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Abstract—This paper proposes a statistical channel model for
indoor single-input single-output (SISO) power line communica-
tions (PLC) in the 2-80 MHz frequency band. The model follows a
purely top-down strategy, since it makes no physical assumptions
about the underlying power network. The frequency response
is modeled as a multivariate random variable (RV) whose
parameters are derived from the statistics of a set of 458 channels
measured in different European countries. To this end, we firstly
assess the log-normality of the amplitude response and discuss the
difficulties associated to the estimation of the covariance matrix
of the amplitude response at different frequencies, highlighting
the need for using a regularization method. The parameters of
the model are then derived by approximating the statistics of
the measured channels by means of novel analytical expressions.
Finally, the validity of the proposal is evaluated by comparing
the average channel gain, the delay spread and the coherence
bandwidth of the channels generated according to it with the
ones of the measured channels and of channels generated using
other top-down statistical models proposed in the literature.

Index Terms—power line communications, channel model, top-
down, statistical, log-normal

I. INTRODUCTION

Channel modelling is of utmost importance for the design
and performance assessment of communication systems. Two
main modelling approaches are employed for this purpose.
The one referred to as top-down defines a signal model based
on the features of the signal propagation in the considered
scenario and derives the parameters of the model from mea-
surements. Alternatively, the bottom-up strategy models the
underlying physical structure of the propagation environment.
This latter approach has been successfully employed in power
line communications (PLC) by modelling the indoor power
grid as a set of interconnected transmission lines [1] [2].
Bottom-up models can estimate the channel frequency re-
sponse (CFR) without the need for measurements and can
be also used to obtain statistically representative channels by
generating topologies in a random manner [3] [4]. However,
their main drawback is the need for precise knowledge of the
network topology and the cable parameters, which notably
differ among countries.

Top-down models have been less commonly employed in
PLC. Given the multipath nature of PLC channels, the first
approaches of this category modelled the CFR as a set of
delayed and weighted echoes. The work in [5] represented
outdoor PLC channels in the frequency band up to 20 MHz.
However, it is not a statistical model because its parameters
are deterministically selected to represent the CFR correspond-

ing to links of different lengths. Based on this framework,
the model in [6] proposed statistical distributions for the
model parameters. However, the assumed distributions are
not empirically supported. A similar approach is followed in
[7], but based on measurements trials. A particularly simple
statistical top-down model of this class was proposed in [8].
Nevertheless, it was unable to model well-known features of
indoor PLC channels such as the relation between the average
channel gain and the delay spread [9].

The work in [10] suggested that the average channel gain
and the delay spread of PLC channels can be modelled
as log-normal random variables (RVs). However, the actual
distribution of the amplitude of the CFR at each frequency is
still controversial. Hence, while [7] shows that the log-normal
distribution gives good fitting to some measured channels, the
hypothesis tests reject this end, to a great extend, for the
measured channels in [11], although the log-normal distri-
bution gives larger likelihood values than other distributions
commonly employed in channel modelling. Based on this fact,
Pittolo and Tonello [12] proposed a multiple-input multiple-
output (MIMO) model in which the amplitude of the CFR is
modeled as a multivariate log-normal RV and the unwrapped
phase of the frequency response is assumed to be linear with
a slope generated according to a generalized extreme value
distribution.

Following a similar approach to the one in [12], this article
proposes a top-down statistical channel model for indoor
single-input single-output (SISO) PLC in the frequency band
up to 80 MHz. The following contributions are made:

• We show that the correlation between the amplitude of
the CFR at two frequencies is notably larger in the high
frequency range than in the low one. Accordingly, a novel
approximation of the correlation matrix that takes this fact
into account is proposed.

• We exploit the correlation between the average channel
gain and the slope of the unwrapped phase of the CFR
to generate realistic phases of the modeled responses.

• We discuss some practical aspects such as the difficulty
associated to the estimation of large covariance matrices
and prevents from using the Kolmogorov-Smirnov test to
determine the most appropriate analytical approximation
of some model parameters.

The rest of this paper is organized as follows. Section
II analyzes the features of the set of measured channels



TABLE I
RESULTS OF DIFFERENT NORMALITY TESTS APPLIED TO THE AMPLITUDE OF THE CFR IN DECIBELS. PERCENTAGE OF CASES WHERE THE NORMALITY

IS REJECTED (%R) AND CORRESPONDING AVERAGE P-VALUES

Set 1 Set 2 Set 3 Overall set
% R mean p-value % R mean p-value % R mean p-value % R mean p-value

Lilliefors 19.03 0.25 6.42 0.38 57.10 0.08 50.98 0.02
Shapiro-wilk 46.55 0.17 10.23 0.28 82.95 0.03 88.02 0.05
Jarque-Bera 14.43 0.23 0.48 0.30 50.28 0.10 65.23 0.06
Chi-Square 18.79 0.29 6.58 0.38 58.29 0.10 56.93 0.10

Anderson-Darling 33.07 0.20 8.49 0.33 76.37 0.04 70.63 0.12
Kolmogorov-Smirnov 0.56 0.60 0.00 0.72 1.74 0.36 5.40 0.40

employed to derive the model parameters. Section III presents
the proposed model and the analytical expressions used to
approximate its parameters from the set of measured channels.
The model is validated in Section IV. Finally, Section V
summarizes the main aspects of the work.

II. STATISTICAL ANALYSIS OF INDOOR PLC CHANNELS

The parameters of the proposed model are derived from
a collection of L = 458 indoor CFRs measured in different
European countries using a vector network analyzer. They can
be grouped into three sets according to the country and the
employed coupling circuit. Channels in Set 1 (166) and Set
2 (46) were all measured in Spain, although using different
coupling circuits. Channels in Set 3 (246) were measured
in Germany (74), Belgium (51), France (80) and the United
Kingdom (41). They all use the same coupling circuit, but
different from the one in Set 1 and Set 2. Since the type
of cables and the network topology may vary from country
to country, the heterogeneity of the measurements makes
the whole set more statistically representative. The selected
frequency band ranges from 1.8 to 80 MHz with a resolution of
∆f = 61.875 kHz, resulting in N = 1264 frequency samples.

A. Probability distribution of the amplitude response

Assuming that the amplitude of the CFR is log-normally
distributed, the resulting values in dB scale must be normally
distributed. To assess this, several hypothesis tests have been
performed. They are used to validate the null hypothesis that
the logarithmic version of the amplitude CFR at each fre-
quency is normally distributed at a significance level α = 0.05.
The Kolmogorov-Smirnov, Lillie-Fors, Shapiro-Wilk, Jarque-
Bera and Anderson-Darling tests have been employed to this
end. Table I shows the obtained results when applied to
each set of measurements and also to the overall set. Hence,
the number of samples tested in each set is N times the
corresponding number of channels of the set.

As seen, the p-value is much higher for the Kolmogorov-
Smirnov test than in the others in all measurement sets.
Accordingly, this test yields the lowest percentage of rejection
in all sets. For this test, not only the sample of sets to be
tested but also the parameters of the distribution must be
given. However, it is well-known that, when these parameters

are derived from the same set to be tested, the p-value is
overestimated [13]. Hence, it is inappropriate for this purpose.

All other tests support log-normality in Set 1 and Set 2,
but neither in Set 3 nor in the overall set. This may be
due to the fact that channels in Set 3 have been measured
in different countries. Therefore, the parameters of the log-
normal distribution may be different from country to country.
The problem is that the number of channels measured in
each country is not large enough to test this hypothesis. To
overcome this end, the cumulative distribution function (CDF)
of the kurtosis and skewness of the CFR amplitude in dB scale
is computed and compared to the ones of normally distributed
vectors with the same number of samples. It has been found
that only about 14% of the kurtosis values computed from
measurements are between the 10-th and 90-th percentiles
of the kurtosis of the normal vectors. This percentage goes
up to 48.5% in the case of skewness. Nevertheless, it can
be conjectured that the particularly low percentage obtained
for kurtosis might be largely caused by factors related to the
measurement procedure (e.g., values at right the tail of the
distribution might not be accurately measured because of the
sensitivity of the vector analyzer or the low signal to noise
ratio of the measurement).

The performed tests support the log-normality of the sam-
ples in Set 2 and, likely in Set 1, but seem to reject this
hypothesis in Set 3 or, at best, is inconclusive. However,
it has been verified that the log-normal distribution gives a
larger value of the likelihood function than other distributions
commonly used in channel modelling such as the exponential,
gamma, normal, Rayleigh, Weibull and log-logistic, which is
in agreement with other published results [14]. Accordingly,
the log-normal distribution is assumed in the proposed model.

B. Probability distribution of the phase response

In order to analyse the phase distribution, we first perform
the Kolmogorov-Smirnov test on the phase values of the
measurements at each frequency under the null hypothesis that
they are uniformly distributed in the interval [−π, π). Since the
parameters of the distribution are not derived from the sample
to be tested, the overestimation of the p-value highlighted in
the previous subsection does not occur now. The percentage
of frequencies in which the null hypothesis is rejected at α=
0.05 is 16.56%. The average p-value is 0.31.



Additionally, unbiased estimates of the mean and variance
at each frequency value are computed and the corresponding
CDFs have been compared to the ones derived from a large
set of uniformly distributed vectors with the same number of
samples as the measured channels. About 71% of the mean
values obtained from measurements are between 10-th and
90-th percentiles of the mean computed from the uniformly
distributed vectors. This percentage is 65% for the variance.
Hence, the uniform distribution of the phase in the interval
[−π, π) can be reasonably assumed.

C. Covariance matrix of the amplitude response

We use the conventional algebraic notation in which ma-
trices are denoted using bold capital letters and vectors using
bold lower-case. Hence, the vector with the amplitude of the
CFR at frequencies fk = f1+(k−1)∆f , with f1 = 1.8 (MHz)
and 1 ≤ k ≤ N , will be denoted as g = [g1, . . . , gN ]

T and
its natural logarithmic version as gln = [ln g1, . . . , ln gN ]

T ,
where (·)T denotes the transpose operator.

While the covariance matrix of g, Cg, can be directly
estimated from the measurements, we have verified that lower
estimation error is obtained if the covariance matrix of gln,
Cgln , is estimated and then Cg is computed as [15]

Cg = diag (µg)
(
eCgln − 1N×N

)
diag (µg) , (1)

where diag (x) denotes a diagonal matrix obtained from vector
x and [

µg

]
k
= e[

µgln ]
k
+ 1

2 [Cgln ]
kk , (2)

where [x]i denotes the i-th element of the vector x, [X]ij
denotes the element on the i-th row and j-th column of the
matrix X and µgln = E

[
gln
]
.

Under the assumption that g is a log-normal RV, gln should
be normally distributed. In these circumstances, the sample
covariance matrix given by

Ĉgln =
1

L

L∑

ℓ=1

gln
ℓ

(
gln
ℓ

)H −
(

1

L

L∑

ℓ=1

gln
ℓ

)(
1

L

L∑

ℓ=1

gln
ℓ

)H
, (3)

where gln
ℓ denotes the natural logarithm of the amplitude of

the ℓ-th measured CFR, is the optimum maximum likelihood
(ML) estimator of Cgln .

However, the estimation of covariance matrices using (3) is
problematic when both the sample size and the matrix dimen-
sion are high, since large eigenvalues tend to be overestimated
and small ones to be underestimated. Furthermore, negative
eigenvalues appear, resulting in a non-positive definite matrix.
To overcome this issue, the matrix regularization method
proposed in [16] is employed in this work. This ensures the
positive-definiteness of the estimated matrix by estimating a
banded version of its inverse. The size of the band is set to
425, which has been empirically proven to be the highest value
that satisfies the positive-definiteness constraint.

It is interesting to analyze the correlation of the CFR
amplitude at different frequencies. To this end, the correlation
matrix of gln, computed as

[
Rgln

]
ij
=

[
Cgln

]
ij√[

Cgln

]
ii

[
Cgln

]
jj

, (4)

is depicted in dB scale in Figure 1. As seen, relatively
high correlation values are observed in almost every point.
Moreover, it is worth noting that the band around the main
diagonal is wider at higher frequencies.
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Fig. 1. Logarithmic version of the correlation matrix of the amplitude in dB
scale Rgln .

III. PROPOSED CHANNEL MODEL

The CFR vector h can be expressed in terms of the
amplitude and phase vectors, g and ϕ as

h = g ◦ ejϕ, (5)

where ◦ denotes the Hadamard product. In order to simplify
the modelling procedure, g and ϕ are assumed to be indepen-
dent, as in [12].

Since g is assumed to be log-normally distributed with mean
µg and covariance matrix Cg, it can be generated from the
normal RV gln ∼ N

(
µgln ,Cgln

)
as g = eg

ln
, where µg and

Cg are related to µgln and Cgln by means of (1) and (2),
respectively. Moreover, gln can be related to a standard normal
RV, z ∼ N (0, IN ), being IN the N ×N identity matrix, as

gln = Lz+ µgln , (6)

where L is a lower triangular matrix related to Cgln by means
of the Cholesky decomposition as Cgln = LLT .

Besides the uniform distribution of ϕ in the interval [-π,
π), it is well-known that the slope of the linear approximation
of the unwrapped phase values1, referred to as phase slope
and hereafter denoted as m̂ϕ, is positively correlated with the

1The unwrapped phase is obtained from the phase values in the range
[0, 2π) by adding multiples of ±π whenever the jump between consecutive
values is greater than or equal to π.



average gain [14]. This behavior also occurs in the measured
channels, as can be observed in Fig. 2, where the scatter plot of
the estimated phase slope, m̂ϕ, vs the estimated average chan-
nel gain, G = 20 log10(e)

N

∑N
k=1 g

ln
k , of the measured channels

is depicted along with its optimum linear least squares (LS)
fitting, m̃ϕ, whose expression is given in (7). This behavior
can be exploited to generate realizations of ϕ. To this end,
a realization of gln is firstly generated using (6). Then, the
value of G is computed and the phase slope, m̂ϕ, is obtained
from (7). Finally, the unwrapped values of ϕ are generated as
a linear function with the obtained slope and zero y-intercept.
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Fig. 2. Scatter plot of the slope of the unwrapped phase of the CFR and the
average gain of the measured channels.

m̃ϕ = 0.364 + 0.048 ·G (rad/MHz) (7)

A. Derivation of the channel model parameters

In this subsection, analytical expressions of the model
parameters, µgln and Cgln , are obtained by approximating the
magnitudes estimated from the measured channels.

Figure 3 shows the ML estimate of µgln , µ̂gln =[
µ̂ln
1 , . . . , µ̂

ln
N

]T
, along with its optimum exponential fitting

given by
µ̃ln
k = a+ becf

d
k (MHz), (8)

where a = 11.966, b = −6.489, c = 8.166 · 10−1 and d =
3.661 · 10−2.

The covariance matrix Cgln can be expressed in terms of
the correlation matrix, Rgln , as Cgln = RglnσglnσT

gln , where

σgln =
[
σln
1 , . . . , σ

ln
N

]T
is the standard deviation vector given

by σln
k =

√[
Cgln

]
kk

.
In contrast to the values of µ̂gln , the ML estimate of the

standard deviation vector exhibits a less clear shape, as shown
in Fig.4. Hence, the values of σln

k have been approximated by a
constant set to σ̃ln = 1.99. The procedure employed to obtain
this value will be described thereafter.

Regarding Rgln , it has been observed that the elements of
the i-th row, 1 ≤ i ≤ N , can be approximated as
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Fig. 3. ML estimate of the mean vector µgln and its exponential fitting.
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Fig. 4. Estimate of the standard deviation vector σgln and its constant fitting.

[
R̃gln

]
ij
=

{
1− 1

Wi
(j − i) i ≤ j ≤ i+ ti

ρi i+ ti < j ≤ N
, (9)

where ρi is a correlation floor value, with ρi = 0.65 for
i corresponding to frequency values up to 30 MHz and
ρi = 0.75 above this frequency, and 1/Wi and ti =
min{⌊(1− ρi)Wi⌋, N − i}, with ⌊·⌋ denoting the floor func-
tion, are the slope and the width of the linear approxima-
tion, respectively. Since the correlation matrix is symmetric,[
R̃gln

]
ji
=
[
R̃gln

]
ij

.

The optimum values of Wi are obtained by solving a LS
optimization on each row, yielding the results given in Fig.
5. As seen, it generally increases with frequency, which is
coherent with the behavior observed in Fig. 1.

The values of Wi displayed in Fig. 5 are approximated by
a linear expression W̃i = mW · i + nW . Two strategies have
been followed to determine the values of mW and nW . The
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Fig. 5. Optimum width of Wi and its LS linear fitting.

first one determines these parameters from the LS fitting to the
values of Wi shown in Fig. 5, yielding mW = 0.65 and nW =
170.05. In the second approach, nW = 170.05 is selected and
mW is jointly determined with σ̃ln by minimizing the mean
coherence bandwidth values of the overall set of measured
channels and the generated ones, yielding mW = 2.01 and
σ̃ln = 1.99. Since notably different values of mW are obtained
with each strategy, their optimality will be discussed in Section
IV.

IV. CHANNEL MODEL EVALUATION

In this section, the proposed model is evaluated by com-
paring the empirical CDF of the average channel gain, the
delay spread and the coherence bandwidth of the measured
and generated channels. The correlation between the last two
parameters is analyzed too. The magnitudes obtained with the
model by Pittolo and Tonello [12] are also included in the
comparison.

In order to highlight the impact of the different analytical
approximations of the model parameters on the performance,
three versions of the proposed model are considered. The one
referred to as Model A employs the actual values of µgln and
Cgln . While it is impractical because of the large amount of
information required, it is used to obtain an upper bound of
the achievable performance. The one denoted as Model B ap-
proximates the elements of µgln and Rgln using the analytical
expressions in (8) and (9), the latter with mW = 0.65, but the
actual ML estimate of σgln is employed. Finally, Model C is
like Model B but mW = 2.01 and all elements of the standard
deviation vector are fixed to σ̃ln = 1.99.

The rectangular transitions at the passband edges of the CFR
artificially enlarge the channel impulse response length. Hence,
a 150-th order bandpass finite impulse response (FIR) filter
with lower and higher cutoff frequencies fc1 = 2.0 MHz and
fc2 = 79.5 MHz, respectively, is applied to each CFR to avoid
this issue.

Figure. 6 depicts the empirical CDF of the average channel
gain of the measured and generated channels. While a rela-
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Fig. 6. Empirical CDF of the average channel gain of the measured and
modelled channels. Three versions of the proposed model, named A, B and
C, are compared, along with the results obtained with the model by Pittolo
and Tonello [12].

tively high correspondence is observed between the measured
results and the ones obtained with all the models, the number
of channels with high values of G is lower in the model by
Pittolo and Tonello [12]. Nevertheless, this could be due to
the differences between the set of measured channels used to
obtain the model parameters in [12] and in this work.

Fig. 7 shows the the empirical CDF of the delay spread of
the measured and generated channels. It must be mentioned
that the range of delay spread values of the measured channels
is similar to the ones reported in the literature [10] [14] [7]. As
seen, modelled channels have a much narrower range of delay
spread values. This effect is more prominent in the model by
Pittolo and Tonello [12]. Interestingly, model C gives better
results than model B, despite the latter uses the actual values of
the standard deviation vector, which highlights the importance
of the analytical approximation of the correlation matrix.

Finally, the relation between delay spread and coherence
bandwidth of the generated and measured channels is depicted
in Fig. 8. All cases display the well-known inverse relation
between these parameters. Model A gives the closest results
to the measured channels. However, it is unable to generate
channels with large coherence bandwidth values (low delay
spread). It can be conjectured that this might be due to the
errors in the estimation of the covariance matrix. Model C
is able to generate channels with larger coherence bandwidth
than model A, likely because the analytical approximation
of the correlation matrix compensates low correlation values
caused by the errors in the estimation of the covariance matrix.
However, the relation between the coherence bandwidth and
the delay spread is more dissimilar to the measured channels
than in model A. Finally, the model by Pittolo and Tonello
[12] generates channels with the more limited range of delay
spread and coherence bandwidth values.
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V. CONCLUSION

This work presents a top-down statistical channel model
for indoor SISO PLC in the 2-80 MHz frequency band. The
model parameters are derived from the statistics of a set of
458 channels measured in different European countries. The
amplitude of the CFR is modelled as a multivariate log-normal
RV, while the unwrapped phase is approximated by a linear
function whose slope is obtained by exploiting the correlation
between this magnitude and the average channel gain.

The parameters of the model are calculated from the statis-
tics of the measured channels by approximating them by
means of simple analytical expressions. The performance of
the proposal has been assessed by comparing the statistics of

the average channel gain, the delay spread and the coherence
bandwidth of the measured and modelled channels.

This article also discusses some aspects of the top-down
modelling approach, such as the estimation of the covariance
matrix, and the use of the Kolmogorov-Smirnov test to assess
the validity of the log-normal distribution of the amplitude and
to determine the most appropriate analytical approximation of
some model parameters.
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