ON THE MEMBERSHIP IN BERGMAN SPACES OF THE DERIVATIVE OF A BLASCHKE PRODUCT WITH ZEROS IN A STOLZ DOMAIN

DANIEL GIRELA AND JOSÉ ÁNGEL PELÁEZ

Abstract

It is known that the derivative of a Blaschke product whose zero sequence lies in a Stolz angle belongs to all the Bergman spaces A^{p} with $0<p<3 / 2$. The question of whether this result is best possible remained open. In this paper, for a large class of Blaschke products B with zeros in a Stolz angle, we obtain a number of conditions which are equivalent to the membership of B^{\prime} in the space $A^{p}(p>1)$. As a consequence, we prove that there exists a Blaschke product B with zeros on a radius such that $B^{\prime} \notin A^{3 / 2}$.

1. Introduction. We denote by \mathbb{D} the unit disc $\{z \in \mathbb{C}:|z|<1\}$ and by $H^{p}(0<p \leq \infty)$ the classical Hardy spaces of analytic functions in \mathbb{D} (see [3]). The Bergman space A^{p} $(0<p<\infty)$ consists of all functions f analytic in \mathbb{D} which belong to $L^{p}(\mathbb{D}, d A)$, where $d A(z)=\frac{1}{\pi} d x d y$ denotes the normalized Lebesgue area measure in \mathbb{D}. We mention [4] and [6] as general references for the theory of Bergman spaces.

A sequence $\left\{a_{n}\right\}$ of points in \mathbb{D} is said to be a Blaschke sequence if $\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)<\infty$. The corresponding Blaschke product B is defined as $B(z)=\prod_{n=1}^{\infty} \frac{\left|a_{n}\right|}{a_{n}} \frac{a_{n}-z}{1-\overline{a_{n}} z}$.

If $\xi \in \partial \mathbb{D}$ and $\sigma \in(1, \infty)$, we set $\Omega_{\sigma}(\xi)=\{z \in \mathbb{D}:|1-\bar{\xi} z| \leq \sigma(1-|z|)\}$. The domains $\Omega_{\sigma}(\xi)(1<\sigma<\infty)$ are called Stolz angles with vertex at ξ. The domain $\Omega_{\sigma}(1)$ will be simply denoted by Ω_{σ}.

If a Blaschke product B has zeros $a_{n}=r_{n} e^{i t_{n}}$, we define

$$
f_{B}(t)=\sum_{a_{n} \neq 0} \frac{1-\left|a_{n}\right|}{\left(1-\left|a_{n}\right|\right)^{2}+\left(t-t_{n}\right)^{2}}, \quad t \in(-\pi, \pi) .
$$

Ahern and Clark ([2], Lemma 1, p. 121) proved that

$$
\begin{equation*}
B^{\prime} \in H^{p} \Leftrightarrow f_{B} \in L^{p}(-\pi, \pi), \quad 0<p<\infty . \tag{1}
\end{equation*}
$$

Using this criterion we can deduce:
(i) If the zeros of a Blaschke product B all lie in some Stolz angle, then $B^{\prime} \in \cap_{0<p<1 / 2} H^{p}$.
(ii) If B is the Blaschke product with zeros $a_{n}=1-1 /\left(n \log ^{2} n\right), n \geq 2$, then $B^{\prime} \notin H^{1 / 2}$.
2. The main results. Even though we do not have a Bergman space analogue of (1), using Theorem 6.1 of [1] (see also Theorem 3 of [5]), it follows that if the zeros of a Blaschke product B all lie in some Stolz angle, then $B^{\prime} \in A^{p}$ for all $p \in(0,3 / 2)$. We shall prove that the exponent $3 / 2$ is sharp in this result even for Blaschke products with zeros on a radius.
Theorem 1. The Blaschke product B with zeros $a_{n}=1-1 /\left(n \log ^{2} n\right), n \geq 2$, has the property that $B^{\prime} \notin A^{3 / 2}$.

For a large class of Blaschke products B with zeros in a Stolz angle, we shall obtain a number of conditions which are equivalent to the membership of B^{\prime} in the space A^{p} $(1<p<\infty)$. Theorem 1 will follow from these results. We remark that if B is an arbitrary

[^0]infinite Blaschke product, $B^{\prime} \notin A^{p}$ for any $p \geq 2$ (see Theorem 1.1 of [7]). Hence, our coming results are really significant only for $3 / 2 \leq p<2$.

Following Vinogradov [9], if B is the Blaschke product with zeros $\left\{a_{n}\right\}_{n=1}^{\infty}$, we define

$$
\begin{equation*}
\varphi_{B}(\theta)=\sum_{a_{n} \neq 0} \frac{1-\left|a_{n}\right|}{\left[\theta+\left(1-\left|a_{n}\right|\right)\right]^{2}}, \quad \theta \in(0, \infty) \tag{2}
\end{equation*}
$$

We shall prove the following result.
Theorem 2. Let B be a Blaschke product whose sequence of zeros lies in a Stolz angle. If there exist a positive constant C and $\theta_{0} \in(0, \pi)$ such that

$$
\begin{equation*}
\theta \varphi_{B}(\theta) \geq C \quad \text { for all } \quad \theta \in\left(0, \theta_{0}\right) \tag{3}
\end{equation*}
$$

then, for any given $p \in(1, \infty)$, we have that $B^{\prime} \in A^{p}$ if and only if $\varphi_{B} \in L^{p-1}(0,1)$.
Theorem 1 can be deduced from Corollary 2 below but here we give a direct proof using Theorem 2.
Proof of Theorem 1. If B is the Blaschke product considered in Theorem 1 then

$$
\varphi_{B}(\theta)=\sum_{n=2}^{\infty} \frac{1-\left|a_{n}\right|}{\left[\theta+\left(1-\left|a_{n}\right|\right)\right]^{2}}=\sum_{n=2}^{\infty} \frac{n \log ^{2} n}{\left[1+\theta n \log ^{2} n\right]^{2}} . \quad \theta>0
$$

For $0<\theta<1$, let N_{θ} be the unique number greater than 1 such that $\theta N_{\theta} \log ^{2} N_{\theta}=1$. By a standard argument involving summation by parts, we have

$$
\varphi_{B}(\theta) \geq \frac{1}{4} \sum_{2 \leq n \leq N_{\theta}} n \log ^{2} n \asymp N_{\theta}^{2} \log ^{2} N_{\theta}=\frac{N_{\theta}}{\theta}=\frac{1}{\theta^{2} \log ^{2} N_{\theta}}
$$

Now, the definition of N_{θ} easily implies that $\log N_{\theta} \sim \log \frac{1}{\theta}$, as $\theta \rightarrow 0$. Then it follows that there exist a positive constant C and $\theta_{0} \in(0,1)$ such that

$$
\varphi_{B}(\theta) \geq C \frac{1}{\theta^{2} \log ^{2} \frac{1}{\theta}}, \quad 0<\theta<\theta_{0}
$$

This implies that $\varphi_{B} \notin L^{1 / 2}(0,1)$. Then using Theorem 2 we deduce that $B^{\prime} \notin A^{3 / 2}$.
Theorem 2 follows immediately from Theorem 3 .
Theorem 3. Suppose that $1 \leq p<\infty$ and $\sigma>1$, and let B be a Blaschke product whose zeros lie in a Stolz angle. Then there exist $C_{1}>0, C_{2}>0, M>0$ and $\theta_{0} \in(0, \pi)$ such that

$$
\begin{equation*}
C_{1} \int_{0}^{2 \pi} \varphi_{B}^{p-1}(\theta) d \theta \geq \int_{\mathbb{D}}\left|B^{\prime}(z)\right|^{p} d A(z) \geq C_{2} \int_{0}^{\theta_{0}} \varphi_{B}^{p-1}(\theta)\left(1-e^{\left(-M \theta \varphi_{B}(\theta)\right)}\right) d \theta \tag{4}
\end{equation*}
$$

A number of results which will be needed to prove Theorem 3. The pseudo-hyperbolic metric in the unit disc will be denoted by $\varrho: \varrho(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|, z, w \in \mathbb{D}$. The following result, which is due to Marshall and Sarason, is proved in Proposition 4 of [8].

Proposition A. Let K be a closed convex subset of $\overline{\mathbb{D}}$ with $0 \in K$. Let B be a Blaschke product whose zeros $\left\{a_{n}\right\}$ are all contained in K. If $z \in \mathbb{D} \backslash K$ and $\varepsilon=\varrho(z, K)$, then

$$
\left|B^{\prime}(z)\right| \geq \frac{2 \varepsilon}{1+\varepsilon^{2}} \frac{|B(z)|}{1-|z|^{2}} \sum_{n=1}^{\infty}\left(1-\varrho^{2}\left(z, a_{n}\right)\right)
$$

The following lemma can be proved using simple geometric arguments.
Lemma 1. Given $\sigma>1$ and $0<\delta<1$ there exists $\bar{\sigma}>\sigma$ such that $\rho\left(z, \Omega_{\sigma}\right) \geq \delta$ for every $z \in \mathbb{D} \backslash \Omega_{\bar{\sigma}}$.

Lemma 2. Let B be the Blaschke product whose sequence of zeros is $\left\{a_{n}\right\}_{n=1}^{\infty}$ and let $\delta \in$ $(0,1)$. If $z \in \mathbb{D}$ satisfies that $\varrho\left(z, a_{n}\right) \geq \delta$, for all n, then

$$
\begin{equation*}
|B(z)| \geq \exp \left(-\frac{1}{2 \delta^{2}} \sum_{n=1}^{\infty}\left(1-\varrho^{2}\left(z, a_{n}\right)\right)\right) \tag{5}
\end{equation*}
$$

Proof. Take $z \in \mathbb{D}$ such that $\varrho\left(z, a_{n}\right) \geq \delta$ for all $n=1,2, \ldots$, then using the elementary inequality $\log x \leq x-1$, for $x \geq 1$, we deduce that

$$
\log \frac{1}{|B(z)|}=\frac{1}{2} \sum_{n=1}^{\infty} \log \frac{1}{\varrho^{2}\left(z, a_{n}\right)} \leq \frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{1}{\varrho^{2}\left(z, a_{n}\right)}-1\right) \leq \frac{1}{2 \delta^{2}} \sum_{n=1}^{\infty}\left(1-\varrho^{2}\left(z, a_{n}\right)\right)
$$

which implies (5).
We shall use also the two following elementary lemmas.
Lemma 3. Given $R \in(0,1)$, there exists $C_{R} \in(0,1)$ such that
(6) $C_{R}[(1-r)+(1-\varrho)+|t|] \leq\left|1-\varrho r e^{i t}\right| \leq(1-r)+(1-\varrho)+|t|, r, \varrho \in[R, 1) t \in[-\pi, \pi]$.

Lemma 4. If $\sigma>1$ then $\frac{1}{2+\sigma} \leq \frac{|1-\bar{\lambda} z|}{|1-|\lambda| z|} \leq 2+\sigma$, whenever $z \in \mathbb{D}$ and $\lambda \in \Omega_{\sigma}$.
Proof of Theorem 3. Take $p \geq 1$ and assume, without loss of generality, that B is a Blaschke product with $B(0) \neq 0$ whose sequence of zeros $\left\{a_{n}\right\}_{n=1}^{\infty}$ lies in the Stolz angle $\Omega_{\sigma}(\sigma>1)$. Write φ for φ_{B}.

There exists $R \in(0,1)$ such that $\left|a_{n}\right| \geq R$, for all n. Let C_{R} be the constant associated to R by Lemma 3. Fix a number $\delta \in(0,1)$. Using Lemma 1 , we can take $\bar{\sigma}>\sigma$ such that $\varrho\left(z, \Omega_{\sigma}\right) \geq \delta$, for all $z \in \mathbb{D} \backslash \Omega_{\bar{\sigma}}$. Using Proposition A with $K=\overline{\Omega_{\sigma}}$ and bearing in mind that the function $x \mapsto \frac{2 x}{1+x^{2}}$ is increasing in $(0,1)$, we obtain that, for every $z \in \mathbb{D} \backslash \Omega_{\bar{\sigma}}$,

$$
\left|B^{\prime}(z)\right| \geq \frac{2 \varrho\left(z, \Omega_{\sigma}\right)}{1+\varrho\left(z, \Omega_{\sigma}\right)^{2}} \frac{|B(z)|}{1-|z|^{2}} \sum_{n=1}^{\infty}\left(1-\varrho^{2}\left(z, a_{n}\right)\right) \geq \frac{2 \delta}{1+\delta^{2}}|B(z)| \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left|1-\overline{a_{n}} z\right|^{2}} .
$$

If $z \in \mathbb{D} \backslash \Omega_{\bar{\sigma}}$, then $\varrho\left(z, a_{n}\right) \geq \delta$ for all n. Lemma 2 and the above inequality yield

$$
\begin{equation*}
\left|B^{\prime}(z)\right| \geq \frac{2 \delta}{1+\delta^{2}} \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left|1-\overline{a_{n}} z\right|^{2}} \exp \left(-\frac{1}{2 \delta^{2}} \sum_{n=1}^{\infty} \frac{\left(1-|z|^{2}\right)\left(1-\left|a_{n}\right|^{2}\right)}{\left|1-\overline{a_{n}} z\right|^{2}}\right), z \in \mathbb{D} \backslash \Omega_{\bar{\sigma}} \tag{7}
\end{equation*}
$$

Using (7), Lemma 4 and Lemma 3, we see that if $z=r e^{i t} \in\{z \in \mathbb{D}:|z| \geq R\} \backslash \Omega_{\bar{\sigma}}$

$$
\begin{align*}
& \left|B^{\prime}(z)\right| \geq \frac{2 \delta}{1+\delta^{2}} \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left|1-\overline{a_{n}} z\right|^{2}} \exp \left(-\frac{1}{2 \delta^{2}} \sum_{n=1}^{\infty} \frac{\left(1-|z|^{2}\right)\left(1-\left|a_{n}\right|^{2}\right)}{\left|1-\overline{a_{n}} z\right|^{2}}\right) \\
& \geq \frac{2 \delta}{\left(1+\delta^{2}\right)(2+\sigma)^{2}} \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left|1-\left|a_{n}\right| z\right|^{2}} \exp \left(-\frac{(2+\sigma)^{2}}{2 \delta^{2}} \sum_{n=1}^{\infty} \frac{\left(1-|z|^{2}\right)\left(1-\left|a_{n}\right|^{2}\right)}{\left|1-\left|a_{n}\right| z\right|^{2}}\right) \\
& \geq \frac{2 \delta}{\left(1+\delta^{2}\right)(2+\sigma)^{2}} \sum_{n=1}^{\infty}\left(\frac{1-\left|a_{n}\right|^{2}}{\left[(1-r)+\left(1-\left|a_{n}\right|\right)+\left.|t|\right|^{2}\right.}\right) \cdot \tag{8}\\
& \cdot \exp \left(-\frac{(2+\sigma)^{2}}{2 \delta^{2}} \sum_{n=1}^{\infty} \frac{\left(1-|z|^{2}\right)\left(1-\left|a_{n}\right|^{2}\right)}{C_{R}^{2}\left[(1-r)+\left(1-\left|a_{n}\right|\right)+|t|\right]^{2}}\right) \\
& \geq \frac{2 \delta}{\left(1+\delta^{2}\right)(2+\sigma)^{2}} \varphi((1-r)+|t|) \cdot \exp \left(-\frac{4(2+\sigma)^{2}}{2 \delta^{2}}(1-r) \varphi((1-r)+|t|)\right) \\
& =A \varphi((1-r)+|t|) \exp (-K(1-r) \varphi((1-r)+|t|)),
\end{align*}
$$

where A and K are two positive constants. Observe that there exists a positive constant β such that

$$
\begin{equation*}
|t| \geq \beta(1-r), \quad \text { for } z=r e^{i t} \in\{z \in \mathbb{D}:|z| \geq R\} \backslash \Omega_{\bar{\sigma}} \tag{9}
\end{equation*}
$$

Take $R_{0} \geq R$ such that $(\beta+1)\left(1-R_{0}\right) \leq \pi$. Using (8), making three consecutive changes of variable: $\theta=\theta(t)=1-r+t, u=u(r)=1-r, x=x(u)=u \varphi(\theta)$ and using Fubini's
theorem, we obtain

$$
\begin{align*}
& \int_{\mathbb{D}}\left|B^{\prime}(z)\right|^{p} d A(z) \geq \int_{\left\{z \in \mathbb{D}:|z| \geq R_{0}\right\} \backslash \Omega_{\bar{\sigma}}}\left|B^{\prime}(z)\right|^{p} d A(z) \\
& \geq 2 A^{p} \int_{R_{0}}^{1} \int_{\beta(1-r)}^{\pi} \varphi^{p}((1-r)+t) \exp (-K p(1-r) \varphi((1-r)+t)) d t d r \\
& \geq 2 A^{p} \int_{0}^{1-R_{0}} \int_{(\beta+1)\left(1-R_{0}\right)}^{(\beta+1)} \varphi^{p}(\theta) \exp (-K p u \varphi(\theta)) d \theta d u \\
& =2 A^{p} \int_{0}^{(\beta+1)\left(1-R_{0}\right)} \int_{0}^{\frac{\theta}{(\beta+1)}} \varphi^{p}(\theta) \exp (-K p u \varphi(\theta)) d u d \theta \tag{10}\\
& =2 A^{p} \int_{0}^{(\beta+1)\left(1-R_{0}\right)} \varphi^{p-1}(\theta) \int_{0}^{\frac{\theta \varphi(\theta)}{(\beta+1)}} \exp (-K p x) d x d \theta \\
& =\frac{2 A^{p}}{k p} \int_{0}^{(\beta+1)\left(1-R_{0}\right)} \varphi^{p-1}(\theta)\left[1-\exp \left(\frac{-k p \theta \varphi(\theta)}{(\beta+1)}\right)\right] d \theta
\end{align*}
$$

This proves the second inequality of (4) with $C_{2}=\frac{2 A^{p}}{k p}, \theta_{0}=(\beta+1)\left(1-R_{0}\right)$ and $M=$ $k p /(\beta+1)$.

Now we turn to prove the other inequality. Write $b_{n}(z)=\frac{\left|a_{n}\right|}{a_{n}} \frac{a_{n}-z}{1-\bar{a}_{n} z}$ and $B_{n}(z)=\frac{B(z)}{b_{n}(z)}$, $n=1,2, \ldots$. We have,

$$
\begin{equation*}
\left|B^{\prime}(z)\right|=\left|\sum_{n=1}^{\infty} b_{n}^{\prime}(z) \cdot B_{n}(z)\right| \leq \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left|1-\bar{a}_{n} z\right|^{2}}\left|B_{n}(z)\right| . \tag{11}
\end{equation*}
$$

The elementary inequality $\log (1-x) \leq-x, 0<x<1$, yields

$$
\begin{equation*}
\log \left|b_{n}(z)\right|=\frac{1}{2} \log \left(1-\left(1-\left|b_{n}(z)\right|^{2}\right)\right) \leq-\frac{1}{2}\left(1-\left|b_{n}(z)\right|^{2}\right), z \in \mathbb{D} \tag{12}
\end{equation*}
$$

Summing up over all $j \neq n$ and using the well known identity $1-\left|b_{j}(z)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-\left|a_{j}\right|^{2}\right)}{\left|1-\bar{a}_{j} z\right|^{2}}$, we get from (12) that $\log \left|B_{n}(z)\right| \leq-\frac{1}{2} \sum_{j \neq n} \frac{\left(1-|z|^{2}\right)\left(1-\left|a_{j}\right|^{2}\right)}{\left|1-\bar{a}_{j} z\right|^{2}}$ which, together with (11), Lemma 4 and Lemma 3, implies that, whenever $r \in[R, 1)$ and $t \in[-\pi, \pi]$,

$$
\begin{aligned}
& \left|B^{\prime}\left(r e^{i t}\right)\right| \leq \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left|1-\bar{a}_{n} r e^{i t}\right|^{2}} \exp \left(-\frac{1}{2} \sum_{j \neq n} \frac{\left(1-r^{2}\right)\left(1-\left|a_{j}\right|^{2}\right)}{\left|1-\bar{a}_{j} r e^{i t}\right|^{2}}\right) \\
& \leq e^{\frac{1}{2}} \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left|1-\bar{a}_{n} r e^{i t}\right|^{2}} \cdot \exp \left(-\frac{1}{2} \sum_{n=1}^{\infty} \frac{\left(1-r^{2}\right)\left(1-\left|a_{n}\right|^{2}\right)}{\left|1-\bar{a}_{n} r e^{i t}\right|^{2}}\right) \\
& \leq e^{\frac{1}{2}}(2+\sigma)^{2} \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left|1-\left|a_{n}\right| r e^{i t}\right|^{2}} \cdot \exp \left(-\frac{1}{2(2+\sigma)^{2}} \sum_{n=1}^{\infty} \frac{\left(1-r^{2}\right)\left(1-\left|a_{n}\right|^{2}\right)}{\left|1-\left|a_{n}\right| r e^{i t}\right|^{2}}\right) \\
& \leq A \sum_{n=1}^{\infty} \frac{1-\left|a_{n}\right|^{2}}{\left[\left(1-\left|a_{n}\right|\right)+(1-r)+|t|\right]^{2}} \cdot \exp \left(-K \sum_{n=1}^{\infty} \frac{\left(1-r^{2}\right)\left(1-\left|a_{n}\right|^{2}\right)}{\left[\left(1-\left|a_{n}\right|\right)+(1-r)+|t|\right]^{2}}\right) \\
& \leq A \varphi((1-r)+|t|) \exp (-K(1-r) \varphi((1-r)+|t|)),
\end{aligned}
$$

where, A and K depend only on σ and R. After three changes of variable: $\theta=\theta(t)=1-r+t$, $u=u(r)=1-r$ and $x=x(u)=u \varphi(\theta)$, some obvious estimates, and using Fubini's theorem, we obtain

$$
\begin{aligned}
& \int_{R \leq|z|<1}\left|B^{\prime}(z)\right|^{p} d A(z) \leq 2 A \int_{R}^{1} \int_{0}^{\pi} \varphi^{p}((1-r)+t) \exp [-K p(1-r) \varphi((1-r)+t)] d t d r \\
& \leq 2 A \int_{R}^{1} \int_{0}^{2 \pi} \varphi^{p}(\theta) \exp [-K p(1-r) \varphi(\theta)] d \theta d r \leq 2 A \int_{0}^{2 \pi} \int_{0}^{1} \varphi^{p}(\theta) \exp [-K p u \varphi(\theta)] d u d \theta \\
& \leq 2 A\left(\int_{0}^{2 \pi} \varphi^{p-1}(\theta) d \theta\right)\left(\int_{0}^{\varphi(\theta)} \exp (-K p x) d x\right) \leq \frac{2 A}{K p} \int_{0}^{2 \pi} \varphi^{p-1}(\theta) d \theta
\end{aligned}
$$

Since $\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p} d t$ increases with r, this implies the first inequality of (4).
Corollary 1. Suppose that $1<p<\infty$ and B is a Blaschke product whose zeros lie in a Stolz angle and with the property that there exist $C>0$ and $\theta_{0} \in(0, \pi)$ such that (3) holds. Then the following conditions are equivalent:
(a) $B^{\prime} \in A^{p}$.
(b) $\varphi_{B} \in L^{p-1}(0, \pi)$.
(c) $B^{\prime} \in H^{p-1}$.
(d) $f_{B} \in L^{p-1}(-\pi, \pi)$.

Proof. Theorem 2 shows that $(a) \Leftrightarrow(b)$. The equivalence $(c) \Leftrightarrow(d)$ follows from Lemma 1 and, the implication $(c) \Rightarrow(a)$ follows from Theorem 6.1 of [1].

To prove that $(a) \Rightarrow(c)$, suppose that B is a Blaschke product with $B(0) \neq 0, B^{\prime} \in A^{p}$ and such that its zeros $\left\{a_{n}\right\}$ lie in Ω_{σ} for a certain $\sigma>1$. Write $a_{n}=\left|a_{n}\right| e^{i \theta_{n}}$ with $\left|\theta_{n}\right| \leq \pi$. Since $\left\{a_{n}\right\} \subset \Omega_{\sigma}$, there exists a positive constant λ such that $\left|\theta_{n}\right| \leq \lambda\left(1-\left|a_{n}\right|\right)$, $n=1,2, \ldots$. We have $\left[\left(1-\left|a_{n}\right|\right)+|\theta|\right]^{2} \leq 2\left[\left(1-\left|a_{n}\right|\right)^{2}+\theta^{2}\right]$, and $\theta^{2} \leq 2\left(\left(\theta-\theta_{n}\right)^{2}+\theta_{n}^{2}\right) \leq$ $2\left(\left(\theta-\theta_{n}\right)^{2}+\lambda^{2}\left(1-\left|a_{n}\right|\right)^{2}\right)$ whenever $n \geq 1$ and $\theta \in[-\pi, \pi]$. Then it follows that there exists a constant $C>0$ such that

$$
\begin{equation*}
\left[\left(1-\left|a_{n}\right|\right)+|\theta|\right]^{2} \leq C\left(\left(1-\left|a_{n}\right|\right)^{2}+\left(\theta-\theta_{n}\right)^{2}\right), \quad n \geq 1, \quad \theta \in[-\pi, \pi] \tag{13}
\end{equation*}
$$

Since (a) $\Leftrightarrow(\mathrm{b}), \varphi_{B} \in L^{p-1}(0,1)$. Then (13) gives $f_{B} \in L^{p-1}(-\pi, \pi)$ and $B^{\prime} \in H^{p-1}$.
Condition (3) is not a simple one. Next we find a simple condition which implies it.
Corollary 2. If the zeros $\left\{a_{n}\right\}$ of Blaschke product B lie in a Stolz angle and there exist $\lambda>0$ and $n_{0} \geq 1$ such that $1-\left|a_{n+1}\right| \geq \lambda\left(1-\left|a_{n}\right|\right)$, if $n \geq n_{0}$, then there exist $C>0$ and $\theta_{0} \in(0, \pi)$ such that (3) holds. Hence, $B^{\prime} \in A^{p} \Leftrightarrow \varphi_{B} \in L^{p-1}(0, \pi)(p>1)$.
Proof. Given $\theta \in\left(0,1-\left|a_{n_{0}}\right|\right)$ take $n \geq n_{0}$ such that $1-\left|a_{n+1}\right|<\theta \leq 1-\left|a_{n}\right|$. Then

$$
\theta \varphi_{B}(\theta) \geq \frac{\theta\left(1-\left|a_{n}\right|\right)}{\left(\theta+\left(\left(1-\left|a_{n}\right|\right)\right)^{2}\right.} \geq \frac{\left(1-\left|a_{n+1}\right|\right)\left(1-\left|a_{n}\right|\right)}{4\left(1-\left|a_{n}\right|\right)^{2}}=\frac{\left(1-\left|a_{n+1}\right|\right)}{4\left(1-\left|a_{n}\right|\right)} \geq \frac{\lambda}{4}
$$

Hence, we have proved (3) with $C=\lambda / 4$ and $\theta_{0}=1-\left|a_{n_{0}}\right|$.

References

[1] P. Ahern, The mean modulus of the derivative of an inner function, Indiana Univ. Math. J. 28 (1979), no. 2, 311-347.
[2] P. Ahern and D. Clark, On inner functions with H^{p} derivative, Michigan Math. J. 21 (1974), 115-127.
[3] P.L. Duren, Theory of H^{p} Spaces, Academic Press 1970. Reprint: Dover 2000.
[4] P.L. Duren and A.P. Schuster, Bergman Spaces, Math. Surveys and Monog., Vol. 100, Amer. Math. Soc. 2004.
[5] D. Girela, J. A. Peláez and D. Vukotić, Integrability of the derivative of a Blaschke product, preprint.
[6] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math. 199, Springer 2000.
[7] H.O. Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175-190.
[8] K.I. Li, Interpolating Blaschke products and the left spectrum of multiplication operators on the Bergman space, Hokkaido 21, (1992), 295-304.
[9] S.A. Vinogradov, Multiplication and division in the space of analytic functions with area integrable derivative, and in some related spaces (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), Issled. po Linein. Oper. i Teor. Funktsii 23, 45-77, 308; translation in J. Math. Sci. (New York) 87, no. 5 (1997), 3806-3827.

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: girela@uma.es pelaez@anamat.cie.uma.es

[^0]: 2000 Mathematics Subject Classification. 30D50, 30D55, 32A36.
 Key words and phrases. Blaschke products, Hardy spaces, Bergman spaces.
 The authors are partially supported by a grant from "El Ministerio de Educación y Ciencia, Spain" (MTN2004-00078) and by a grant from "La Junta de Andalucía" (FQM-210).

