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The evolution of intricate septa and complex sutural patterns in cephalopod ammo-
noids is one of the best documented trends in the fossil record towards increased levels
of complexity. Functional interpretation of septal folding is still, however, a matter of
controversy. Tentative explanations have been linked to the structural reinforcement of
phragmocones, mantle area increase, buoyancy control and even metabolic functions
concerning respiration or cameral liquid transport. Here we use fractal analysis in order
to estimate suture complexity in a large set (

 

N

 

 

 

=

 

 524) of Late Jurassic ammonites, and
its covariation with phragmocone size, shape and ornamentation. Sutural complexity,
estimated by fractal dimension (

 

D

 

f

 

), is closely related to phragmocone whorl height and
the degree of shell involution, while this trend is reversed for tubercle size. On average,
specimens from epioceanic habitats display lower 

 

D

 

f

 

 values than those inhabiting epi-
continental waters. Our results reveal a complex relationship between sutural complex-
ity and morphometric descriptors of phragmocones, indicating that septal folding was
more closely related to shell geometry than to bathymetry. In addition, these results fit
predictions of a recent model relating sutural complexity to energetic demands of ammonoid
metabolism. However, future research should not neglect the implications of phyloge-
netic legacy as an important source of variability in fractal dimensions. 
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The evolutionary history of septal sutures in ammo-
noid cephalopods illustrates a long-term trend towards
higher levels of morphological complexity, which
partially results from the temporal replacement of
three basic sutural types: (1) the goniatitic type (most
lobes undivided, typical of Palaeozoic ammonoids);
(2) the ceratitic type (most lobes divided but not
the saddles, characteristic of the Triassic); and (3)
the ammonitic type (lobes and saddles divided,
representative of Jurassic–Cretaceous ammonoids)
(Dommergues 1990; Boyajian & Lutz 1992; Saunders
& Work 1997; Saunders 

 

et al. 

 

1999; Allen 2006). There
are, however, exceptions to this general pattern, as
some Palaeozoic genera exhibit ammonitic sutures,
some Triassic ammonoids show goniatitic sutures
and some Jurassic and Cretaceous lineages have
ceratitic sutures (Arkell 

 

et al.

 

 1957). In addition,
septal folding increased over time in each of these
sutural types and became more complex through
ontogeny, which reveals the prevalence of per-
amorphic processes in ammonoid sutural evolution
(Landman 1988; Dommergues 1990). Notwithstanding,

the mean level of complexity reached by early Creta-
ceous ammonoids remained quasi-constant until the
extinction of the group (Boyajian & Lutz 1992).

Given that a septal suture cannot be simpler than
a straight line (i.e. the ‘left wall of complexity’ 

 

sensu

 

Gould 1996), the increase in sutural complexity may
reflect a diffusion from an initial condition of simple,
low-variable sutures through the subsequent genera-
tion of higher morphological variability, without imply-
ing an increase of fitness (Stanley 1973; Fisher 1986;
Gould 1988; Boyajian & Lutz 1992). This hypothesis
was, however, refuted by Saunders 

 

et al.

 

 (1999), who
concluded that increasing sutural complexity over
the first 140 Ma of ammonoid evolution is better
described by an active or directed trend than by a
passive or diffused one.

After more than 160 years of debate, the interpre-
tation of extreme septal folding in ammonoids is still
controversial, as sutural complexity has been tentatively
related to a wide spectrum of functions, including:
(1) structural reinforcement of phragmocones against
the hydrostatic load or the pressure generated by
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predator teeth; (2) area increase for mantle-to-septum
joining; (3) a role in buoyancy control; and (4) a
metabolic function linked to respiration or cameral
liquid transport (for reviews and references, Raup &
Stanley 1971; Ward 1981; Saunders & Work 1996,
1997; Olóriz 

 

et al

 

. 1997, 1999, 2002; Pérez-Claros 1999,
2005; Saunders 

 

et al.

 

 1999; Lewy 2002; Pérez-Claros

 

et al.

 

 2002).
The preservational completeness of the ammonoid

fossil record makes it difficult to realize morphometric
characterizations of sutural complexity, and the
absence of extant relatives hinders functional inter-
pretation. Thus, the interpretation of folded septa
must be based on indirect evidence such as the cov-
ariation of sutural parameters with the geometry and
ornamentation of phragmocones (e.g. see Yacobucci
2004). However, there are no unequivocal interpreta-
tions for the entire group of ammonoids, as many
observations on the relationship between sutural
complexity and phragmocone shape remain contra-
dictory. For example, an increase in sutural complexity
appears to be associated with rounded whorl sections
in evolute phragmocones (Arkell

 

 et al.

 

 1957; Bayer 1977;
Bayer & McGhee 1984), but some authors maintain
that these characters are unrelated (e.g. Kennedy &
Cobban 1976; Courville 

 

et al.

 

 1998) and others even
describe an inverse relationship (Buckman 1892; Haas
1942; Westermann 1966; Hewitt & Westermann 1987;
Donovan 1994; Olóriz 

 

et al

 

. 1997, 1999). In addition,
the quantification of sutural complexity and phrag-
mocone shape has usually led to inconsistent results
for different groups of ammonoids, even when using
similar morphometric methodologies. For example,
Saunders & Work (1996) found that sutural complexity
was unrelated to phragmocone shape in goniatitids,
and Saunders (1995) revealed that no significant
reduction in either septum thickness or shell thickness
accompanied the 100-fold increase in sutural complex-
ity of Palaeozoic ammonoids. However, Saunders &
Work (1997) found an unequivocal relationship of
sutural complexity with shell coiling and lateral com-
pression in prolecanitids, the ‘rootstock’ of Mesozoic
ammonoids, suggesting a ‘phylogenetic overprint’
that could, in turn, be used to interpret the latter.

Two basic questions should be addressed when
focusing on the evolution of sutural complexity:
(1) What is meant by sutural complexity? (2) How
should it be quantified? No precise definition has
been proposed for a general concept of complexity,
as many disparate concepts have been proposed for
measuring it, including entropy, information, linguistic
syntax, fractals, constructional complexity, and com-
ponent diversity, among others. According to McShea
(1991), a limited consensus exists where morphological
or structural complexity, whether it concerns biolog-

ical systems or not, can be considered a function of
component diversity and their uneven distribution
within a given system. Such a concept is, however,
inconclusive when applied to real objects. For example,
given that septal fluting is an iterative, branching
process, the constructional complexity of all suture
lines is probably almost equal and relatively low.
Similarly, the component diversity of sutures also
implies low complexity. In general, it is more appro-
priate to quantify morphological characteristics that
are somehow linked to complexity making reference
to the method used for complexity level identification.

Sutural complexity in ammonoids has been math-
ematically characterized using simple parameters,
such as the index of sutural complexity introduced by
Westermann (1971) and later termed 

 

SCI

 

 by Ward
(1980) and 

 

SI

 

 by Saunders (1995). This index is
calculated through the division of sutural perimeter
by the length of a segment that joins the two extremes
of the suture. It has been used in its basic form and
also modified to include the count of sutural elements
(Saunders 1995). Fourier series have also represented
a morphometric tool for ammonoid sutures, as first
proposed by Canfield & Anstey (1981), although they
can only be used with relatively simple sutures (Lutz
& Boyajian 1995). However, Gildner (2003) proposed
a variant of this methodology that is applicable to a
wider spectrum of sutural lines, and Allen (2006)
developed a more robust mathematical approach for
analyzing the shape of complex curves, the windowed
short-time Fourier transform. These approaches seem
to be promising, but further evaluation will be necessary
to determine its potential for addressing taxonomical
and evolutionary issues. Finally, a third approach based
on fractal geometry (Mandelbrot 1983) produces
good results in the evaluation of sutural complexity
(García-Ruiz 

 

et al.

 

 1990; Boyajian & Lutz 1992; Lutz
& Boyajian 1995; Olóriz & Palmqvist 1995; Olóriz

 

et al

 

. 1997, 1999, 2002; Pérez-Claros 

 

et al.

 

 2002), and
is the methodology we have chosen for our case study.

The present paper has two main objectives: (i) to
apply a new technique of fractal analysis that enables
the mathematical characterization of several features
of sutural complexity (Pérez-Claros 

 

et al.

 

 2002); and
(ii) to analyze the covariation of such features with
those concerning phragmocone shape, size and orna-
mentation in a large set of Late Jurassic ammonites.

 

Material and methods

 

Characterization of sutural complexity

 

A fractal object can be defined as a set composed of
parts that are identical to the whole (Mandelbrot
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1983). This property, called homothety, implies that
mathematical fractals are self-similar. Natural objects
with some kind of internal homothety (e.g. ammo-
nitic sutures) are not perfect fractals, as their parts
(e.g. major saddles and lobes) are not identical to the
whole. However, although the exact shape of these
objects is not maintained, their degree of complexity
remains constant at varying scales of observation,
showing statistical self-similarity.

The first estimates of fractal exponents for ammo-
noid sutures were given by Long (1985). Several
authors have since noted the self-similar nature of
ammonite suture lines (e.g. Bayer 1985; Damiani 1986;
Seilacher 1988; García-Ruiz 

 

et al.

 

 1990; Lutz &
Boyajian 1995; Olóriz & Palmqvist 1995; Olóriz 

 

et al

 

.
1997, 1999, 2002), something which is less evident in
goniatitids and ceratitids.

One of the most important properties of a fractal
object is its fractal dimension (

 

D

 

f

 

), a measure of
irregularity or sinuosity comprised between one (the
Euclidean dimension for a line) and two (the topo-
logical dimension of a surface). Thus, 

 

D

 

f

 

 may intuitively
be conceived as an estimate of the degree to which
the curve departs from a straight line to fill a plane.

 

D

 

f

 

 for mathematical fractals is exclusively determined
by generator curve shape. In fractal curves with sta-
tistical self-similarity, in which the exact shape of the
generator cannot be determined, there are two basic
approaches for estimating 

 

D

 

f

 

: (1) Richardson’s method,
which estimates the perimeter of the analyzed curve
using as scale of measurement a set of rulers or
straight segments of increasing length; and (2) the
box counting method, which uses squares of increas-
ing side length (see details in Olóriz 

 

et al.

 

 1999).
Mathematical fractals maintain their self-similar

nature at any scale of observation. Fractals with
statistical self-similarity (e.g. ammonitic sutures) have
upper and lower limits above and below which such
a property no longer applies. This implies that 

 

D

 

f

 

must be estimated within the range of scales of meas-
urement in which the septal sutures are self-similar.
Although this range can be estimated visually (Lutz
& Boyajian 1995), here we use a procedure that
allows to obtain a more objective value for the lower
limit of self-similarity, providing independent esti-
mates of first and second orders of sutural complex-
ity (Pérez-Claros 

 

et al.

 

 2002). This method is based
on the fact that, when the lower limit of self-similarity
or ‘cut-off ’ (

 

X

 

c

 

) is approached due to decreasing
step length, the logarithmic graph of ruler size (

 

r

 

)
and perimeter length (

 

L

 

) will tend towards a straight
line with a null slope, characteristic of non-self-similar
objects (Fig. 1A). The value of 

 

X

 

c

 

 is determined by
the point at which the tangent of the function is
parallel to the straight line that joins the extremes of

the suture (Fig. 2B). The bilogarithmic graph may be
fitted to a power function:

log

 

e

 

(

 

L

 

) 

 

=

 

 

 

K

 

 – 

 

a

 

[log

 

e

 

(

 

r

 

)]

 

b

 

, (1)

which enables the estimation of 

 

X

 

c

 

. 

 

D

 

f

 

 may then be
calculated at both sides of 

 

X

 

c

 

 using the slope adjusted
for each straight line. Only the fractal dimension esti-
mated for the upper range of scales of measurement
(

 

D

 

f2

 

) is a real fractal exponent. Lower range values
(

 

D

 

f1

 

) indicate, at most, the tendency of the curve to
behave as a Euclidean object within the range of ruler
sizes analyzed.

 

X

 

c

 

 measures the point below which there is a loss
of self-similarity (i.e. a low value of 

 

X

 

c

 

 indicates that
the sutures behaves in a self-similar manner at low
scales of measurement while a high value informs of
an early loss of self-similarity at larger scales). Therefore,

 

X

 

c

 

 may be considered an inverse index of self-similarity,

Fig. 1. �A. Bivariate log–log plot of estimated perimeter for a
Holcostephanus (Spiticeras) scriptus suture relative to the length of
the ruler used to measuring it. The graph becomes a line with
null slope when the size of the ruler tends toward smaller values.
�B. A method for dividing this graph in two consists of finding
the value of the point in the measurement scale (x-axis) for which
the slope of the curve equals that connecting both extremes of the
plot.
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fully comparable among different sutures, as long as
they are analyzed using the same ruler sizes. The
sutures must be standardized to an equivalent length
between two comparable landmarks (Pérez-Claros

 

et al.

 

 2002). The landmarks in this study are the
medial point of the ventral saddle and the point
where the suture is overlapped by the previous whorl.
Both landmarks may be considered equivalent among
different sutures, although only the first is, 

 

sensu stricto

 

,
a homologous point. According to Pérez-Claros 

 

et al.

 

(2002), if the suture maintains its fractal nature over
the range of scales of measurement (thus, the param-
eter ‘b’ of eq. (1) tends to approach the value 1), then
the value of 

 

X

 

c

 

 is constant and equals:

 

X

 

c

 

 

 

=

 

 

 

X

 

f

 

/

 

a

 

, (2)

where 

 

X

 

f

 

 is the logarithm of the maximum ruler size
used and 

 

a

 

 is the base of this logarithm. In this article,

 

X

 

f

 

 

 

=

 

 log

 

e

 

(2

 

5

 

) and 

 

a

 

 

 

=

 

 

 

e

 

. This gives an expected value
of 

 

X

 

c

 

 

 

=

 

 1.275 for the lower limit of self-similarity
when the fractal nature of sutures is maintained
throughout the ruler-size range (i.e. log

 

e

 

(32)/

 

e

 

).
This method was applied to 524 sutures from

well-preserved, mature specimens of worldwide Late
Jurassic planispiral ammonites taken from published
literature, including Phylloceratina (

 

N

 

 

 

=

 

 20), Lytocer-
atina (

 

N

 

 

 

=

 

 6) and Ammonitina (

 

N

 

 

 

=

 

 499) (for details
and references, see Olóriz 

 

et al.

 

 1997; Pérez-Claros

Fig. 2. Three examples of the application of the method shown in Figure 2 for ammonitic sutures: �A. Pseudolissoceras zitteli, �B. Hol-
costephanus (Spiticeras) scriptus, and �C. Oppelia (Streblites) indopicta. Once the graph has been divided in two parts, fitting independent
straight lines to them and adjusting Df values is straightforward (see text for details).
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1999). In each specimen a single suture line was
taken into account. These sutures satisfy the follow-
ing requirements: (1) they belong to adult individu-
als; (2) they are complete between the middle point
of the siphonal lobe and the point of overlap with the
previous whorl; and (3) they show no evidence of
erosion. Sutures were enlarged enough to be accurately
digitized in (x,y) coordinates using a Calcomp dig-
itizing tablet, which enables a precision of 0.1 mm,
and thus the use of 18 points per centimetre of dig-
itized perimeter on average. Sutures were standard-
ized to a length of 100 arbitrary units between both
extremes (Pérez-Claros 

 

et al.

 

 2002) and were then
analyzed using Richardson’s method, with 51 ruler
lengths of between 2

 

0

 

 (i.e. 1) and 2

 

5 

 

(i.e. approxi-
mately a third of the length of the line that joins both
suture ends) through exponential increases of 2

 

0.1

 

units. The last rule of measurement for each series
was counted when the distance between the last point
of anchorage for the ruler and the end of the suture
was greater than 50% of the ruler length. This proce-
dure was applied to each suture starting from both
ends. Averaging of the values obtained for the adjusted
parameters was then carried out.

The method allows quantification of both the
range of self-similarity and the level of septal suture
complexity and provides results that may be inter-
preted in geometric terms. Figure 2 shows three
examples of sutures in which important differences
can be seen in the range of self-similarity and the
degree of complexity, at both scales of measurement.
The sutures represented in Figure 2A, B show similar

 

X

 

c

 

 values (i.e. the range of scales where they behave
as fractals is approximately the same), although the
second suture is more complex at both scales of
measurement, as reflected in higher values of 

 

D

 

f1

 

 and

 

D

 

f2

 

. Sutures in Figure 2B, C exemplify high complex-
ity at large scales of measurement, reflected in high

 

D

 

f2 

 

values. However, although the suture of Figure 2C
nearly fills a plane, it shows lower complexity at small
scales and a narrower range of self-similarity than the
one represented in Figure 2B, as revealed by its higher

 

X

 

c

 

 value and lower 

 

D

 

f1 

 

value.
 Given that the sutures were standardized to a

length of 100 units between their ends, the value of 

 

K

 

in equation (1) obtained in the statistical fitting of the
bilogarithmic plot is related to the index of sutural
complexity (SCI) by the following equation:

SCI = eK/100, (3)

and may also be used as a morphometric descriptor
of the sutures.

Other sutural indexes were also obtained (Fig. 3),
including the relative sutural amplitude (Sa) and the

maximum relative height of the lobes or saddles (Sh)
(Batt 1986).

Characterization of phragmocone size and 
shape

The morphometric characterization of phragmocones
was carried out considering: (1) size; (2) degree of
whorl coiling; and (3) shape of whorl section in the
last whorl. The database included photographs and
accurate drawings of whorl sections for 494 specimens,
while estimates of phragmocone size were available
in 460 cases.

Phragmocone size (Fig. 3) was estimated using
whorl height (Wh) and phragmocone diameter (Pdia).
These variables were measured in millimetres at the
level of the digitized sutures. Since planispiral ammo-
noid growth is reasonably well described by the
logarithmic spiral model (Raup 1967; Okamoto 1996),
Wh and Pdia were logarithmically transformed, allow-
ing these estimates of phragmocone size to increase
linearly with whorl number.

Whorl coiling was characterized using the model
proposed by Raup (1966). This model considers the
position of the generative curve and its displacement
around the coiling axis (parameters D and W in
Fig. 3, respectively). Although there are more sophis-
ticated models (e.g. Illert 1987, 1989; Okamoto 1984,
1986, 1988; Ackerly 1987, 1989; Stone 1995; Rice 1998),
the one originally proposed by Raup possesses the
following advantages: (1) ease of obtaining the value
of the parameters in the phragmocones; (2) ease of
interpretation; and (3) good fit between simulated
and real morphologies. In addition, the use of this
model enables the comparison of our results and pre-
viously published data.

Another important feature of phragmocones is the
cross-sectional shape of their outer whorls. Raup

Fig. 3. Standardized sutural amplitude and height, and descrip-
tion of several variables related to phragmocone size and shape.
After the line connecting both suture extremes has been set at 100
units, Sa is defined as the maximal perpendicular distance found
above and below the connecting line, and Sh is estimated in the
same way but only for the longer segment defined by the cut of
the connecting line, which measures the height of the saddle-ward
(i.e. aperture-ward) portion of the suture. W: whorl expansion
rate. D: distance of generating curve from coiling axis. S: whorl
shape. Pdia: phragmocone diameter. Wh: whorl height. Ww: whorl
width. Pdia and Wh were measured at the level of the suture analyzed.
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(1966, 1967) simplified this shape by considering it
an ellipse, described by a parameter S that is defined
as the ratio of maximum width to maximum height
of whorl section (Fig. 3). Although this index is
appropriate for characterizing most whorl sections,
there are morphologies displaying identical S values
but differential flank curvature.

Several methods have been developed for the ana-
lysis of shape and curvature of biological outlines,
including different modalities of Fourier analysis
(e.g. open or closed outlines, polar radii and elliptic
analysis; for a comprehensive review, see Rohlf 1990;
Palmqvist et al. 1996), eigenshape analysis (Lohmann
1983; Lohmann & Schweitzer 1990; MacLeod 1999),
and methods for the estimation of median axes of
symmetry or line skeletons (Straney 1990). We have
used here Fourier analysis of closed outlines follow-
ing the polar radius approach (Ehrlich & Weinberg
1970; Palmqvist et al. 1996). Fourier series for closed
outlines consist of equations incorporating sines
and cosines that can describe and reproduce any
bi-dimensional figure in which the radii from its centre
of gravity intercept the outline only once. The shape
of the outline is estimated from the following equation,
which fits the expansion of a radius R running from
the centroid of the figure as a function of the angle of
rotation (θ) in a system of polar coordinates:

(4)

an equation that is normally used in the following
transformation:

(5)

(6)

where Ro is the radius of a circumference with an area
equivalent to that of the outline analyzed, n indicates
the harmonic order, Hn is the harmonic amplitude of
the nth-order harmonic, and Pn is its phase angle.

This analysis allows the outline to be split into its
geometrical components, regardless of size and with-
out needing to take homologous points. The ampli-
tudes of low-order harmonics measure the overall
geometric components of shape (e.g. the second and
third harmonics estimate the contribution of a two-
foil and a three-foil, respectively, thus measuring the
degree of elongation and triangularity of the outline),
whereas higher-order harmonics involve details of
increasingly fine-scaled sculpture (e.g. the nth-order
harmonic amplitude represents the shape contribu-
tion of an n-leaved clover). The amplitude of the first
harmonic measures the error of adjustment.

Given that the equation used for describing R(θ) is
single-valued, Fourier analysis of closed outlines can-
not be applied to morphologies in which a radius
from the centroid intersects the periphery more than
once. Hence, it is not adequate for analyzing the
shape of whorl sections in involute ammonoids
(i.e. WD < 1) whose final whorl partially covers the
preceding ones. The morphometric analysis of this
specific region of the shell, which is an open outline,
requires closing the dorsal periphery of the whorl
with a straight line (Fig. 4).

Figure 4 illustrates two computer-generated simu-
lations of ammonite whorl cross-sections obtained
by incorporating successive harmonics into the Fou-
rier series. Although a relatively high number of
harmonics (10) is necessary for a thorough characteriza-
tion of a whorl cross-section, in both cases the major
geometric features are appropriately described by the
first five harmonics.

Another significant aspect of Fourier analysis is the
relative orientation of the harmonics in the outline,
which is reflected in their phase angles. The phase
angle, divided by the harmonic order, measures

Fig. 4. Simulations of whorl-section outlines using an increasing number of harmonics for two different morphologies from the analyzed
dataset. Numbers refer to the harmonic order used (e.g. 2 for elongation, 3 for triangularity, and 4 for quadrangularity).
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the orientation of the first harmonic lobe. Given
that all sections were situated with the symmetry axis
vertically oriented in the digitizing tablet, these values
are then comparable among the specimens analyzed.
The use of phase angles is not, however, problem-
free (Palmqvist 1989), since two similar outlines with
a similarly oriented harmonic may display highly dis-
tinct values for their phase angles. This occurs when
the orientation of the first lobe swings around the
axis of symmetry in figures that do not show a
perfect bilateral symmetry. In order to solve this
problem, the phase angle was transformed as:

(7)

where ABS is the absolute value, n is the harmonic order
and Pn is the phase angle in hexadecimal degrees.

Only the phase angles of the second and fourth
harmonics were used as morphometric variables in
our study, because these are the harmonics that show
greater variability in the sample. Where the second
harmonic is important in the outline,  may take
values close to 180° or 90°, which depends on whether
the section is depressed or laterally compressed.
When the contribution of the fourth harmonic is
high, the phase angle  takes values of around 45°
(quadrangular sections) or 90° (rhomboidal sections).
Quadrangular sections usually show relatively low
amplitudes for the fourth harmonic, although this is
the only harmonic that provides a significant contri-
bution to the description of their shape. Thus the fourth
harmonic amplitude is scaled by the sum of the
amplitudes for the other harmonics (Pérez-Claros 1999):

(8)

In addition, the circularity index C2 (Davis 1986) was
estimated for each whorl section, using the following
equation:

C2 = 4πA/P2, (9)

where A is the cross-sectional area and P is whorl
perimeter, both calculated before the outline is closed.

Ornamental features with elusive morphometric
characterization, i.e. the occurrence and development
of tubercles (TUB) and ribs (RIB), were approached
using variables in ordinal scale. For both features the
following codes were used: (1) absence of element;
(2) small- to medium-sized element; and (3) large-
sized element. It is worth noting that the qualitative
categories ‘small to medium’ and ‘large’ make refer-
ence to the relative size or density of ribs and tubercles
(i.e. percentage of the surface of the phragmocone
covered by these elements, estimated visually). Other

ornamental elements (e.g. furrows and constrictions)
unrelated to sutural complexity (Olóriz & Palmqvist
1995) were not considered.

Finally, a qualitative palaeoecologically related
variable (ECO) was used to take into account major
environments and/or ecological tolerance: (1) neritics;
(2) ubiquitous; and (3) epioceanics. Considering
dimensions of the shell and siphuncle in ammonoids,
Chamberlain et al. (1981) concluded that the water
flux through the siphuncle would not allow for a
long-lasting buoyancy of the carcass, as in Nautilus.
Therefore, transportation of ammonoid shells far
from their home range would seem unlikely or, at
least, uncommon for most ammonites. Although the
results of Chamberlain et al. (1981) indicate coher-
ence between the eco-sedimentary environment and
the lithostratigraphic record, at least for medium-
sized Mesozoic ammonoids, such coherence would
be more informative of habitat distance from the
shoreline than of habitat depth. In fact, no direct
relationship can be proven among distance from the
shoreline and depth, except for ramps, especially in
structured palaeomargins (e.g. in central-western
Tethys). Moreover, the combined effects of physico-
chemical properties of water and depth of death are
usually beyond empirical control, although they have
become crucial for the interpretation of particular
cases (for an extended discussion of this topic, see
Maeda & Seilacher 1996).

Results

Table 1 shows several statistics for the morphometric
descriptors, the correlations among these variables
(lower triangular matrix) and their level of statistical
significance (upper triangular matrix). Spearman’s
rank correlation coefficient was used for qualitative
variables in ordinal scale (TUB, RIB and ECO), while
Pearson’s correlation coefficient was applied to quan-
titative variables. Given that all variables could not be
measured for all specimens, correlations used num-
bers of specimens from between 407 and 524 (450 in
most cases).

Distribution of phragmocone size and shape 
descriptors

Phragmocone diameter distribution at the level of the
suture analyzed (Fig. 5, Table 1) is congruent with the
results obtained by Raup (1967), who showed that
the diameter of most adult, planispiral ammonoids
lies between < 20 and 320 mm, with a mean value of
~80 mm. Similarly, Chamberlain & Westermann (1976)
recognized a size range of < 10 and 1000 mm, with
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Table 1.Upper part: statistics for the analyzed variables. Lower part: Pearson correlations between variables (lower semi-matrix) and statistical level of significance (p) (upper semi-matrix).
Correlations for TUB, RIB and ECO were obtained using Spearman’s rank coefficient. K: logarithm of the standardized perimeter of sutures. Xc: logarithm of the transitional point between small
and large scales of measurement. Df1 and Df2: fractal dimensions for both scales of measurement. Sh: sutural height. Sa: sutural amplitude. W: whorl expansion rate. D: distance from the centre of
the generating curve to coiling axis. WD: degree of involution. H2, H3, H4, and H5: amplitudes of the second, third, fourth, and fifth harmonics. P2 and P4: phase angles for second and fourth
harmonics. H4r: relative amplitude of the fourth harmonic. S: whorl shape. C2: coefficient of circularity. Pdia: phragmocone diameter. Wh: whorl height. RIB and TUB: relative size of ribs and
tubercles, respectively. ECO: palaeoenvironment and related paleoecology.

SuturesCoilingWhorl sectionSizeOrnamentation

ECO StatisticsKXcDf1Df2ShSaWDWDH2P2H3H4P4H4rH5SC2PdiaWhRIBTUB

N524524524524524524512512512493493493493493493493493493460444527527526
Minimum5.1761.3391.0601.21312.08823.0771.1780.0320.0700.00190.0090.0010.00145.0020.00500.3450.54262.571111
Maximum7.4761.8761.4621.82469.42188.0953.3200.6351.0900.537179.7420.1400.19489.9930.6530.0961.8500.963298126.273333
Mean6.3531.5481.2621.50629.63547.0942.1140.3390.6790.155109.3150.0400.03062.3990.1510.0190.8900.87661.15622.6561.8731.6091.517
SD0.4310.0800.0740.1168.36910.6450.3790.1350.2240.12832.4080.0240.02818.4550.1150.0170.2720.06538.85913.8250.7510.9120.667
Skewness0.0330.568− 0.0690.0970.9260.7300.733− 0.351− 0.6680.7411.4270.4842.8330.5351.5861.6490.399− 1.7131.3181.7830.2120.8490.922
Kurtosis− 0.4510.723− 0.225− 0.4311.3770.8550.009− 0.711− 0.350− 0.4270.209− 0.17410.692− 1.5593.3752.9780.0543.8063.5108.209− 1.201− 1.255− 0.318
CV0.0680.0520.0580.0770.2820.2260.1800.3980.3290.8260.2970.5980.9220.2960.7570.8840.3060.0750.6350.6100.4010.5670.439

CorrelationsKXcDf1Df2ShSaWDWDH2P2H3H4P4H4rH5SC2Loge(Pdia)Loge(Wh)RIBTUBECO
K< 0.001< 0.0001< 0.0001< 0.0001< 0.00010.4290.5810.4190.3770.7750.4690.0020.1840.0980.5140.1580.884< 0.0001< 0.00010.0060.0010.004
Xc− 0.167< 0.00010.5730.6450.4280.0150.0010.0010.0480.1480.0070.3940.0530.5370.3030.0590.125< 0.0001< 0.00010.072< 0.0010.132
Df10.812− 0.560< 0.0001< 0.0001< 0.00010.8070.6760.1780.2760.8540.3680.0040.6630.5520.4020.3190.406< 0.0001< 0.00010.8210.9580.019
Df20.902− 0.0250.776< 0.0001< 0.00010.015< 0.0001< 0.0001< 0.0010.2770.409< 0.00010.2300.3500.061< 0.0010.003< 0.0001< 0.00010.7680.0110.003
Sh0.6050.0200.2480.353< 0.0001< 0.0001< 0.0001< 0.0001< 0.00010.0240.0820.048< 0.00010.001< 0.0001< 0.0001< 0.0001< 0.0001< 0.0001< 0.00010.0170.861
Sa0.6870.0350.3170.4430.900< 0.0001< 0.0001< 0.00010.0010.1490.0900.276< 0.00010.003< 0.00010.012< 0.0001< 0.0001< 0.00010.0020.8170.832
W− 0.0360.109− 0.0110.109− 0.277− 0.251< 0.0001< 0.0001< 0.00010.0090.434< 0.0001< 0.00010.001< 0.0001< 0.0001< 0.0001< 0.00010.005< 0.0001< 0.0010.908
D0.025− 0.147− 0.019− 0.1720.3620.313− 0.714< 0.0001< 0.0001< 0.0010.041< 0.0001< 0.0001< 0.0001< 0.0001< 0.0001< 0.0001< 0.00010.161< 0.0001< 0.00010.759
WD− 0.036− 0.151− 0.061− 0.2150.2970.246− 0.4350.920< 0.0001< 0.00010.017< 0.0001< 0.0001< 0.0001< 0.0001< 0.0001< 0.0001< 0.00010.923< 0.00010.0020.066
H20.0400.0900.0500.161− 0.211− 0.1530.417− 0.513− 0.491< 0.00010.039< 0.0001< 0.0001< 0.0001< 0.0001< 0.0001< 0.0001< 0.00010.0170.756< 0.0001< 0.001
P2− 0.013− 0.0670.009− 0.0500.1030.066− 0.1220.1780.194− 0.434< 0.0001< 0.00010.045< 0.00010.001< 0.0001< 0.0001< 0.0010.0140.977< 0.00010.028
H3− 0.033− 0.1220.041− 0.038− 0.079− 0.077− 0.036− 0.094− 0.1090.093− 0.2160.3870.162< 0.0001< 0.00010.001< 0.0001< 0.0001< 0.00010.7560.8200.947
H40.1390.0390.1310.239− 0.090− 0.0500.294− 0.365− 0.3750.539− 0.1830.039< 0.0001< 0.0001< 0.0001< 0.0001< 0.00010.5740.0550.7840.9540.762
P4− 0.0620.090− 0.0200.056− 0.246− 0.2190.340− 0.461− 0.4480.757− 0.0910.0640.341< 0.0001< 0.0001< 0.0001< 0.0001< 0.00010.0290.9730.0010.005
H4r0.075− 0.0280.0270.0430.1470.134− 0.1550.2350.209− 0.4440.226− 0.2720.330− 0.407< 0.0001< 0.0001< 0.0001< 0.0010.0130.056< 0.00010.002
H5− 0.0300.0470.0380.086− 0.252− 0.2230.319− 0.440− 0.4300.713− 0.1570.4110.4740.624− 0.299< 0.0001< 0.00010.0490.3800.7980.0180.005
S− 0.065− 0.086− 0.046− 0.1600.1790.115− 0.3640.4430.427− 0.8040.738− 0.155− 0.409− 0.4450.319− 0.500< 0.0001< 0.00010.0320.089< 0.00010.001
C20.007− 0.070− 0.038− 0.1380.2540.216− 0.3840.5270.521− 0.8620.296− 0.212− 0.718− 0.6640.227− 0.7600.6320.0010.9890.8130.0080.008
Loge(Pdia)0.432− 0.4580.5390.3300.3140.324− 0.3630.3680.261− 0.2660.1770.221− 0.027− 0.2260.186− 0.0950.2340.163< 0.00010.0040.0280.007
Loge(Wh)0.471− 0.4360.5870.4130.2440.262− 0.1350.067− 0.005− 0.1160.1210.2880.094− 0.1080.1210.0430.104− 0.0010.9500.9470.0010.002
RIB0.1110.0640.0210.0280.1840.185− 0.3250.3630.234− 0.0320.0030.0300.026− 0.0030.0710.0250.0610.0230.124− 0.006< 0.0001< 0.0001
TUB− 0.145− 0.170− 0.005− 0.100− 0.082− 0.1160.164− 0.194− 0.127− 0.2720.319− 0.0420.005− 0.1540.195− 0.0940.3330.1090.0880.160− 0.401< 0.0001
ECO− 0.119− 0.050− 0.091− 0.122− 0.010− 0.0650.0100.0320.067− 0.1660.086− 0.0060.033− 0.1180.134− 0.1170.1380.1100.1150.143− 0.3530.361
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an average of ~86 mm. Both distributions are right-
skewed, as seen in Figure 5. However, the mean value
obtained here (61.1 mm) is slightly lower than the
latter ones, probably due to our use of phragmocone
diameter at the level of the suture analyzed, and not
of the maximum diameter of individuals.

Analogously, the distribution of phragmocones in
the morphospace defined by parameters W, D and S
(Fig. 6A, B) is similar to that of Raup (1967) for the
whole set of planispiral ammonites and, in general,
corresponds to those obtained by other researchers
(e.g. Ward 1980; Saunders & Swan 1984; Saunders &
Work 1996, 1997; Dommergues et al. 1996). Other
values of means and ranges for W, D and S in samples
of varying ages are shown in Table 2. Although limits
in morphological variation for planispiral phragmo-
cones tend to be constant over geological time, more
densely occupied regions of the morphospace may
vary among periods. The distribution of the phrag-
mocones we analyzed coincides with results obtained
by Ward (1980) for the Jurassic and by Dommergues
et al. (1996) for the Early Jurassic, a time interval in
which shells commonly show low W, high D, and
intermediate S (~1) values. Our sample of Late Jurassic
ammonites shows a higher density of evolute shapes
with circular whorl sections than the one analyzed by
Bayer & McGhee (1984) for the Middle Jurassic. Given
these results, size and shape distributions obtained
for Late Jurassic phragmocones may be considered
representative of ammonites and show no significant
bias that could otherwise invalidate our inferences.

As regards to other morphometric descriptors used
to characterize whorl section, the inverse relationship
between harmonic amplitudes and the circularity
coefficient C2 is worthy of note (Table 1). This was
expected since these variables indicate the degree to
which a circle must be deformed in order to fit whorl
section shapes. It should be kept in mind that
depressed whorl sections, although elongated, gener-
ally display more circular outlines than compressed
ones. As can be seen in Figure 6C, distribution of C2

values in the vicinity of S = 1 is not symmetrical.

The most relevant geometric whorl section com-
ponents can be characterized with a relatively low
number of harmonics, given the results obtained in
a principal components analysis in which the ampli-
tudes of harmonics 2–5 are used as variables. Figure 7
shows whorl section scores on the first two compo-
nents, which jointly account for 85% of the original
variance, and the position of several sections, which
reveals that these components depict a smooth mor-
phological gradient. Given the factor loadings of
variables on both axes, the first component describes
whorl-section elongation since the most compressed
outlines take positive projections on this axis, whereas
quadrangular and circular sections tend to score on
its negative values. The second component reveals

Fig. 5. Frequency distribution of shell diameters in millimetres
for the sample of Late Jurassic ammonites.

Fig. 6. Bivariate plots of Raupian parameters (W, D, S) and circu-
larity index (C2) for the specimens analyzed in this study.
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Table 2.  Mean and range of values of whorl expansion rate (W), distance to coiling axis (D) and whorl shape (S) for planispiral ammonoids
in different geological periods.

Age N

W D S

ReferencesMin. Max. Mean Min. Max. Mean Min. Max. Mean

Devonian 205 1.13 5.01 2.17 0.00 0.75 0.27 0.33 3.21 0.87 Saunders et al. (1999, 2004)
Lower-Middle Carboniferous 

(Namurian)
531 1.19 3.40 1.97 0 0.57 0.24 0.38 3.17 1.35 Saunders & Swan (1984)

Middle-Upper Carboniferous 
(Pennsylvanian)

117 1.20 3.20 1.90 0.02 0.59 0.24 0.33 2.82 1.26 Saunders & Work (1996)

Carboniferous 255 1.20 4.00 1.91 0.00 0.60 0.22 0.23 2.82 1.20 Saunders et al. (1999, 2004)
Permian 148 1.20 3.64 1.99 0.00 0.69 0.20 0.29 2.86 1.15 Saunders et al. (1999, 2004)
Middle Devonian to 

Upper Permian
53 1.40 3.15 1.95 0 0.89 0.21 0.41 2.76 1.28 Saunders (1995)

Early Triassic 11 1.57 2.45 2.05 0.15 0.55 0.33 0.46 1.97 0.83 Saunders et al. (1999, 2004)
Triassic 322 1.20 4.34 – 0.00 0.60 – 0.21 2.42 – McGowan (2004)
Lower Jurassic 436 ~1.38 ~4.3 – ~0.02 ~0.78 – ~0.2 ~2.2 – Dommergues et al. (1996)
Middle Jurassic 507 1.50 3.00 2.10 0.03 0.49 0.24 ~0.33 ~1.1 0.54 Bayer & McGhee (1984)
Upper Jurassic 511 1.18 3.32 2.11 0.03 0.64 0.34 0.35 1.85 0.89 This article
Jurassic 587 ~1.30 ~2.9 – ~0.03 ~0.70 – ~0.3 ~1.6 – Ward (1980)
Cretaceous 292 ~1.39 ~3.3 – ~0.01 ~0.53 – ~0.3 ~1.75 – Ward (1980)
Jurassic to Cretaceous 71 1.46 3.58 2.27 0.04 0.53 0.27 0.29 1.39 0.80 Almeida et al. (1974)
Palaeozoic to Mesozoic 405 ~1.14 ~3.28 2.13 ~0 ~0.67 0.29 ~0.2 ~1.4 0.82 Raup (1967)

Fig. 7. Bivariate scatter plot of factor scores for the specimens analyzed on the first two factors obtained using the first five harmonic
amplitudes as variables. Examples of the projections of selected whorl sections are shown.
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the degree of whorl-section triangularity since trape-
zoidal sections occupy an intermediate position between
rectangular and triangular ones. Depressed sections
score close to zero on the first component, while on
the second axis they are projected in accordance with
their degree of triangularity. Thus, they are placed
between the morphospace regions for compressed
sections and for both circular and squared sections,
although closer to the latter two. This is due to the
fact that depressed whorl sections, although some-
what elongated, are more rounded than compressed
ones. Finally, pentagonal sections, which also tend to
be elongated, are placed closer to triangular sections
than to quadrangular ones.

Concerning ornamental features, Figure 8 shows
that: (1) ribbed phragmocones are more common
than those without ribs; (2) the most abundant
phragmocones are those with small- to medium-sized
ribs; (3) phragmocones with tubercles are less com-
mon than those without them; and (4) phragmo-
cones with large-sized tubercles are more frequently
found than those with small ones, which only repre-
sent 2% of the dataset.

Table 1 shows that correlation values for morpho-
metric variables characterizing size, shape and orna-
mental features in phragmocones are low, although
some of them are significant and evidence of interest-
ing relationships. There is, for example, an inverse
relationship between the development of tubercles
and ribs (rTUB-RIB = −0.40, P < 0.00001). Both of these
variables are diversely related to whorl coiling: in
phragmocones, tubercle development appears to
covary with the degree of involution (rTUB-WD = −0.13,

P = 0.002) and whorl compression (rTUB-S = 0.33,
P < 0.0001), whereas ribs tend to be larger and more
abundant when coiling is looser (rRIB-WD = 0.23,
P < 0.0001). In addition, no significant relationship
was found between ribs and morphometric whorl
section descriptors. Several authors (e.g. Buckman 1892;
Westermann 1966, 1971; Raup 1967; Cowen et al.
1973; Bayer & McGhee 1984; Guex et al. 2003) have
examined the covariation in ornamentation and shell
morphology in ammonoids, concluding that a direct
relationship exists among ornamentation degree,
umbilicus openness, and whorl section circularity
(what Westermann (1966) called the ‘First Buckman
Law of Covariation’). Results obtained by Yacobucci
(2004) suggest that this ‘law’ is not universal, since it
does not appear to be valid for some Cretaceous
acanthoceratids, but it is worth noting that Buckman
(1892) defined it in terms of intraspecific variation
(see Hammer & Bucher 2005). This study partially
corroborates such a relationship or ‘law’ in orna-
mented shells: rib and tubercle size increase with
phragmocone diameter regardless of whorl height,
which reveals the greater development of these orna-
mental elements in evolute phragmocones. However,
it is worth noting that the correlations obtained are
remarkably low, particularly in the case of tubercles
(Table 1). This reinforces the notion that different
ornamental features must be considered independ-
ently, since constraining constructional, phylogenetic
and/or functional factors may impose on such orna-
mental features an imbalanced influence. In any case,
covariation among size, morphology and ornamenta-
tion is remarkably weak, and nearly any combination
of such features can be found. Thus, the results
obtained must be considered with caution until more
detailed analyses conducted under phylogenetic
control are available.

In addition, the weak relationship between the
palaeoenvironment and related palaeoecology and
phragmocone size and shape must be stressed. Our
results evidence only subtle trends, as in the case of
ornamental features. Epioceanic ammonites usually
show more circular whorl sections than neritics
(rECO-H2 = −0.17, P < 0.001), independently of whorl
coiling, though this could be partially due to tapho-
nomic noise. However, as we discuss in depth below, the
most interesting result is potentially the positive
correlation between the record of epioceanic ammo-
nites, and both phragmocone size and whorl height
(see Table 1).

Distribution of sutural descriptors

Figure 9 shows histograms for variables related to
sutural complexity (see also Table 1). Normal distri-

Fig. 8. Frequency distributions for occurrence and size of tuber-
cles and ribs in the sample of Late Jurassic ammonites (1: without
ornamental elements; 2: small- to medium-sized elements; 3: large
elements).
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bution for these variables was evaluated using the
Kolmogorov–Smirnoff test.

When a power function is fitted to the bilogarithmic
plot of sutural perimeter (y-axis) on ruler size (x-axis),
the mean for Xc (1.548, Fig. 9A) shows significant dif-
ference (P < 0.001) from the theoretical value expected,
1.275. Hence, the ammonitic sutures analyzed start
to lose their fractal character at the scale of measure-
ment e1.548, which corresponds to 4.7% of the length
of a line connecting the ends of both sutures. The
values observed for this lower limit of self-similarity
range between 3.8% and 6.5%, which agrees with the
results obtained by Lutz & Boyajian (1995). These
authors found a range of 1.5% to 12%, in which the
highest frequencies were between 1.5% and 6%. This
is interesting since Lutz & Boyajian (1995) visually
estimated the lower limit of self-similarity and their
sample included not only ammonitic, but also goniatitic
and ceratitic sutures.

Distributions of Df2 and Df1 values (Figs. 9B, C) have
a certain degree of symmetry, with non-significant devi-
ations from normality, although the fractal dimension
at large scales shows a relative maximum at approxi-
mately 1.35 (Fig. 9B). Table 1 shows that the mean of
Df2 is close to 1.5. This suggests a degree of complex-
ity halfway between a straight line (D = 1) and an
intricate curve that would fill a plane (D = 2) in the
sutures analyzed. The value 1.5 is similar to that
obtained by Lutz & Boyajian (1995) for Df in ammo-
nitic sutures (1.46), as well as their range of values
(1.21–1.71) with respect to our estimate (1.21–1.82).

Figure 10A shows a direct relationship between the
index of sutural complexity (SCI) and Df2. This also
agrees with results in Lutz & Boyajian (1995), although
the exponential behaviour of SCI induces higher
point-dispersal when fractal dimension values increase.
The sutures that more closely fill a plane do not thus
necessarily show a longer normalized perimeter. In
addition, Figure 10A reveals a greater scatter of SCI
at high Df2 values, which reflects decoupling of SCI at
high (Df2) and low (Df1) scales of measurement.

Fig. 9. Frequency distributions for (A) the inverse self-similarity
index (Xc) and fractal dimensions at (B) large (Df2) and (C) small
(Df1) scales of measurement.

Fig. 10. Bivariate scatter plots showing the behaviour of some of
the sutural variables analyzed: �A. index of sutural complexity
(SCI) vs. fractal dimension at large scales of measurement (Df2),
�B. the fractal dimension values for both scales of measurement
(Df1 vs. Df2). The ellipse in (B) represents the 95% confidence
region of the plot.
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The absence of correlation between Df2 and Xc is
analogous to that obtained by Lutz & Boyajian (1995)
for ammonoids as a whole. However, the strong and
statistically high-significant negative correlation between
Xc and Df1 (rXC-Df1 = −0.56, P < 0.0001) suggests that
the more pervasive the folding of smaller portions of
the suture, the lower the loss of its fractal nature.
Differential behaviour of Df1 and Df2 with Xc is, in any
case, of particular relevance, given that the correla-
tion between both fractal dimensions is very high
(rDf1-Df2 = 0.78, P < 0.0001; Fig. 10B, Table 1). In addi-
tion, correlations of Df2 and Xc with the difference
between Df2 and Df1 in relation to the value of Df2

(i.e. Df = (Df2 − Df1)/Df2) are positive (rDf-Df2 = 0.65;
rDf-Xc = 0.64; P < 0.0001 in both cases). This indicates
that more complex sutures show a greater difference
of complexity between both scales of measurement
and that such a difference is linked to an early loss of
self-similarity. In fact, there is a high positive corre-
lation between Df2 and Xc where Df remains constant
(rXc-Df2.Df = 0.76; P < 0.0001). These results suggest that
complexity loss at smaller scales of observation is
biased, since the most complex suture lines display a
greater difference between the synthesized suture
perimeter and the perimeter they would theoretically
reach if they behaved as a pure, mathematical fractal
‘ad infinitum’.

Phragmocone size and sutural complexity

The covariation between sutural complexity and
phragmocone size is one of the most relevant contri-
butions of this study. In general, phragmocone size
increase implies more complex sutures in ammo-
nites, this resulting from subdivision and corrugation
of lobes and/or saddles, as well as from the addition
of new sutural elements. Although the ontogenetic
complication of septal sutures varies among groups,
major sutural features (e.g. number, position and
relative size of major lobes) vary less at higher taxo-
nomical levels, hence their taxonomical value (see
Kullmann & Wiedmann 1970).

Major changes in sutural complexity take place at
early ontogenetic stages (Lutz & Boyajian 1995) and
mean sutural complexity increases progressively,
slowing down over the remaining ontogeny (Arkell
et al. 1957; García-Ruiz et al. 1990; Saunders & Work
1997), although there are examples of ontogenetic
sequences with sutures that show a slight decrease in
complexity (García-Ruiz et al. 1990). Only adult
specimens were selected for this study in order to
minimize ontogenetic variability – a common prac-
tice when sutural complexity is compared across tax-
onomic categories above the species level. It is worth
mentioning, however, that the main source of varia-

tion in phragmocone size and sutural design arises
from phylogeny.

Table 1 shows that the most significant correlations
involving sutural parameters (except correlations among
themselves) apply to variables that reflect phragmo-
cone size. Among them are several direct and statis-
tically highly significant correlations between fractal
dimensions and the logarithms of phragmocone
diameter and, specially, whorl height (Fig. 11A–D,
Table 1). Given that whorl height and phragmocone
diameter correlate well in the sample, we performed
a t-test evaluation of differential values between cor-
relation coefficients of fractal dimensions with whorl
height and phragmocone diameter (i.e. Ho: rDf-Wh =
rDf-Pdia). This revealed a significant difference of
correlation coefficients for Df2-Wh and Df2-Pdia (t = 5.48,
P < 0.001) as well as for Df1-Wh and Df1-Pdia (t = 3.83,
P < 0.001).

Coefficients of partial correlation for sutural com-
plexity at small and large scales of measurement with
whorl height, assuming that phragmocone diameter
is held constant and vice versa, were estimated on
these grounds. Partial correlation of Df1 with loge(Wh)
is highly significant (rDf1-Log(Wh).log(Pdia) = 0.29, t = 5.84,
P < 0.0005), while partial correlation of Df1 with
loge(Pdia) does not differ from zero (rDf1-log(Pdia).log(Wh)

= −0.09, t = −1.74, P > 0.05). Df2 shows a similar
behaviour with respect to Wh (rDf2-Log(Wh).log(Pdia) = 0.33,
t = 6.63, P < 0.0005), although the partial correlation
with loge(Pdia) is negative (rDf2-log(Pdia).log(Wh) = −0.21,
t = −4.22, P < 0.0005). Positive correlation between
Df1 and Pdia, in addition to the absence of correlation
when Wh is constant, confirms that Wh is more
appropriate than Pdia for these studies (as envisaged
by Newell 1949). Negative partial correlation of Df2

and Pdia arises from the low but significant correla-
tion between sutural complexity and phragmocone
shape: the most involute phragmocones (i.e. those
with a higher Wh:Pdia ratio) show more complex
sutures for a given whorl height. Furthermore, the
absence of significant differences (t = 0.55; d.f. = 381;
P > 0.7) between correlation coefficients of Xc with
loge(Wh) and loge(Pdia) determines the low resolution
of these partial correlations, thus confirming weak
and inverse relationships of Xc with both Wh and Pdia

(see Table 1 and Fig. 12A, B).
The relationship between Xc and phragmocone

size can be clarified by analyzing this parameter of
sutural complexity at real scale (Xcr), that is, for
sutures at actual scale in millimetres. Xcr was estim-
ated assuming a correspondence between the length
of a straight line joining the suture ends and the
perimeter of the flank. Figure 12C, D shows values of
Xcr in relation to loge(Pdia) and loge(Wh), respectively.
Correlations of Xcr with both variables are 0.98 and
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0.95 (P < 0.0001 in both cases), respectively. This
indicates that the self-similarity of sutures reaches
smaller regions in the smallest flanks, whereas sutures
in flanks belonging to the highest whorl sections
show a self-similar nature within a narrower range of
scales of measurement. Thus, the largest phragmo-
cones have minor lobes and saddles of greater size
than do smaller phragmocones. However, this is
obscured when the sutures are standardized to a
length of 100 arbitrary units. In this case, the lower
limit of self-similarity (Xc) correlates negatively with
whorl height and phragmocone diameter (Fig. 12A, B,
Table 1). This is because the less self-similar sutures
are those of smaller length.

Comparison of differences between correlation
coefficients of Xcr with Wh and Pdia, respectively, makes
it possible to reject the null hypothesis of equality
between them (t = 10.41, P < 0.0005). On this basis,
it was appropriate to analyze the partial correlations
of Xcr with loge(Pdia) and loge(Wh). The value for
rXcr-log(Wh).log(Pdia) is 0.80 (t = 26.12, P < 0.0001) and for
rXcr-log(Pdia).log(Wh) decreases to 0.27 (t = 5.54, P < 0.0001).
These results confirm that the point below which
suture self-similarity no longer holds is mainly deter-
mined by whorl height and secondarily by phragmo-

cone diameter (i.e. at last by the degree of coiling and
whorl overlapping).

In summary, all of the ammonites analyzed display
positive correlations between fractal complexity, in
a wider sense, and whorl height, while no regular,
uniform correlations were found with phragmocone
diameter and the possibility of negative correlations
should not be discarded. This suggests that, for a
given whorl height, the most evolute phragmocones
(i.e. those with a lower Wh:Pdia ratio) must develop a
higher number of whorls than the most involute ones
before acquiring similar levels of sutural complexity.
In addition, the size of minor lobulations in the
highest flanks is also greater than in smaller ones,
although the sutures in the former show higher levels
of self-similarity.

Phragmocone shape and sutural complexity

The relationship between sutural variables and phrag-
mocone shape is more complex than for phragmo-
cone size, and additional morphometric descriptors
must be considered.

Absolute correlations between variables describing
sutural traits and those related to phragmocone shape

Fig. 11. Bivariate scatter plots for both fractal dimensions (Df1, Df2) vs. the logarithms of whorl height (A, C) and phragmocone diameter
(B, D) The ellipses represent the 95% confidence regions of these plots.
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(Table 1) display some differences with the ones pre-
viously discussed for phragmocone size – e.g. corre-
lations for shape variables are clearly much lower. In
addition, for the most part the only sutural variables
that show significant correlations with phragmocone
and whorl shape are those related to suture geometry
at large scales of measurement.

Where Wh is constant (Table 3), a set of significant
correlations can be observed between sutural varia-
bles and phragmocone shape descriptors, although
there are some exceptions for Xc and K. Independent
relationships therefore exist between phragmocone
size and both sutural and shape features, as revealed
by the comparatively lower correlations between
flank height and the morphological variables of
phragmocones. Furthermore, almost all pairs of
variables display inhibitory effects on the covariance
between sutural variables and morphometric descriptors
of whorl shape. This is evidenced by the increased
value of partial against absolute correlations (com-
pare values in Tables 1, 3).

Correlation between variables characterizing coil-
ing and fractal dimension for large scales of measure-
ment (Table 3) shows that the latter increases as coiling
becomes tighter (positive correlation of Df2 with W

and negative one with D). This is even more evident
with respect to WD, since its correlation with Df2

(−0.24) is slightly more significant than in the case of
W (0.20) and D (−0.23).

Correlations between morphometric descriptors
of whorl shape and fractal dimension at large scales
of measurement are significant for the amplitudes of
the second and fourth harmonics but not for the
amplitude of the third harmonic (Table 1, lower part:
upper semi-matrix). These correlations are also higher
when phragmocone size effects are removed, even
though the values continue to be low. In addition, it
is worth noting that there is a significant negative
correlation between Df2 and H3 if whorl height is held
constant (Table 3).

Correlations between fractal dimension and H2, S
and C2, respectively, indicate that Df2 increases with
whorl section elongation (i.e. circularity loss) and
with the degree of polygonality, which is not, how-
ever, strictly related to whorl elongation. Interrela-
tionships among Df2 and H2, S and C2 are evidenced
by their partial correlations (Table 3), which show
the same value of variance and null coefficients,
although the absolute coefficients are significantly
distinct from zero, since S and C2 are inversely

Fig. 12. Bivariate scatter plots for the inverse self-similarity index of sutures (Xc: logarithm of the scale of measurement for standardized
sutures below which their self-similar character disappears; Xcr: the same for sutures at actual scale, in mm) vs. the logarithms of whorl
height (A, C) and phragmocone diameter (B, D). The ellipses represent the 95% confidence regions of these plots.
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related to H2 (−0.80 and −0.86, respectively) and Df2

(−0.16 and −0.14, respectively). Partial correlations of
C2 and S with Df2 reveal a close relationship between
whorl elongation and Df2, indicating that S correlates
with Df2 through its correlation with C2. It could thus
be assumed that there is no correlation between Df2

and the absence of circularity in depressed sections
(S > 1). However, this feature may be masked given
that the degree of circularity is higher in depressed
sections than in compressed ones (S < 1).

Another point that should be underlined is the
positive relationship between the fourth harmonic
amplitude and Df2, although whether it depends on a
given orientation of H4 must be clarified. Of particular
relevance is the direct and significant partial correla-
tion of Df2 with the phase angle of this harmonic
(see Table 3). The positive correlation reveals that H4

shows higher values when positioned around 90°
than when nearing 45°, thus contributing to the
degree of elongation of laterally compressed whorls.
This interpretation is reinforced by the absence of a
significant absolute correlation between H4r and Df2

(Table 1), given that the value of H4r is important
only when the fourth harmonic is oriented around
45°. This implies that section quadrangularity does
not sensu stricto correlate with sutural complexity.

Concerning relative suture amplitude (Sa), shape
descriptors show significant relationships with the
same variables as does fractal dimension, but the
relationships in this case are inverted. Sa decreases
with both phragmocone lateral compression and
coiling degree and thus correlates directly with quad-
rangularity. This implies that Sa and Df2 do not share
the same variance in their relationships with phrag-
mocone shape, irrespective of their strong correla-
tion, thus displaying the opposite behaviour. On this
basis and in reference to whorl-shape related vari-
ables, it may be deduced that the generator length for
fractal complexity at large scales of measurement
(Lmax2 = en/Df2) behaves similarly to Sa but contrasts
with Df2. However, unlike Sa, Lmax2 correlates positively
with D and inversely with H2, but not with section
quadrangularity.

Finally, Xc, Df1 and Df2 show significant positive cor-
relations with phragmocone morphometric descriptors,
even when the effects Wh are removed. Our sample,
however, reveals that the most evolute specimens, which
develop markedly circular sections, show larger phrag-
mocone diameters, although flank height is not related
to phragmocone shape. Thus, if phragmocone diam-
eter is held constant, partial correlations between
phragmocone shape and Xc will not be significant.
The relationship between Xc and phragmocone shape
variables will then be indirectly determined by the
covariance of Xc and phragmocone diameter.T
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Sutural complexity and type of ornamentation

As shown in Table 1, the relationship between
sutural variables and the type and degree of develop-
ment of ornamental features is very weak, as is also
the case for the rest of the morphological variables
describing phragmocone shape. However, a slight trend
exists towards increasing standardized sutural perim-
eter K when rib sizes are larger (rK-RIB = 0.11), and a
reversed trend in tubercles (rK-TUB = −0.15). Only the
latter trend holds for Df2, although the correlation is very
weak (rDf2-TUB = −0.10). The most significant relation-
ships of sutural variables concerns Sh (rRIB-Sh = 0.18)
and Sa (rRIB-Sa = 0.19), indicating that more strongly
ribbed phragmocones also show sutures with greater
sutural amplitudes and normalized lobe or saddle
heights, although this behaviour tends to be reversed
where large tubercles are the most relevant ornamental
features. These significant correlations suggest the
existence of constructional relationships between
septal and ornamental features. However, it should not
be forgotten that phylogenetic factors, as well as
the indirect covariation between ornamentation and
phragmocone morphology, may also be influential.

Sutural complexity and palaeoecology

Table 1 gives values for Spearman’s rank-order corre-
lation between palaeoenvironmental variables, sutural
variables and those related to phragmocone size and
shape. Once again, it is striking that no high correla-
tions appear, although many are significant at P < 0.05
or even higher levels of confidence. Also interesting
is the lack of significant correlations between pal-
aeoenvironmental and sutural variables, with the
exception of the inverse correlations for both scales
of measurement and for K, which is proportional to
the logarithm of SCI. On average, epioceanic speci-
mens thus tend to show lower values in sutural com-
plexity and a less standardized sutural perimeter. As
discussed above, sutural complexity and palaeoenvi-
ronment positively correlate with phragmocone size.
Nevertheless, epioceanic ammonites that do not
evidence significant taphonomic noise exhibit larger
phragmocone size than neritic ones, although they
show less sutural complexity on average.

Discussion

One of the most relevant results obtained in this
study is the close relationship between sutural com-
plexity, as measured by both Df values, and flank size.
This result contrasts with the findings of Boyajian &
Lutz (1992) and Lutz & Boyajian (1995), who argued

that there is no correlation between sutural complex-
ity and shell size in ammonoids. Such a discrepancy
is significant, since coherence is complete between
our results and the ones obtained by these authors,
despite differences between the respective samples;
the samples studied by Boyajian & Lutz (1992) and
Lutz & Boyajian (1995) are more diverse in timespan,
taxonomy and basic sutural types. In fact, no signifi-
cant relationship is evident between sutural complex-
ity and phragmocone size in a sample that comprises
goniatitic, ceratitic and ammonitic sutures. This may
distort the perception of such a relationship in a
subsample (e.g. the ammonitic sutures studied). Our
case-study, which concerns substantial differences in
shell shape and/or a narrow size range, precludes the
search for the effects of phragmocone diameter on
sutural complexity, since fractal dimension correlates
more tightly with whorl height than with phragmo-
cone diameter.

Our results suggest that the morphogenetic mech-
anisms that accounts for septal folding, and thus for
complex suture development, would interact with the
size of the phragmocone portion in which these
structures are placed. This implies that sutural com-
plexity is more closely linked to a ‘local phenome-
non’, which in turn is related to the growth pulse at
the level of the most recently formed septum. Any
process that takes the absolute dimensions of the
ammonite shell directly into account is of minor
importance and, in contrast, a physiological process
associated with the energetic demands of metabolism
has recently been proposed by Pérez-Claros (2005)
for interpreting main factors controlling suture com-
plexity. The strong relationship observed here between
whorl height – which measures the size of the animal
residing in a given whorl – and sutural complexity
reinforces this hypothesis.

If no relationship exists between structural shell
weakness against hydrostatic load or against any other
extrinsic factors and decreasing shell wall strength
with phragmocone size, as suggested by Hewitt &
Westermann (1997), our results would not allow us
to conclude that greater complexity in septal sutures
would imply greater resistance. Our results, however,
are coherent with the alternative hypothesis accord-
ing to which sutural complexity was related to other
alternative functions, such as buoyancy control through
the enhancement of surface tension phenomena
(e.g. Kulicki 1979; Ward 1987; Kulicki & Mutvei 1988;
Weitschat & Bandel 1991; Saunders 1995; Daniel et al.
1997; Kröger 2002). An increase in phragmocone size
would thus imply greater volumes of water pumping,
a function that would be facilitated by increased
lobe and saddle sinuosity. This would lead to a
higher number of septal ‘receptacles’, thus facilitating
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capillary phenomena – i.e. chamber emptying and/or
occasional refilling. However, it is necessary that such
a hypothesis be verified because tensional surface
phenomena in this type of interphase are inversely
related to the radius of shell-wall curvature. Surface
tension could be compensated or even decreased,
given that the size of the smaller sinuosities (i.e. those
that have a higher pressure potential) is also enlarged
with flank size. Further research will be needed in
order to clarify the relationships among tensional
surface phenomena in septal sutures, their fractal
dimension and lobe and saddle size distribution.

The relationship between phragmocone shape and
sutural complexity we found in Late Jurassic ammo-
nites is analogous to the one found by Saunders &
Work (1997) in prolecanitids, although they quanti-
fied sutural complexity using a different procedure.
The SCI index correlates well with Df in sutures fig-
ured by Saunders & Work (1997). Such a correlation
is impressive, since prolecanitids and Late Jurassic
ammonites are temporally and phylogenetically dis-
tant, and exhibit distinct levels of sutural complexity.
This fact, therefore, reinforces the hypothesis that
covariation between phragmocone shape and sutural
complexity in ammonoids relies more on functional
(soft-body) grounds than on constructional (miner-
alized structures) limitations. The implications of
phylogenetic factors should, however, always be kept
in mind, given that prolecanitids represent the ‘root-
stock’ of Mesozoic ammonites (Saunders & Work 1997).
Moreover, there are groups, such as the goniatitids,
in which the relationships we describe between sutural
complexity and phragmocone shape are entirely
absent (e.g. Saunders & Work 1996).

It is possible that covariation between sutural com-
plexity and phragmocone shape is a consequence of
functional demands. An assumed correspondence
between potentially deeper habitats for ammonoids
and distance-to-shoreline has been traditionally
accepted. Recent data, however, disconfirm the
hypothesis that greater degrees of septal folding are
mainly related to structural resistance against hydro-
static loadings in phragmocones. In fact, our results
indicate that Late Jurassic epioceanic ammonites
generally show less sutural complexity than neritic
ones, in agreement with previously published conclu-
sions (Olóriz & Palmqvist 1995; Olóriz et al. 1997,
1999, 2002). Theoretical studies conducted using
finite-element analysis (Daniel et al. 1997) related
increases in septal folding to a weakened septum
against hydrostatic load (but see Hassan et al. 2002).
Despite the fact that epioceanic ammonites usually
display phragmocones of larger diameter and whorl
height than do epicontinental ones, in our sample
they show a slightly lower sutural complexity. If

septal folding is mainly related to phragmocone rein-
forcement, covariation with shell morphology could
then satisfy demands other than hydrostatic load –
e.g. resistance to predator teeth (Daniel et al. 1997).
Recently, however, some of the most spectacular
examples of ‘bite-marks’, interpreted as a result of
mosasaur attacks, have been questioned (e.g. Olóriz
et al. 2002). Considering the role played by tensional
surface processes, some relationships with buoyancy
control are enhanced. Hence, covariation with phrag-
mocone shape could depend on process relationships
with the shape of the ‘receptacle’ containing cameral
fluids. Three-dimensional sinuosity of septa leads to
closer lobes and saddles in opposite flanks of the most
involute phragmocones showing more elongated sec-
tions. This would influence surface-strain phenomena,
which would be favoured by the existence of organic
structures, regardless of whether they are associated
with the siphuncle. Such organic structures have been
described in Palaeozoic and Mesozoic ammonoids
(e.g. Permian prolecanitids in Mapes et al. (1999) and
Tanabe et al. (2000); Triassic ceratitids in Weitschat
& Bandel (1991); and Late Jurassic ammonites in
Schindewolf (1968)). In addition, an indirect connec-
tion between sutural complexity and buoyancy control
should not be neglected, given that sutural complexity
appears to comply with some of the key rules regard-
ing metabolic or physiological processes (Pérez-Claros
2005). Given that phragmocone chambers were filled
with wettable organic tissues produced by the rear
mantle, sutural complexity may result from a need
for increasing mantle surface area. Such an increase
would be a solution, since phragmocone chambers
must be built up under spatial constraints defined by
the carcass. This solution is not unusual in the ani-
mal kingdom (e.g. mammalian brain folds, alveolar
membranes, or intestinal epithelium surfaces). Although
the present state of knowledge precludes any definitive
answers to the ammonoid ‘suture problem’, future
research may benefit from the results presented in
this paper.

It should also be noted that spatial development in
the analyzed sutures, which is properly quantified by
their fractal dimensions, is related to phragmocone
size and shape, while the range of self-similarity depends
exclusively on phragmocone size. The dissimilar
behaviour displayed by Xc and Df may derive from
the morphogenetic mechanism responsible for septal
folding throughout the ontogenetic increase of sutural
complexity.

As emphasized above, morphometric descriptors
for sutures and phragmocones are complexly interre-
lated. Although bivariate analyses provide valuable
information, the topics dealt with in this study will
require that multivariate techniques be applied in greater
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depth. Future research should also examine phyloge-
netic relationships among Late Jurassic ammonites.
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