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Abstract. For 0 < p ≤ ∞ and 0 < q ≤ ∞, the space of Hardy-Bloch type

B(p, q) consists of those functions f which are analytic in the unit disk D such

that (1− r)Mp(r, f ′) ∈ Lq(dr/(1− r)). We note that B(∞,∞) coincides with
the Bloch space B and that B ⊂ B(p,∞), for all p. Also, the space B(p, p) is

the Dirichlet space Dp
p−1.

We prove a number of results on decomposition of spaces with logarithmic

weights which allow us to obtain sharp results about the mean growth of the
B(p, q)-functions. In particular, we prove that if f is an analytic function in

D and 2 ≤ p < ∞, then the condition Mp(r, f ′) = O
�
(1− r)−1

�
, as r → 1,

implies that Mp(r, f) = O

��
log 1

1−r

�1/2
�

, as r → 1. This result is an im-

provement of the well known estimate of Clunie and MacGregor and Makarov

about the integral means of Bloch functions, and it also improves the main
result in a recent paper by Girela and Peláez. We also consider the question

of characterizing the univalent functions in the spaces B(p, 2), 0 < p < ∞,

and in some other related spaces and give some applications of our estimates
to study the Carleson measures for the spaces B(p, 2) and Dp

p−1.

1. Introduction and statements of the main results

Let D denote the open unit disk of the complex plane C. If 0 < r < 1 and f is
an analytic function in D (abbreviated f ∈ H(D)) we set

Mp(r, f) =
(

1
2π

∫ 2π

0

|f(reit)|p dt
)1/p

, Ip(r, f) = Mp
p (r, f), (0 < p <∞),

M∞(r, f) = sup
0≤t≤2π

|f(reit)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions f ∈ H(D) for which

||f ||Hp

def= sup
0<r<1

Mp(r, f) <∞.

We refer to [9] for the theory of Hardy spaces. For 0 < p <∞, the Bergman space
Ap is the set all f ∈ H(D) such that∫

D
|f(z)|p dA(z) <∞
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where dA(z) = dx dy = r dr dθ is the Lebesgue area measure. We mention [11] and
[21] as general references for the theory of Bergman spaces.

For 0 < p ≤ ∞ and 0 < q ≤ ∞, we shall write B(p, q) for the space of those
f ∈ H(D) such that

(1.1)
Kp,q(f) def=

(∫ 1

0

Mq
p (r, f ′)(1− r)q−1 dr

)1/q

<∞, if q <∞,

Kp,∞(f) def= sup
0<r<1

(1− r)Mp(r, f ′) <∞, if q = ∞.

The spaces B(p, p) (0 < p < ∞) are the Dirichlet spaces Dp
p−1 which have been

extensively studied in [4, 16, 35, 37].
There is a close connection between the spaces B(p, q) and the Hardy spaces.

Let us remark that H2 = B(2, 2) = D2
1. Hardy and Littlewood proved in [20] that

(1.2) Hp ⊂ B(p, 2), if 0 < p ≤ 2,

and

(1.3) B(p, 2) ⊂ Hp, if 2 ≤ p <∞.

On the other hand, we have

(1.4) Dp
p−1 ⊂ Hp, if 0 < p ≤ 2, and Hp ⊂ Dp

p−1, if 2 ≤ p <∞.

For 2 ≤ p < ∞, this is a classical result of Littewood and Paley [23]. For the case
0 < p < 2 see, e.g., [35] and [28].

The Bloch space B (cf. [1]) consists of those functions f ∈ H(D) for which

M∞(r, f ′) = O
(

1
1− r

)
, as r → 1.

With the terminology just introduced, we have B = B(∞,∞) and B ⊂ B(p,∞),
for all p > 0. Clunie and MacGregor [8] and Makarov [24] proved the following.

Theorem A. If f ∈ B, then for all p <∞ we have

Mp(r, f) = O
((

log
1

1− r

)1/2)
, as r → 1.

For 0 < p < ∞, the space B(p,∞) was called Fp by Girela and Peláez in [17]
where the following extension of Theorem A was proved.

Theorem B. If f ∈ B(p,∞), then

(1.5) Mp(r, f) = O
((

log
1

1− r

)β )
, as r → 1,

where
(i) β = 1/p, for 0 < p ≤ 2,
(ii) β is any number greater than 1/2, for 2 < p <∞.

It was proved in [17] that if p < 2, then the exponent β = 1/p is best possible, but
the question of whether one can take β = 1/2 in (ii) remained open. Here we answer
this question affirmatively by proving the following improvement of Theorem B.
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Theorem 1.1. If f ∈ B(p,∞), 2 < p <∞, then

(1.6) Mp(r, f) = O
((

log
1

1− r

)1/2)
, as r → 1.

This theorem does not hold for p = ∞ as is shown by the example f(z) =
log(1/(1− z)). In this case Korenblum [22] proved the following result:

Theorem C. If f ∈ B, then

(1.7) ‖fr‖BMOA = O
((

log
1

1− r

)1/2)
, as r → 1.

Here BMOA denotes the space of those functions f ∈ H1 whose boundary values
have bounded mean oscillation on T = ∂D (cf. [2], [14] and [15]), and

fr(z) = f(rz), z ∈ D, 0 < r < 1.

Since Mp(r, f) ≤ Cp‖fr‖BMOA, p <∞, Theorem C improves Theorem A.

We shall see in Section 2 that Theorem 1.1 and Theorem C can be deduced from
two known results, one of which is due to Hardy and Littlewood. However, we will
give an approach based on decomposition of spaces with logarithmic weights which
will be presented in sections 4, 5 and 6. This enables us to extend Theorem 1.1 to
the “integrated” Bloch–Hardy spaces B(p, q). Namely, in Section 7 we shall prove
the following result.

Theorem 1.2. If 2 < p < ∞, 2 < q ≤ ∞ and f ∈ B(p, q), then Ip,q(f) < ∞,
where

(1.8)
Ip,q(f)

def
=

(∫ 1

0

Mq
p (r, f)

(
log

2
1− r

)−q/2
dr

1− r

)1/q

, if q <∞,

Ip,∞(f)
def
= sup

0<r<1
Mp(r, f)

(
log

2
1− r

)−1/2

.

Furthermore, there exists a positive constant Cp,q which depends only on p and q
such that Ip,q(f) ≤ Cp,q (|f(0)|+Kp,q(f)) , for all f ∈ H(D).

We shall also prove the following result for 1 < p < 2.

Theorem 1.3. If 1 < p < 2, p < q ≤ ∞ and f ∈ B(p, q), then Jp,q(f) < ∞,
where

(1.9)
Jp,q(f)

def
=

(∫ 1

0

Mq
p (r, f)

(
log

2
1− r

)−q/p
dr

1− r

)1/q

, if q <∞,

Jp,∞(f)
def
= sup

0<r<1
Mp(r, f)

(
log

2
1− r

)−1/p

.

Furthermore, there exists a positive constant Cp,q which depends only on p and q
such that Jp,q(f) ≤ Cp,q (|f(0)|+Kp,q(f)).

Taking q = p in Theorem 1.2 and q = 2 in Theorem 1.3, we have the following
result.
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Theorem 1.4. (i) If 2 < p <∞ and f ∈ Dp
p−1 then

(1.10)
∫

D
|f(z)|p

(
log

2
1− |z|

)−p/2
dA(z)
1− |z|

<∞.

(ii) If 1 < p < 2 and f ∈ B(p, 2), then

(1.11)
∫ 1

0

M2
p (r, f)

(
log

2
1− r

)−2/p
dr

1− r
<∞.

It is well known that, for every p, the Hardy space Hp is contained in the
Bergman space A2p. This is also true for the spaces Dp

p−1, that is, we have

Dp
p−1 ⊂ A2p, 0 < p <∞.

The situation is different for the spaces B(p, 2), we shall prove in Theorem 3.3 that

B(p, 2) ⊂ A2p ⇔ p ≥ 1.

Except for p = 2, all the inclusions in (1.2), (1.3) and (1.4) are strict. However,
Baernstein, Girela and Peláez (cf. [4]) have recently proved, that for every p ∈
(0,∞), an analytic univalent function in the unit disk belongs to the Hardy space
Hp if and only if it belongs to the Dirichlet space Dp

p−1. Our main result in Section 8
asserts that this is not true for the spaces B(p, 2). If 0 < p < 1/2 then any analytic
univalent function in the unit disk belongs belongs toHp and, hence, also to B(p, 2).
However, we shall prove in Theorem 8.1 that:

(i) If 1
2 ≤ p < 2 then there exists an analytic univalent function in D which

belongs to B(p, 2) \Hp.
(ii) If 2 < p < ∞ then there exists an analytic univalent function in D which

belongs to Hp \B(p, 2).

We shall close the paper with Section 9 where we shall use some of the results
we have stated so far to study the Carleson measures for the spaces B(p, 2) and
Dp

p−1.

Let us close this section saying that, as usual, throughout the paper Cp, Cp,q,
. . . will denote positive constants depending only on the displayed parameters but
not necessarily the same at distinct occurrences. Also, U � V will mean that there
is a constant C > 0 such that (1/C)V ≤ U ≤ CV .

2. Two lemmas and simple proofs of Theorem 1.1 and Theorem C

Using the closed graph theorem, (1.3) yields the following result.

Lemma 2.1. If 2 < p < ∞ then there is a constant Cp depending only on p such
that

(2.1) ‖f‖Hp ≤ Cp

(
|f(0)|+

(∫ 1

0

(1− r)M2
p (r, f ′) dr

)1/2
)
, for all f ∈ H(D).
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Theorem 1.1 can be proved using this Lemma and arguing as in the proof of
Theorem 2 (a) of [17].

Proof of Theorem 1.1. Take p ∈ (2,∞) and f ∈ B(p,∞). Assume, without loss
of generality, that f(0) = 0. For 0 < r < 1, set fr(z) = f(rz), (z ∈ D). Applying
Lemma 2.1 to fr, (0 < r < 1), and using that f ∈ B(p,∞), we obtain

(2.2)
M2

p (r, f) ≤ Cp

∫ 1

0

(1− ρ)M2
p (rρ, f ′) dρ ≤ C

∫ 1

0

(1− ρ)
(1− rρ)2

dρ

=C

(∫ r

0

(1− ρ)
(1− rρ)2

dρ+
∫ 1

r

(1− ρ)
(1− rρ)2

dρ

)
, 0 < r < 1.

Since rρ < ρ and rρ < r, (0 < r, ρ < 1), (2.2) implies

(2.3)
M2

p (r, f) ≤C
(∫ r

0

1
1− ρ

dρ+
1

(1− r)2

∫ 1

r

(1− ρ) dρ
)

=O
(

log
1

1− r

)
, as r → 1.

This finishes the proof. �

Lemma 2.1 does not extend to the case p = ∞, as is shown by the example
f(z) =

(
log 2

1−z

)α

with 0 < α < 1/2. However, we have:

Lemma A. ([28, Lemma 3]). If f ∈ H(D), and K∞,2(f) <∞, then f ∈ BMOA,
and there is an absolute constant C such that

(2.4) ‖f‖BMOA ≤ C (|f(0)|+K∞,2(f)) .

Theorem C can be deduced using this lemma and arguing as in the proof of
Theorem 1.1.

3. Some embedding theorems and other basic results on the spaces
B(p, q)

It is well known (see Theorem 8.20 in p. 215 of Vol. I of [39]) that if f ∈ H(D)
is given by a power series with Hadamard gaps and 0 < p < ∞, then M2(r, f) �
Mp(r, f). On the other hand, an easy calculation implies that if f is an analytic
function in D which is given by a power series with Hadamard gaps,

f(z) =
∞∑

k=1

akz
nk (z ∈ D) with nk+1 ≥ λnk, for all k (λ > 1),

then there are at most Cλ = logλ 2 + 1 of the n′ks in the set I(n) = {j ∈ N : 2n ≤
j < 2n+1}, n = 0, 1 . . . . Thus, using Theorem 1 of [26] we obtain:

Lemma 3.1. Let 0 < p, q < ∞. If f is an analytic function in D which is given
by a power series with Hadamard gaps,

f(z) =
∞∑

k=1

akz
nk (z ∈ D) with nk+1 ≥ λnk, for all k (λ > 1),

then

f ∈ B(p, q) ⇔ f ∈ B(2, q) ⇔
∞∑

k=0

|ak|q <∞.
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In particular, if f is as in the statement of Lemma 3.1 (taking q = p) we have
that

(3.1) f ∈ Dp
p−1 ⇔

∑
k=0

|ak|p <∞,

this and the well known result (see, e. g., chapter V in vol. I of [39]) that for
Hadamard gap series as above we have, for 0 < p <∞,

(3.2) f ∈ Hp ⇐⇒
∞∑

k=1

|ak|2 <∞,

inmediately imply that Dp
p−1 6= Hp if p 6= 2. On the other hand, Lemma 3.1 and

(3.2) imply that if f is as in the statement of Lemma 3.1 then

(3.3) f ∈ B(p, 2) ⇔ f ∈ Hp ⇔
∑
k=0

|ak|2 <∞.

However, in section 8 we shall prove the following result.

Theorem 3.2. If 0 < p <∞ and p 6= 2, then B(p, 2) 6= Hp.

By a theorem of Hardy and Littlewood [19] (see also Theorem 5.6 of [9] and
[25] or [36] for a simple proof), for every p, the Hardy space Hp is contained in
the Bergman space A2p and the exponent 2p cannot be improved. Using (1.4) we
deduce that, if 0 < p ≤ 2, then Dp

p−1 ⊂ A2p. Actually, this is also true for p > 2.
Thus, we have:

(3.4) Dp
p−1 ⊂ A2p, 0 < p <∞.

This is a particular case of Theorem 2.1 of [6] and follows from the work of Flett
[12, 13]. In view of this result and (1.2), it is natural to ask whether the inclusion
B(p, 2) ⊂ A2p (0 < p < ∞) holds. Our next result asserts that the answer is
affirmative if and only p ≥ 1.

Theorem 3.3. (a) If 1 ≤ p <∞, then B(p, 2) ⊂ A2p.
(b) If 0 < p < 1, then B(p, 2) 6⊂ A2p.

The following result is essentially due to Hardy and Littlewood and can be
proved by modifying the proof of Theorem 5.9 in [9] and will be used in the proof
of Theorem 3.3.

Lemma 3.4. For 0 < p < q ≤ ∞, there exists a positive constant Cpq depending
only on p and q such that for each f ∈ H(D) and each r ∈ (0, 1) we have

(3.5) Mq(r, f) ≤ CpqMp

(
1 + r

2
, f

)
(1− r)

1
q−

1
p .

Proof of Theorem 3.3. Suppose first that 1 ≤ p < ∞, and f ∈ B(p, 2). Using
lemma 4.2.7 of [38], we see that if suffices to prove that

(3.6)
∫ 1

0

I2p(r, f ′)(1− r)2p dr <∞.

Using Lemma 3.4, we see that there exists Cp > 0 such that

(3.7) I2p(r, f ′) ≤ Cp

M2p
p (%, f ′)
1− r

, % =
1 + r

2
, 0 < r < 1.
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Furthermore, the condition f ∈ B(p, 2) implies that

(3.8) Mp(r, f ′) = o
(

1
1− r

)
, as r → 1−.

Putting together (3.7) and (3.8), we deduce that there exists r0 ∈ (0, 1) such that

∫ 1

r0

I2p(r, f ′)(1− r)2p dr ≤ Cp

∫ 1

r0

M2p
p (%, f ′)(1− r)2p−1 dr

≤ Cp

∫ 1

1+r0
2

M2p
p (r, f ′)(1− r)2p−1 dr

≤ C

∫ 1

1+r0
2

M2
p (r, f ′)(1− r) dr <∞.

This finishes the proof of part (a).
Now we turn to part (b). Let 0 < p < 1 and take

(3.9) f(z) =
1

(1− z)1/p
(
log 2e2/p

1−z

)1/2p
, z ∈ D.

Since z → log 2e2/p

1−z is a conformal map from the unit disk onto a domain D which
is contained in {z ∈ C : Re(z) > 2/p, | Im(z)| < π

2 }, we have that

∣∣∣∣log
2e2/p

1− z

∣∣∣∣ ≤ log
∣∣∣∣2e2/p

1− z

∣∣∣∣+ π

2
≤ π log

∣∣∣∣2e2/p

1− z

∣∣∣∣ ≤ π log
2e2/p

1− |z|
, z ∈ D.

Then it follows that

I2p(r, f) =
1
2π

∫ 2π

0

dt

|1− reit|2
∣∣∣log 2e2/p

1−reit

∣∣∣
≥ 1

2π2

(∫ 2π

0

dt

|1− reit|2

)(
log

2e2/p

1− r

)−1

=
1

π(1− r2) log 2e2/p

1−r

, 0 < r < 1.

Thus,

∫
D
|f(z)|2p dA(z) =

∫ 1

0

I2p(r, f) dr =
∫ 1

0

dr

π(1− r2) log 2e2/p

1−r

= ∞,

consequently f /∈ A2p.



8 D. GIRELA, M. PAVLOVIĆ, AND J.A. PELÁEZ

Now we shall prove that f ∈ B(p, 2). Bearing in mind (3.9) and the fact that
the function x 7→ xp log 2ep/2

x is increasing in (0, 2), we deduce that

Ip(r, f ′) ≤ Cp

∫ 2π

0

dt

|1− reit|1+p
∣∣∣log 2e2/p

1−reit

∣∣∣1/2

≤ Cp

(∫ 2π

0

dt

|1− reit|1+p/2

)(
(1− r)p log

2e2/p

1− r

)−1/2

≤ Cp
1

(1− r)p
(
log 2e2/p

1−r

)1/2
.

Since 1
p > 1, we have∫ 1

0

(1− r)M2
p (r, f ′) dr ≤ Cp

∫ 1

0

dr

(1− r)
(
log 2e2/p

1−r

)1/p
<∞.

This finishes the proof. �

4. Decomposition theorems I

Let ϕ : (0, 1] 7→ [0,∞) be a continuous function. Then ϕ is called a normal
weight (cf. [33, 34]) if the following conditions are satisfied:

(L) there exists a constant α > 0 such that the function ϕ(x)/xα (0 < x < 1)
is almost increasing;

(U) there exists a constant β > 0 such that the function ϕ(x)/xβ (0 < x < 1)
is almost decreasing.

(A nonnegative real function ϕ(x) is almost increasing (cf. [5]) if there is a constant
C > 0 such that x < y implies ϕ(x) ≤ Cϕ(y). An almost decreasing function is
defined similarly). It is easily checked that the function

(4.1) ϕ(x) = xα

(
log

2
x

)s

is a normal weight provided that α > 0 and −∞ < s <∞. On the other hand, the
weight

ϕ(x) =
(

log
2
x

)−s

,

where s > 0, satisfies condition (U) but not (L).
The space H(p, q, ϕ) (0 < p, q ≤ ∞), introduced in [34] (q = ∞) and [27]

(q <∞), consists of those f ∈ H(D) for which the function F (r) = ϕ(1−r)Mp(r, f)
belongs to the space Lq(dr/(1− r)). The norm in H(p, q, ϕ) is given by

‖f‖H(p,q,ϕ) = ‖F‖Lq(dr/(1−r)).

Notice that f ∈ B(p, q) ⇔ f ′ ∈ H(p, q, ϕ), with ϕ(x) = x. Spaces H(p, q, ϕ) with
non-normal weights were considered in [33, 27, 29, 30, 31].

For a function f(z) =
∑∞

n=0 anz
n analytic in D, define the polynomials ∆jf :

∆jf(z) =
2j+1−1∑
k=2j

akz
k, for j ≥ 1,
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∆0f(z) = a0 + a1z.

Theorem D. ([27, Theorem 2.1]). Let ϕ be a normal weight, f ∈ H(D) and
1 < p < ∞, 0 < q ≤ ∞. Then f ∈ H(p, q, ϕ) if and only if the sequence
{ϕ(2−j)‖∆jf‖Hp}∞j=0 belongs to `q. Moreover we have

‖f‖H(p,q,ϕ) �
∥∥{ϕ(2−j)‖∆jf‖Hp}

∥∥
`q .

The following assertion is easily deduced from Theorem D and the fact that the
sequence of functions zn, n ≥ 0, is a Shauder basis in Hp, 1 < p <∞.

Corollary A. ([27, Theorem 3.1]). With the above hypotheses, f ′ ∈ H(p, q, ϕ) if
and only if the sequence {2jϕ(2−j)

∥∥∆jf
∥∥

p
}∞j=0 belongs to `q. Moreover we have

(4.2) |f(0)|+ ‖f ′‖H(p,q,ϕ) �
∥∥{2jϕ(2−j)‖∆jf‖Hp}

∥∥
`q .

In particular,

(4.3) |f(0)|+Kp,q(f) �
∥∥{‖∆jf‖Hp}

∥∥
`q , 1 < p <∞, 0 < q ≤ ∞.

As a special case of Corollary A we have the following result.

Corollary 4.1. Let 1 < p < ∞. A function f ∈ H(D) belongs to B(p,∞) if and
only if supj ‖∆jf‖Hp <∞. Moreover, we have

(4.4) |f(0)|+ sup
0<r<1

(1− r)Mp(r, f ′) dr � sup
j≥0

‖∆jf‖Hp .

5. Decomposition theorems II

Let

(5.1) λ0 = 0, and λn = 22n

for n ≥ 1.

For a function f(z) =
∑∞

n=0 anz
n let

∆̃nf(z) =
λn+1−1∑
k=λn

akz
k, for n ≥ 0.

We have

∆̃nf(z) =
2n+1−1∑
j=2n

∆jf(z), for n ≥ 1,

and
∆̃0f(z) = ∆0f(z) + ∆1f(z).

The spaces Gp(β). For 0 < p ≤ ∞ and β > 0, we define Gp(β) to be the space of
those f ∈ H(D) which satisfy (1.5), i.e., those for which

‖f‖Gp(β)
def= sup

r<1
Mp(r, f)

(
log

2
1− r

)−β

<∞.

Equivalently: Gp(β) = H(p,∞, ϕ), where

ϕ(x) =
(

log
2
x

)−β

, 0 < x < 1.

We have the following characterization of the spaces Gp(β).



10 D. GIRELA, M. PAVLOVIĆ, AND J.A. PELÁEZ

Theorem 5.1. Let 1 < p <∞ and f ∈ H(D). Then f ∈ Gp(β) if and only if

sup
n

2−nβ‖∆̃nf‖Hp <∞.

Moreover
‖f‖Gp(β) � sup

n
2−nβ

∥∥∆̃nf
∥∥

Hp .

For the proof we need two lemmas.

Lemma 5.2. ([27, Lemma 3.1]). If g(z) =
∑n

j=m ajz
j , m < n, then

rn‖g‖Hp ≤Mp(r, g) ≤ rm‖g‖Hp , 0 < r < 1.

Lemma 5.3. If β > 0, then
∞∑

n=0

2nβrλn ≤ C

(
log

2
1− r

)β

, 0 < r < 1,

where C depends only on β.

Proof. We can assume that r ≥ 3/4. Then choose m ≥ 2 so that rm−1 ≤ r ≤ rm,
where rm = 1− 1/λm. Then

∞∑
n=0

2nβrλn ≤
m∑

n=0

2nβ +
∞∑

n=m+1

2nβe−λn/λm .

Since λn+1/λn ≥ 4, for n ≥ 1, whence λn/λm ≥ 4n−m for n ≥ m, we see that
∞∑

n=0

2nβrλn ≤ Cβ2mβ +
∞∑

j=1

2(j+m)βe−4j

≤ (Cβ + C ′β)2mβ ,

where

C ′β =
∞∑

j=1

2jβe−4j

<∞.

This gives the desired result because

log
2

1− r
≥ log

2
1− rm−1

and

log
2

1− rm−1
� 2m (m ≥ 1).

Proof of Theorem 5.1. Let n ≥ 0. By the Riesz projection theorem and Lemma 5.2,
we have

Mp(r, f) ≥ cMp(r, ∆̃nf) ≥ crλn+1‖∆̃nf‖Hp , 0 < r < 1,

where c > 0 is a constant depending only on p. Hence, by taking r = 1− 1/λn+1,

sup
r<1

Mp(r, f)
(

log
2

1− r

)−β

≥ c′ sup
n

2−nβ‖∆̃nf‖Hp .
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In the other direction, assuming that M := supn 2−nβ‖∆̃nf‖Hp <∞, we have

Mp(r, f) ≤
∞∑

n=0

Mp(r, ∆̃nf)

≤
∞∑

n=0

rλn‖∆̃nf‖Hp

≤M
∞∑

n=0

2nβrλn .

Now Lemma 5.3 concludes the proof. �

6. Decomposition theorems III

In this section we consider the space G q
p (β) consisting of those f ∈ H(D) for

which

(6.1) ‖f‖G q
p (β) :=

{∫ 1

0

Mq
p (r, f)

(
log

2
1− r

)−βq
dr

1− r

}1/q

<∞.

Therefore G q
p (β) = H(p, q, ϕ), where

ϕ(x) =
(

log
2
x

)−β

, 0 < x < 1.

The space G q
p (β) is non-trivial if and only if β > 1/q and can be characterized as

follows.

Theorem 6.1. Let 1 < p < ∞, 0 < q < ∞ and β > 1/q. A function f ∈ H(D)
belongs to G q

p (β) if and only if

(6.2)
∞∑

n=0

2−n(βq−1)‖∆̃nf‖q
Hp <∞.

Furthermore,

‖f‖G q
p (β) �

( ∞∑
n=0

2−n(βq−1)‖∆̃nf‖
q
Hp

)1/q

.

The following lemma will be needed in the proof of Theorem 6.1.

Lemma 6.2. Let

h(r) =
∞∑

n=0

bnr
λn ,

where bn ≥ 0, and h(r) <∞ for r ∈ [0, 1). Let 0 < q <∞, and α > 1. Then

(6.3)
∫ 1

0

h(r)q

(
log

2
1− r

)−α
dr

1− r
�

∞∑
n=0

2−n(α−1)bqn.

The constants involved in this estimate depends only on α and q.
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Proof. Let L and R denote the left hand side and the right hand side of (6.3),
respectively. Let rn = 1− 1/λn for n ≥ 1, and r0 = 0. Then:

L =
∞∑

n=0

∫ rn+2

rn+1

h(r)q

(
log

2
1− r

)−α
dr

1− r

≥
∞∑

n=0

∫ rn+2

rn+1

(bnrλn+1)q

(
log

2
1− rn+2

)−α
dr

1− r

≥ c
∞∑

n=0

bqn2−nα

∫ rn+2

rn+1

dr

1− r

≥ c′
∞∑

n=0

bqn2−nα2n

(c and c′ are positive constants). This proves the inequality L ≥ c′R.
In proving the reverse estimate we first consider the case q ≤ 1. Let

ψ(r) =
(

log
2

1− r

)−α 1
1− r

.

Using the inequality (a+ b)q ≤ aq + bq (a, b ≥ 0) we get

L ≤
∞∑

n=0

bqn

∫ 1

0

rqλnψ(r) dr.

Hence we have to prove that

(6.4)
∫ 1

0

rqλnψ(r) dr ≤ C2−n(α−1).

Choose η ∈ (0, 1) so that the function ψ increases on [η, 1). If n ≥ 1 is such that
rn = 1− 1/λn ≤ η, then∫ 1

0

rqλnψ(r) dr ≤
∫ 1

0

ψ(r) dr ≤ C2−n(α−1),

where we have used the fact that ψ is integrable on (0, 1). Let rn > η. Then we
write ∫ 1

0

rqλnψ(r) dr =
(∫ η

0

+
∫ rn

η

+
∫ 1

rn

)
rqλnψ(r) dr

= I1 + I2 + I3.

We have
I1 ≤

M

qλn + 1
≤ CM2−n(α−1),

where M = max
[0,η]

ψ < ∞. In the case of I2 we use the fact that ψ is increasing in

[η, 1) to obtain

I2 ≤ ψ(rn)
∫ 1

η

rqλn dr ≤ λn (log(2λn))−α

qλn + 1
≤ C2−nα.

Finally,

I3 ≤
∫ 1

rn

ψ(r) dr =
(log(2λn))1−α

α− 1
=

((2n + 1) log 2)1−α

α− 1
.

This complete the proof in the case q ≤ 1.



SPACES OF ANALYTIC FUNCTIONS OF HARDY-BLOCH TYPE 13

In order to discuss the case q > 1 we introduce the measure dµ on (0, 1) by

dµ(r) =
(

log
2

1− r

)−1
dr

1− r
.

Then we change the notation by putting α = qγ + 1 (γ > 0), and 2−n(α−1)/qbn =
2−nγbn = cn to rewrite the inequality L ≤ CR as

(6.5)

{∫ 1

0

|H(r)|q
(

log
2

1− r

)−qγ

dµ(r)

}1/q

≤ Cq

{ ∞∑
n=0

|cn|q
}1/q

,

where

H(r) =
∞∑

n=0

2nγcnr
λn .

Here we assume that cn are complex numbers, and interpret the case q = ∞ in
(6.5) as

sup
0<r<1

|H(r)|
(

log
2

1− r

)−γ

≤ C∞ sup
n≥0

|cn|.

This inequality holds because of Lemma 5.3. On the other hand, by the first part
of the proof, (6.5) holds for q = 1. To deduce the validity of (6.5) for 1 < q < ∞,
it is enough to consider the operator

{cn}∞0 7−→ H(·)
(

log
2

1− ·

)−γ

and apply the Riesz–Thorin interpolation theorem. We are done. �

Proof of Theorem 6.1. By the Riesz projection theorem and Lemma 5.2 we have,
for 1 < p <∞,

Mp(r, f) ≥ crλn+1‖∆̃nf‖Hp ,

where c > 0 is independent of f and n. On the other hand, by Lemma 5.2 and
Minkowski’s inequality, it follows that

Mp(r, f) ≤
∞∑

n=0

rλn‖∆̃nf‖Hp .

Now Lemma 6.2 concludes the proof. �

7. Proofs of Theorems 1.2 and 1.3 and some related results

Proof of Theorem 1.2. Take p and q with 2 < p < ∞ and 2 < q ≤ ∞. It follows
from (2.1) and (4.3) that

(7.1) ‖f‖2Hp ≤ Cp (|f(0)|+Kp,2(f))2 ≤ Cp

∞∑
j=0

‖∆jf‖2Hp ,

for all f ∈ H(D).
Take f ∈ B(p, q). Applying (7.1) to ∆̃nf , we obtain

(7.2) ‖∆̃nf‖2Hp ≤ Cp

∑
j∈In

‖∆jf‖2Hp ,
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where,

In =

{
{j : 2n ≤ j ≤ 2n+1 − 1}, n ≥ 1,
{0, 1}, n = 0.

Suppose first that q = ∞. Since f ∈ B(p,∞), (7.2) and Corollary 4.1 imply

2−n‖∆̃nf‖2Hp ≤ Cp sup
j
‖∆jf‖2Hp <∞

and then Theorem 5.1 and (4.3) yield that Ip,∞(f) ≤ Cp,∞ (|f(0)|+Kp,∞(f)) <∞.

Suppose now that 2 < q < ∞. Using (7.2) and applying Jensen’s inequality for
the convex function x 7→ xq/2, x > 0, we obtain

2−n(q/2−1)‖∆̃nf‖q
Hp ≤ Cp2n

2−n
∑
j∈In

‖∆jf‖2Hp

q/2

≤ Cp2n
∑
j∈In

2−n‖∆jf‖q
Hp = Cp

∑
j∈In

‖∆jf‖q
Hp , for all n.

Then it follows that
∞∑

n=0

2−n(q/2−1)‖∆̃nf‖q
Hp ≤ Cp

∞∑
j=0

‖∆jf‖q
Hp ,

and Theorem 6.1 and (4.3) yield Ip,q(f) ≤ Cp,q (|f(0)|+Kp,q(f)) < ∞ finishing
the proof. �

Proof of Theorem 1.3. Take p and q with 1 < p < 2 and p < q ≤ ∞. Using (1.4)
and the closed graph theorem and (4.3), we obtain

(7.3) ||f ||pHp ≤ Cp (|f(0|+Kp,p(f))p ≤ Cp

∞∑
j=0

||∆jf ||pHp ,

for all f ∈ H(D).
Take f ∈ B(p, q). Applying (7.3) to ∆̃nf , it follows that

(7.4) ‖∆̃nf‖p
Hp ≤ Cp

∑
j∈In

‖∆jf‖p
Hp .

Suppose first that q = ∞. Using (7.4) and (4.3) we obtain

2−n‖∆̃nf‖p
Hp ≤ Cp

∑
j∈In

2−n‖∆jf‖p
Hp ≤ sup

j
‖∆jf‖p

Hp � (|f(0)|+Kp,∞(f))p
.

Then Theorem 5.1 gives Jp,∞(f) ≤ Cp (|f(0)|+Kp,∞(f)) <∞.

Consider now the case q < ∞. Since p < q, using Hölder’s inequality with the
exponents q/(q − p) and q/p, (7.4) implies

||∆̃nf ||qHp ≤ Cp,q

 ∑
j∈I(n)

||∆jf ||pHp


q
p

≤ Cp,q2n( q
p−1)

∑
j∈I(n)

||∆jf ||qHp .

and, hence,
∞∑

n=0

2−n( q
p−1)||∆̃nf ||qHp ≤ Cp,q

∞∑
j=0

||∆jf ||qHp .
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Then Theorem 6.1 and (4.3) yield Jp,q(f) ≤ Cp,q (|f(0)|+Kp,q(f)) <∞. �

Our next result shows that theorems 1.2 and 1.3 are sharp.

Theorem 7.1. (a) Let 0 < p, ε <∞ and 2 < q <∞. Then there exists f ∈ B(p, q)
such that

(7.5)
∫ 1

0

Mq
p (r, f)

(
log

2
1− r

)− q
2+ε

dr

1− r
= ∞.

(b) Let 0 < p, ε <∞ and p < q <∞. Then there exists f ∈ B(p, q) such that

(7.6)
∫ 1

0

Mq
p (r, f)

(
log

2
1− r

)− q
p +ε

dr

1− r
= ∞.

Proof of Theorem 7.1.
(a) Let p, ε and q be as in part (a). Take γ with 0 < γ < min

{
1
2 −

1
q ,

ε
q

}
and

set

(7.7) f(z) =
∞∑

j=1

1
j1/q+γ

z2j

, z ∈ D.

Since f is given by a power series with Hadamard gaps, using Lemma 3.1 and the
fact that

∑∞
j=1 j

−1−qγ <∞, we deduce that f ∈ B(p, q).
On the other hand, a direct calculation gives that

M2(r, f) �
(

log
2

1− r

) 1
2−

1
q−γ

as r → 1−.

Now since Mp(r, f) �M2(r, f), we deduce that∫ 1

0

Mq
p (r, f)

(
log

2
1− r

)− q
2+ε

dr

1− r

�
∫ 1

0

(
log

2
1− r

)−1−qγ+ε
dr

1− r
= ∞,

since 0 < γ < ε
q .

(b) Let p, ε and q as in part (b). Without loss of generality, assume that 0 < ε <
q
p − 1. Take γ > 0 such that 1

q < γ < 1+ε
q and set a = max{2e, 2e2γ}. Now define

(7.8) f(z) =
1

(1− z)1/p
(
log a

1−z

)γ , z ∈ D.

Since the function x 7→ x
(
log a

x

)2γ is an increasing function in (0, 2) we deduce that

Ip(r, f ′) ≤ Cp

∫ 2π

0

dt

|1− reit|1+p
∣∣∣log a

1−reit

∣∣∣pγ

≤ Cp

(∫ 2π

0

dt

|1− reit|1+p/2

)(
(1− r)

(
log

a

1− r

)2γ
)−p/2

≤ Cp
1

(1− r)p
(
log a

1−r

)pγ ,

(7.9)
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consequently, since qγ > 1,∫ 1

0

Mq
p (r, f ′)(1− r)q−1 dr ≤ Cp

∫ 1

0

1

(1− r)
(
log a

1−r

)qγ dr <∞.

Notice that pγ < 1 and recall that γ < 1+ε
q , then, arguing as in part (b) of

Theorem 3.3, we deduce that

Ip(r, f) ≥ C

(
log

a

1− r

)1−pγ

,

and then ∫ 1

0

Mq
p (r, f)

(
log

2
1− r

)− q
p +ε

dr

1− r

≥ C

∫ 1

0

(
log

2
1− r

)−qγ+ε
dr

1− r
= ∞.

�

8. Univalent functions

A complex-valued function defined in D is said to be univalent if it is analytic
and one-to-one there. We refer to [10] and [32] for the theory of these functions.
Throughout the paper, U will stand for the class of all univalent functions in D.
Sometimes it is useful to consider certain normalized subclasses of U such as the
class S and the class S0:

S = {f ∈ U : f(0) = 0, f ′(0) = 1},

S0 = {f ∈ U : f is zero-free in D, f(0) = 1}.

Theorem 1 of [4] asserts that

U ∩ Dp
p−1 = U ∩Hp, 0 < p <∞.

In view of (1.2), (1.3) and (1.4), it is natural to ask whether or not the univalent
functions in B(p, 2) coincide with those in Hp, 0 < p <∞. Obviously, the answer
to this question is affirmative if p = 2. If 0 < p < 1

2 the answer is also affirmative
by (1.2), since it is well known (see e.g Theorem 3.16 of [9]) that U ⊂ Hp, for all
p < 1/2. However we shall prove the following theorem.

Theorem 8.1. (a) If 1
2 ≤ p < 2 then there exists f ∈ U such that f ∈ B(p, 2)\Hp.

(b) If 2 < p <∞ then there exists f ∈ U such that f ∈ Hp \B(p, 2).

Before getting into the proof of this result we shall use it to prove Theorem 3.2.

Proof of Theorem 3.2. Theorem 8.1 implies the conclusion of Theorem 3.2 for
p ≥ 1/2, p 6= 2. On the other hand, Theorem 3.2 for p < 1/2 follows from
Theorem 3.3 and the relation Hp ⊂ A2p, 0 < p <∞. �

In order to prove Theorem 8.1 we shall need several preliminary results.
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Lemma 8.2. For 0 < α ≤ 1, define

(8.1) Qα(z) =
1

(1− z)α log 2e1/α

1−z

, z ∈ D.

Then:

(8.2) Qα ∈ U .

(8.3) M∞(r,Qα) =
1

(1− r)α log 2e1/α

1−r

, 0 < r < 1.

The proof is similar to that of Lemma 4 in [4] and will be omitted.

Lemma 8.3. For 0 < p <∞ there exists a positive constant Cp such that

(8.4)
(∫ 1

0

(1− r)
2
p−1M2

∞(r, f) dr
)1/2

≤ Cp (|f(0)|+Kp,2(f)) ,

for all f ∈ H(D).

Proof of Lemma 8.3. Take f ∈ H(D). Theorem 5.6 of [9] with p = ∞, a = 2 and
b = 2

p − 1 yields

(8.5)
∫ 1

0

(1− r)
2
p−1M2

∞(r, f) dr ≤ Cp

(
|f(0)|2 +

∫ 1

0

(1− r)
2
p +1M2

∞(r, f ′) dr
)
.

Now, using Lemma 3.4 with q = ∞, we obtain

(1− r)
2
p +1M2

∞(r, f ′) ≤ Cp(1− r)M2
p

(
1 + r

2
, f ′
)
, 0 < r < 1.

Using this in (8.5) and making the change of variable ρ = (1 + r)/2, yields∫ 1

0

(1− r)
2
p−1M2

∞(r, f) dr ≤ Cp

(
|f(0)|2 +

∫ 1

0

(1− ρ)M2
p (ρ, f ′) dρ

)
,

which is equivalent to (8.4). �

Proof of Theorem 8.1.
(a) Let 1

2 ≤ p < 2. Set

f(z) =
1(

(1− z) log 2e
1−z

)1/p
, z ∈ D.

In Theorem 3 of [4], it is proved that f ∈ U and that f /∈ Hp. Now, arguing as in
(7.9) we deduce that there exists Cp > 0 and r0 ∈ (0, 1) such that

Mp(r, f ′) ≤
Cp

(1− r)
(
log 2e

1−r

)1/p
, r0 < r < 1.

Then it follows that f ∈ B(p, 2). This finishes the proof of part (a).
(b) Let 2 < p <∞ and take α = 2/p in Lemma 8.2. Then we have that Q2/p ∈ U ,

where,

Q2/p(z) =
1

(1− z)2/p log 2ep/2

1−z

, z ∈ D.
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Obviously we also have that f = Q
1/2
2/p ∈ U . Moreover, by (8.3),∫ 1

0

Mp
∞(r, f) dr <∞,

consequently we deduce that f ∈ Hp (see p. 127 of [32]).
On the other hand, (8.3) also implies that∫ 1

0

(1− r)2/p−1M2
∞(r, f) dr = ∞,

which, together with Lemma 8.3, yields that f /∈ B(p, 2). This finishes the proof.
�

Even though we have proved that, for p ∈ [1/2, 2) ∪ (2,∞), the Hp-univalent
functions are not the same as the B(p, 2)-univalent functions, next we are going to
present another caracterization of Hp-univalent functions valid for all p ∈ (0,∞).
For this purpose we need to introduce some new spaces of analytic functions in D.
With other notation, these spaces were considered in [26].

If 0 < p <∞ and f(z) =
∑∞

n=0 anz
n ∈ H(D), we define

Ep(r, f) def=
∫
|z|<r

|f ′(z)|2|f(z)|p−2dA(z), 0 < r < 1,

A(r, f) def=
∫
|z|<r

|f ′(z)|2 dA(z) = π

∞∑
n=1

n|an|2r2n, 0 < r < 1,

P (r, f) def=
∞∑

n=0

|an|rn, 0 < r < 1.

(8.6)

We note that A(r, f) is the area of the image of the disk {z : |z| < r} under
f , counting multiplicities. The quantity Ep(r, f) plays a very important role in
questions concerning the integral means of f , because the following identity of
Hardy-Stein (see Chapter 5 of [32]):

(8.7) r
d

dr
Ip(r, f) =

p2

2π
Ep(r, f), 0 < r < 1.

We shall use the notation f ∈ Hp
α, p > 0, α > 0, whenever

(8.8) ||f ||p
Hp

α

def=
∫ 1

0

Ep(r, f)(1− r)α−1 dr <∞.

By (8.7), it is clear that Hp = Hp
1 . We shall write f ∈ Sp

α, p > 0, α > 0, whenever

(8.9) ||f ||p
Sp

α

def=
∫ 1

0

Ap/2(r, f)(1− r)α−1 dr <∞.

It is obvious that H2
α coincides with S2

α, for all α > 0. If p 6= 2 (see Proposition 1
and Theorem 2 of [26]) the following inclusions are proved.

Theorem E. Let α > 0. Then
Hp

α ⊂ Sp
α, 0 < p < 2,

Sp
α ⊂ Hp

α, 2 < p <∞.
(8.10)

Furthermore, both inclusions in Theorem E are strict (see p. 312 of [26]). How-
ever, we shall prove the following result.
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Theorem 8.4. Let p > 0 and α > 0. Then

(8.11) Hp
α ∩ U = Sp

α ∩ U .

For α = 1, Theorem 8.4 and Theorem 1 of [4] yield the following result.

Corollary 8.5. Let p > 0. Then

(8.12) Dp
p−1 ∩ U = Hp ∩ U = Sp

1 ∩ U .

The following lemma is an extension of Theorem 5.1 of [32] and will be needed
in the proof of Theorem 8.4.

Lemma 8.6. Suppose that 0 < p <∞, α > 0 and f ∈ S. If∫ 1

0

(1− r)α−1Mp
∞(r, f) dr <∞,

then f ∈ Hp
α.

Proof. Suppose that f ∈ S, then making the change of variable w = f(z) we have
that

p2

2π
Ep(r, f) =

p2

2π

∫
|z|<r

|f(z)|p−2|f ′(z)|2 dA(z)

≤ p2

2π

∫
|w|≤M∞(r,f)

|w|p−2 dA(w) = p2

∫ M∞(r,f)

0

tp−1 dt = pMp
∞(r, f)

(8.13)

and then the lemma follows. �
Proof of Theorem 8.4.

Let α > 0. If 0 < p ≤ 2 by (8.10) it suffices to show that

Sp
α ∩ S ⊂ Hp

α ∩ S.

Let f ∈ Sp
α ∩ S. By Proposition 2 of [26] and the inequality

M∞(r, f) ≤ P (r, f), 0 < r < 1,

we have that ∫ 1

0

(1− r)α−1Mp
∞(r, f) dr <∞.

Then Lemma 8.6 implies that f ∈ Hp
α.

If 2 ≤ p <∞, by (8.10), it suffices to show that

Hp
α ∩ S ⊂ Sp

α ∩ S.

Let f ∈ Hp
α ∩ S. The identity E2(r, f) = A(r, f), (8.13) and Lemma 8.6 imply∫ 1

0

(1− r)α−1Ap/2(r, f) dr =
∫ 1

0

(1− r)α−1E
p/2
2 (r, f) dr

≤ πp/2

∫ 1

0

(1− r)α−1Mp
∞(r, f) dr <∞,

that is, f ∈ Sp
α. This finishes the proof. �

It is well known (see, e.g., [15]) that

BMOA ⊂ B, and H∞ ⊂ BMOA ⊂ ∩0<p<∞H
p.
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However, H∞ 6⊂ ∪0<p<2Dp
p−1. Indeed, Vinogradov proves in Theorem 3.11 of [35]

that there exists a Blaschke product B such that B /∈ ∪0<p<2Dp
p−1. Then, in view

of (1.2), (1.3) and (1.4), it is natural to ask whether or not BMOA or H∞ are
contained in B(p, 2), 2 < p < ∞. We de not know the answer, but we can prove
the following result.

Theorem 8.7.

(8.14) BMOA ∩ U ⊂ (∩0<p<∞B(p, 2)) ∩ U .

Proof. Let f ∈ BMOA ∩ U . Bearing in mind (1.2), it is clear that it suffices to
prove that f ∈ B(p, 2) for 1 ≤ p <∞. Since BMOA ⊂ B, we have

M∞(r, f) = O
(

log
1

1− r

)
, as r → 1−.

Using Theorem 1 of [3] (with α = 1/2), we deduce that

M1(r, f ′) = O

((
1

1− r

)1/2
)
, r → 1−,

and, then, bearing in mind that BMOA ⊂ B, we deduce that

Mp
p (r, f ′) = O

((
1

1− r

)p− 1
2
)
, r → 1−, p ≥ 1,

which implies∫ 1

0

(1− r)M2
p (r, f ′) dr ≤ C

∫ 1

0

(1− r)
1
p−1 dr <∞, p ≥ 1.

Hence, f ∈ B(p, 2), for all p ≥ 1. This finishes the proof. �

9. Carleson measures for the spaces B(p, 2)

If E is a measurable subset of the unit circle T = ∂D, we write |E| for the
Lebesgue measure of E. If I ⊂ T is an interval, the Carleson square S(I) is defined
as

S(I) = {reit : eit ∈ I, 1− |I|
2π

≤ r < 1} .

Carleson [7] (see also Theorem 9.3 of [9]) proved that if 0 < p < ∞ and µ is a
positive Borel measure in D then Hp ⊂ Lp(dµ) if and only if there exists a positive
constant C such that

(9.1) µ
(
S(I)

)
≤ C|I|, for every interval I ⊂ T.

The measures µ which satisfy this condition will be called classical Carleson mea-
sures.

A positive Borel measure µ in D is said to be a Carleson measure for Dp
p−1

(respectively, for B(p, 2)) if Dp
p−1 ⊂ Lp(dµ) (respectively, if B(p, 2) ⊂ Lp(dµ)).

The Carleson measures for the spaces Dp
p−1, 0 < p ≤ 2, were characterized

by Vinogradov [35] and Wu [37] who proved that they are precisely the classical
Carleson measures. Wu conjectured in [37] that this remains true for 2 < p < ∞,
but this conjecture has been recently disproved by Girela and Peláez (cf. [18]).

Our main object in this section is studying the Carleson measures for the spaces
B(p, 2). We can prove the following result.
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Theorem 9.1. Let 2 < p < ∞. A positive Borel measure µ in D is a Carleson
measure for B(p, 2) if and only if µ is a classical Carleson measure.

Proof. Let µ be a classical Carleson measure, then Hp ⊂ Lp(dµ). Now, since
p > 2, B(p, 2) ⊂ Hp. Consequently, we have that B(p, 2) ⊂ Lp(dµ) and, hence, µ
is a Carleson measure for B(p, 2).

Assume now that µ is a Carleson measure for B(p, 2). By the closed graph
Theorem, there exists a positive constant Cp such that

(9.2)
(∫

D
|f(z)|p dµ(z)

)1/p

≤ Cp (|f(0)|+Kp,2(f)) .

In order to prove that µ is a classical Carleson measure, it suffices to prove that

(9.3) sup
a∈D

∫
D

(1− |a|2)
|1− az|2

dµ(z) <∞,

(see Lemma 3.3 in p. 239 of [14]). For a ∈ D, take the “test” function

fa(z) =
(

1− |a|2

(1− az)2

)1/p

z ∈ D.

Differentiating and bearing in mind (9.2) we deduce that∫
D

(1− |a|2)
|1− az|2

dµ(z)

≤ Cp (|fa(0)|+Kp,2(f))p

≤ Cp

(
|fa(0)|p +Kp

p,2(f)
)

≤ Cp(1− |a|2)

1 +
(

2|a|
p

)p
(∫ 1

0

(1− r)
(∫ 2π

0

dt

|1− areit|2+p

)2/p

dr

)p/2


≤ Cp(1− |a|2)

[
1 + C ′p

(∫ 1

0

(1− r)
(1− |a|r)2+2/p

dr

)p/2
]

≤ Cp(1− |a|2)

[
1 + C ′p

(∫ 1

0

1
(1− |a|r)1+2/p

dr

)p/2
]

≤ Cp <∞.

So we have (9.3). This finishes the proof. �

We observe that in the last argument we do not use the condition p > 2, so we
can state the following result.

Proposition 9.2. If 0 < p ≤ 2 and µ is a positive Borel measure in D which is a
Carleson measure for B(p, 2) then it is a classical Carleson measure.

It is natural to ask whether the converse is true. We do not know the answer
but, by analogy with what happens for the spaces Dp

p−1, 2 < p <∞, we conjecture
that the answer is negative.

Using Theorem 1.4(ii), we can obtain a condition on µ which is sufficient for
being a Carleson measure for B(p, 2), 1 < p < 2.
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Theorem 9.3. Suppose that 1 < p < 2 and that µ is a positive Borel measure in
D for which there exists a positive constant C such that

(9.4) µ(S(I)) ≤ C|I|
log2/p 2

|I|

, for all intervals I ⊂ T,

then µ is a Carleson measure for B(p, 2).

Also, using Theorem 1.4(i), we can obtain a condition on µ which is sufficient
for being a Carleson measure for Dp

p−1, 2 < p <∞. This result improves Proposi-
tion 2.2 of [18].

Theorem 9.4. Suppose that 2 < p <∞ and that µ is a positive Borel measure in
D for which there exists a positive constant C such that

(9.5) µ(S(I)) ≤ C|I|
logp/2 2

|I|

, for all intervals I ⊂ T,

then µ is a Carleson measure for Dp
p−1.

In the proofs of these results we shall use arguments similar to those used to
characterize the Carleson measures for the Bergman spaces which can be found in
Section 2.10 of [11].

Throughout this section, % will denote the pseudo-hyperbolic metric in the unit
disk:

%(z, w) =
∣∣∣∣ z − w

1− wz

∣∣∣∣ , z, w ∈ D .

The pseudohyperbolic disk of (pseudohyperbolic) center a and radius r (a ∈ D,
0 < r < 1) is the set ∆(a, r) = {z ∈ D : %(a, z) < r}. It coincides with the
Euclidean disk whose (Euclidean) radius and center are (see p. 40 of [11]):

(9.6) R =
1− |a|2

1− r2|a|2
r , c =

1− r2

1− r2|a|2
a .

Arguing as in pp. 65-66 of [11] we can easily deduce the following result.

Lemma 9.5. Suppose that 0 < p < ∞ and 0 < r < 1. Let µ be a positive Borel
measure in D.

(i) If there exists a positive constant C such that (9.4) holds, then there exists a
positive constant Cr which depends only on r such that

(9.7) µ (∆(a, r)) ≤ Cr(1− |a|)
log2/p 2

1−|a|

, a ∈ D.

(ii) If there exists a positive constant C such that (9.5) holds, then there exists
a positive constant Cr which depends only on r such that

(9.8) µ (∆(a, r)) ≤ Cr(1− |a|)
logp/2 2

1−|a|

, a ∈ D.

Proof of Theorem 9.3. First of all, let us notice that using Theorem 1.4(ii) we see
that:

(9.9) If f ∈ B(p, 2), 1 < p < 2, then
∫

D
|f(z)|p

(
log

2
1− |z|

)−2/p
dA(z)
1− |z|

<∞
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Take p ∈ (1, 2) and let µ be a positive Borel measure in D which satisfies (9.4).
Take r ∈ (0, 1). Using Lemma 9.5, we see that there exists Cr > 0 such that (9.7)
holds.

Using Lemma 12 in p. 62 of [11], we see that there exist a sequence {ak}∞k=1 of
points of D and an integer N such that

(9.10) D = ∪∞k=1∆(ak, r)

and no point z ∈ D belongs to more than N of the disks ∆(ak, R), where R =
(1 + r)/2.

Using Lemma 13 in p. 63 of [11], we deduce that there exists CR > 0 such that,
for any f ∈ H(D),

(9.11) |f(z)|p ≤ CR

m (∆(a,R))

∫
∆(a,R)

|f(ζ)|pdA(ζ), z ∈ ∆(a, r), a ∈ D.

We remark that here and throughout the paper, if F is a measurable subset of C,
m(F ) will denote its area (two-dimensional Lebesgue measure).

Take f ∈ B(p, 2). Using (9.10) and (9.11), if follows that

(9.12)

∫
D
|f(z)|pdµ(z) ≤

∞∑
k=1

∫
∆(ak,r)

|f(z)|pdµ(z)

≤CR

∞∑
k=1

µ(∆(ak, r))
m(∆(ak, R))

∫
∆(ak,R)

|f(ζ)|pdA(ζ).

Bearing in mind Lemma 9.5(i) and the fact that m(∆(a,R)) � (1 − |a|2), a ∈ D
(with constants depending only on R), we see that

µ(∆(ak, r))
m(∆(ak, R))

≤ C

(1− |ak|) log2/p 2
1−|ak|

.

Using this in (9.12), bearing in mind Lemma 3 in p. 41 of [11] and the fact that no
point z ∈ D lies in more than N of the disks ∆(ak, R), and, using (9.9) we obtain∫

D
|f(z)|pdµ(z) ≤C

∞∑
k=1

∫
∆(ak,R)

|f(z)|p
(

log
2

1− |z|

)−2/p
dA(z)
1− |z|

≤C
∫

D
|f(z)|p

(
log

2
1− |z|

)−2/p
dA(z)
1− |z|

<∞.

Thus, f ∈ Lp(dµ). This finishes the proof. �

Theorem 9.4 can be proved with the same arguments used in the proof of The-
orem 9.3 (using Theorem 1.4(i) instead of (9.9)). We omit the details.
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16. D. Girela and J. A. Peláez, Growth properties and sequences of zeros of analytic functions

in spaces of Dirichlet type, to appear in J. Austral. Math. Soc.
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