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Abstract This paper presents a new sonar based purely
reactive navigation technique for mobile platforms. The
method relies on Case-Based Reasoning to adapt itself to any
robot and environment through learning, both by observation
and self experience. Thus, unlike in other reactive techniques,
kinematics or dynamics do not need to be explicitly taken
into account. Also, learning from different sources allows
combination of their advantages into a safe and smooth path
to the goal. The method has been succesfully implemented
on a Pioneer robot wielding 8 Polaroid sonar sensors.

Keywords Reactive navigation - Case-Based Reasoning -
Learning

1. Introduction

Autonomous robotic navigation, defined as the act of finding
and tracking a safe path to a goal, has been widely studied
in the last decades. Much research has focused on naviga-
tion in dynamic environments, where changes are difficult to
model and predict and, consequently, navigation algorithms
must be capable of adapting. Both high-level planning and
reactive strategies have been proposed to solve this problem,
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but they present complementary advantages and weaknesses:
high level planners are efficient, but typically slow to react,
while fast reactive schemes might usually be unefficient and
prone to fall into local traps. Hybrid systems, supported by
biological evidence (Arkin, 1998), combine both schemes to
achieve a better performance. Usually, high level process-
ing follows a deliberative pattern whereas low level control
is performed in a reactive way. However, in extremely dy-
namic environments, navigation may rely uniquely on reac-
tive schemes.

Reactive systems, also referred to as behaviour based sys-
tems, are a relatively recent development in robotics that
has redirected Artificial Intelligence research (Arkin, 1995).
These systems rely on coupling sensors and actuators into a
set of low level primitive behaviors. Overall actions emerge
from the interactions that take place between the individ-
ual behaviors, sensor readings and the world. The reactive
paradigm has been successfully tested in different robots,
including multilegged systems, crawlers, outdoor platforms,
mobile manipulators and herds. The high modularity of these
approaches makes them particularly appealing for engineers,
because it facilitates growth and application of existing ap-
proaches to new domains.

One of the best known reactive schemes is the Potential
Fields Method (PFM) (Khatib, 1986). It consists of creating
an artificial repulsion field around obstacles and an attraction
field around the goal. Then, paths are obtained by applying
gradient descent to the resulting potential field landscape.
Potential fields are simple and efficient, but they also present
some drawbacks. First, it is difficult to move between close
obstacles (e.g., doors). PFM also tend to present oscillations
when the robot is close to obstacles. Besides, they may con-
verge to local minima. Some non-purely reactive approaches
based in a rough world model have also been proposed.
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The Vector Field Histogram (VFH) (Ulrich and Borenstein,
2000) uses a heading dependent histogram to represent the
obstacle density so that the robot can move in the direction
where there are less obstacles. It is usual to apply an extended
version of VFH to include robot kinematic constraints to
the method by reducing possible solutions to only a set of
parametrized paths. However, in this case new opportunities
cannot be discovered. The Curvature Velocity Method
(Simmons, 1996) and the Dynamic Window Approach (Fox
et al., 1997) combine the aforementioned robot kinematics
with dynamic constraints and spatial knowledge into a goal
function, which is maximized to extract moving commands.
These approaches can be combined with a motion planner
by providing a map to enhance their performance (Model
Based Dynamic Window Approach (Fox et al.,, 1998)).
Further refinements of the same technique include the
Global Dynamic Window Approach (Brock and Khatib,
1999), which also relies on a model of the environment.
The Elastic Bands Method (Quinlan and Khatib, 1993)
modifies the trajectory of the robot, originally provided
by a planner, by using artificial forces which depend on
the layout of the obstacles in the way. Elastic Strips are
an enhanced version of the same idea (Brock and Khatib,
2002). Similarly, the PFM can also be hibridized to include
kinematics and dynamics constraints (Sekhavat and Chyba,
1999) and to avoid oscillations (Green et al., 1994). Most
of these approaches depend on a global model of the
environment and, hence, they are not purely reactive, but
this is fairly common to avoid local minima. Their main
drawback, though, is that they depend on many parameters,
used to characterize kinematics and dynamics, to develop
a goal function to optimize or to reduce the solution space
to a tractable set. These parameters need to be optimized
for each specific problem, specially if different robots are
used. It is necessary to note that parameter optimization and
kinematics analysis is a fairly well known problem which
can be solved in a fairly straight way for a given robot.
Furthermore, Minguez and Montano (2003) proposed the
Ego-KinoDynamic Space based on a transformation to work
in a different space with kinematic and dynamic constraints.
In this space, planning algorithms can be simplified, as
they do not need take kinematics into account. However,
if algorithms are to be proven in robots with different
kinematic and dynamic constraints, a kinematics evaluation
and parameter optimization need to be performed for each
different robot. The same could apply if the robot is affected
by physical problems like different wheel erosion or motory
desynchronization. Obviously, it would be desirable to
achieve a reactive system capable of adapting to these
circumstances with minimal human intervention and, if
possible, with no analytical calculation, so that it could run in
a different robot after a minimal, intuitive adaptation stage.
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In this paper we propose a purely reactive navigation
scheme based on Case-Based Reasoning (CBR). CBR is
a learning and adaption technique that helps to solve current
problems by retrieving and adapting past experiences, which
are stored in the casebase in the form of cases. CBR is used
here to let a robot learn how to react in any given situation,
so that it can adapt itself to any configuration or environment
change. As proven by our experiments, the main advantage
of the proposed approach is that there is no need to study
the robot kinematics nor the environment. It will be proven
that it also achieves some resistance against sensor errors
and provides progressively more efficient ways of avoiding
obstacles in the path.

2. A CBR reactive navigation strategy

Case-Based Reasoning is a reasoning, learning and adap-
tation technique to solve current problems by retrieving
and adapting past experiences (Schank and Abelson, 1977;
Aamodt, 1994). CBR systems become more efficient by
remembering old solutions given to similar problems and
adapting them to fit new problems. The new problem to-
gether with its new solution becomes a new case that can
also be stored in the casebase to be used later. A CBR sys-
tem cycle to solve a new problem consists of four steps: (i)
retrieve the most similar stored case to the new current case;
(ii) adapt its solution to the new current case; (iii) evaluate
the results of the proposed solution; (iv) learn from the new
experience. Consequently, when creating a CBR agent, de-
sign decisions often concern: (i) which is the casebase or case
library structure; (ii) how to describe the problem to solve
within a particular case structure; (iii) how retrieval process
and similarity assessment between cases can be evaluated,;
(iv) how to adapt the old solution to solve the new current
problem, (v) how to evaluate the success of the proposed
solution, and (vi) what to learn and how to learn from solved
problems (new experience gain).

CBR has been used in navigation before, usually for
global path planning in static environments (Branting and
Aha, 1995; Fox and Leake, 1995). There are also ap-
proaches for global planning in dynamic environments
based on a topological map of an a-priori known envi-
ronment. For instance, in Haigh and Veloso (1995) new
opportunities cannot be discovered when the environment
changes unless the topological map is reorganized regularly.
Kruusmaa (2003) proposes a grid-based CBR global path
planning method to overcome the aforementioned prob-
lem. However, she concludes that CBR-based global nav-
igation is beneficial only when obstacles are large and dense
and only few solutions exist. Otherwise, the solution space
may become too large. Other CBR based methods focus on



Auton Robot

non-pure reactive navigation (Likhachev and Arkini, 2001;
Ram and Santamaria, 1993), but they basically rely on ac-
cumulating experience over a time window while navigating
in a given environment to obtain an emergent global goal
seeking-behaviour. Hence, they are not adequate for highly
dynamic environments where the layout of obstacles changes
too often. In this work, the casebase acts as a collection of
sense/act pairs, in a purely reactive sense. It does not gather
information about a given environment, but simply how to
act when a given sensor/goal configuration is detected and,
consequently, it is valid for any environment. The acquired
experience simply covers how a robot with a given physi-
cal structure would act at a given time instant to reactively
reach a goal in a place where there are obstacles at certain
positions. It must be noted that this scheme does not pro-
vide a path to the goal, but a particular action at each time
instant; the path is the emergent behavior resulting from the
combination of several cases.

2.1. The sense/act pair: Case structure

A CBR system depends on the case library organization,
which can either be a flat memory or a hierarchical one. Flat
memories retrieve the case best matching the input case.
Including new cases is simple, but it is necessary to keep a
bounded number of them to grant adequate response times.
Hierarchical memories provide more efficient retrieval, but
keeping them in optimal conditions requires an overhead on
the case library organization and the retrieval process could
miss some optimal cases by searching a wrong area of the
memory. Consequently, a flat memory has been chosen in
this paper.

Within flat memories, the most commonly used represen-
tation is a feature-value vector representation, where a case
description can be regarded as a vector in an N-dimensional
space. This is naturally suitable to represent a sense/act pair.
The main concern of reactive navigation is to reach a goal
point in a safe way using local data. Hence, a problem in-
stance or case consists of the position of the goal and obsta-
cles with respect to the robot, while the output is basically
which direction to follow in order to safely reach the goal.

Specifically, the proposed case instance includes the goal
direction and the instant readings of all on-board sonar sen-
sors. Besides, since robots are not necessarily holonomic, the
heading direction of the robot is also included in the case.
Figure 1 shows the case parameters, including its output:
the solution heading direction. Further case features will be
discussed later.

Polaroid sonar sensors present a wide uncertainty arc, so
detected obstacles cannot be precisely located. We achieve
a rough spatial integration by evaluating the readings of all
on-board sensors at a given instant but, nevertheless, some
errors may occur. These errors are filtered out of the system
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Fig. 1 Case definition

by continuously triggering the reactive navigation module.
Since false echoes and wrong readings tend to provoke spuri-
ous sharp direction changes, unless they last for a while, they
are filtered out of the global response of the system because
of inertia. Similarly, in complex areas where sonar readings
change often, the platform tends to slow down for the same
reason.

2.2. Retrieval process and case similarity assessment

In flat memories, retrieval consists of matching all cases in
the casebase against the current one. The best similar case
is usually selected typically by a nearest-neighbour (NN or
k-NN) algorithm (Watson, 1996), where an evaluation func-
tion usually combines all partial matchings through a case
attribute into a full dimensional partial-matching between
cases.

We have experimentally checked that when the different
features of a case are related, as in this case, qualitative
matching outperforms quantitative one, as illustrated in the
example in Fig. 2. Quantitative matching would return the
case in Fig. 2(c) as the most similar to the one in Fig. 2(a)
given the same goal position, even though it is clear that
the case in Fig. 2(b) is a better choice to determine where
to go. Thus, in this work we rely on the Tanimoto distance
(Deichsel and Trampisch, 1985), which is less sensitive to
differences in a single feature than to global ones:

xr.x?
—_— ! ‘/
X2 +1X,2 = X[ - XT

D(X;, X)) =1 (1)

It is important to note that minor differences between
sensors readings usually correspond to slight robot shiftings
rather than to different situations. Thus, such differences
should not involve creation of new cases. Since it has been
proven (Sanchez-Marre et al., 1999) that it is better to com-
bine discrete and continuous attributes in CBR systems to

a Springer



Auton Robot

Goal
X

[]

(b)

(a)

(c)
Fig. 2 Case selection: (a) stored case; (b) input case 1; (c) input
case 2

fully exploit the domain knowledge, the problem instance
can be improved by discretizing the sensor readings. There
are many discretization techniques (Dougherty et al., 1995),
but all of them roughly belong either to automatic parti-
tioning of parameter domain or predefined partitions. In the
first case, methods rely either on equal width interval bin-
ning or using clustering methods to group partitions relative
to the case frequency. In the second case, an expert can
define reasonable partitions. Since the robot and the sonar
behaviour is known, we have predefined a partition. For our
purely reactive layer, far obstacles are not important, but
the closer an obstacle is, the more dangerous the situation is.
Thus, we discretize sonar readings into 5 non-equal intervals:
(i) critical (0-20 cm); (ii) near (20-50 cm); (iii) medium (50—
100 cm); (iv) far (100-150 cm); and (v) no influence (more
than 150 cm). These readings are valid for Polaroid sonar
sensors and reactive navigation in a medium scale indoor en-
vironment. In large scale situations a different discretization
would be required.

2.3. Case evaluation and casebase reorganization

When defining the CBR system, it is also necessary to pro-
vide a way to determine how good a solution is, so that the
worst cases can be periodically pruned from the casebase
and, hence, retrieved cases are efficient. It is important to
note that in a purely reactive layer, only factors at hand at a
given time instant can be evaluated to estimate the efficiency
of a case. Thus, we cannot rely on global factors such as
the distance required to reach a given goal. First, in order to
avoid oscillations, one of the evaluation factors is the angle
difference between the current robot direction and the output
one. Besides, it is interesting not to get too close to obsta-
cles to avoid possible collisions. This does not mean that
the robot cannot move close to obstacles, but simply that a
solution is better if it is not necessary to do so. It is important
to note that if only these two factors—closeness to obstacles
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and soft direction changes—are considered, the robot might
try to move too far from the goal as long as there were no
obstacles nearby and its curvature was stable. Thus, a third
evaluation factor to avoid this behaviour is to keep the goal
ahead. This third factor is the angle between the direction to
the goal and the resulting one.

Figure 1 presents all the attributes required to define a
case. The input instance includes the sensors readings, the
robot heading and the goal direction. Then, the case is evalu-
ated as a function of the distance to the closest obstacle dyin,
the angle between the current heading and the output heading
«; and the angle between the goal direction and the output
heading «,. These factors are combined into an efficiency
rank E ranging from O to 1:

E = kle_Cl-ﬁ +k26—C2|011\ +kSe—C3|a2| o
- ki + ko + k3

ki, ko and k3 being weight constants that are equal to 1 in
this paper. At this point, it would be possible to simply re-
move all cases whose efficiency is lower than a threshold.
However, this approach implies that some situations that can-
not be solved efficiently—e.g. navigation in a tight corridor
where obstacles are always close to the agent—would never
be learnt. Thus, the casebase is organized by splitting it into
classes using a classic MaxMin algorithm. The prototypes
of those classes become the cases of the casebase. The pro-
totype of a given class x is calculated as:

P, = Z E;case; 3

Viex

The prototype of a class resembles more the most
efficient cases in that class because E is used as a
weight factor. However, classes consisting uniquely of
non-efficient cases are not removed from the casebase as
desired.

It is necessary to point out that a MaxMin clustering al-
gorithm only depends on a threshold CSp,x which controls
the maximum size of a class. CS.x, however, is not critical
and can be broadly chosen. If CSy.« is high, classes are large
and the casebase presents few cases. Otherwise, classes are
small and less adaptation is required. In this paper, all tests
were performed for CSpax equal to 500, resulting in less than
300 prototypes, to keep a bounded casebase.

3. Training, learning and adaptation

Learning is a key cognitive task of CBR systems. There are
two major learning approaches in CBR: learning by obser-
vation and learning by own experience. Learning by obser-
vation (van Lent and Laird, 1998) happens when the case
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library is seeded with a set of initial cases, either by an ex-
pert or by direct observation of real data. Learning by own
experience (Schank, 1982) is done after each cycle of the
reasoner: if the proposed solution has been a succesful one,
it can be stored and used for future reference. The reactive
scheme proposed in this paper can use both approaches.

Learning by observation is achieved by a module that
learns by observing a human, who guides the robot using
a keyboard in an obstacle field. Although the robot could
also learn by observation from other reactive techniques like
the PFM or the DWA, learning from humans has the advan-
tage that a human driver easily adapts to any situation and
provides a flexibility to act one way or another in similar sit-
uations, coming close to obstacles if necessary or performing
sharp direction changes if required. The human driver im-
plicitly takes into account the kinematics and dynamics of
the problem, as well as the nature of the environment, so
when the robot learns cases from a human guided path, such
factors are included in the casebase in a natural way. It is
important to take into account that the human is not bound
to drive the robot in a perfect way, so some stored cases may
be far from optimal or even erroneous. However, as stored
cases are ranked and combined according to their efficiency
in the casebase, bad cases are progressively filtered out of the
response of the agent and mutations provide better efficiency
to the existing ones if necessary.

In order to learn by observation, a human supervisedly
guides the robot through a path. Each time the Tanimoto
distance between the case retrieved from the casebase and
the current case instance (robot heading, goal direction and
sensor readings) is larger than a threshold Uy, the case
is stored in the casebase. During this stage, the output of
the case is obviously not used. Our experiments seem to
point out that the robot learns better when different drivers
provide different routes to approximately the same destina-
tion than when all this training is supervised by a single
person.

Learning by own experience is achieved when the robot
is moving on its own. In absence of obstacles, the robot
tries to reach the goal in a straight way. However, as soon
as obstacles are detected nearby, the proposed reactive sys-
tem is triggered and the most similar case in the casebase
is retrieved. Then, it is evaluated if the Tanimoto distance
between the current case and the retrieved one is larger than
Ulearn- If the distance is lower, the solution of the retrieved
case is adopted. Otherwise, the case is adapted, used and
stored.

In order to solve a new situation, a simplified version of the
PFM is used: the goal acts as an attractor and obstacles act as
repulsors, so that the combination of all involved vectors pro-
vides the resulting trajectory. However, to take into account
previous experiences, the resulting direction of the retrieved
case is also included in the vector combination. Obviously,

Retrieved case
=—— Current case

CBR output
direction

/ﬂGoal

Resulting
direction
to learn

Repulsion
vectors

Fig. 3 Learning by experience

the so created case might not be suitable either. Naturally, in
these cases the input instance changes fast. Thus, the reac-
tive module is immediately retriggered and more cases are
created, where each new case is progressively more adapted,
until a safe course to the goal is reached.

Figure 3 shows an example of learning by own experience.
When the robot is moving towards the goal, a nearby obstacle
on the right, printed in black, is detected. The most similar
case stored in the casebase corresponds to a situation where
an obstacle was also on the right, but in a different position.
The location of the obstacle in the retrieved case is printed
in gray in the figure and it can be observed that the solution
of the case, also printed in gray, is not valid for this new
situation because the robot would collide with the obstacle.
Naturally, this is detected because the sensor readings are
quite different in the current case and the retrieved one. Thus,
anew case is created by handling the obstacle as a repulsor
and the goal as an attractor, as represented by the thin black
arrows in Fig. 3. After adding these vectors to the solution
of the retrieved case, a new heading solution is obtained.
If further correction is needed, more cases are generated.
As explained in the previous section, the best adapted cases
contribute more to the prototype of their class and, hence, to
the future behavior of the agent, than the less adapted ones.

It needs to be observed that supervised training is not nec-
essary in the proposed system. If no training is provided,
the robot will try to reach the goal following a straight
line (case 0). When obstacles are detected, this single case
will start to mutate and generate new cases, that will them-
selves be mutated until an efficient casebase is achieved. It
has been experimentally checked, though, that convergence
is faster if supervised training is provided. It takes longer
for an untrained system to achieve short, safe and smooth
trajectories.

It can be observed that no explicit considerations about
hardware structure, kinematics, sensor errors or environmen-
tal factors have been formulated. Thus, if any of these factors
changes, the system simply adapts through navigation to the
new configuration. This is an interesting feature because
it makes the system valid for different robotic platforms
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Fig.4 Performance without learning for: (a) isolated obstacle on the left; (b) isolated obstacle on the right; (c) two obstacles; (d) three obstacles

(a)

Fig.5 Performance after non-supervised learning: (a) 2 obstacles; (b)
3 obstacles

without any reprogramming and also spares evaluation of
kinematics during the design stage.

4. Experiments and results

The proposed reactive algorithm has been tested on a Pioneer
robot equipped with a frontal set of 8 Polaroid sonar sensors.
The robot includes a compass, which is used in combination
with odometry to obtain the approximate position of the goal
with respect to the robot to determine if the goal has been
reached. We also use evidence grids (Moravec, 1998) in this
section to show where obstacles are from the sonar point of
view. In these grids, obstacles are printed in white, free space
is presented in black and unexplored areas appear in gray.
It is very important to note, though, that the reactive system
does not use these grids at all, and they are used only as a
visualization tool.

In order to evaluate the results in this section, it needs to
be stated that the robot moved at different speeds depending
on the situation. During supervised training, the supervisor
could make the robot go faster or slower depending on the
difficulty of the trajectory. This did not affect learning, as
only local information is acquired at a given time instant. On
autonomous navigation, we set a maximum speed of 0.6 m/s,
as sonars are slow and safety could not be granted for larger
velocities. However, speed is implicitly controlled by the na-
ture of the system. When the robot reaches an area where
obstacles exist, the reactive system generates changes of di-
rection that provoke a decrease in the translational speed of
the robot. If the area is very crowded or complex, the reactive
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system is triggered very often. The inertia of the system filters
some direction changes out of the emergent behavior of the
robot, but, nevertheless, it slows down. We experimentally
checked that this velocity reduction is more drastic in areas
where no suitable cases are available in the casebase and,
hence, the robot needs to adapt. Under these circumstances,
the velocity of the robot drops down drastically, as proposed
direction changes are so sharp that the robot does not have
time to perform them when a new direction is already pro-
posed by the CBR. Nevertheless, this velocity reduction, in
fact a side-effect of the approach, allows safe adaptation to
unknown and potentially dangerous situations. After adap-
tation, though, the robot may go through similar layouts in
a much faster way, but speed changes still depend on the
environment structure and it may range from 0.2 m/s in nar-
row corridors and cluttered areas to our maximum 0.6 m/s in
situations considered to be safe for the robot, where minimal
direction changes are required.

4.1. Training and tests in simulation

First, we tested the algorithm under simulation to keep a
completely controlled scenario where the position of the ob-
stacles and the departure and arrival locations of the robot
could be kept exactly the same and also to keep perfor-
mance not affected by sonar and localization errors. The
goal of this set of experiments was to evaluate the learning
process.

Initially, storage of new cases is not allowed to check how
the algorithm works without learning. Figure 4 shows the
performance of the robot in four experiments, when the only
case stored in the casebase—to move ahead to the goal in
absence of obstacles—is continuously adapted. When the
robot deals with a single obstacle, the trajectory is basically
correct, even though sharp direction changes occur when
the robot detects the obstacle (Figs. 4(a) and (b)). How-
ever, in more complex environments significant oscillations
(Fig. 4(c)) and loops may occur until a way out of a complex
situation is found (Fig. 4(d)). However, if learning by own
experience is allowed, the performance of the robot is quite
improved (Fig. 5). Locations where the casebase is triggered
are printed in gray over the evidence grid, and adapted cases
are printed in white. It can be observed that: (i) almost no
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Fig. 6 (a—d) Human supervised learning for an isolated obstacle on the left and right
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Fig. 7 Performance with human supervised learning for: (a) isolated
obstacle on the left; (b) isolated obstacle on the right; (c) two obstacles;
(d) three obstacles

further cases are stored; (ii) trajectories are smoother than in
Figs. 4(c) and (d); and (iii) no loops appear. It is important
to note, though, that this is possible because of the absence
of sonar errors under simulation.

A second test focused on learning by observation. In
this case, a human guided the robot through the paths in
Figs. 6(a)—(d). This test had a double goal: (i) to check if su-
pervised training improves the performance of the robot with
respect to non-supervised training and; (ii) to evaluate the po-
tential impact of cases learnt from bad, oscillating routes.
Hence, the training paths are purposefully non-smooth.

Figure 7 shows four tests after learning cases through the
trajectory in Figs. 6(a) and (b) (obstacle on the left). Dur-
ing these tests, learning by own experience is not allowed.
It can be noted that in Fig. 7(a) only a couple of cases are
mutated (white circles). This occurs because the robot was
forced to move too close to the obstacle during training
and some cases corresponded to unsafe situations that are
adapted when the robot moves on its own. Figure 7(b) shows
an example where the robot must leave the obstacle on the
right. Now many new cases need to be adapted because the
robot was only trained to leave obstacles on the left but the
emergent behavior is, nevertheless, the expected one. The
experiment in Fig. 7(c) is also interesting. As expected, the
robot must adapt cases when it detects obstacles at both its
sides, but it can be observed that now the trajectory does not
present as many oscillations as in Figs. 4(c) and 5(a). It can
also be appreciated that the oscillations in Fig. 6(b) are not
cloned in these experiments and, hence, that it is not neces-
sary to be too cautious with training. The same conclusions
can be extracted from the test in Fig. 7(d).

We included a PFM in the robot for comparison purposes,
as an example of a typical approach where only local infor-
mation is used. Figure 8 shows how the trajectories resulting
of the PFM are basically efficient. They oscillate more than
the ones returned by our reactive scheme after human super-
vised training (Fig. 7), but are smoother. Thus, we checked if
we could improve the system by learning from the PFM. Fig-
ure 9 shows the performance after learning only how to leave
an obstacle on the left from PFM (Fig. 8(a)). As in the previ-
ous test, only a few cases are mutated when the situation is
similar to the learnt one (Fig. 9(a)). However, it is interesting
to note that, while during human training cases were mutated
because the robot had learnt to move too close to obstacles
(Fig. 7(a)), here they are mutated to avoid oscillations. The
situation in Fig. 9(b) is more interesting. The robot should

|

(@ (b)

() (@

Fig. 8 (a—d) Robot trajectories generated by a pure Potential Fields algorithm
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(c) (d)

Fig. 9 Performance with potential field supervised learning for: (a)
isolated obstacle on the left; (b) isolated obstacle on the right; (c) two
obstacles; (d) three obstacles

leave the obstacle on the right this time but, since it learnt to
leave it on the left, it chooses a longer trajectory to follow
its training rather than adapting. The examples in Figs. 9(c)
and (d) show the performance of the robot for two and three
obstacles, respectively. It can be observed that the trajectories
in these cases are smoother than the ones in Fig. 7, basically
because the robot does not move so close to obstacles, but
they also oscillate less than the ones in Fig. 8.

It also seemed interesting to combine the experience learnt
from humans and from PFM and check if the robot showed a
better performance. Figure 10 shows the performance of the
robot after the training in Figs. 6 and 8. In this case, white
circles are used to mark locations where the retrieved case
was learnt from PFM, while gray circles represent human
cases. The robot mostly chooses PFM cases to avoid getting
too close to obstacles and human cases in locations where
potential fields might provoke oscillations. Naturally, one of
the main advantages of controlling the learning process is
that it is easy to evaluate what the robot needs to learn and
provide the required teaching. Thus, further improvements
could be achieved by supervisedly teaching the robot how to
move around a corner like the one conformed by the last two
obstacles on the right of the map.

A final simulation test consisted of forcing a situation that
a pure PFM could not handle by moving obstacles progres-
sively closer until the robot refused to move between them
with PFM (Fig. 11(a)). We checked that our system could not

a Springer

Fig.10 Reactive trajectory for three obstacles with supervised learning
from humans (gray circles) and Potential Fields (white circles)

either solve the situation without training (Fig. 11(b)). How-
ever, when it was trained either by own experience (Fig. 4),
by a human (Fig. 6), or by PFM (Fig. 8), it solved the sit-
uation (Figs. 11(c—e)). This proves that the reactive system
is capable of learning in a fast way, even from scratch, to
enhance the global performance of the robot.

4.2. Real learning and tests

A second set of experiments similar to the previous one was
conducted in the real world. The laboratory where tests were
performed is not a large environment, so we set the reactive
range to a radius of 0.5 m around the robot to work only
with “critical” and “near” obstacles because walls were at
medium range. Thus, obstacles farther than 0.5 m did not
trigger the reactive layer. Despite this triggering threshold,
when the reactive module is triggered all detected obstacles
have influence in the resulting solution.

Figure 12(a) shows our human supervised learning stage,
where three different persons guided the robot around a sin-
gle obstacle isolated in the middle of a room. No restrictions
were imposed to the drivers. Thus, they could follow long or
short trajectories, perform sharp turns if necessary and get as
close to obstacles as desired. 160 cases were stored after 6
routes. We explicitly avoided supervised training with more
obstacles to test how flexible the system is against unex-
pected situations in real environments. It is important to note
that the robot is not working with the casebase developed in
simulated environments. However, during all these tests the
robot is allowed to learn by own experience. Figures 12(b)
and (d) show different stages of this unsupervised learning
process. Immediately after the supervised learning stage, the
robot is sent to a goal so that, in order to reach it, it needs to
avoid an obstacle on the left and move closer to the wall than
before (Fig. 12(b)). Naturally, the robot needs to adapt to the
new situation. After that, the environment gets more complex
by including a new obstacle (Fig. 12(c)). This corridor-like
situation may seem to be similar to the previous one, but
it is not because cardboard boxes behave like refractors for
sonar signals and, consequently, sensor readings are noisier
in this second test. Thus, more cases are added to the library.



Auton Robot

Fig. 11 Trajectories in a
difficult situation using:

(a) Potential Fields; (b) GBR
with no knowledge; (c¢) GBR
with non-supervised learning;
(d) GBR with Potential Fields
learning; (¢) GBR with human
learning

(b)

(c)

Fig. 12 Training and learning:
(a) supervised training plan;
learning by experience when (b)
a single obstacle is closer to a
wall; (c) there are two obstacles;
(d) there are three obstacles

(b}

Figure 12(d) shows a third path where, in order to reach the
goal, the robot must move between three boxes. It is impor-
tant to note that in all cases the only directive for the robot
was to move ahead to the goal.

Figure 13 presents the odometric data of two consecu-
tive runs of the reactive navigation system for two obstacles,
positioned at different locations and separations. Obstacles
have been manually overimposed to the Figures for a better
understanding of the tests. Figure 13(a) shows the first test.
We observed that the emergent behaviour of the robot was
mainly based on (Driv,(1)), where the robot left a single ob-

() (d)

stacle on the right. During this experiment, the robot learnt
40 more cases related to situations with two obstacles nearby.
In order to test this better trained robot, we moved obstacles
closer to achieve a more critical situation. In fact, since nar-
row corridors are a typical situation where pure PFMs may
fail, we narrowed the corridor until our PFM either refused
to move between the obstacles or collided depending on its
configuration parameters. It must be noted that, as long as no
case adaptation is required, curvature tends to be preserved.
Nevertheless, it can be observed that the CBR trajectory is
not a straight line either.
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Fig. 14 Navigating with 3 obstacles

Figure 14 shows another test, this time in an environment
presenting three obstacles. The robot already knows how to
handle two obstacles—from previous tests- because this test
is performed after the previously described ones. However,
it has never met three obstacles in its way. As in the previous
test, we have compared the results (dash line) with a pure
PFM (continuous line). These obstacles are close enough to
provoke oscillations in the PFM trajectory. In our approach,
though, the robot does not mind about close obstacles if
the CBR has learnt from experience that such trajectory is
safe.! Thus, it follows a smooth trajectory until it detects
an obstacle ahead. At this point (obstacles at both sides and
ahead), the retrieved case (obstacles at both sides) must be
adapted and a sharp trajectory change can be observed. From
this point on, the situation is, once more, similar to known
ones. It can be observed that the CBR trajectory does not

!'In previous experiments, the robot learnt that it could move close
to obstacles as long as they were on its sides and it was not moving
towards them.
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obstacles

oscillate and is shorter and smoother than the one returned
by the PFM.

4.3. Real tests after simulation training

A final set of experiments focused on testing how the robot
moved in real environments after only virtual training was
provided. During these tests, learning by own experience is
not allowed. In the real world sonars are affected by noise
and errors and, hence, spurious readings may appear and
sharp changes in sensors readings are likely to be detected.
Figure 15 presents a map of the real environment in Fig. 12
and different obstacle layouts. Figure 15(a) shows a first lay-
out where two obstacles are separated approximately 1.20 m.
The robot is roughly heading towards the one on the left and
the arrival point in these experiments is set so that the robot
needs to move between both obstacles or, else, the length of
its trajectory would be too long. In fact, we checked that if
no training at all was provided, the robot rather tried to leave
both obstacles on the left despite the longer path. However,
if we include in the casebase all cases learnt from PFM in
Fig. 9, the robot moves between both obstacles as expected
(Fig. 16(a)). It can be noted that, while in the simulator tests
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Fig. 16 Tests in the environment in Fig. 15(a) after training: (a) all potential field cases learnt in Fig. 9; (b) all human cases learnt in Fig. 7; (c)

all cases learnt during training in simulation

(b)

Fig. 17 Tests in the environment in Fig. 15(b) using all cases learnt during training in simulation: (a) for a wide corridor; (b) for a narrow corridor;

(c) for the corridor in (b) after the cases in (b) are added to the casebase

—
—
(a) (b}

Y=

 —

(c) (d)
Fig. 18 Reactive tests: (a) PFM; (b) CBR; Hybrid tests: (c) PFM; (d)
CBR

obstacles were clearly defined in the evidence grids, they can
hardly be discerned now in the real tests, due to sonar errors.

It can be observed in Fig. 16(a) that the robot mostly
relies on its training, even though it was performed under
simulation, until a new situation is found. The obstacle lay-
out in this experiment is similar to all three obstacles exper-
iments under simulation minus the obstacle in the bottom of
the image. Thus, some new cases need to be acquired. Be-
sides, whenever the robot moves between close obstacles in
real environments, sonar errors appear and, sometimes, cases
are mutated because of these errors even though similar sit-
uations were learnt under simulation. Mutations occur when
the robot is moving between both obstacles. We checked af-
terwards the sonar readings in that segment of the path and,
indeed, sometimes obstacles were not detected. However,
since the reactive scheme is continuosly retriggered in such
areas, errors were implicitly filtered out of the emergent be-

havior of the robot because of inertia. Figure 16(a) also shows
that when the robot learns from PFM, trajectories present
oscillations when obstacles are very close. Figure 16(b)
shows the same experiment using all cases learnt from a
human in Fig. 7. As observed under simulations as well,
when the robot learns from a human, resulting trajectories
are globally not as smooth as when it learns from PFM. Fig-
ure 16(c) shows the same experiment in the real environment
in Fig. 15(a). It needs to be noted that the robot is not allowed
to learn by own experience in these experiments, so it still
cannot recognize the obstacle configuration in Fig. 15(a) and
some cases need to be adapted. However, it can be clearly ap-
preciated how the resulting trajectory is smooth and presents
no sharp oscillations.

A second set of real experiments after training in simu-
lation consisted of sending the robot across the corridor in
Fig. 15(b), as during simulations that was the worst test sit-
uation. In fact, neither a pure PFM nor the proposed scheme
without training were able to move through such a corridor.
However, after any training the proposed scheme provided
a trajectory through the corridor. Initially, the walls of the
corridor were separated approximately 1 m. In this case,
the corridor was recalled by the robot as a combination of
situations with two and three obstacles during training in
simulations. It can be observed in Fig. 17(a) that the robot
moves through the corridor relying uniquely on learnt cases.
However, after we moved the obstacles closer to achieve a
narrower corridor, it can be observed in Fig. 17(b) that now
all cases need to be mutated to suit the new situation. Fur-
thermore, if cases learnt during the experiment in Fig. 17(b)
are added to the casebase, no further mutations are needed
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for the same corridor (Fig. 17(c)). Performing the same
experiment with a pure PFM or the proposed scheme without
training resulted in the robot not entering the corridor at all.

These tests are interesting for several important reasons:
(1) they prove that spurious readings and noise are filtered
out of the input data by the proposed purely reactive scheme
as commented in previous sections; (ii) they also prove that
training can be adapted to the real physical situation of the
robot, which is not fully covered by a simulator; and (iii) if
the robot can be trained under simulation and then operate in
real environments, it is possible to provide as much training
as necessary to deal efficiently with many different situations
with minor efforts.

4.4. Hybridization

The main drawback of the proposed system is that, as all
purely reactive schemes, it is prone to fall in local traps.
However, this problem can be easily overcome by adding a
high level planner to build a hybrid system. A final test con-
sisted of replacing the PFM based reactive layer in the hybrid
architecture proposed by the authors in Urdiales et al. (2003)
with the new CBR based one. Figures 18(a) and (c) show re-
spectively how PFM fall into a classic “U” trap and how the
problem is solved by the hybrid system, whereas Figs. 18(b)
and (d) show the same experiment using the proposed CBR
based system. It can be observed that both approaches be-
have similarly, even though PFM tend to behave in a more
conservative way when the robot is close to obstacles as
reported. This experiment proves that the proposed scheme
can be easily integrated in a hybrid architecture, keeping all
aforementioned advantages.

5. Conclusions

This paper has presented a new CBR based purely reactive
system for an autonomous mobile platform. The proposed
system only uses the on-board sonar sensors readings, the
robot heading and the goal direction to choose particular
actions which, in combination, return an emergent reactive
behaviour. The main advantages of this scheme are that it
does not depend on any model of the environment. It only
acquires local information to store sense/act patterns, taking
implicitly into account the sensor nature and robot structure.
Hence, it is valid for any place, and it can adapt to any
robotic architecture, sensor layout or environment conditions
through learning.

The proposed system supports both learning by obser-
vation and own experience. Supervised training provides
faster convergence to efficient trajectories, but is not required.
Cases can be learnt from a human driver or from any avail-
able reactive algorithm and also from the experiences of the
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platform while following a path. All cases are ranked to pro-
vide smooth, short and safe trajectories so that the casebase
can be easily reorganized to return the best possible case and
to keep a bounded size. Learning through CBR is in this case
better than other approaches like Artificial Neural Networks
because CBR provides lazy generalization from a potentially
small number of samples.

The main advantage of learning is that the algorithm eas-
ily adapts itself to changes. In fact, unlike in most popular
reactive approaches, no kinematics or dynamics need to be
taken into account to develop the algorithm. Kinematics are
simply absorbed in the casebase and dynamics are taken
into account by the repetitive nature of reactive control: the
more complex the environment, the slower the robot moves,
as retrieved cases change rapidly. It has been tested that the
longer the robot operates, the better it behaves because it is
more and more adapted to its environment. Nevertheless, if
the platform or environment is changed, the reactive algo-
rithm adapts itself again to the new situation: this has been
tested by training the algorithm under simulation and testing
it in a real environment.

The proposed system has been successfully tested using
a Pioneer robot equipped with 8 Polaroid sonar sensors. The
main advantages of the system are: (i) it is fast enough to op-
erate in a continuous way; (ii) it converges to non-oscillating
trajectories; (iii) it provides short and smooth paths to the
goal; (iv) it behaves correctly even in narrow corridors; and
(v) it can adapt itself to new, unexpected situations. It has
also been tested that the system acquires knowledge in an
efficient way both in a supervised and non-supervised way
and efficiently combines this knowledge to reach its goal.

The proposed system only depends on two thresholds:
Ulearn and CSpax. It is important to observe that, unlike in
other reactive approaches, these parameters do not depend
on the robot nature or environment features. U, determines
how different a situation must be from learnt cases to consider
itanew one and, hence, how many cases are acquired through
learning. In order to reorganize those cases, CSp,x fixes how
many cases remain in the casebase and how significant they
are. The system performance is not too dependent on those
thresholds: if the casebase has many cases, the robot clones
better the learnt trajectories whereas if there are few cases
stored, the system generalizes more and more adaptation
is required. Nevertheless, we have experimentally checked
that the robot works correctly for a wide range of parameter
values.

It can be noted that in all presented tests only a few ob-
stacles were placed in the environment. However, since the
proposed CBR scheme is purely reactive, it would deal with
more obstacles by simply decomposing the problem into a
set of simpler ones and adapting itself to any local change.
The main drawback of the proposed system is that, being
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purely reactive, it may fall into local traps, but it can be
solved by adding a high level planner to the system.
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