ ,

where g denotes the Green function for the disk given by

g(z, a) = log
∣∣∣∣1− az

a− z

∣∣∣∣ , z, a ∈ D , z 6= a .

The spaces Qp are conformally invariant. They have their origin in the papers [35] where
it was shown that Q2 = B (the Bloch space) and [5] where this result was extended
by showing that Qp = B for all p > 1. The space Q1 coincides with BMOA. When
0 < p < 1, Qp is a proper subspace of BMOA and has many interesting properties (see,
[16], [6], or the recent detailed monograph [36]).

There are various characterizations of Qp spaces. The one that will be useful for us is
expressed in terms of p-Carleson measures. Denote by |I| the length of an interval I on
the unit circle T. The Carleson square S(I) is defined as

S(I) = {reiθ : eiθ ∈ I, 1− |I|
2π

≤ r < 1} .

Given a positive Borel measure µ in D, we say that µ is a p-Carleson measure on D if
there exists a positive constant C such that

(18) µ
(
S(I)

)
≤ C|I|p, for every interval I ⊂ T.

The special case p = 1 yields the classical Carleson measures (cf . [13]). The following
characterization of Qp spaces was obtained by Aulaskari, Stegenga and Xiao [6].

Theorem G. Let 0 < p < ∞. A function f holomorphic in D is a member of Qp if and
only if the measure µ on D defined by dµp(z) = (1− |z|2)p|f ′(z)|2 dA(z) is a p-Carleson
measure.

Essén and Xiao [16] used this result to characterize the inner functions that belong to
Qp spaces (0 < p < 1). In particular, their result can be stated for Blaschke products as
follows.

Theorem H. Let p ∈ (0, 1) and let B be a Blaschke product with zero sequence {an}∞n=1.
Then B ∈ Qp if and only if the measure µp defined as

dµp =
∞∑

n=1

(1− |an|2)pδan

is a p-Carleson measure. Here, as is usual, δan denotes the point mass at an.

The following concept was introduced in [12]: a sequence {αn}∞n=1 such that αn ≥ 0,
αn ≥ αn+1, n = 1, 2, . . . , and limn→∞ αn = 0, is said to be asymptotically concentrated
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if for each k = 1, 2, . . . there exists an increasing infinite subsequence np of positive
integers that only depends on k, with the property that

(19) lim
p→∞

αnp

αnp+k
= 1 .

Using this concept and Theorem H, Danikas and Mouratides [12] obtained a sufficient
condition for membership of a Blaschke product in ∩0<p<1Qp expressed only in terms of
absolute values of its zeros:

Theorem I. Let B a Blaschke product. Let its zeros be arranged in an increasing order
of moduli: |an| ≤ |an+1|, n ≥ 1. Also, for each n, let αn = 1 − |an|. If the sequence
{αn} is not asymptotically concentrated, then B ∈ ∩0<p<1Qp.

Using the Lemma on p. 201 of [12], Lemma 1 on p. 150 of [13], Theorem I, and
Theorem H, one can deduce the following result (see [28] for the details).

Theorem 9. Let B be an interpolating Blaschke product whose zero sequence {an}∞k=1 is
contained in a Stolz angle. Then B ∈

⋂
0<p<1 Qp. Consequently, if 0 < p < 1 then the

measure µp given by dµp =
∑∞

k=1(1− |an|2)pδan
is a p-Carleson measure (and, hence,

a finite measure).

This and Theorem C yield Theorem 4 as above, thus providing an alternative proof.
We remark that, of course, Theorem 9 can also be deduced using the above mentioned
result of Newman and Theorem H.

Added in proof

After the submission of this paper, the first two authors have proved that the exponent
3/2 in Theorem 3 is sharp: Theorem 1 of [20] asserts that the Blaschke product B with
zeros an = 1− 1/(n log2 n), n ≥ 2, has the property that B′ 6∈ A3/2.
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