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Abstract. It is known that the derivative of a Blaschke product whose zero sequence

lies in a Stolz angle belongs to all the Bergman spaces Ap with 0 < p < 3/2. The question

of whether this result is best possible remained open. In this paper, for a large class of

Blaschke products B with zeros in a Stolz angle, we obtain a number of conditions which

are equivalent to the membership of B′ in the space Ap (p > 1). As a consequence, we

prove that there exists a Blaschke product B with zeros on a radius such that B′ /∈ A3/2.

1. Introduction. We denote by D the unit disc {z ∈ C : |z| < 1} and by Hp (0 < p ≤ ∞)
the classical Hardy spaces of analytic functions in D (see [3]). The Bergman space Ap

(0 < p < ∞) consists of all functions f analytic in D which belong to Lp(D, dA), where
dA(z) = 1

π dx dy denotes the normalized Lebesgue area measure in D. We mention [4] and
[6] as general references for the theory of Bergman spaces.

A sequence {an} of points in D is said to be a Blaschke sequence if
∑∞

n=1(1− |an|) < ∞.

The corresponding Blaschke product B is defined as B(z) =
∏∞

n=1
|an|
an

an−z
1−anz .

If ξ ∈ ∂D and σ ∈ (1,∞), we set Ωσ(ξ) = {z ∈ D : |1− ξz| ≤ σ(1− |z|)}. The domains
Ωσ(ξ) (1 < σ < ∞) are called Stolz angles with vertex at ξ. The domain Ωσ(1) will be
simply denoted by Ωσ.

If a Blaschke product B has zeros an = rneitn , we define

fB(t) =
∑

an 6=0

1− |an|
(1− |an|)2 + (t− tn)2

, t ∈ (−π, π).

Ahern and Clark ([2], Lemma 1, p. 121) proved that

(1) B′ ∈ Hp ⇔ fB ∈ Lp(−π, π), 0 < p < ∞.

Using this criterion we can deduce:
(i) If the zeros of a Blaschke product B all lie in some Stolz angle, then B′ ∈ ∩0<p<1/2H

p.
(ii) If B is the Blaschke product with zeros an = 1− 1/(n log2 n), n ≥ 2, then B′ 6∈ H1/2.
2. The main results. Even though we do not have a Bergman space analogue of (1),

using Theorem 6.1 of [1] (see also Theorem 3 of [5]), it follows that if the zeros of a Blaschke
product B all lie in some Stolz angle, then B′ ∈ Ap for all p ∈ (0, 3/2). We shall prove that
the exponent 3/2 is sharp in this result even for Blaschke products with zeros on a radius.

Theorem 1. The Blaschke product B with zeros an = 1 − 1/(n log2 n), n ≥ 2, has the
property that B′ 6∈ A3/2.

For a large class of Blaschke products B with zeros in a Stolz angle, we shall obtain
a number of conditions which are equivalent to the membership of B′ in the space Ap

(1 < p < ∞). Theorem 1 will follow from these results. We remark that if B is an arbitrary
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1



2 D. GIRELA AND J. A. PELÁEZ

infinite Blaschke product, B′ 6∈ Ap for any p ≥ 2 (see Theorem 1.1 of [7]). Hence, our coming
results are really significant only for 3/2 ≤ p < 2.

Following Vinogradov [9], if B is the Blaschke product with zeros {an}∞n=1, we define

(2) ϕB(θ) =
∑

an 6=0

1− |an|
[θ + (1− |an|)]2

, θ ∈ (0,∞).

We shall prove the following result.

Theorem 2. Let B be a Blaschke product whose sequence of zeros lies in a Stolz angle. If
there exist a positive constant C and θ0 ∈ (0, π) such that

(3) θϕB(θ) ≥ C for all θ ∈ (0, θ0),

then, for any given p ∈ (1,∞), we have that B′ ∈ Ap if and only if ϕB ∈ Lp−1(0, 1).

Theorem 1 can be deduced from Corollary 2 below but here we give a direct proof using
Theorem 2.

Proof of Theorem 1. If B is the Blaschke product considered in Theorem 1 then

ϕB(θ) =
∞∑

n=2

1− |an|
[θ + (1− |an|)]2

=
∞∑

n=2

n log2 n

[1 + θn log2 n]2
. θ > 0.

For 0 < θ < 1, let Nθ be the unique number greater than 1 such that θNθ log2 Nθ = 1 . By
a standard argument involving summation by parts, we have

ϕB(θ) ≥ 1
4

∑
2≤n≤Nθ

n log2 n � N2
θ log2 Nθ =

Nθ

θ
=

1
θ2 log2 Nθ

.

Now, the definition of Nθ easily implies that log Nθ ∼ log 1
θ , as θ → 0. Then it follows that

there exist a positive constant C and θ0 ∈ (0, 1) such that

ϕB(θ) ≥ C
1

θ2 log2 1
θ

, 0 < θ < θ0.

This implies that ϕB /∈ L1/2(0, 1). Then using Theorem 2 we deduce that B′ /∈ A3/2. �

Theorem 2 follows immediately from Theorem 3.

Theorem 3. Suppose that 1 ≤ p < ∞ and σ > 1, and let B be a Blaschke product whose
zeros lie in a Stolz angle. Then there exist C1 > 0, C2 > 0, M > 0 and θ0 ∈ (0, π) such that

(4) C1

∫ 2π

0

ϕp−1
B (θ)dθ ≥

∫
D
|B′(z)|pdA(z) ≥ C2

∫ θ0

0

ϕp−1
B (θ)

(
1− e(−MθϕB(θ))

)
dθ.

A number of results which will be needed to prove Theorem 3. The pseudo-hyperbolic
metric in the unit disc will be denoted by %: %(z, w) =

∣∣∣ z−w
1−wz

∣∣∣, z, w ∈ D. The following
result, which is due to Marshall and Sarason, is proved in Proposition 4 of [8].

Proposition A. Let K be a closed convex subset of D with 0 ∈ K. Let B be a Blaschke
product whose zeros {an} are all contained in K. If z ∈ D \K and ε = %(z,K), then

|B′(z)| ≥ 2ε

1 + ε2

|B(z)|
1− |z|2

∞∑
n=1

(
1− %2(z, an)

)
The following lemma can be proved using simple geometric arguments.

Lemma 1. Given σ > 1 and 0 < δ < 1 there exists σ > σ such that ρ(z,Ωσ) ≥ δ for every
z ∈ D \ Ωσ.
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Lemma 2. Let B be the Blaschke product whose sequence of zeros is {an}∞n=1 and let δ ∈
(0, 1). If z ∈ D satisfies that %(z, an) ≥ δ, for all n, then

(5) |B(z)| ≥ exp

(
− 1

2δ2

∞∑
n=1

(
1− %2(z, an)

))
.

Proof. Take z ∈ D such that %(z, an) ≥ δ for all n = 1, 2, . . . , then using the elementary
inequality log x ≤ x− 1, for x ≥ 1, we deduce that

log
1

|B(z)|
=

1
2

∞∑
n=1

log
1

%2(z, an)
≤ 1

2

∞∑
n=1

(
1

%2(z, an)
− 1
)
≤ 1

2δ2

∞∑
n=1

(
1− %2(z, an)

)
,

which implies (5). �

We shall use also the two following elementary lemmas.

Lemma 3. Given R ∈ (0, 1), there exists CR ∈ (0, 1) such that

(6) CR

[
(1− r)+ (1−%)+ |t|

]
≤ |1−%reit| ≤ (1− r)+ (1−%)+ |t| , r, % ∈ [R, 1) t ∈ [−π, π].

Lemma 4. If σ > 1 then 1
2+σ ≤

|1−λz|
|1−|λ|z| ≤ 2 + σ , whenever z ∈ D and λ ∈ Ωσ.

Proof of Theorem 3. Take p ≥ 1 and assume, without loss of generality, that B is a Blaschke
product with B(0) 6= 0 whose sequence of zeros {an}∞n=1 lies in the Stolz angle Ωσ (σ > 1).
Write ϕ for ϕB .

There exists R ∈ (0, 1) such that |an| ≥ R, for all n. Let CR be the constant associated
to R by Lemma 3. Fix a number δ ∈ (0, 1). Using Lemma 1, we can take σ > σ such that
%(z,Ωσ) ≥ δ , for all z ∈ D \ Ωσ. Using Proposition A with K = Ωσ and bearing in mind
that the function x 7→ 2x

1+x2 is increasing in (0, 1), we obtain that, for every z ∈ D \ Ωσ,

|B′(z)| ≥ 2%(z,Ωσ)
1 + %(z,Ωσ)2

|B(z)|
1− |z|2

∞∑
n=1

(
1− %2(z, an)

)
≥ 2δ

1 + δ2
|B(z)|

∞∑
n=1

1− |an|2

|1− anz|2
.

If z ∈ D \ Ωσ, then %(z, an) ≥ δ for all n. Lemma 2 and the above inequality yield

(7) |B′(z)| ≥ 2δ

1 + δ2

∞∑
n=1

1− |an|2

|1− anz|2
exp

(
− 1

2δ2

∞∑
n=1

(1− |z|2)(1− |an|2)
|1− anz|2

)
, z ∈ D \ Ωσ.

Using (7), Lemma 4 and Lemma 3, we see that if z = reit ∈ {z ∈ D : |z| ≥ R} \ Ωσ

(8)

|B′(z)| ≥ 2δ
1+δ2

∑∞
n=1

1−|an|2
|1−anz|2 exp

(
− 1

2δ2

∑∞
n=1

(1−|z|2)(1−|an|2)
|1−anz|2

)
≥ 2δ

(1+δ2)(2+σ)2

∑∞
n=1

1−|an|2
|1−|an|z|2 exp

(
− (2+σ)2

2δ2

∑∞
n=1

(1−|z|2)(1−|an|2)
|1−|an|z|2

)
≥ 2δ

(1+δ2)(2+σ)2

∑∞
n=1

(
1−|an|2

[(1−r)+(1−|an|)+|t|]2

)
·

· exp
(
− (2+σ)2

2δ2

∑∞
n=1

(1−|z|2)(1−|an|2)
C2

R[(1−r)+(1−|an|)+|t|]2

)
≥ 2δ

(1+δ2)(2+σ)2 ϕ ((1− r) + |t|) · exp
(
− 4(2+σ)2

2δ2 (1− r)ϕ ((1− r) + |t|)
)

= Aϕ ((1− r) + |t|) exp (−K(1− r)ϕ ((1− r) + |t|)) ,

where A and K are two positive constants. Observe that there exists a positive constant β

such that

(9) |t| ≥ β(1− r), for z = reit ∈ {z ∈ D : |z| ≥ R} \ Ωσ.

Take R0 ≥ R such that (β + 1)(1 − R0) ≤ π. Using (8), making three consecutive changes
of variable: θ = θ(t) = 1 − r + t, u = u(r) = 1 − r, x = x(u) = uϕ(θ) and using Fubini’s
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theorem, we obtain

(10)

∫
D |B

′(z)|p dA(z) ≥
∫
{z∈D:|z|≥R0}\Ωσ

|B′(z)|p dA(z)

≥ 2Ap
∫ 1

R0

∫ π

β(1−r)
ϕp ((1− r) + t) exp (−Kp(1− r)ϕ ((1− r) + t)) dtdr

≥ 2Ap
∫ 1−R0

0

∫ (β+1)(1−R0)

(β+1)u
ϕp (θ) exp (−Kpuϕ (θ)) dθdu

= 2Ap
∫ (β+1)(1−R0)

0

∫ θ
(β+1)

0 ϕp (θ) exp (−Kpuϕ (θ)) dudθ

= 2Ap
∫ (β+1)(1−R0)

0
ϕp−1 (θ)

∫ θϕ(θ)
(β+1)

0 exp (−Kpx) dxdθ

= 2Ap

kp

∫ (β+1)(1−R0)

0
ϕp−1 (θ)

[
1− exp

(
−kpθϕ(θ)

(β+1)

)]
dθ.

This proves the second inequality of (4) with C2 = 2Ap

kp , θ0 = (β + 1)(1 − R0) and M =
kp/(β + 1).

Now we turn to prove the other inequality. Write bn(z) = |an|
an

an−z
1−anz and Bn(z) = B(z)

bn(z) ,
n = 1, 2, . . . . We have,

(11) |B′(z)| =

∣∣∣∣∣
∞∑

n=1

b′n(z) ·Bn(z)

∣∣∣∣∣ ≤
∞∑

n=1

1− |an|2

|1− anz|2
|Bn(z)|.

The elementary inequality log(1− x) ≤ −x, 0 < x < 1, yields

(12) log |bn(z)| = 1
2

log
(
1− (1− |bn(z)|2)

)
≤ −1

2
(1− |bn(z)|2), z ∈ D.

Summing up over all j 6= n and using the well known identity 1−|bj(z)|2 = (1−|z|2)(1−|aj |2)
|1−ajz|2 ,

we get from (12) that log |Bn(z)| ≤ − 1
2

∑
j 6=n

(1−|z|2)(1−|aj |2)
|1−ajz|2 which, together with (11),

Lemma 4 and Lemma 3, implies that, whenever r ∈ [R, 1) and t ∈ [−π, π],

|B′(reit)| ≤
∑∞

n=1
1−|an|2

|1−anreit|2 exp

(
− 1

2

∑
j 6=n

(1−r2)(1−|aj |2)
|1−ajreit|2

)

≤ e
1
2
∑∞

n=1
1−|an|2

|1−anreit|2 · exp

(
− 1

2

∑∞
n=1

(1−r2)(1−|an|2)
|1−anreit|2

)

≤ e
1
2 (2 + σ)2

∑∞
n=1

1−|an|2
|1−|an|reit|2 · exp

(
− 1

2(2+σ)2

∑∞
n=1

(1−r2)(1−|an|2)
|1−|an|reit|2

)

≤ A
∑∞

n=1
1−|an|2[

(1−|an|)+(1−r)+|t|
]2 · exp

(
−K

∑∞
n=1

(1−r2)(1−|an|2)[
(1−|an|)+(1−r)+|t|

]2)
≤ Aϕ

(
(1− r) + |t|

)
exp

(
−K(1− r)ϕ

(
(1− r) + |t|

))
,

where, A and K depend only on σ and R. After three changes of variable: θ = θ(t) = 1−r+t,
u = u(r) = 1−r and x = x(u) = uϕ(θ), some obvious estimates, and using Fubini’s theorem,
we obtain∫

R≤|z|<1
|B′(z)|pdA(z) ≤ 2A

∫ 1

R

∫ π

0
ϕp
(
(1− r) + t

)
exp[−Kp(1− r)ϕ((1− r) + t)]dt dr

≤ 2A
∫ 1

R

∫ 2π

0
ϕp(θ) exp[−Kp(1− r)ϕ(θ)] dθ dr ≤ 2A

∫ 2π

0

∫ 1

0
ϕp(θ) exp[−Kpuϕ(θ)] du dθ

≤ 2A
( ∫ 2π

0
ϕp−1(θ) dθ

)( ∫ ϕ(θ)

0
exp(−Kp x) dx

)
≤ 2A

Kp

∫ 2π

0
ϕp−1(θ) dθ.

Since
∫ 2π

0
|B′(reit)|pdt increases with r, this implies the first inequality of (4). �

Corollary 1. Suppose that 1 < p < ∞ and B is a Blaschke product whose zeros lie in a
Stolz angle and with the property that there exist C > 0 and θ0 ∈ (0, π) such that (3) holds.
Then the following conditions are equivalent:

(a) B′ ∈ Ap. (b) ϕB ∈ Lp−1(0, π). (c) B′ ∈ Hp−1. (d) fB ∈ Lp−1(−π, π).
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Proof. Theorem 2 shows that (a) ⇔ (b). The equivalence (c) ⇔ (d) follows from Lemma 1
and, the implication (c) ⇒ (a) follows from Theorem 6.1 of [1].

To prove that (a) ⇒ (c), suppose that B is a Blaschke product with B(0) 6= 0, B′ ∈ Ap

and such that its zeros {an} lie in Ωσ for a certain σ > 1. Write an = |an|eiθn with
|θn| ≤ π. Since {an} ⊂ Ωσ, there exists a positive constant λ such that |θn| ≤ λ(1 − |an|),
n = 1, 2, . . . . We have [(1− |an|) + |θ|]2 ≤ 2[(1− |an|)2 + θ2], and θ2 ≤ 2

(
(θ − θn)2 + θ2

n

)
≤

2
(
(θ − θn)2 + λ2(1− |an|)2

)
whenever n ≥ 1 and θ ∈ [−π, π]. Then it follows that there

exists a constant C > 0 such that

(13) [(1− |an|) + |θ|]2 ≤ C
(
(1− |an|)2 + (θ − θn)2

)
, n ≥ 1, θ ∈ [−π, π].

Since (a) ⇔ (b), ϕB ∈ Lp−1(0, 1). Then (13) gives fB ∈ Lp−1(−π, π) and B′ ∈ Hp−1. �

Condition (3) is not a simple one. Next we find a simple condition which implies it.

Corollary 2. If the zeros {an} of Blaschke product B lie in a Stolz angle and there exist
λ > 0 and n0 ≥ 1 such that 1− |an+1| ≥ λ(1− |an|), if n ≥ n0, then there exist C > 0 and
θ0 ∈ (0, π) such that (3) holds. Hence, B′ ∈ Ap ⇔ ϕB ∈ Lp−1(0, π) (p > 1).

Proof. Given θ ∈ (0, 1− |an0 |) take n ≥ n0 such that 1− |an+1| < θ ≤ 1− |an|. Then

θϕB(θ) ≥ θ(1− |an|)
(θ + ((1− |an|))2

≥ (1− |an+1|)(1− |an|)
4(1− |an|)2

=
(1− |an+1|)
4(1− |an|)

≥ λ

4
.

Hence, we have proved (3) with C = λ/4 and θ0 = 1− |an0 |. �
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