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Abstract

For 0 < p < ∞ we let Dp
p−1 denote the space of those functions f which are analytic in

the unit disc ∆ = {z ∈ C : |z| < 1} and satisfy
R
∆

(1 − |z|)p−1|f ′(z)|p dx dy < ∞. The
spaces Dp

p−1 are closely related to Hardy spaces. We have, Dp
p−1 ⊂ Hp, if 0 < p ≤ 2, and

Hp ⊂ Dp
p−1, if 2 ≤ p < ∞. In this paper we obtain a number of results about the Taylor

coefficients of Dp
p−1-functions and sharp estimates on the growth of the integral means

and the radial growth of these functions as well as information on their zero sets.

Keywords and phrases: Spaces of Dirichlet type, Hardy spaces, Bergman spaces, integral
means, radial growth, sequences of zeros.

1. Introduction and main results

We denote by ∆ the unit disc {z ∈ C : |z| < 1}. If f is a function which
is analytic in ∆ and 0 < r < 1, we set

Mp(r, f) =
(

1
2π

∫ π
−π |f(reit)|p dt

)1/p
, 0 < p < ∞,

Ip(r, f) = Mp
p (r, f), 0 < p < ∞,

M∞(r, f) = sup|z|=r |f(z)|.

For 0 < p ≤ ∞, the Hardy space Hp consists of all analytic functions f in
the disc for which

‖f‖Hp
def= sup

0<r<1
Mp(r, f) < ∞.

We refer the reader to [10] and [13] for the theory of Hardy spaces.
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If 0 < p < ∞ and α > −1, we let Ap
α denote the (standard) weighted

Bergman space, that is, the set of analytic functions f in ∆ such that∫
∆

(1− |z|)α|f(z)|p dA(z) < ∞.

Here, dA(z) = 1
πdx dy denotes the normalized Lebesgue area measure in ∆.

The standard unweighted Bergman space Ap
0 is simply denoted by Ap. We

mention the [11] and [18] as general references for the theory of Bergman
sapces.

The space Dp
α (p > 0, α > −1) consists of all functions f which are

analytic in ∆ such that f ′ ∈ Ap
α. The space D2

0 is the classical Dirichlet
space D. For other values of p and α the spaces Dp

α have been extensively
in a number papers such as [27, 28, 30, 33] (for p = 2) and [3, 8, 34, 36]
for other values of p. If p < α + 1, it is well known that Dp

α = Ap
α−p with

equivalence of norms (see Theorem 6 of [12]). For α = p− 2, the space Dp
α

is the Besov space Bp (cf. [2]).
The space Dp

α is said to be a Dirichlet space if p ≥ α + 1. In this paper
we shall be primarily interested in the “limit case” p = α+1, that is, in the
spaces Dp

p−1, 0 < p < ∞, which are closely related to Hardy spaces. Indeed,
a classical result of Littlewood and Paley [19] (see also [20]) asserts that

Hp ⊂ Dp
p−1, 2 ≤ p < ∞. (1)

On the other hand, we have

Dp
p−1 ⊂ Hp, 0 < p ≤ 2, (2)

(see Lemma 1.4 of [34]). Notice that, in particular, we have D2
1 = H2.

However, we remark that if p 6= 2 then

Hp 6= Dp
p−1. (3)

This can be seen using the characterization of power series with Hadamard
gaps which belong to the spaces Dp

p−1.

Proposition A. If f is an analytic function in ∆ which is given by a
power series with Hadamard gaps,

f(z) =
∞∑

k=1

akz
nk (z ∈ ∆) with nk+1 ≥ λnk for all k (λ > 1),

then, for every p ∈ (0,∞),

f ∈ Dp
p−1 ⇐⇒

∞∑
k=1

|ak|p < ∞.
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Since for Hadamard gap series as above we have, for 0 < p < ∞,

f ∈ Hp ⇐⇒
∞∑

k=1

|ak|2 < ∞,

we immediately deduce that Dp
p−1 6= Hp if p 6= 2. We remark that Propo-

sition A follows from Proposition 2.1 of [7]. In section 2 we shall see that
Proposition A can also be deduced from the following theorem which gives
a condition on the Taylor coefficients of a function f , analytic in ∆, which
implies that f ∈ Dp

p−1.

Theorem 1.1. Let f be an analytic function in ∆, f(z) =
∑∞

n=0 anzn

(z ∈ ∆).
(i) If 0 < p < ∞ and

∞∑
n=0

( ∑
k∈I(n)

|ak|

)p

< ∞, (4)

then f ∈ Dp
p−1.

(ii) If 0 < p ≤ 2 and

∞∑
n=1

 ∑
k∈I(n)

|ak|2
p/2

< ∞, (5)

then f ∈ Dp
p−1.

Here and throughout the paper, for n = 0, 1, . . . , I(n) is the set of the
integers k such that 2n ≤ k < 2n+1.

Notice that, if 0 < p ≤ 2, then (4) ⇒ (5). Hence, for p ∈ (0, 2], (ii)
is stronger than (i). We remark also that if 0 < p ≤ 2 then the condition∑∞

n=0 |an|p < ∞ implies (5). Consequently, (ii) improves Lemma 1.5 of [34].

In Theorem 1.2 we give a condition on the Taylor coefficients of an
analytic function f which is necessary for its membership in Dp

p−1 if 2 ≤ p <
∞.

Theorem 1.2. Let f be an analytic function in ∆, f(z) =
∑∞

n=0 anzn

(z ∈ ∆). If 2 ≤ p < ∞ and f ∈ Dp
p−1 then

∞∑
n=1

 ∑
k∈I(n)

|ak|2
p/2

< ∞. (6)
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If 0 < p < 2 then (3) can be seen in some other ways. Rudin proved
in [29] that there exists a Blaschke product B which does not belong to
D1

0 (see also [24]). Vinogradov [34] extended this result showing that for
every p ∈ (0, 2) there exist Blaschke products B which do not belong to
Dp

p−1. This clearly gives that Dp
p−1 6= Hp if 0 < p < 2, a fact which

can be also deduced from the results of [9] and of [14]. In contrast with
what happens for 0 < p < 2, it is not easy to give examples of functions
f ∈ Dp

p−1\Hp for a certain p ∈ (2,∞) which are not given by power series by
Hadamard gaps. Since Hp ⊂ Dp

p−1 if p ≥ 2, any Blaschke product belongs
to ∩2≤p<∞Dp

p−1. Also, for a number of classes F of analytic functions in ∆
we have F ∩ Dp

p−1 = F ∩Hp (0 < p < ∞). For example, it is very easy to
prove the following Lemma.

Lemma 1.3. (i) If α > 0, 0 < p < ∞ and f(z) = 1/(1 − z)α, (z ∈ ∆),
then

f ∈ Hp ⇔ f ∈ Dp
p−1 ⇔ αp < 1.

(ii) If α, β > 0, p ∈ (0,∞) and f(z) = 1
(1−z)α(log 2

1−z
)β , (z ∈ ∆), then

f ∈ Hp ⇔ f ∈ Dp
p−1 ⇔ αp < 1 and β > 0 or αp = 1 and βp > 1.

A much deeper result is stated in Theorem 1 of [6] which asserts that, if
U denotes the class of all univalent (holomorphic and one-to-one) functions
in ∆, then U ∩Hp = U ∩Dp

p−1 for all p > 0 (see also [25] for the case p = 1).
In spite of these facts we shall prove that, for every p ∈ (2,∞), there are

a lot of differences between the space Hp and the space Dp
p−1. In section 3 we

shall be mainly concerned in obtaining sharp estimates on the growth of the
integral means of Dp

p−1-functions. If 0 < p ≤ 2 and f ∈ Dp
p−1 then f ∈ Hp

and, hence, the integral means Mp(r, f) are bounded. This is no longer true
for p > 2. Our main results in section 3 are stated in the following two
theorems.

Theorem 1.4. If 2 < p < ∞ and f ∈ Dp
p−1, then

(i)

Mp(r, f) = O
((

log
1

1− r

))
, as r → 1. (7)

(ii)

M2(r, f) = O

((
log

1
1− r

) 1
2
− 1

p

)
, as r → 1. (8)
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Theorem 1.5. If 2 < p < ∞ and 0 < β < 1
2 −

1
p , then there exists a

function f ∈ Dp
p−1 such that

exp
(

1
2π

∫ π

−π
log |f(reit)| dt

)
6= o

((
log

1
1− r

)β)
, as r → 1−. (9)

Notice that since exp
(

1
2π

∫ π
−π log |f(reit)| dt

)
≤ M2(r, f), Theorem 1.5

shows that part (ii) of Theorem 1.4 is sharp in a very strong sense.

Remark. Using Theorem 1.4 we can obtain an upper bound on the
integral means Mq(r, f), 2 < q < p, of a function f ∈ Dp

p−1. Indeed, if
q ∈ (2, p) then q = pλ + 2(1 − λ), where λ = q−2

p−2 ∈ (0, 1). Consequently,
using Theorem 3 and Hölder’s inequality with exponents 1

λ and 1
1−λ we see

that, if f ∈ Dp
p−1 and 2 < q < p, then

Mq(r, f) =
((

log
1

1− r

)η)
, as r → 1,

where η = η(p, q) = p
q λ + p−2

pq (1− λ) and λ = q−2
p−2 .

In section 4 we shall study properties of the sequences of zeros of non
trivial Dp

p−1-functions. If 0 < p ≤ 2 then Dp
p−1 ⊂ Hp and, hence, the se-

quence of zeros of a non-identically zero Dp
p−1-function satisfies the Blaschke

condition. This does not remain true for p > 2. Our main results about the
sequences of zeros of functions f in the space Dp

p−1, 2 < p < ∞, are stated
in Theorem 1.6 and Theorem 1.7

Theorem 1.6. Suppose that 2 < p < ∞ and let f be a function which
belongs to the space Dp

p−1 with f(0) 6= 0. Let {zk}∞k=1 be the sequence zeros
of f ordered so that |zk| ≤ |zk+1|, for all k. Then

N∏
k=1

1
|zk|

= o

((
log N

) 1
2
− 1

p

)
, as N →∞. (10)

From now on, if f is a non-identically zero analytic function of zeros and
{zk}∞k=1 is the sequence zeros of f ordered so that |zk| ≤ |zk+1|, for all k, we
shall say that {zk}∞k=1 is the sequence of ordered zeros of f . Theorem 1.7
asserts that Theorem 1.6 is best possible.
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Theorem 1.7. If 2 < p < ∞ and 0 < β < 1
2 −

1
p , then there exists

a function f ∈ Dp
p−1 with f(0) 6= 0 such that if {zk}∞k=1 is the sequence of

ordered zeros of f , then

N∏
k=1

1
|zk|

6= o

((
log N

)β
)

, as N →∞. (11)

As a consequence of Theorem 1.6 and Theorem 1.7 we obtain the follow-
ing result.

Corollary 1.8. If 2 ≤ p < q < ∞ then there exists a sequence {zk} ⊂
∆ which is the sequence of zeros of a Dq

q−1-function but is not the sequence
of zeros of any Dp

p−1-function.

Hence the situation in this setting is similar to that in the setting of
Bergman spaces (see Theorem 1 of [17]).

Next we shall get into the proofs of these and some other results but,
before doing so, let us remark that, as usual, we shall be using the conven-
tion that Cp,α,... will denote a positive constant which depends only upon
the displayed parameters p, α, . . . but not necessarily the same at different
occurrences.

2. Taylor coefficients of Dp
p−1 functions.

We start recalling the following useful result due to Mateljevic and
Pavlovic [21] (see also Lemma 3 of [5] and [22]) which will be basic in the
proofs of Theorem 1.1 and Theorem 1.2.

Lemma B. Let α > 0 and p > 0. There exists a constant K which
depends only on p and α such that, if {an}∞n=1 is a sequence of non-negative
numbers, tn =

∑
k∈I(n) an (n ≥ 0) and f(x) =

∑∞
n=1 anxn−1 (x ∈ (0, 1)),

then

K−1
∞∑

n=0

2−nαtpn ≤
∫ 1

0
(1− x)α−1f(x)p dx ≤ K

∞∑
n=0

2−nαtpn.

Proof. Take p ∈ (0,∞) and let f be analytic in ∆,

f(z) =
∞∑

n=0

anzn, z ∈ ∆. (12)
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Suppose that (4) holds. Using Lemma B and (4) we see that∫
∆
|f ′(z)|p(1− |z|2)p−1 dA(z) ≤ Cp

∫ 1

0
(1− r)p−1

( ∞∑
n=1

n|an|rn−1

)p

dr

≤Cp

∞∑
n=0

2−np

( ∑
k∈I(n)

k|ak|

)p

≤ Cp

∞∑
n=0

2−np2(n+1)p

( ∑
k∈I(n)

|ak|

)p

≤Cp

∞∑
n=0

( ∑
k∈I(n)

|ak|

)p

< ∞.

Hence, f ∈ Dp
p−1 and the proof of (i) is finished.

Suppose now that 0 < p ≤ 2, f is as in (12) and satisfies (5). Using that
Mp(r, f ′) ≤ M2(r, f ′) for all r ∈ (0, 1), making the change of variable r2 = s
and using Lemma B, we obtain∫

∆
|f ′(z)|p(1− |z|2)p−1 dA(z) = 2

∫ 1

0
r(1− r2)p−1Mp(r, f ′)p dr

≤2
∫ 1

0
r(1− r2)p−1M2(r, f ′)p dr = 2

∫ 1

0
r(1− r2)p−1

( ∞∑
n=1

n2|an|2r2n−2

)p/2

dr

≤C

∫ 1

0
(1− s)p−1

( ∞∑
n=1

n2|an|2sn−1

)p/2

ds ≤ Cp

∞∑
n=0

2−np

( ∑
k∈I(n)

k2|ak|2
)p/2

≤Cp

∞∑
n=0

( ∑
k∈I(n)

|ak|2
)p/2

< ∞.

Hence, f ∈ Dp
p−1. This finishes the proof of (ii).

Next we shall see that Proposition A can be deduced from Theorem 1.1
as announced.

Proof of Proposition A. Let f be an analytic function in ∆ given by a
power series with Hadamard gaps

f(z) =
∞∑

j=1

ajz
nj with

nj+1

nj
≥ λ > 1 for all j, (13)

and suppose that
∑∞

j=1 |aj |p < ∞. Using the gap condition, we see that
there are at most Cλ = logλ 2 + 1 of the n′js in the set I(n). Then there
exists a constant Cλ,p > 0 such that

∞∑
n=0

( ∑
j∈I(n)

|aj |

)p

≤ Cλ,p

∞∑
j=1

|aj |p < ∞,
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consequently, using Theorem 1.1, we deduce that f ∈ Dp
p−1.

To prove the other implication suppose that f is as in (13) and f ∈ Dp
p−1

for a certain p > 0. It is well known (see Chapter V of Vol. I of [38]) that
there exist constants A(λ, p) and B(λ, p) such that

A(λ, p)Mp
2 (r, f ′) ≤ Mp

p (r, f ′) ≤ B(λ, p)Mp
2 (r, f ′), 0 < r < 1.

This and Lemma B give

∞ >

∫
∆
|f ′(z)|p(1− |z|2)p−1 dA(z) =

∫ 1

0
r(1− r2)p−1Mp

p (r, f ′) dr

≥ A(λ, p)
∫ 1

0
r(1− r2)p−1Mp

2 (r, f ′) dr

≥ A(λ, p)
∫ 1

0
r(1− r2)p−1

( ∞∑
j=1

nj
2|aj |2r2nj−2

) p
2

dr

≥ A(λ, p)
∫ 1

0
t(1− t)p−1

( ∞∑
j=1

nj
2|aj |2tj−1

) p
2

dt

≥ CpA(λ, p)
∞∑

n=0

2−np

( ∑
nj∈I(n)

nj
2|aj |2

) p
2

≥ CpA(λ, p)
∞∑

n=0

2−np2np

( ∑
nj∈I(n)

|aj |

)p

≥ Cλ,pA(λ, p)
∞∑

j=0

|aj |p.

We remark that the last inequality is obvious if p ≥ 1 and, in the case
0 < p < 1, follows using again the fact that there are at most Cλ = logλ 2+1
of the n′js in the set I(n). Thus, we have

∑∞
j=0 |aj |p < ∞. This finishes the

proof. �

Proof of Theorem 1.2. Suppose that 2 ≤ p < ∞ and f ∈ Dp
p−1,

f(z) =
∞∑

n=0

anzn, z ∈ ∆.

Using Lemma B, bearing in mind that k � 2n if k ∈ I(n), making a change
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of variable and using that, since p ≥ 2, M2(r, f ′) ≤ Mp(r, f ′), we obtain

∞∑
n=1

 ∑
k∈I(n)

|ak|2
p/2

≤
∞∑

n=1

2−np

 ∑
k∈I(n)

k2|ak|2
p/2

≤Cp

∫ 1

0
(1− t)p−1

( ∞∑
n=1

n2|an|2tn−1

)p/2

dt

≤Cp

∫ 1

0
(1− r2)p−1

( ∞∑
n=1

n2|an|2r2n−2

)p/2

dt

≤Cp

∫ 1

0
(1− r)p−1Mp(r, f ′)p < ∞.

�

3. Growth properties of Dp
p−1-functions

In this section we shall be mainly interested in obtaining sharp estimates
on the growth of functions f in the spaces Dp

p−1 (2 < p < ∞).

3.1. Integral means estimates Let us start with estimates on the
growth of the maximum modulus M∞(r, f). We can prove the following
result.

Theorem 3.1. Let f be an analytic function in ∆. If f ∈ Dp
p−1, 0 <

p < ∞ then

M∞(r, f) = o

(
1

(1− r)
1
p

)
, as r → 1−. (14)

Proof. Let f ∈ Dp
p−1 and z ∈ ∆. Let D(z) denote the open disc

{
w ∈ C : |z − w| < 1− |z|

2

}
.

Clearly, D(z) ⊂ ∆. Since the function z → |f ′(z)|p is subharmonic in ∆, we
have

|f ′(z)|p ≤ C

|D(z)|

∫
D(z)

|f ′(ω)|p dA(ω) ≤ C

(1− |z|2)2

∫
D(z)

|f ′(ω)|p dA(ω).

(15)
It is clear that

(1− |z|2) � (1− |ω|2), ω ∈ D(z), z ∈ ∆.
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Using this and (15) we obtain

|f ′(z)|p ≤ Cp

(1− |z|2)2

∫
D(z)

[
1− |ω|
1− |z|

]p−1

|f ′(ω)|p dA(ω)

=
Cp

(1− |z|2)p+1

∫
D(z)

(1− |ω|)p−1|f ′(ω)|p dA(ω).

(16)

On the other hand, since f ∈ Dp
p−1, it follows that∫

D(z)
(1− |ω|)p−1|f ′(ω)|p dA(ω) = o(1), as |z| → 1−,

which, with (16), implies

M∞(r, f ′) = o

(
1

(1− r)1+
1
p

)
, as r → 1−, (17)

and (14) follows by integration.

Remark. We observe that for any p ∈ (0,∞), the exponent 1/p in (14)
is the best possible. Even more, if we take

fp,β(z) = (1− z)−1/p

(
log

2
1− z

)−β

, z ∈ ∆,

with β > 1
p then, as we noticed in Lemma 1.3, fp,β ∈ Dp

p−1 and it is easy to
see that

M∞(r, f) ≈ (1− r)−1/p

(
log

1
1− r

)−β

, 0 < r < 1.

So condition (14) in Theorem 3.1 cannot be substituted by the condition

M∞(r, f) = o

(
1

(1− r)
1
p

(
log 1

1−r

) 1
p
+ε

)
, as r → 1−,

for any ε > 0.

Now we turn to prove Theorem 1.4 and Theorem 1.5.
Proof of Theorem 1.4. Suppose that 2 < p < ∞ and f ∈ Dp

p−1. Then

lim
r→1−

∫ 1

r
(1− s)p−1Mp

p (s, f ′) ds = 0. (18)
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Since Mp(s, f ′) is an increasing function of s∫ 1

r
(1−s)p−1Mp

p (s, f ′) ds ≥ Mp
p (r, f ′)

∫ 1

r
(1−s)p−1 ds ≥ CpM

p
p (r, f ′)(1−r)p,

which, together with (18), yields

Mp(r, f ′) = o

(
1

1− r

)
, as r → 1−, (19)

which, using Minkowski’s integral inequality, implies (7).
Using (19) and the fact that for any fixed r with 0 < r < 1 the integral

means Mp(r, f ′) increase with p, we deduce that

I2(r, f ′) = o
(

1
(1− r)2

)
, as r → 1−.

and then using the well known inequality (see [26] pp. 125-126)

d2

dr2

(
I2(r, f)

)
≤ 4I2(r, f ′), 0 < r < 1,

we obtain
d2

dr2

(
I2(r, f)

)
= o

(
1

(1− r)2

)
as r → 1−,

which, integrating twice, gives M2(r, f) = o
((

log 1
1−r

)1/2
)

, as r → 1. This

is worse than (8). To obtain this we shall use Theorem 1.2.
Say that f(z) =

∑∞
n=1 anzn, (z ∈ ∆). Suppose, without loss of generality

that a0 = 0. Using Hölder’s inequality with the exponents p/2 and p/(p−2)
and Theorem 1.2, we obtain

M2(r, f)2 =
∞∑

n=1

|an|2r2n =
∞∑

n=0

∑
k∈I(n)

|ak|2r2k

≤
∞∑

n=0

r2n+1

 ∑
k∈I(n)

|ak|2


≤

 ∞∑
n=0

 ∑
k∈I(n)

|ak|2
p/2


2/p [ ∞∑

n=0

r
2n+1 p

p−2

]1− 2
p

≤Cf,p

(
log

1
1− r

)1− 2
p

.

�
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Since

exp

(
1
2π

∫ π

−π
log |f(reiθ)| dθ

)
≤ M2(r, f), 0 < r < 1,

we trivially have the following result.

Corollary 3.2. If 2 < p < ∞ and f ∈ Dp
p−1 then

exp

(
1
2π

∫ π

−π
log |f(reiθ)| dθ

)
= O

((
log

1
1− r

) 1
2
− 1

p

)
, as r → 1.

Theorem 9 shows that Corollary 3.2 and the estimate (8) are sharp in
very strong sense. The following lemma, whose proof is simple and will be
omitted, will be used in the proof of Theorem 9.

Lemma 3.3. Let f(z) =
∑∞

n=0 anzn be an analytic function in ∆. If
0 < β ≤ 1 and

N∑
k=0

|ak|2 ≈
(
log N

)β
, as N →∞,

then

I2(r, f) ≈

(
log

1
1− r

)β

as r → 1−.

We shall also make use of the technique introduced by D. Ullrich in [32].
Let start introducing some notation:

Let ω = [0, 1]N and let ω1, ω2, . . . be “the coordinate functions” ωj :
Ω −→ [0, 1]. Let dω denote the product measure Ω derived from Lebesgue
measure on [0, 1]. Now ω1, ω2, . . . are the Steinhaus variables (i. i. d. ran-
dom variables uniformly distributed on [0, 1]). Note that {e2πiωj}∞j=1 is an
orthonormal set in L2(Ω), hence, if

∑∞
j=1 |aj |2 < ∞, then

∑∞
j=1 aje

2πiωj is a

well defined element of L2(Ω) with L2-norm
(∑∞

j=1 |aj |2
)1/2

. The following
theorem is Theorem 1 of [32].

Theorem C. There exists C > 0 such that for any sequence of complex
numbers {aj}∞j=1 with

∑∞
j=1 |aj |2 < ∞, we have

exp

[∫
Ω

log

∣∣∣∣∣
∞∑

j=1

aje
2πiωj

∣∣∣∣∣ dω

]
≥ C

( ∞∑
j=1

|aj |2
) 1

2

.

12



Proof of Theorem 1.5. Suppose that 2 < p < ∞ and 0 < β < 1
2 −

1
p .

Set ε = 1
2 −

1
p − β, hence, ε > 0. We define the sequence {bj}∞j=1 as follows

bj =
1

j
1
p
+ε

j = 1, 2, . . . .

Now, for every ω ∈ Ω we define

fω(z) =
∞∑

j=1

bje
2πiωjz2j

=
∞∑

k=1

ak,ωzk, z ∈ ∆. (20)

Since
∑∞

j=1 |bj |p < ∞, using Proposition A we deduce that fω ∈ Dp
p−1 for

every ω ∈ Ω.
We are going to see that for a.e. ω ∈ Ω

exp

(
1
2π

∫ π

−π
log |fω(reit)| dt

)
6= o

((
log

1
1− r

)β)
, as r → 1−. (21)

This will finish the proof.
Suppose that (21) is false. Then there exists a measurable set E ⊂ Ω

with positive measure and such that for all ω ∈ E

exp

(
1
2π

∫ π

−π
log |fω(reit)| dt

)
= o

((
log

1
1− r

)β)
, as r → 1−. (22)

This is equivalent to saying that

lim
r→1−

1
2π

∫ π

−π
log

[
|fω(reit)|(
log 1

1−r

)β

]
dt = −∞, ω ∈ E. (23)

On the other hand, N∑
j=1

|bj |2
1/2

=

 N∑
j=1

1

j
2
p
+2ε

1/2

∼
(∫ N

1

1

x
2
p
+2ε

dx

)1/2

∼ N
1
2
− 1

p
−ε

, as N →∞.

Thus, there exist C > 0 and N0 > 0 such that(
N∑

k=1

|ak,ω|2
)1/2

≤ C
(
log N

) 1
2
− 1

p
−ε

, N ≥ N0. (24)

13



Using (24) and Lemma 3.3 we deduce that

M2(r, fω) = I2(r, fω)
1
2 ≤ C

[
log

1
1− r

] 1
2
− 1

p
−ε

, 0 < r < 1, ω ∈ Ω,

which implies that

exp

(
1
2π

∫ π

−π
log |fω(reit)| dt

)
≤ C

[
log

1
1− r

] 1
2
− 1

p
−ε

, 0 < r < 1, ω ∈ Ω.

(25)
From this we deduce as in (23), that there exists C > 0 such that∫ π

−π
log

[
|fω(reit)|(
log 1

1−r

)β

]
dt ≤ C, 0 < r < 1, ω ∈ Ω. (26)

Bearing in mind that E has positive measure, (26) and (23) imply

lim
r→1−

∫
Ω

[∫ π

−π
log

|fω(reit)|(
log 1

1−r

)β
dt

]
dω = −∞. (27)

For N = 1, 2, . . . , let ΩN = [0, 1]N , and let mN be the Lebesgue measure on
ΩN . Observe now that, for any N , we have∫

ΩN

log |fω(reit)| dmN (ω)

=
∫ 1

0
. . .

∫ 1

0
log |

N∑
j=1

bjr
2j

ei[2πωj+2jt] +
∞∑

j=N+1

bjr
2j

ei[2πωj+2jt]| dω1dω2 . . . dωN

=
∫ 1

0
. . .

∫ 1

0
log |

N∑
j=1

bjr
2j

e2πiωj +
∞∑

j=N+1

bjr
2j

ei[2πωj+2jt]| dω1dω2 . . . dωN .

Letting N tend to ∞, we deduce that
∫
Ω log |fω(reit)| dω is indepedent of t,

then using (27) and Fubini’s Theorem we obtain

lim
r→1−

∫
Ω

log
|fω(r)|(
log 1

1−r

)β
dω = −∞. (28)

But, if we set

rN = 1− 1
2N

N = 1, 2, . . .

by Theorem C and the inequality

e−1 ≤ r2N

N ≤ r2j

N 1 ≤ j ≤ N,

14



we deduce that

exp

[∫
Ω

log |fω(rN )| dω

]
= exp

[∫
Ω

log

∣∣∣∣∣∣
∞∑

j=1

bje
2πiωjr2j

N

∣∣∣∣∣∣
]

≥C

( ∞∑
j=1

|bj |2
(
r2j

N

)2)1/2

≥ C

(
N∑

j=1

|bj |2
)1/2

= C

(
N∑

j=1

1

j
2
p
+2ε

)1/2

≥C
1

N
1
p
+ε− 1

2

≥ C

(
log

1
1− rN

) 1
2
− 1

p
−ε

= C

(
log

1
1− rN

)β

,

which implies ∫
Ω

log
|fω(rN )|(
log 1

1−rN

)β
dω ≥ log C,

for all N , which contradicts (28). Consequently, (21) is true and the proof
is finished. �

3.2. Radial growth of Dp
p−1-functions In this section we are going to

obtain some estimates on the radial growth of Dp
p−1-functions. If 0 < p ≤ 2

and f ∈ Dp
p−1, then f ∈ Hp and so f has nontangential limit a.e. T.

Thererefore, we have:
If 0 < p ≤ 2 and f ∈ Dp

p−1, then

|f(reiθ)| = O(1), as r → 1− for a. e. eit ∈ ∂∆.

Zygmund proved in [37] that if f is an analytic function in ∆ then

∫ r

0
|f ′(ρeit)| dρ = o

[(
log

1
1− r

)1/2]
, as r → 1−. (29)

for almost every point eit in the Fatou set of f , Ff , which consists of those
eit ∈ T such that f has finite nontangential limit at eit. Obviously, (29)
implies

|f(reit)| = o

[(
log

1
1− r

)1/2]
, as r → 1−, (30)

If 2 < p < ∞ there are functions f ∈ Dp
p−1 such that Ff has Lebesgue

measure equal to zero. Indeed, an analytic function f given by a power series
with Hadamard gaps whose sequence of Taylor coefficients {ak} belongs to
lp\l2, is a Dp

p−1-function by Proposition A and Ff has null Lebesgue measure
(see Chapter V of [38]). In spite of this, we can prove that the following
result for Dp

p−1-functions.

15



Theorem 3.4. If 2 < p < ∞ and f ∈ Dp
p−1 then

|f(reit)| = o

[(
log

1
1− r

)1− 1
p
]
, as r → 1− for a. e. eit ∈ ∂∆. (31)

Note that this is better that the a. e. estimate which can be deduced
from (17).

Proof of Theorem 3.4. Let p and f be as the statement of the theorem.
Then ∫ π

−π

(∫ 1

0
(1− r)p−1|f ′(reit)|p dt

)
dr < ∞,

and it follows that the set A of points eit ∈ ∂∆ for which∫ 1

0
(1− r)p−1|f ′(reit)|p dt < ∞,

has Lebesgue measure equal to 2π.
Take and fix eit ∈ A. Take also ε > 0, then there exists rε ∈ (0, 1) such

that ∫ 1

rε

(1− s)p−1|f ′(seit)|p ds < ε. (32)

Using (32) and Hölder’s inequality with exponents p and p
p−1 , we obtain

for rε < r < 1,∫ r

0
|f ′(seit)| ds =

∫ rε

0
|f ′(seit)| ds +

∫ r

rε

|f ′(seit)| ds

≤ Cf,ε +
∫ r

rε

(1− s)1−
1
p

(1− s)1−
1
p

|f ′(seit)| ds

≤ Cf,ε +

[∫ r

rε

(1− s)p−1|f ′(seit)|p ds

]1/p[∫ r

rε

1
(1− s)

ds

]1− 1
p

≤ Cf,ε + ε

(
log

1
1− r

)1− 1
p

.

(33)

Consequently, we have proved that

lim sup
r→1

(
log

1
1− r

) 1
p
−1 ∫ r

0
|f ′(seit)| ds ≤ ε.

Since ε > 0 and eit ∈ A are arbitrary, we have∫ r

0
|f ′(seit)| ds = o

[(
log

1
1− r

)1− 1
p
]
, as r → 1−,
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for all eit ∈ A. This implies that (31) holds for all eit ∈ A, which has
Lebesgue measure equals to 2π. This finishes the proof. �

We do not know whether or not the exponent 1 − 1
p in Theorem 3.4 is

sharp but we know that it cannot be substitutes by any exponent smaller
than 1

2 −
1
p . Indeed, we can prove the following result.

Theorem 3.5. If 2 < p < ∞, then there exists a function f ∈ Dp
p−1

such that

lim
r→1−

|f(reit)|(
log 1

1−r

) 1
2
− 1

p
(

log log 1
1−r

)−1
= ∞, for a.e. eit ∈ ∂∆. (34)

Proof. Take p > 2. Define

ak =
1

k1/p log 2k
, k = 1, 2, . . .

and

f(z) =
∞∑

k=1

akz
2k

, z ∈ ∆.

Since
∑∞

k=1 |ak|p < ∞, by Proposition A, we have that f ∈ Dp
p−1.

On the other hand,(
N∑

k=1

|ak|2
)1/2

=

(
N∑

k=1

1
k2/p log2 2k

)1/2

∼

(∫ N

1

1
x2/p log2 2x

dx

)1/2

∼ N
1
2
− 1

p

log N
, as N →∞,

and then it is easy to see that

M2(r, f) = I2(r, f)
1
2 ∼

(
log 1

1−r

) 1
2
− 1

p

log log 1
1−r

, as r → 1−.
(35)

Now, by the law of the iterated logarithm for lacunary series, see [35], we
have that

lim
r→1−

|f(reit)|[
I2(r, f) log log log I2(r, f)

] 1
2

= 1, for a. e. eit ∈ ∂∆. (36)

Now we observe that (36) and (35) imply (34). This finishes the proof.
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4. Zeros of Dp
p−1 functions

4.1. Products of the zeros of Dp
p−1 functions We start recalling the

the following result due to Horowitz, (see p. 65 of [17]).

Lemma D. Let f be an analytic function in ∆ with f(0) 6= 0 and let
{zk} be the sequence of ordered zeros of f . If 0 < p < ∞, 0 ≤ r < 1 and N
is a positive integer, then

|f(0)|p
N∏

k=1

rp

|zk|p
≤ Mp(r, f)p. (37)

This lemma and the estimates for the integral means of Dp
p−1-functions

obtained in section 3.1 are the basic ingredients in the proofs of Theorem 1.6
and Theorem 1.7. This method was use by C. Horowitz in [17] for the
Bergman spaces and later on by the first author of this paper, M. Nowak
and P. Waniurski in [15] for the Bloch space B and some other related spaces.

Proof of Theorem 1.6. Let p, f and {zk}∞k=1 be as in the statement of
Theorem 1.6. Using Theorem 1.4, we see that f satifies (8) and then using
Lemma D with p = 2, we deduce that

N∏
k=1

r

|zk|
≤ CM2(r, f) ≤ C

(
log

1
1− r

) 1
2
− 1

p
, if r is close enough to 1.

(38)
Now, taking r = 1− 1

N with N big enough in (38) and bearing in mind that(
1− 1

N

)N
> 1

2e , we deduce that

N∏
k=1

1
|zk|

≤ C(log N
) 1

2
− 1

p . (39)

This finishes the proof. �

Our next objective is to prove Theorem 1.7 which asserts that Theo-
rem 1.6 is sharp. We start recalling some notation and facts from Nevalinna
theory (see [16], [23] or [31]) which will be needed in our proof.

Let f be a non-constant analytic function in ∆. For any a ∈ C and
0 < r < 1, we denote by n(r, a, f) the number of zeros f − a in the disc
{|z| ≤ r}, where each zero is counted according to its multiplicity. We define
also

N(r, a, f) def=
∫ r

0

n(t, a, f)− n(0, a, f)
t

dt+n(0, a, f) log r, 0 < r < 1. (40)

For simplicity, we shall write

n(r, f) = n(r, 0, f) : N(r, f) = N(r, 0, f).

18



The Nevanlinna characteristic function T (r, f) is defined by

T (r, f) =
1
2π

∫ π

−π
log+ |f(reiθ)| dθ, 0 < r < 1.

The proximity function m(r, a, f) is given by

m(r, a, f) def=
1
2π

∫ π

−π
log+ 1

|f(reit)− a|
dt, 0 < r < 1.

Now we can state the First Fundamental Theorem of Nevanlinna.

Theorem E. Let f be a non-constant analytic function in ∆. Then

m(r, a, f) + N(r, a, f) = T (r, f) + O(1), as r → 1−.

for every a ∈ C.

Now we can prove the following result.

Proposition 4.1. If 2 < p < ∞ and f is a non-constant Dp
p−1-function,

then

n(r, a, f) = O

(
1

1− r
log log

1
1− r

)
, as r → 1−, for all a ∈ C. (41)

Proof. Using the arithmetic-geometric mean inequality we obtain

T (r, f) ≤ 1
4π

∫ π

−π
log
(
|f(reit)|2 + 1

)
dt

≤1
2

log

(
1
2π

∫ π

−π

(
|f(reit)|2 + 1

)
dt

)
≤ 1

2
log
(

I2(r, f) + 1
)

,

which, with part (ii) of Theorem 1.4, gives

T (r, f) = O

(
log log

1
1− r

)
, as r → 1−. (42)

Using Theorem E, we deduce that

N(r, a, f) = O

(
log log

1
1− r

)
, as r → 1−, for all a ∈ C. (43)

Now, it is well known (see p. 22 of [4]) that this implies (41).
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Now, we can proceed with the proof of Theorem 1.7.

Proof of Theorem 1.7. Take p and β with 2 < p < ∞ and 0 < β < 1
2−

1
p .

Take f ∈ Dp
p−1 with f(0) 6= 0 and

exp

(
1
2π

∫ π

−π
log |f(reit)| dt

)
6= o

((
log

1
1− r

)β)
, as r → 1−, (44)

such a function exists by Theorem 1.5. Using (44) we see that there exist a
sequence {rj}∞j=1 ⊂ (0, 1) with rj ↑ 1 and a positive constant C (indepedent
of j), such that

exp

(
1
2π

∫ π

−π
log |f(rje

it)| dt

)
≥ C

(
log

1
1− rj

)β

, j = 1, 2 . . . . (45)

We shall write n(r) instead of n(r, f) for simplicity. Using Jensen’s formula
(see [1], p. 206) and (45) we deduce that

|f(0)|
n(rj)∏
k=1

rj

|zk|
≥ C

(
log

1
1− rj

)β

, j = 1, 2 . . . , (46)

which implies that
n(rj) →∞, as j →∞. (47)

On the other hand, Proposition 4.1 implies that there exists C > 0 such
that

n(r) ≤ C
1

1− r
log log

1
1− r

, if r is sufficiently close to 1.

This implies that

log n(r) ≤ C log
1

1− r
, if r is sufficiently close to 1,

which, together with (46), shows that there exists j0 ∈ N such that for every
j ≥ j0

|f(0)|
n(rj)∏
k=1

rj

|zk|
≥ C

[
log n(rj)

]β
.

This finishes the proof. �

4.2. A substitute of Blaschke condition If 2 < p < ∞ the sequence
{zk} of ordered zeros of a non trivial Dp

p−1 function need not satisfy the
Blaschke condition. Indeed, the Blaschke condition is equivalent to saying
that

∏N
n=1

1
|zn| = O(1) and we have seen that this is not always true. Using

Theorem 1.6 and arguing exactly as in the proof of Theorem 5 of [15] we
can prove the following result.
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Theorem 4.2. Let 2 < p < ∞ and let f ∈ Dp
p−1 with f 6≡ 0. Let {zk}∞k=1

be the sequence of zeros of f . Then

∑
|zk|>1− 1

e

(1− |zk|)

(
log log

1
1− |zk|

)−α

< ∞ (48)

for all α > 1.

Next, we shall prove that the condition α > 1 is needed in Theorem 4.2.

Theorem 4.3. Let 2 < p < ∞. Then there exists a function f ∈ Dp
p−1

wirh f 6≡ 0, whose sequence of zeros {zk}∞k=1 satisfies

∑
|zk|>1− 1

e

(1− |zk|)

(
log log

1
1− |zk|

)−1

= ∞. (49)

Proof. Set

g(z) =
∞∑

k=1

k
− p+2

4p z2k
, z ∈ ∆.

Since g is given by a power series with Hadamard gaps and

∞∑
k=1

k−
p+2
4 < ∞,

it follows that g ∈ Dp
p−1.

We shall follow the argument of the proof of Theorem 6 of [15] Set

rn = 1− 1
2n

n = 1, 2, 3, . . . (50)

It is easy to see that, for all sufficiently large n, I2(rn, g) ≥ Cn
1
2
− 1

p , which,
since log 1

1−rn
= n log 2, implies that

I2(rn, g) ≥ C

(
log

1
1− rn

) 1
2
− 1

p

if n is sufficiently large. (51)

Now, since log 1
1−rn

∼ log 1
1−rn+1

, as n → ∞, and since I2(r, g) and(
log 1

1−r

) 1
2
− 1

p are increasing functions of r, we deduce

I2(r, g) ≥ C

(
log

1
1− r

) 1
2
− 1

p

(52)
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if r is sufficiently close to 1.
Using this and arguing as in p. 126 of [15] we deduce that there exist

a complex number a with g(0) 6= a, a positive constant β and a number
r0 ∈ (0, 1) such that

N(r, a, g) ≥ β log log
1

1− r
r ∈ (r0, 1). (53)

Take such an a ∈ C and set

f(z) = g(z)− a, z ∈ ∆.

Then f ∈ Dp
p−1 and f(0) 6= 0. Also (53) can be written as

N(r, f) ≥ β log log
1

1− r
r ∈ (r0, 1). (54)

Let {zn} be the sequence of zeros of f . Using Proposition 4.1 and arging as
in p. 127 of [15], we obtain (49).

Acknowledgements

We wish to thank the referee for his/her helpful remarks.
The authors have been supported in part by grants from “El Ministe-

rio de Educación y Ciencia”, Spain (BFM2001-1736, MTN2004-00078 and
MTN2004-21420-E) and by a grant from “La Junta de Andalućıa” (FQM-
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