
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Spectrum-Based Fault Localization in Model Transformations

JAVIER TROYA, Universidad de Sevilla, Spain

SERGIO SEGURA, Universidad de Sevilla, Spain

JOSE ANTONIO PAREJO, Universidad de Sevilla, Spain

ANTONIO RUIZ-CORTÉS, Universidad de Sevilla, Spain

Model transformations play a cornerstone role in Model-Driven Engineering as they provide the essential

mechanisms for manipulating and transforming models. The correctness of software built using MDE tech-

niques greatly relies on the correctness of model transformations. However, it is challenging and error prone

to debug them, and the situation gets more critical as the size and complexity of model transformations grow,

where manual debugging is no longer possible.

Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code

coverage information to estimate the likelihood of each program component (e.g., statements) of being faulty.

In this paper we present an approach to apply SBFL for locating the faulty rules in model transformations.

We evaluate the feasibility and accuracy of the approach by comparing the effectiveness of 18 different

state-of-the-art SBFL techniques at locating faults in model transformations. Evaluation results revealed that

the best techniques, namely Kulcynski2,Mountford, Ochiai and Zoltar, lead the debugger to inspect a maximum

of three rules in order to locate the bug in around 74% of the cases. Furthermore, we compare our approach

with a static approach for fault localization in model transformations, observing a clear superiority of the

proposed SBFL-based method.

CCS Concepts: • Software and its engineering → Model-driven software engineering; Domain spe-
cific languages; Software testing and debugging; Functionality; Dynamic analysis;

Additional Key Words and Phrases: Model Transformation, Spectrum-based, Fault Localization, Debugging,

Testing

ACM Reference format:
Javier Troya, Sergio Segura, Jose Antonio Parejo, and Antonio Ruiz-Cortés. 2017. Spectrum-Based Fault

Localization in Model Transformations. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2017),

49 pages.

https://doi.org/0000001.0000001

1 INTRODUCTION
In Model-Driven Engineering (MDE), models are the central artifacts that describe complex systems

from various viewpoints and at multiple levels of abstraction using appropriatemodeling formalisms.

Model transformations (MTs) are the cornerstone of MDE [28, 71], as they provide the essential

mechanisms for manipulating and transforming models. They are an excellent compromise between

This work has been partially supported by the European Commission (FEDER) and Spanish Government under CICYT

project BELI (TIN2015-70560-R), and the Andalusian Government project COPAS (P12-TIC-1867).

Author’s addresses: Department of Computer Languages and Systems, Universidad de Sevilla, Spain.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

1049-331X/2017/1-ART1 $15.00

https://doi.org/0000001.0000001

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 J. Troya et al.

strong theoretical foundations and applicability to real-world problems [71]. Most MT languages

are composed of model transformation rules
1
. Each MT rule deals with the construction of part of

the target model. They match input elements from the source model and generate output elements

that compose the target model.

The correctness of software built using MDE techniques typically relies on the correctness of the

operations executed using MTs. For this reason, it is critical in MDE to maintain and test them as it

is done with source code in classical software engineering. However, checking whether the output

of a MT is correct is a manual and error-prone task, which suffers the oracle problem. The oracle

problem refers to, given an input for a system, the challenge of distinguishing the corresponding

desired, correct behavior from potentially incorrect behavior [13]. In order to alleviate this problem

in the model transformation domain, the formal specification of MTs has been proposed by the

definition and use of contracts [14, 18, 21, 105], i.e., assertions that the execution of the MTs must

satisfy. These assertions can be specified on the models resulting from the MTs, the models serving

as input for the MTs, or both, and they can be tested in a black-box manner. These assertions are

typically defined using the Object Constraint Language (OCL) [109].

However, even when using the assertions as oracle to test if MTs are faulty, it is still challenging

to debug them and locate what parts of the MTs are wrong. The situation gets more critical as

the size and complexity of MTs grow, where manual debugging is no longer possible, such as in

aviation, medical data processing [107], automotive industry [95] or embedded and cyber-physical

systems [83]. Therefore, there is an increasing need to count on methods, mechanisms and tools

for debugging them.

Some works propose debugging model transformations by bringing them to a different domain

such as Maude [103], DSLTrans [81] or Colored Petri Nets [111], where some specific analysis can

be applied. The problem with these approaches is that the user needs to be familiar with such

domains, besides, their performance and scalability can be worse than that of the original model

transformation [103]. There are a few works that propose the use of contracts in order to debug

model transformations [18, 22, 23]. Among them, the work by Burgueño et al. [18] is the closest to

ours. They address the debugging of ATL model transformations based on contracts with a static

approach that aims to identify the guilty rule, i.e., the faulty rule. It statically extracts the types

appearing in the contracts as well as those of the MT rules and decides which rules are more likely

to contain a bug. This is a static approach, since the transformation is not executed. Despite that, it

achieves relatively good results on several case studies [18]. However, the effectiveness of dynamic
approaches is an open question. Answering this question is one of the goals of this work.

Spectrum-Based Fault Localization (SBFL) is a popular technique used in software debugging

for the localization of bugs [3, 116]. It uses the results of test cases and their corresponding code

coverage information to estimate the likelihood of each program component (e.g., statements) of

being faulty. A program spectrum details the execution information of a program from a certain

perspective, such as branch or statement coverage [50]. SBFL entails identifying the part of the

program whose activity correlates most with the detection of errors.

This paper presents and evaluates in detail the first approach that applies spectrum-based fault

localization in model transformations, extending our paper with the initial ideas [100]. SBFL being

a dynamic approach, our approach takes advantage of the information recovered after MT runs,

what may help improve the results over static approaches [18], and at the same time complement

them. We follow the approaches in [14, 18, 21, 105] and use the previously described contracts

(assertions) as oracle to determine the correctness of MTs. Given a MT, a set of assertions and a

set of source models, our approach indicates the violated assertions and uses the information of

1
Throughout the paper, we may also refer to model transformation (MT) rules as transformation rules or merely rules

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Spectrum-Based Fault Localization in Model Transformations 1:3

the MT coverage to rank the transformation rules according to their suspiciousness of containing

a bug. Also, out of the many existing techniques proposed in the literature for computing the

suspiciousness values [86, 116, 118], we select 18 of them and compare their effectiveness in the

context of MTs.

There is a plethora of frameworks and languages to define MTs. Among them, The ATLas trans-

formation language (ATL) [61, 85] has come to prominence in the MDE community both in the

academic and the industrial arenas, so the testing of ATL transformations is of prime importance.

This success is due to ATL’s flexibility, support of the main metamodeling standards, usability that

relies on strong tool integration within the Eclipse world, and a supportive development commu-

nity [81]. In order to implement our approach and achieve automation, we have built a prototype

for debugging ATL model transformations. However, we may mention that the proposed approach

is applicable to any model transformation language as long as it is able to store the execution of

the transformation in traces. Therefore, the approach could be trivially applied to languages such

as QVT [45], Maude [26], Kermeta [56], and many more, since in most transformation languages it

is possible to define the generation of an extra target model that stores the traces (cf. Section 2.2.3).

We have thoroughly evaluated the approach using the implemented prototype. To do so, we have

selected four different case studies that differ regarding the application domains, size of metamodels

and transformations, and the number and types of features of ATL used. For instance, the number of

rules ranges from 8 to 39, and the lines of code from 53 to 1055. We have defined 117 OCL assertions

for the four case studies, many of them taken from [18], and have applied mutation testing by

creating 158 mutants using the operators presented in [99], where each mutant is a faulty variation

of the original model transformation. Experimental results reveal that the best techniques place

the faulty transformation rule among the three most suspicious rules in around 74% of the cases.

Looking into each of the four case studies, the best techniques allow the tester to locate the fault

by inspecting only 1.59, 2.99, 2.4 and 4.8 rules in each of the case studies, which are composed of 9,

19, 8 and 39 rules, respectively. Furthermore, we compared our approach with a state-of-the-art

approach based on the static analysis of transformation rules and assertions, observing a clear

superiority of the proposed SBFL-based approach. The conclusions from our experiments serve as

a proof of concept of the effectiveness of SBFL techniques to aid in the process of debugging model

transformations.

Like ATL, our prototype is compliant with the Eclipse Modeling Framework and is completely

automated and executable, dealing with Ecore metamodels and XML Metadata Interchange (XMI)

model instances and tailored at iteratively debugging ATL model transformations, although it could

be trivially extended to support other transformation languages based on rules.

The remainder of this paper is organized as follows. Section 2 presents the basics of our approach,

namely it explainsmetamodeling, model transformations and theATL language, and spectrum-based

fault localization. Then, Section 3 details our approach for applying SBFL in MTs, and explains

the proposed methodology for debugging model transformations as well as the implemented

automation. It is followed by a thorough evaluation in Section 4, for which four case studies have

been used. The comparison with the static approach [18] is also presented in this section. Then,

Section 5 presents and describes some works related to ours, and the paper finishes with the

conclusions and some potential lines of future work in Section 6.

2 BACKGROUND
In this section we present the basics to understand our approach. First, an introduction to meta-

modeling and an explanation of its most basic concepts are given. Then, we focus on a detailed

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 J. Troya et al.

explanation of model transformations and the ATL transformation language, followed by the intro-

duction of the ATL MT that serves as running example. Finally, we explain the rationale behind

spectrum-based fault localization.

2.1 Metamodeling
Model-Driven Engineering (MDE) [29] is a methodology that advocates the use of models as first-

class entities throughout the software engineering life cycle. MDE is meant to increase productivity

by maximizing compatibility between systems, simplifying the process of design and promoting

communication between individuals and teams working on the system, since they can all share a

high-level picture of the system.

Metamodels, models, domain-specific languages (DSLs) and model transformations are, among

others, key concepts in MDE. A model is an abstraction of a system often used to replace the system

under study [66, 72]. Thus, (part of) the complexity of the system that is not necessary in a certain

phase of the system development is removed in the model, making it more simple to manage,

understand, study and analyze. Models are also used to share a common vision and facilitate the

communication among technical and non-technical stakeholders [29].

Every model must conform to a metamodel. Indeed, a metamodel defines the structure and

constraints for a family of models [76]. Like everything in MDE, a metamodel is itself a model, and

it is written in the language defined by its meta-metamodel. It specifies the concepts of a language,

the relationships between these concepts, the structural rules that restrict the possible elements in

the valid models and those combinations between elements with respect to the domain semantic

rules.

A metamodel dictates what kind of models can be defined within a specific domain, i.e., it defines

the abstract syntax of a DSL. The concrete syntax of DSLs can be defined in several ways, normally

either graphically or textually. In order to provide a DSL with semantics and behavior, its defining

metamodel may not be enough. Therefore, apart from its concrete and abstract syntaxes, also its

semantics may need to be defined. For instance, model transformations can be used in order to

give semantics to a DSL by translating it to a different domain where further analysis, simulations,

and so on can be performed [104]. This mechanism enables the definition of flexible and reusable

DSLs, where several kinds of analysis can be defined [32, 77].

2.2 Model Transformations
Model transformations play a cornerstone role in Model-Driven Engineering (MDE) since they

provide the essential mechanisms for manipulating and transforming models [16, 97]. They allow

querying, synthesizing and transforming models into other models or into code, so they are essential

for building systems in MDE. A model transformation is a program executed by a transformation

engine that takes one or more input models and produces one or more output models, as illustrated

by the model transformation pattern [28] in Figure 1
2
. Model transformations are developed on

the metamodel level, so they are reusable for all valid model instances. Most MT languages are

composed of model transformation rules, where each rule deals with the construction of part of

the target model. They match input elements from the source model and generate output elements

that compose the target model.

There is a plethora of frameworks and languages to define MTs, such as Henshin [10], AGG [98],

Maude [26], AToM
3
[30], e-Motions [87], VIATRA [27], MOMoT [35–37], QVT [45], Kermeta [56],

JTL [24], and ATL [62]. In most of these frameworks and languages, model transformations are

2
In the paper, we use the terms input/output models/metamodels and source/target models/metamodels indistinctly.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Spectrum-Based Fault Localization in Model Transformations 1:5

Transformation
Specification

Source
Models

Source
Metamodel

Target
Models

Target
Metamodel

«conformsTo» «conformsTo»

Transformation
Engine

«reads» «writes»

«executes»

«refersTo» «refersTo»

Fig. 1. Model transformation pattern (from [28])

composed of transformation rules. Among them, we focus in this paper on the ATL language due

to its importance in both the academic and the industrial arenas.

2.2.1 ATLas Transformation Language. ATL has come to prominence in the model-driven engi-

neering community due to its flexibility, support of the main meta-modeling standards, usability

that relies on strong tool integration with the Eclipse world, and a supportive development com-

munity [61, 85].

ATL is a textual rule-based model transformation language that provides both declarative and

imperative language concepts. It is thus considered a hybridmodel transformation language. AnATL

transformation is composed of a set of transformation rules and helpers
3
. Each rule describes how

certain output model elements should be generated from certain input model elements. Declarative

rules are called matched rules, while (unique) lazy and called rules are invoked from other rules.

Rules are mainly composed of an input pattern and an output pattern. The input pattern is used to

match input pattern elements that are relevant for the rule. The output pattern specifies how the

output pattern elements are created from the input model elements matched by the input pattern.

Each output pattern element can have several bindings that are used to initialize its attributes and

references.

Methods in the ATL context are called helpers. There exist two different, although very similar

from their syntax, kinds of helpers: the functional and the attribute helpers. Both can be defined

in the context of a given data type, and functional helpers can accept parameters, while attribute

helpers cannot. Functional helpers make it possible to define factorized ATL code that can then

be called from different points of an ATL program. Attribute helpers, in turn, can be viewed as

constants.

2.2.2 Transformation Example. The BibTeX2DocBook model transformation [54], taken from the

open-access repository known as ATL Transformation Zoo [12], is used throughout this paper as

running example. It transforms a BibTeXML model to a DocBook composed document. BibTeXML
4

is an XML-based format for the BibTeX bibliographic tool. DocBook [108] is an XML-based format

for document composition.

The aim of this transformation is to generate, from a BibTeXML file, a DocBook document that

presents the different entries of the bibliographic file within four different sections. The first and

second sections provide the full list of bibliographic entries and the sorted list of the different

authors referenced in the bibliography, respectively, while the third and last sections present the

titles of the bibliography titled entries (in a sorted way) and the list of referenced journals (in article

entries), respectively.

The metamodels of this transformation are displayed in Figure 2. The BibTeXML metamodel

(Fig. 2(a)) deals with the mandatory fields of each BibTeX entry (for instance, author, year, title and

journal for an article entry). A bibliography is modeled by a BibTeXFile element. This element is

3
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language

4
http://bibtexml.sourceforge.net/

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
http://bibtexml.sourceforge.net/

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 J. Troya et al.

ATL

TRANSFORMATION EXAMPLE

BibTeXML to DocBook

Date 04/03/2005

__

 Page 1/12

1. ATL Transformation Example

1.1. Example: BibTeXML ���� DocBook

The BibTeXML to DocBook example describes a transformation of a BibTeXML model to a DocBook
composed document. BibTeXML [1] is an XML-based format for the BibTeX bibliographic tool.
DocBook [2], as for it, is an XML-based format for document composition.

The aim of this transformation is to generate, from a BibTeXML file, a DocBook document that
presents the different entries of the bibliographic file within four different sections. The first section
provides the full list of bibliographic entries. The second section provides the sorted list of the different
authors referenced in the bibliography. The third section presents the titles of the bibliography titled
entries (in a sorted way). Finally, the last section provides the list of referenced journals (in article
entries).

1.1.1. Metamodels

This transformation is based on a simplified BibTeXML metamodel which only deals with the
mandatory fields of each BibTeX entries (for instance, author, year, title and journal for an article
entry). The considered metamodel is presented in Figure 1, and provided, in km3 format [3], in
Appendix I. It has been designed in such a way that it should be easily extensible to handle optional
fields (with minor modifications).

Figure 1. The BibTeXML metamodel

A bibliography is modelized by a BibTeX File element. This element is composed of BibTeX Entries
which are each associated with an id. All entries inherit, directly or indirectly, of the abstract BibTeX

entries

authors

(a) BibTeX Metamodel.

{ordered}

{ordered}

(b) DocBook Metamodel.

Fig. 2. Metamodels of the BibTeX2DocBook transformation (from [54])

composed of entries that are each associated with an id. All entries inherit, directly or indirectly,

from the abstract BibTeXEntry element. The abstract classes AuthoredEntry, DatedEntry, TitledEntry
and BookTitledEntry, as well as the Misc entry, directly inherit from BibTeXEntry. Concrete BibTeX
entries inherit from some of these abstract classes according to their set of mandatory fields. There

are 13 possible entry types: PhDThesis, MasterThesis, Article, TechReport, Unpublished, Manual,
InProceedings, Proceedings, Booklet, InCollection, Book, InBook and Misc. An authored entry may

have several authors.

The DocBook metamodel (Fig. 2(b)) represents a limited subset of the DocBook definition. Within

this metamodel, a DocBook document is associated with a DocBook element. Such an element is

composed of several Books that, in turn, are composed of several Articles. An Article is composed of

sections (class named Sect1) that are ordered. A Sect1 is composed of paragraphs (class Para) that
are also ordered within each section. Both Article and Sect1 inherit from the TitledElement abstract
class.

The BibTeX2DocBook model transformation [54] is shown in Listing 1, which contains 9 rules.

We may mention that the transformation is shown here in a “compressed” way in order not to

occupy too much space since, normally, line breaks are used when, for instance, adding a new

binding. The first rule, Main, creates the structure of a DocBook from a BibTeXFile and creates four

sections with their corresponding titles. The paragraphs of each section are to be resolved when

the remaining rules are executed. This rule uses the helpers authorSet, titledEntrySet and articleSet.
They return, respectively, the sequence of distinct authors (with unique names), TitledEntries (with
unique titles) and Articles (with unique journal names) referenced in the input BibTeX model.

Listing 1. BibTeX2DocBook MT.
1 module BibTeX2DocBook;
2 create OUT : DocBook from IN : BibTeX;
3
4 helper def: authorSet : Sequence(BibTeX!Author) =
5 BibTeX!Author.allInstances ()->iterate(e; ret : Sequence(BibTeX!Author) = Sequence {} |
6 if ret ->collect(e | e.author)->includes(e.author) then ret else ret ->including(e)
7 endif)->sortedBy(e | e.author);
8
9 helper def: titledEntrySet : Sequence(BibTeX!TitledEntry) =
10 BibTeX!TitledEntry.allInstances ()->iterate(e; ret : Sequence(BibTeX!TitledEntry) =

Sequence {} |
11 if ret ->collect(e | e.title)->includes(e.title) then ret else ret ->including(e)

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Spectrum-Based Fault Localization in Model Transformations 1:7

12 endif)->sortedBy(e | e.title);
13
14 helper def: articleSet : Sequence(BibTeX!Article) =
15 BibTeX!Article.allInstances ()->iterate(e; ret : Sequence(BibTeX!Article) = Sequence {} |
16 if ret ->collect(e | e.journal)->includes(e.journal) then ret else ret ->including(e)
17 endif)->sortedBy(e | e.journal);
18
19 helper context BibTeX!BibTeXEntry def: buildEntryPara () : String =
20 '[' + self.id + ']'
21 + '␣' + self.oclType ().name
22 + (if self.oclIsKindOf(BibTeX!TitledEntry) then '␣' + self.title else ''endif)
23 + (if self.oclIsKindOf(BibTeX!AuthoredEntry)
24 then self.authors ->iterate(e; str : String = '' | str + '␣' + e.author) else '' endif)
25 + (if self.oclIsKindOf(BibTeX!DatedEntry) then '␣' + self.year else '' endif)
26 + (if self.oclIsKindOf(BibTeX!BookTitledEntry) then '␣' + self.booktitle else '' endif)
27 + (if self.oclIsKindOf(BibTeX!ThesisEntry) then '␣' + self.school else '' endif)
28 + (if self.oclIsKindOf(BibTeX!Article) then '␣' + self.journal else '' endif)
29 + (if self.oclIsKindOf(BibTeX!Unpublished) then '␣' + self.note else '' endif)
30 + (if self.oclIsKindOf(BibTeX!Book) then '␣' + self.publisher else '' endif)
31 + (if self.oclIsKindOf(BibTeX!InBook) then '␣' + self.chapter.toString () else'' endif);
32
33
34 rule Main { -- tr1
35 from
36 bib : BibTeX!BibTeXFile
37 to
38 doc : DocBook!DocBook (books <- boo),
39 boo : DocBook!Book (articles <- art),
40 articles : DocBook!Article (title <- 'BibTeXML␣to␣DocBook ',
41 sections <- Sequence{se1 , se2 , se3 , se4}),
42 se1 : DocBook!Sect1 (title <- 'References␣List',
43 paras <- BibTeX!BibTeXEntry.allInstances ()->sortedBy(e | e.id)),
44 se2 : DocBook!Sect1 (title <- 'Authors␣List',
45 paras <- thisModule.authorSet),
46 se3 : DocBook!Sect1 (title <- 'Titles␣List',
47 paras <- thisModule.titledEntrySet ->collect(e | thisModule.resolveTemp(e, '

title_para '))),
48 se4 : DocBook!Sect1 (title <- 'Journals␣List',
49 paras <- thisModule.articleSet ->collect(e | thisModule.resolveTemp(e, '

journal_para ')))
50 }
51
52 rule Author { -- tr2
53 from
54 a : BibTeX!Author (thisModule.authorSet ->includes(a))
55 to
56 p1 : DocBook!Para (content <- a.author)
57 }
58
59 rule UntitledEntry { -- tr3
60 from
61 e : BibTeX!BibTeXEntry (not e.oclIsKindOf(BibTeX!TitledEntry))
62 to
63 p : DocBook!Para (content <- e.buildEntryPara ())
64 }
65
66 rule TitledEntry_Title_NoArticle { -- tr4
67 from
68 e : BibTeX!TitledEntry (thisModule.titledEntrySet ->includes(e) and
69 not e.oclIsKindOf(BibTeX!Article))
70 to
71 entry_para : DocBook!Para (content <- e.buildEntryPara ()),
72 title_para : DocBook!Para (content <- e.title)
73 }
74
75 rule TitledEntry_NoTitle_NoArticle { -- tr5
76 from
77 e : BibTeX!TitledEntry (not thisModule.titledEntrySet ->includes(e) and
78 not e.oclIsKindOf(BibTeX!Article))
79 to

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 J. Troya et al.

80 entry_para : DocBook!Para (content <- e.buildEntryPara ())
81 }
82
83 rule Article_Title_Journal { -- tr6
84 from
85 e : BibTeX!Article (thisModule.titledEntrySet ->includes(e) and
86 thisModule.articleSet ->includes(e))
87 to
88 entry_para : DocBook!Para (content <- e.buildEntryPara ()),
89 title_para : DocBook!Para (content <- e.title),
90 journal_para : DocBook!Para (content <- e.journal)
91 }
92
93 rule Article_NoTitle_Journal { -- tr7
94 from
95 e : BibTeX!Article (not thisModule.titledEntrySet ->includes(e) and
96 thisModule.articleSet ->includes(e))
97 to
98 entry_para : DocBook!Para (content <- e.buildEntryPara ()),
99 journal_para : DocBook!Para (content <- e.journal)
100 }
101
102 rule Article_Title_NoJournal { -- tr8
103 from
104 e : BibTeX!Article (thisModule.titledEntrySet ->includes(e) and
105 not thisModule.articleSet ->includes(e))
106 to
107 entry_para : DocBook!Para (content <- e.buildEntryPara ()),
108 title_para : DocBook!Para (content <- e.title)
109 }
110
111 rule Article_NoTitle_NoJournal { -- tr9
112 from
113 e : BibTeX!Article (not thisModule.titledEntrySet ->includes(e) and
114 not thisModule.articleSet ->includes(e))
115 to
116 entry_para : DocBook!Para (content <- e.buildEntryPara ())
117 }

The second rule, Author, creates a paragraph for each author and sets as content the author name.

The third one creates a paragraph for each untitled entry and uses helper buildEntryPara in order

to set its content. This helper builds a string containing all information of a given BibTeXEntry. The
fourth rule, TitledEntry_Title_NoArticle, creates two paragraphs for each TitledEntry that is not

an article and that is included in the set of TitledEntry with unique titles (helper titledEntrySet).
The next one, TitledEntry_NoTitle_NoArticle, creates a paragraph for each TitledEntry that is not

an article and is not included in the set of TitledEntry with unique titles. The next two rules,

Article_Title_Journal and Article_NoTitle_Journal, create paragraphs for those articles whose title
is either included in the set of TitledEntry with unique titles or not, respectively. Also, the article

must be included in the set of Articles whose journal name is unique (helper articleSet). Finally, the
eighth and ninth rules, Article_Title_NoJournal and Article_NoTitle_NoJournal, create paragraphs
for those articles whose title is either included in the set of TitledEntry with unique titles or not,

respectively. Also, the article must not be included in the set of Articles whose journal name is

unique (helper articleSet). We refer the interested reader to the document explaining the complete

model transformation [54].

2.2.3 ATL Internal Traces Mechanism. The ATL engine works in two steps. First, all elements are

created. Second, their features are initialized. This second phase implies to resolve the corresponding

references. For instance, in the transformation shown in Listing 1, line 45 initializes the paras
reference of the Sect1 element created. This reference will actually point elements that are created

in the first phase by rule Author, as we explain with an example later.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Spectrum-Based Fault Localization in Model Transformations 1:9

In order to resolve these references, ATL uses an internal tracing mechanism. Thereby, every time

a rule is executed, it creates a new trace and stores it in the internal trace model. A trace model can

be automatically obtained from a transformation execution, e.g., by using Jouault’s TraceAdder [60],
and is composed of a set of traces, one for each rule execution. In our approach, we obtain trace

models that conform to the metamodel displayed in Figure 3(a). A trace captures the name of the

applied rule and the elements instantiating classes of the source metamodel (sourceElems reference)
that are used to create new elements that instantiate classes in the target metamodel (targetElems
reference). The elements pointed by such references are represented with EObject because, when the
metamodel is instantiated in a specific trace model, they can be any element of the source and target

models, respectively. The execution of both imperative –(unique) lazy and called– and declarative

–matched– rules are stored in the traces. This means that we have three models (the source model,

the target model and the trace model) linked by several so-called inter-model references. Therefore,

by navigating the traces, the ATL engine obtains information of which target element(s) have been

created from which source element(s) and by which rule.

An example that reflects the information stored in a trace model is displayed in Figure 3(b). In

the left-hand side of the figure we can see a sample source model composed of three elements. In

the right-hand side we have the target model obtained after transforming elements bib and a —in
order to keep the figure simple, we do not display the transformation of element e. The part in
the middle of the figure represents the trace model. Since two different elements, bib and a, are
transformed by two different rules, we have two traces, tr1 and tr2. The first one, created by the

execution of rule Main, records the generation of elements doc, boo, se2 and art from element bib;
while tr2 stores the generation of p1 from a by rule Author.

The interesting aspect in this figure is the paras reference between se2 and p1 in the target

model, created using the traces. The process how ATL resolves such association is the following.

As mentioned before, after creating all target elements in the first phase, it resolves the references

TraceModel

Trace
ruleName: EString

EObject EObject
[1..*]

sourceElems

[1..*]

targetElems
traces
[1..*]

(a) Trace Metamodel.

bib : BibTexFile

Source model Target model

authors

Trace model

a : Author

author : “C. Smith”

tr1 : Trace
ruleName : “Main”

tr2 : Trace
ruleName : “Author”

sourceElems targetElems

sourceElems

targetElems

t : TraceModel

traces

traces

e : Article

id : “2017-0981”
journal : “TOSEM”

entries

doc : DocBook boo : Book

art : Article

title : “BibTex to
DocBook”

se2 : Sect1

title : “Authors
list”

p1 : Para

content : “C. Smith”

books

sections

paras

articles

(b) Trace Model Sample.

Fig. 3. Traces in Model Transformations

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 J. Troya et al.

in the second phase. In our example, it means resolving the binding in line 45, where helper

authorSet returns all Authors in the source model. Therefore, such binding is expressing that the

paras reference from element se2 in the target model should point all elements of type Author in the

source model, a in our case. Of course, target elements cannot point source elements, so the ATL

engine searches in the traces in order to recover the target elements created from Author elements.

In our example, it recovers element p1, created from Author a, by inspecting trace tr2.
When ATL resolves the references, it recovers the first target element created by the correspond-

ing rule, i.e., the first one that is specified in the rule (right after the to part of the rule). For instance,
element entry_para (line 71 in Listing 1) would be the one recovered when resolving a binding

reference with rule TitledEntry_Title_NoArticle. In order to specify a different element to recover

when resolving the references, ATL provides the resolveTemp function. For instance, the resolveTemp
function used in line 47 makes the engine retrieve the target element identified with the string

“title_para”, i.e., the one created in line 72.

As we explain in Section 3, having this trace information is key in our approach, where we are

interested only in the information of the rules that have been fired in order to apply our SBFL

approach.

Please note that the availability of such a simple trace model is useful in many different model

transformations languages, what also increases the applicability of our approach beyond ATL. For

instance, Falleri et al. [33] propose a simple trace metamodel for Kermeta model transformations,

and Anastasakis et al. [8] simply require the link between source and target models in an Alloy

transformation. Rose et al. [88] mention the Fujaba and the MOLA (graphical transformation

language developed at the University of Latvia) traceability associations, similar to the one we

use, and Troya and Vallecillo [103] apply the same trace metamodel in order to represent model

transformations in Maude. Due to the importance of trace models, Jiménez et al. [73] propose

a toolkit that allows not only the definition of model transformations but also supports trace

generation.

2.3 Spectrum-Based Fault Localization
Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code
coverage information to estimate the likelihood of each program component (e.g., statements) of

being faulty. A program spectrum details the execution information of a program from a certain

perspective, such as branch or statement coverage [50]. Table 1 depicts an example showing how

the technique is applied to a sample program [116]. This programs receives a natural number, a.
If it is bigger than 1, the program must print the result of adding 1 to such number as well as its

double. Otherwise, it must print the number minus 1 as well as the number itself.

Having a look at the table, it horizontally shows the code statements of the program, i.e., its

components. Note that a bug is seeded in statement s7, so that it does not multiply the number by

2. Also note that SBFL considers all lines as statements, so, for instance, the line containing only

the character that closes a branch, ‘}’, conforms statement s11. However, statement s5 includes a
condition as well as the opening of a branch with character ‘{ ’. Therefore, the way of writing a

program may have an impact in the results returned by SBFL techniques. Vertically, the table shows

three test cases of the program. For each test case (i.e., tc1, tc2, and tc3), a cell is marked with “•” if
the program statement of the row has been exercised by the test case of the column, creating what

is known as coverage matrix [4]. Additionally, the final row depicts the outcome of each test case,

either “Successful” or “Failed”, conforming the so-called error vector [4]. Based on this information,

it is possible to identify which components were involved in a failure (and which ones were not),

narrowing the search for the faulty component that made the execution fail.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Spectrum-Based Fault Localization in Model Transformations 1:11

Table 1. An example showing the suspiciousness value computed using Tarantula (taken from [116])

Statement Code tc1 tc2 tc3 NCF NCS Susp Rank

s1 input(a) • • • 1 2 0.5 3

s2 i = 1; • • • 1 2 0.5 3

s3 sum = 0; • • • 1 2 0.5 3

s4 product = 1; • • • 1 2 0.5 3

s5 if (i < a) { • • • 1 2 0.5 3

s6 sum = a + i; • 1 0 1 1

s7 product = a ∗ i; // BUG: 2i → i • 1 0 1 1

s8 } else { • • 0 2 0 10

s9 sum = a − i; • • 0 2 0 10

s10 product = a / i; • • 0 2 0 10

s11 } • • 0 2 0 10

s12 print(sum); • • • 1 2 0.5 3

s13 print(product); • • • 1 2 0.5 3

Execution Results S S F

Once a coverage matrix and an error vector as those shown in Table 1 are constructed, a number

of techniques can be used to rank the program components according to their suspiciousness, that
is, their probability of containing a fault. For instance, a popular fault localization technique is

Tarantula [59], which for a program statement is computed as (NCF /NF)/(NCF /NF + NCS/NS),
where NCF is the number of failing test cases that cover the statement, NF is the total number of

failing test cases, NCS is the number of successful test cases that cover the statement, and NS is the

total number of successful test cases. The suspiciousness score of each statement is in the range

[0,1], i.e., the higher the suspiciousness score of each component, the higher the probability of

having a fault. The values of NCF , NCS and the Tarantula suspiciousness value for each statement

are given in the sixth, seventh and eighth columns of Table 1, respectively. Let us focus for instance

in the row for statement s4. NCF is 1 because only the failing test case tc3 covers the statement.

Then, NCS is 2 because both tc1 and tc2 cover the statement and they are successful test cases. By

applying the formula, we get a value of 0.5 for suspiciousness. Finally, the last column indicates

the position of the statement in the suspiciousness-based ranking where top-ranked statements are

more likely to be faulty. In the example, the faulty statement s7 is ranked first.

The effectiveness of suspiciousness metrics is usually measured using the EXAM score [118, 121],

which is the percentage of statements in a program that has to be examined until the first faulty

statement is reached, i.e.,

EXAMScore =
Number o f statements examined

Total number o f statements

It is noteworthy that suspiciousness techniques may often provide the same value for different

statements, being these tied for the same position in the ranking, e.g., statements s6 and s7 in Table 1.

In order to break ties, different approaches are applicable, such as measuring the effectiveness in

the best-, average- and worst-case scenarios, using an additional technique to break the tie, or

using some simple heuristics such as alphabetical ordering [116]. In the best-case scenario, the

faulty statement is inspected first in the tie. Conversely, the worst-case scenario is the one where it

is inspected last.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 J. Troya et al.

Table 2. Tarantula [59] suspiciousness values for the simplified BibTeX2DocBook MT when OCL2 fails

T. Rule tc02 tc12 tc22 tc32 tc42 tc52 tc62 tc72 tc82 tc92 NCF NU F NCS NU S NC NU SuspRank

tr1 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

tr2 (BUG) • • • • • • • • • 9 0 0 1 9 1 1 1

tr3 • • • • • • • • 7 2 1 0 8 2 0.44 7

tr4 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

tr5 • • • • • • • • • 8 1 1 0 9 1 0.47 6

tr6 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

tr7 • • 2 7 0 1 2 8 1 1

tr8 • • • • • • 5 4 1 0 6 4 0.36 8

tr9 • • • 2 7 1 0 3 7 0.18 9

Test Result F S F F F F F F F F

In our example, assuming that the statement s7 is examined in second place (worst-case scenario),

the EXAM score of Tarantula in the previous example would be
2

13
= 0.153, i.e., 15.3% of the

statements must be examined in order to locate the bug.

The values that the EXAM score can have depend on the number of statements of the program

under test, which goes in the denominator of the formula. In the example, the best EXAM score for

a statement would be
1

13
= 0.0769. This EXAM score indicates that the buggy statement should be

examined first. On the contrary, the worst EXAM value is always 1. In the example, if a statement

is to be inspected last, it has the EXAM score
13

13
= 1. Therefore, the set of values for the EXAM

score, from best to worse, is { 1

num_statements ,
2

num_statements , ...,
num_statements
num_statements }.

3 SPECTRUM-BASED FAULT LOCALIZATION IN MODEL TRANSFORMATIONS
In this section we describe our SBFL approach for debugging model transformations. We first

describe how the coverage matrix and the error vector are constructed. This is followed by an

explanation of the suspiciousness calculation of the different transformation rules and the metric

used for measuring the effectiveness of SBFL techniques. Then we describe the methodology to

apply our approach. The section ends with an explanation of the implementation and automation

of our approach.

3.1 Constructing the Coverage Matrix and Error Vector
The construction of the coverage matrix requires information about the execution of the MT with

a set of source models: S = {s1, s2, ..., sn}. These models must conform to the source metamodel.

The oracle that determines whether the result of a MT is correct or not is a set of OCL assertions:

O = {ocl1,ocl2, ...,oclm}. These assertions are defined by specifying the expected properties of

the output models of the transformation or properties that the <input, output> model pairs must

satisfy. As an example, Listing 2 shows three OCL assertions for the model transformation described

in Section 2.2.2, where classes of the source and target metamodels have the prefixes Src and Trg,
respectively. We consider a test case as a pair composed of a source model and an OCL assertion:

tci j =< si ,oclj >. Therefore, the test suite is composed by the cartesian product of source models

and OCL assertions: T = S ×O = {tc11, tc12, ..., tcnm}. The test case tci j produces an error if the

result of executing the MT with the source model si does not satisfy the OCL assertion oclj . It is
worth noting that OCL assertions must hold for any source model. Therefore, an OCL assertion

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Spectrum-Based Fault Localization in Model Transformations 1:13

is not satisfied for a MT when there is, at least, one test case where it is violated. This means, for

instance, that for ocl1 to be satisfied, it must be satisfied in {tc11, tc21, ..., tcn1}.
We may recall that this paper focuses on debugging and not testing. Thus, we do not impose any

constraint on how the source models are generated, either manually or automatically, neither on

the type of OCL assertions used. However, please note that the effectiveness of SBFL is directly

related to the design of the test cases. For instance, having only one test case is useless, since no

coverage matrix can be created. Besides, the source models should have a good coverage of the MT

and, at the same time, be diverse. This way, different source models will likely fire different parts

of the model transformation, and together they will exercise all rules and will produce a useful

spectra.

Table 2 depicts a sample coverage matrix constructed using our approach. Horizontally, the

table shows the transformation rules in which we aim to locate bugs. In particular, we list the 9

transformation rules <tr1, tr2, . . . , tr9> of the BibTeX2DocBook example [54], where a bug has been

seeded in tr2. Vertically, the table shows 10 test cases aiming to check the correctness of constraint

OCL2 in Listing 2, <tc02, tc12, . . . , tc92>. A cell is marked with “•” if the transformation rule of the

row has been exercised by the test case of the column. The information about the rules triggered by

a given test case can be collected by inspecting the trace model, e.g., using Jouault’s TraceAdder [60]
(cf. Section 2.2.3). The final row depicts the error vector with the outcome of each test case, either

successful (“S”) or failed (“F”). In the example, all test cases fail except tc12, i.e., OCL2 is violated.
Note that by grouping those test cases using the same OCL assertion we can simplify debugging

by providing not only the most suspicious transformation rules, but also the specific assertion

revealing the failure. This is very useful for the user of our approach, since (s)he can focus on the

non-satisfied assertion in order to repair the model transformation when the faulty rule is found.

In practice, this means that our approach needs to generate a coverage matrix and an error vector

for each violated OCL assertion, since each of them is dealt with independently from the others.

Listing 2. Sample OCL assertions for the BibTeX2DocBook MT.
1 --OCL1. The main Article must be properly created and named
2 TrgBook.allInstances ()->forAll(b|b.articles ->exists(a|a.title='BibTeXML␣to␣DocBook '))
3 --OCL2. For each author , there must be a paragraph with the name of the author within a

section named 'Authors List'
4 SrcAuthor.allInstances ()->forAll(a|TrgPara.allInstances ()->exists(p|p.content=a.author and

p.section.title='Authors␣List'))
5 --OCL3. The titles of all publications must appear in the content of a paragraph of a

section
6 SrcTitledEntry.allInstances ()->forAll(te|TrgSect1.allInstances ()->exists(s|s.paras ->exists

(p|p.content=te.title)))
7 --OCL4. There must be the same number of BibTexFile and DocBook instances
8 SrcBibTexFile.allInstances ()->size()=TrgDocBook.allInstances ()->size()

3.2 Calculating Suspiciousness
The following notation will be used throughout the paper and is used in our implementation to

compute the suspiciousness of transformation rules from the information collected in the coverage

matrix and the error vector. This notation is directly translated from the context of SBFL in software

programs [116] by using transformation rules as the components (e.g., instead of statements),

namely:

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 J. Troya et al.

Model
Transformation

Source Models

OCL Assertions

SBFL
applied to

Model
Transformations

any
failure?

set of non-satisfied
OCL assertions

OCLi

OCLj

…

trm

trn

trl

…

trn

trm

trp

…

Suspiciousness-
based ranking

for OCLi

Suspiciousness-
based ranking

for OCLj

Fixed
Model

Transformation

User locates and
fixes the faulty rules

no

yes

Debugging
ends

…

1
2

3

4
5

Fig. 4. Debugging of a MT applying our SBFL approach

NCF number of failed test cases that cover a rule

NU F number of failed test cases that do not cover a rule

NCS number of successful test cases that cover a rule

NU S number of successful test cases that do not cover a rule

NC total number of test cases that cover a rule

NU total number of test cases that do not cover a rule

NS total number of successful test cases

NF total number of failed test cases

Table 2 shows the values of NCF , NU F , NCS , NU S , NC and NU for each transformation rule. The

values of NS and NF are the same for all the rows, 9 and 1 respectively, and are omitted. Based on

this information, the suspiciousness of each transformation rule using Tarantula is depicted in the

column “Susp”, followed by the position of each rule in the suspiciousness-based ranking. In the

example, the faulty rule tr2 is ranked first, tied with tr7. Assuming that the faulty rule was inspected

in the second place (worst-case scenario), the EXAM score would be calculated as
2

9
= 0.222%, i.e.,

22.2% of the transformation rules need to be examined in order to locate the bug.

3.3 Methodology
In this section, we describe the proposed methodology to help developers debug model transforma-

tions by using our approach based on spectrum-based fault localization. It is graphically depicted

in Figure 4.

(1) The inputs have to be provided, namely the Model Transformation under test as well as the

sets of Source Models and OCL Assertions.
(2) The approach executes and indicates whether there is any failure, ending the process if there

is none.

(3) If there is a failure, it indicates the set of non-satisfied OCL assertions, i.e., those that are

violated for at least one test case. As explained in Section 3.1, it constructs a coverage matrix

and an error vector for each non-satisfied assertion and returns the suspiciousness-based
rankings in each case.

(4) The user picks the ranking of one of the OCL assertions in order to locate and fix the faulty
rule that made the assertion fail. As described in Section 4.2.5, we study the effectiveness of 18

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Spectrum-Based Fault Localization in Model Transformations 1:15

Model
Transformation
Under Test

Input Model 1
2

n

Output Model 1
2

n

Input
Metamodel

Output
Metamodel

Trace Model 1
2

n

Trace
Metamodel

Merge Models
Transformation

Joint Model 1
2

n

Merge Metamodels
Transformation

Joint
Metamodel

OCL Checker
[OCL Classic SDK]

Set of OCL
Assertions

Joint
Genmodel

Code

Matrices with
(Non-)Satisfaction
of OCL Assertions

Suspiciousness-
Based Rankings
Computation

Suspiciousness-
Based Rankings

EXAM Score
Computation

EXAM Scores

Information
About Buggy

Rules

1

2

3

4
5

6

artifact

input artifact

output artifact

execution engine

input

output

conformanceEMF Generator
Model

Fig. 5. Implementation and Automation of our Approach

SBFL techniques. The idea is to use the ranking of the best techniques, which are discovered

in Sections 4.3 and 4.4.

(5) Now, the user has a Fixed Model Transformation that has potentially less bugs than the original
Model Transformation. The user can decide whether to use it as input for the approach,

together with the Source Models and OCL Assertions, or to keep repairing it according to the

suspiciousness rankings obtained for the remaining non-satisfied OCL assertions.

(6) In the upcoming execution of the approach with the Fixed Model Transformation, less OCL
assertions should be violated, and the user would repeat the process to keep fixing the bugs.

This process is repeated iteratively until all bugs have been fixed.

3.4 Implementation and Automation
Our approach is supported by a toolkit. It has been implemented for debugging ATL model trans-

formations. Within one run, it executes the MT with all the input models, checks which assertions

are violated and returns the suspiciousness-based rankings for the violated assertions together

with the corresponding coverage matrices and error vectors. Additionally, if we indicate as input

the faulty rules, the approach also returns the EXAM score of the results. This is possible thanks

to a Java program from which ATL transformations can be triggered, indicating their inputs and

doing any post-processing with the outputs. In this section we describe the implemented tasks

used for automating and orchestrating all this process.

The overview of the implementation and automation of our approach is depicted in Figure 5. As

we can see, it consists of six steps, which are explained in the following:

(1) The tool of which we have made use for checking the satisfaction of the OCL assertions is

OCL Classic SDK: Ecore/UML Parsers, Evaluator, Edit5, which is part of the Eclipse Modeling
Tools. With this tool, we can check the satisfaction of OCL assertions of a given model

conforming to a metamodel. However, in our approach, the OCL assertions are typically

5
https://eclipse.org/modeling/mdt/downloads/?project=ocl

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

https://eclipse.org/modeling/mdt/downloads/?project=ocl

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 J. Troya et al.

defined on both metamodels, namely the input and output metamodels. For this reason, we

need to merge both metamodels into one, and same thing for the <input, output> model pairs.

Therefore, the first step in our approach takes the Input Metamodel and Output Metamodel as
input and, with the Merge Metamodels Transformation, it creates a Joint Metamodel. Due to
the possibility of having classes with the same name in the input and output metamodels,

this transformation puts the prefixes “Src” and “Trg” in all classes of the input and output

metamodels, respectively.

Besides, the OCL Checker requires the Java code of the Joint Metamodel. This can be generated

out of the box by the EMF Generator Model, so this is included in this first step.

(2) The next step in our approach is to run the ATL Transformation Under Test with all the Input
Models in order to generate the corresponding Output Models. Our Java program orchestrates

all these model transformation executions.

(3) For the same reason as explained in the first step, we need to merge the input and output

models into the so-called Joint Models. These models must conform to the Joint Metamodel
obtained in the first step. The Merge Models Transformation generates all the Joint Models for
all the <InputModeli ,OutputModeli> pairs.

(4) The next step is to check the Set of OCL Assertions. This must be done for all the Joint Models
constructed after the executions of the model transformation. As explained in the first step,

we need for this the Java code obtained from the Joint Metamodel. This step produces as

output information about the satisfiability of the OCL assertions, captured in the figure

as Matrices with (Non-)Satisfaction of OCL Assertions. This is different from the coverage

matrices explained before, since the purpose now is to identify those OCL assertions that fail

for at least one test case, so that coverage matrices and error vectors will be then computed

for such assertions. This matrix, used internally by the program, has the OCL assertions

as rows and the joint models as columns. Cell <i, j> is assigned 1 if the i-th OCL assertion

is not satisfied when executing the model transformation with the j-th input model, and 0
otherwise. Therefore, an OCL assertion has failed when there is at least a 1 in its row.

(5) With the information obtained in the previous step, plus the information of the rules exe-

cution stored in the Trace Models (cf. Section 2.2.3), this step, namely Suspiciousness-Based
Rankings Computation produces the Suspiciousness-Based Rankings for all the non-satisfied
OCL assertions. In our implementation, we have integrated 18 techniques, so 18 rankings for

each non-satisfied assertion are computed. Any other technique can be trivially included in

our tool.

In order to obtain these rankings, we first need to construct the coverage matrices and

error vectors. This is done with the information of the (non-)satisfied OCL assertions in the

execution of each input model. For the coverage information, we need the Trace Models. This
means that the coverage matrices are constructed by reading all trace models. As we see

for instance in Table 2, the coverage matrices store information of the rules exercised in the

execution with each input model. For the creation of the error vectors, we need information

of the non-satisfied OCL assertions.

With the information of the coverage matrices and error vectors, we are able to automatically

compute the 8 values described in Section 3.2 for computing the suspiciousness, namely NCF ,

NU F , NCS , NU S , NC , NU , NS , NF . Finally, with these values and the formulae for calculating

the suspiciousness with the 18 techniques considered in this study (cf. Section 4.2.5 and

Table 6), we obtain the Suspiciousness-Based Rankings. These rankings, together with the

coverage matrices, error vectors and values are returned as comma-separated values (CSV)

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Spectrum-Based Fault Localization in Model Transformations 1:17

files by our tool. In particular, it returns a detailed CSV file for each non-satisfied OCL

assertion.

(6) Finally, our tool returns the EXAM scores –in the best-case, worst-case and average-case

scenarios (cf. Section 4.2.6)– for all the 18 techniques and for every non-satisfiedOCL assertion.

This information is inserted in the CSV files mentioned before. As explained in Section 3.2,

this score basically measures the percentage of rules that need to be checked until the faulty

rule is found. For this reason, we need as input information of which the buggy rules are,

represented in the figure as Information About Buggy Rules. The automatic computation of

the EXAM score has been extremely useful for evaluating our approach, since no manual

calculations have been needed. The results of the evaluation are described in next section.

4 EVALUATION
4.1 ResearchQuestions
The research questions (RQs) that we want to answer in this work are the following:

• RQ1 - Feasibility. Is it possible to automate the process of locating faults in model transforma-
tions applying spectrum-based techniques? Since, at the time of writing, there was no proposal

for applying spectrum-based techniques for locating faults in model transformations, we

want to answer whether this is feasible. This means, we want to check whether it is possible

to automatically obtain for a model transformation a suspiciousness-based ranking, according

to SBFL techniques, that indicates which rules should be inspected first in case of failure.

• RQ2 - Effectiveness. How effective are state-of-the-art techniques for suspiciousness computa-
tion in the localization of faulty rules in model transformations? Since many techniques have

been proposed in the literature in different fields, we want to determine how they behave,

comparing among each other, in the context of model transformations. This means we want

to study which techniques provide the best suspiciousness-based rankings and which ones

provide the worst rankings.

• RQ3 - Accuracy. Is our approach able to accurately locate faulty rules in model transforma-
tions? After studying the 18 techniques and comparing them, we want to conclude whether

it is possible to state that applying spectrum-based techniques can accurately help the de-

veloper in the debugging of model transformations. This will be answered affirmatively if

the techniques that are more effective, according to the answer to the previous RQ, provide

accurate suspiciousness-based rankings.

• RQ4 -Dynamic vs Static. How does our approach behave in comparison with a static approach?
Being our approach dynamic, we want to compare its performance with a notable approach

for locating bugs in model transformations applying a static approach [18].

4.2 Experimental Setup
4.2.1 Case Studies. We have used four case studies in order to evaluate our approach and

developed solution. Two of them have been taken from the open-source ATL Zoo respository [12]

and the two others from research projects and tools. They all differ regarding the application

domains, size of metamodels and the number and types of ATL features used. Table 3 summarizes

some information regarding the transformations. For instance, the size of the metamodels vary

from 4 to 33 classes in the input metamodels and from 8 to 77 classes in the output metamodels.

Regarding the size of the transformations, the number of rules range from 8 to 39 (in the table, M
stands for matched rules, (U)L for (unique) lazy rules and C for called rules), and the lines of code

(LoC) from 53 to 1055. This means that the smaller transformation is approximately 20 times smaller,

in terms of LoC, than the biggest one. Furthermore, the transformations contain from no helper to

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 J. Troya et al.

Table 3. Model transformations used as case studies and their characteristics

Transformation
Name

Classes MM
Input - Output # LoC # Rules

M-(U)L-C # Helpers Rule
inheritance

Imperative
part Conditions Filters resolveTemp

UML2ER 4 - 8 53 8-0-0 0 X × × × ×
BibTeX2DocBook 21 - 8 393 9-0-0 0 × × X X X

CPL2SPL 33 - 77 503 18-1-0 6 × × X X ×
Ecore2Maude 13 - 45 1055 7-7-25 41 × X X X X

41 of them. The table includes further information, namely whether rule inheritance, imperative

rules, conditions and filters are used within the transformations. We have slightly tweaked some

transformations in order to increase their variability. For instance, in the BibTeX2DocBook we have

integrated the helpers within the rules, since the same transformation with the same behavior

can be written with and without helpers [81], or in the CPL2SPL we have included some rules to

transform features that were not included in the original transformation. All transformations are

available on our website [101] and briefly described in the following:

• UML2ER. This transformation is taken from the structural modeling domain. It generates

Entity Relationship (ER) diagrams fromUMLClass Diagrams. This transformation is originally

taken from [112], and we have considered the version proposed in [18], which represents

an extension. The aspect to highlight in this model transformation is the high use of rule

inheritance. If Ri < Rj means that Ri inherits from Rj , then we have R8,R7 < R6; R6,R5 < R4;
R4,R3,R2 < R1. The presence of inheritance may worsen the results of SBFL techniques.

Imagine we have, for instance, R3 < R2 < R1 in a model transformation and rule R3 is

executed. In the trace, it is stored not only the execution of R3, but also the execution of R2
and R1, since the code in the out part of these rules is actually executed. Therefore, if we have
an error in one of the three rules, the suspiciousness rankings will not make any difference

between the three rules, having the three of them the same suspiciousness value.

• BibTeX2DocBook. This case study is the one used as running example in our paper. It is

shown in Listing 1, and a complete description is available on [54].

• CPL2SPL. This transformation, described in [63], is a relatively complex example available

in the ATL Zoo [12]. It handles several aspects of two telephony DSLs, SPL and CPL, and

was created by the inventors of ATL.

• Ecore2Maude. This is a very large model transformation that is used by a tool called e-
Motions [87]. It converts models conforming to the Ecore metamodel into models that conform

to the Maude [26] metamodel, in order to apply some formal reasoning on them afterwards.

4.2.2 Test Suite. Since this is a dynamic approach, we need input models in order to trigger the

model transformations. For evaluating our work, we have developed a light-weight random model

generator that, given any metamodel, produces a user-defined number of random model instances.

The rationale behind our model generator is to produce a set of models with a certain variability

degree. It creates an instance of the root class of the metamodel and, from such instance, it traverses

the metamodel and randomly decides, for each containment relationship, how many instances

to create for each contained class, if any. This process is repeated iteratively until the whole

metamodel is traversed. After all instances and containment relationships are set, non-containment

relationships are created, respecting the multiplicities indicated in the metamodel. Also, attributes

are given random values. Alternatively, it is possible to generate models with some predefined

structure, by indicating the minimum and maximum number of entities to create. The values to be

given to specific attributes can also be preset by the user.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Spectrum-Based Fault Localization in Model Transformations 1:19

Table 4. Case studies and artifacts for the evaluation

Case study # Input
models

OCL assertions
(/ from [18])

Test suite
(|T | = |S | × |O |) #Mutants # OCL assertions

violated

UML2ER 100 14 / 10 1400 18 90

BibTeX2DocBook 100 27 / 16 2700 40 269

CPL2SPL 100 34 / 15 3400 50 150

Ecore2Maude 100 42 / 3 4200 50 155

Total 400 117 / 44 11700 158 664

For our evaluation, we have created 100 models conforming to the input metamodel of each

of the case studies with our model generator. We may mention that any model generator tool

that produces models with a certain degree of variability could be used for generating the models

–recall that such variability is necessary so that the input models exercise different parts of the

transformation, producing a useful spectra. For instance, the EMF (pseudo) random instantiator
could be used

6
. Also, if there were enough models available produced manually, then these could

be used and we would not need to execute any models generator.

In total, we have created 117 OCL assertions for the four case studies, as displayed in the first

part of column 3 in Table 4. These assertions are satisfied by the original version of the model

transformations. Some of them correspond to the OCL assertions defined in the static approach by

Burgueño et al. [18], since we want to compare our approach with this one (cf. Section 4.5)—see

second part of column 3. As indicated in the table, we use 100 input models for evaluating each

case study. According to Section 3.1, the total number of test cases is measured as the cartesian

product of input models and OCL assertions: |T | = |S | × |O |. As shown in the table, we have 1400,

2700, 3400 and 4200 test cases in each of the transformations, having a total of 11700 test cases.

4.2.3 Mutants. In order to test the usability and effectiveness of our approach, we apply mutation

analysis [58], so that we have produced mutants for all model transformations, where artificial

bugs have been seeded. We have used the operators presented in [99] and have applied them in

the different case studies. The aim of these operators is the same as the ones presented by Mottu

et al. [78], i.e., they try to mimic common semantic faults that programmers introduce in model

transformations. While Mottu et al. propose operators independent of any transformation language,

we use a set of operators specific for ATL [62]. For instance, Mottu et al. [78] present several

operators related to model navigation, such as ROCC: relation to another class change, which in [99]

it is materialized as binding feature change.
Recall that the aim of our approach is to semantically check the correctness of model transfor-

mations against a set of OCL assertions, and to help localize the bugs. These OCL assertions are

specified on input and output models. This means that, in order to be able to apply the approach,

the model transformation needs to finish, i.e., it must generate output models. For this reason, the

model transformation mutants that we have generated do not throw runtime errors for any of the

test models created, i.e., they all finish their execution and generate output models. In order to

be able to have such restricting mutants and as many other approaches do [9, 46, 78], we have

generated them manually using the operators proposed in [99].

In total, we have manually created 158 mutants, where each mutant is a variation of the original

model transformation. For instance, Listing 3 displays the excerpt of a mutant where the operator

6
It is described on http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 J. Troya et al.

binding deletion is used for deleting the only binding of rule 2. Our set of OCL assertions in the

different case studies is complete enough as to kill all 158 mutants, i.e., all mutants make at least

one OCL assertion fail, indicating there is an error in the MT. Table 4 displays the number of

mutants that have been created for each case study (column 5), while Table 5 presents the mutation

operators [99] that have been used for creating the mutants, and the number of mutants in which

the operators are applied. Please note that fewer mutants have been created for the UML2ER case

study. This is due to the fact that this model transformation is the smallest one, and it is actually

almost four times smaller than the second smaller one in terms of lines of code (cf. Table 3).

We may mention that more than one mutation operators can be used for constructing one mutant.

For instance, we can combine out-pattern element addition with binding addition in order to create

a mutant that adds one more target element and updates one of its features. We have also created

mutants with more than one faulty rule. The reason for including higher-order mutants [57, 82] is

the definition of realistic mutants, i.e., mutants that produce valid models and reproduce typical

mistakes caused by developers. In fact, as presented in the survey on software fault localization by

Wong et al. [116], having programs with a single bug (i.e., each faulty program has exactly one

bug) is not the case for real-life software, which in general contains multiple bugs. Results of a

study [49] based on an analysis of fault and failure data from two large, real-world projects show

that individual failures are often triggered by multiple bugs spread throughout the system. Another

study [69] also reports a similar finding. The very same reality occurs in model transformations,

where it is not common to have isolated faults located in only one rule. Indeed, since some rules

have implicit relations among them (cf. Section 2.2.3), it is very common to have errors spread in

several rules.

Listing 3. Excerpt of a mutant of BibTeX2DocBook MT.
1 rule Author { -- tr2
2 from
3 a : BibTeX!Author (thisModule.authorSet ->includes(a))
4 to
5 p1 : DocBook!Para () --binding deletion
6 }

4.2.4 Set of Non-Satisfied OCL Assertions. As described, we have produced 158 mutants that

correspond to buggy versions of the model transformations in the different case studies. Each one

of them may violate one or more of the OCL assertions defined for the corresponding case study

(of course, more than one mutant may violate the same assertion). In total, the 158 mutants make

664 OCL assertions fail, as displayed in the last column of Table 4, so the results of our evaluation

are extracted from the 664 suspiciousness-based rankings obtained, one for each violated assertion.

These rankings are the results of suspiciousness values calculated with 664 coverage matrices and

with the corresponding 664 error vectors. These coverage matrices have different sizes depending

on the case study. All of them have 100 columns, since we are using 100 input models, and the

number of rows is determined by the number of rules in the model transformation.

4.2.5 Techniques for Suspiciousness Computation. We are interested in studying how different

techniques
7
for computing the suspiciousness of program components behave in the context of

model transformations. To this end, we have surveyed papers that apply spectrum-based fault

localization techniques in different contexts and have selected the 18 techniques that, together with

their corresponding formulae, are displayed in Table 6. Tarantula [59] is one of the best-known fault

localization techniques. It follows the intuition that statements that are executed primarily by more

7
Throughout the evaluation, we use the terms techniques and metrics indistinctly

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Spectrum-Based Fault Localization in Model Transformations 1:21

failed test cases are highly likely to be faulty. Additionally, statements that are executed primarily

by more successful test cases are less likely to be faulty. The Ochiai similarity coefficient is known

from the biology domain and it has been proved to outperform several other coefficients used in

fault localization and data clustering [3]. This can be attributed to the Ochiai coefficient being

more sensitive to activity of potential fault locations in failed runs than to activity in passed runs.

Ochiai2 is an extension of such technique [11, 79, 116]. Kulczynski2, taken from the field of artificial

intelligence, and Cohen have showed promising results in preliminary experiments [79, 118]. Russel-
Rao has shown different results in previous experiments [86, 117, 118], while Simple Matching has

been used in clustering [79]. Reogers & Tanimoto presented a high similarity with Simple Matching
when ranking in the study performed in [79]. The framework called Barinel [70] combines spectrum-

based fault localization and model-based debugging to localize single and multiple bugs in programs.

Zoltar [55] is also a tool set for fault localization. Arithmetic Mean, Phi (Geometric Mean), Op2
and Pierce have been considered in some comparative studies with other metrics [79, 116, 118].

Mountford behaves as the second best technique, among 17 of them, for a specific program in a

study performed in [115], where Baroni-Urbani & Buser is also studied. As for D*, its numerator,

(NCF)∗, depends on the value of ‘*’ selected. This technique resulted the best technique in the study

performed in [114], where ‘*’ was assigned a value of 2. We have followed the same approach, so

we have (NCF)2 in the numerator of the formula.

Note that the computation of these formulae may result in having zero in a denominator. Different

approaches mention how to deal with such cases [80, 119, 120]. Following the guidelines of these

works, if a denominator is zero and the numerator is also zero, our computation returns zero.

However, if the numerator is not 0, then it returns 1 [120].

4.2.6 Evaluation Metric. In order to compare the effectiveness of the different SBFL techniques,

we apply the EXAM score described in Section 2.3. In the context of this work, this score indicates

the percentage of transformation rules that need to be examined until the faulty rule is reached. Its

value is in the range [1/(num rules), 1], and the higher its value, the worse.

Table 5. Mutation operators used and number of mutants where they are applied

Mutantion Operator (from [99]) UML2ER BT2DB CPL2SPL Ecore2Maude Total

In-pattern element addition 1 2 5 3 11

In-pattern element class change 0 1 4 0 5

Filter addition 1 0 5 5 11

Filter deletion 0 3 1 0 4

Filter condition change 3 6 1 0 10

Out-pattern element addition 4 5 11 10 30

Out-pattern element deletion 0 3 4 8 15

Out-pattern element class change 2 3 6 0 11

Out-pattern element name change 0 1 0 3 4

Binding addition 2 3 8 0 13

Binding deletion 3 13 17 11 44

Binding value change 3 17 12 15 47

Binding feature change 1 1 5 6 13

Total mutation operators used 20 58 79 61 218

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 J. Troya et al.

Table 6. Techniques applied for suspiciousness computation

Technique Formula

Arithmetic Mean [118]
2(NCF ×NUS −NU F ×NCS)

(NCF +NCS)×(NUS +NU F)+(NCF +NU F)×(NCS +NUS)

Barinel [2] 1 − NCS
NCS +NCF

Baroni-Urbani & Buser [115]

√
NCF×NUS+NCF√

NCF×NUS+NCF+NCS+NU F

Braun-Banquet [116]
NCF

max (NCF +NCS ,NCF +NU F)

Cohen [79]
2×(NCF ×NUS −NU F ×NCS)

(NCF +NCS)×(NUS +NCS)+(NCF +NU F)×(NU F +NUS)

D* [114]
(NCF)∗

NCS+NF+NCF

Kulczynski2 [79]
1

2
× (NCF

NCF +NU F
+

NCF
NCF +NCS

)

Mountford [115]
NCF

0.5×((NCF ×NCS)+(NCF ×NU F))+(NCS ×NU F)

Ochiai [3]
NCF√

NF ×(NCF +NCS)

Ochiai2 [11]
NCF×NUS√

(NCF+NCS)×(NUS+NU F)×(NCF+NU F)×(NCS+NUS)

Op2 [79] NCF − NCS
NS +1

Phi [75]
NCF ×NUS −NU F ×NCS√

(NCF +NCS)×(NCF +NU F)×(NCS +NUS)×(NU F +NUS)

Pierce [116]
(NCF×NU F)+(NU F×NCS)

(NCF×NU F)+(2×NU F×NUS)+(NCS×NUS)

Rogers & Tanimoto [74]
NCF+NUS

NCF+NUS+2(NU F+NCS)

Russel-Rao [86]
NCF

NCF +NU F +NCS +NUS

Simple Matching [116]
NCF +NUS

NCF +NCS +NUS +NU F

Tarantula [59]

NCF
NF

NCF
NF

+
NCS
NS

Zoltar [55]
NCF

NCF +NU F +NCS +
10000×NU F ×NCS

NCF

Since there can be ties in the rankings obtained from the suspiciousness values, we compute the

EXAM scores in the best-, worst- and average-case scenarios. If the faulty rule is ranked in the

same position as several other rules, the best-case scenario assumes that the faulty rule is inspected

first. In this sense, if the faulty rule is tied with many other rules, the EXAM score is likely to be

low. On the contrary, the worst-case scenario assumes that the faulty rule is inspected last. For

this reason, if the faulty rule is tied with many other rules, the EXAM score is likely to be high.

In-between we have the average-case scenario, which considers that the faulty rule is located in

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Spectrum-Based Fault Localization in Model Transformations 1:23

the middle place of a tie. Therefore, if it is in a tie with (n − 1) other rules, it will be inspected in

the (n/2)th position.

4.2.7 Execution Environment. All the runs have been executed in a PC running the 64-bits OS

Windows 10 Pro with processor Intel Core i7-4770 @ 3.40GHz and 16 GB of RAM. We have used

Eclipse Modeling Tools version Mars Release 2 (4.5.2), and we had to install the plugins ATL (we

have used version 3.6.0) and ATL/EMFTVM (version 3.8.0). Finally, Java 8 is required.

4.3 Experimental Results
Table 7 shows the descriptive statistics of the EXAM score for each suspiciousness computation

technique when applied to each case study on the three evaluation scenarios (average-, best- and

worst-case scenarios)—ignore for now the rows with the numbers for Burgueño’15, as those numbers

are commented in Section 4.5.3. We may recall that the EXAM score, in the range (0, 1], indicates the
percentage of transformation rules that need to be inspected in order to locate the faulty rule. This

score is never 0, since the inspection of the faulty rule counts. For this reason, since the MTs under

test for each case study contain a different number of rules (9 in Bibtex2DocBook, 19 in CPL2SPL,
39 in Ecore2Maude, and 8 in URML2ER), the best possible values (the case where the faulty rule is

ranked first in the suspiciousness rank) for the score are:
1

9
= 0.1, 1

19
= 0.052631, 1

39
= 0.025641,

and
1

8
= 0.125, respectively. Conversely, the worst value is always 1 = 9

9
= 19

19
= 39

39
= 8

8
(the faulty

rule is ranked last). The table also shows, in the last two columns, the average mean and standard

deviation values considering all case studies.

Having a look at the average EXAM scores in the average-case scenario, we observe there are

8 techniques where less than 25% of the rules need to be inspected in order to locate the faulty

rule, i.e., their EXAM score is below 0.25. These are, ordered from lower to higher percentage,

Mountford, Kulcynski2, Ochiai, Zoltar, Phi, Arithmetic Mean, Braun-Banquet, and Op2. If we have a
look at these 8 techniques in the best-case scenario, we see that Phi and Arithmetic Mean have the

lowest, therefore best, numbers. However, their numbers are the worst among these techniques

in the worst-case scenario, implying that these techniques produced quite a large number of ties.

Observing the 8 techniques in the worst-case scenario, we see that Mountford and Kulcynski2 are
able to locate the faulty rule by inspecting less than 23% of the rules, so they seem to be the best

techniques. In particular, Kulcynski2 is able to locate the faulty rule first in the rank in 45% of the

cases in the worst-case scenario, and it ranks the guilty rule in the top 3 –i.e., only up to 3 rules

need to be inspected in order to locate the fault– in 70% of the cases. The EXAM scores for these

two techniques in the worst-case scenario are similar to the ones in the best- and average-case

scenarios, concluding that there are not many ties. These two techniques are closely followed by

Ochiai and Zoltar, techniques that do not produce many ties either and that are able to locate the

faulty rule by inspecting less than 25% of the rules in the worst-case scenario. We can conclude that

the four techniques with best results are, in this order, Kulcynski2, Mountford, Ochiai and Zoltar.
However, this ordering is not strict, since they behave slightly differently among them depending

on the case study. In particular, in order to locate the fault, these techniques lead the debugger to

inspect between 1.59 and 1.84 (out of 9) rules in BibTex2DocBook, 2.98 and 3.5 (out of 19) rules in

CPL2SPL, between 4.78 and 7.68 (out of 39) rules in Ecore2Maude, and between 2.65 and 2.69 (out of

8) rules in UML2ER in the average-case scenario. The average standard deviation in all scenarios is

around 0.2 for these four techniques, meaning that the results they provide are quite stable.

Going back to the average-case scenario and looking for techniques that give bad results, there

are 5 techniques that need to inspect more than 30% of the rules in order to locate the faulty one,

namely Barinel, Russel Rao, Tarantula, Dstar and Pierce. Interestingly, the worst technique, so-called
Pierce [116], needs to inspect more than 63% of the rules. This means that it performs even worse

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 J. Troya et al.

Table 7. Descriptive statistics of the EXAM score per scenario and case study and overall values

Technique Bibtex2DocBook CPL2SPL Ecore2Maude UML2ER AVERAGE
mdn mean sd mdn mean sd mdn mean sd mdn mean sd mean sd

AC

Arithmetic Mean .111 .284 .240 .105 .166 .171 .077 .175 .181 .188 .313 .229 .234 .205

Barinel .333 .391 .216 .184 .245 .146 .192 .237 .172 .406 .363 .176 .309 .178

Braun-Banquet .222 .277 .182 .105 .192 .199 .090 .160 .179 .188 .337 .319 .242 .219

B-U & Buser .333 .365 .236 .105 .172 .189 .077 .134 .142 .188 .336 .319 .252 .221

Cohen .333 .343 .229 .105 .169 .170 .077 .176 .182 .188 .313 .229 .250 .202

Dstar .222 .326 .310 .263 .293 .213 .231 .423 .344 .469 .537 .298 .395 .292

Kulcynski2 .111 .177 .142 .105 .185 .203 .077 .133 .139 .188 .331 .313 .207 .199

Mountford .111 .204 .151 .053 .157 .194 .077 .123 .111 .188 .337 .316 .205 .193

Ochiai .111 .188 .147 .105 .185 .193 .077 .134 .143 .188 .333 .318 .210 .200

Ochiai2 .444 .443 .270 .105 .180 .191 .077 .175 .182 .188 .313 .229 .278 .218

Op2 .111 .182 .149 .105 .226 .217 .154 .245 .228 .188 .331 .313 .246 .227

Phi .111 .268 .237 .105 .166 .172 .077 .172 .179 .188 .313 .229 .230 .204

Pierce .833 .682 .285 .737 .636 .283 .667 .596 .203 .688 .611 .301 .631 .268

Rogers & Tani. .556 .454 .277 .053 .206 .235 .077 .132 .140 .188 .302 .289 .273 .235

Russel Rao .222 .255 .121 .105 .240 .222 .333 .367 .182 .375 .438 .262 .325 .197

Simple Matching .556 .454 .277 .053 .206 .235 .077 .132 .140 .188 .302 .289 .273 .235

Tarantula .333 .398 .221 .092 .164 .191 .167 .211 .172 .438 .499 .259 .318 .211

Zoltar .111 .177 .142 .105 .182 .198 .154 .197 .185 .188 .331 .313 .222 .209

Burgueño’15 .388 .436 .245 .105 .239 .224 .167 .317 .312 .375 .476 .297 .367 .269

BC

Arithmetic Mean .111 .260 .233 .105 .161 .165 .026 .073 .112 .125 .196 .173 .173 .171

Barinel .333 .342 .235 .158 .229 .141 .051 .095 .112 .125 .168 .139 .208 .157

Braun-Banquet .222 .277 .182 .105 .180 .178 .026 .107 .175 .125 .308 .325 .218 .215

B-U & Buser .333 .365 .236 .105 .163 .171 .026 .081 .130 .125 .307 .326 .229 .216

Cohen .333 .320 .228 .105 .164 .163 .026 .075 .116 .125 .196 .173 .189 .170

Dstar .222 .325 .309 .263 .284 .202 .205 .372 .335 .438 .494 .310 .369 .289

Kulcynski2 .111 .177 .142 .105 .176 .185 .026 .080 .132 .125 .301 .320 .184 .195

Mountford .111 .203 .151 .053 .148 .175 .026 .069 .097 .125 .304 .325 .181 .187

Ochiai .111 .188 .147 .105 .176 .176 .026 .081 .135 .125 .304 .325 .187 .196

Ochiai2 .444 .416 .272 .105 .171 .174 .026 .072 .106 .125 .196 .173 .214 .181

Op2 .111 .182 .149 .105 .221 .210 .026 .193 .241 .125 .301 .320 .225 .230

Phi .111 .245 .228 .105 .161 .165 .026 .070 .108 .125 .196 .173 .168 .169

Pierce .667 .587 .260 .658 .605 .262 .359 .410 .169 .375 .461 .308 .516 .250

Rogers & Tani. .556 .450 .277 .053 .195 .229 .026 .080 .131 .125 .274 .292 .250 .232

Russel Rao .111 .141 .122 .053 .196 .205 .026 .171 .247 .125 .261 .319 .192 .223

Simple Matching .556 .450 .277 .053 .195 .229 .026 .080 .131 .125 .274 .292 .250 .232

Tarantula .333 .349 .241 .053 .146 .176 .026 .068 .112 .125 .304 .330 .217 .215

Zoltar .111 .177 .142 .105 .173 .180 .026 .144 .192 .125 .301 .320 .199 .208

Burgueño’15 .333 .342 .219 .0526 .106 .086 .154 .270 .279 .312 .458 .296 .253 .172

WC

Arithmetic Mean .111 .307 .283 .105 .171 .179 .128 .276 .317 .250 .429 .359 .296 .285

Barinel .444 .441 .261 .211 .260 .155 .256 .380 .303 .625 .557 .299 .409 .255

Braun-Banquet .222 .277 .182 .105 .205 .224 .154 .213 .190 .250 .365 .315 .265 .228

B-U & Buser .333 .365 .236 .105 .181 .211 .128 .187 .161 .250 .365 .315 .275 .231

Cohen .333 .367 .269 .105 .174 .177 .128 .278 .318 .250 .429 .359 .312 .281

Dstar .222 .326 .311 .263 .302 .229 .282 .474 .357 .500 .579 .290 .420 .297

Kulcynski2 .111 .177 .142 .105 .194 .224 .128 .186 .155 .250 .360 .308 .229 .208

Mountford .111 .204 .151 .053 .167 .217 .128 .178 .134 .250 .369 .310 .230 .203

Ochiai .111 .188 .147 .105 .194 .215 .128 .188 .159 .250 .363 .314 .233 .209

Ochiai2 .444 .470 .303 .105 .189 .213 .128 .279 .322 .250 .429 .359 .342 .299

Op2 .111 .182 .149 .105 .231 .224 .231 .298 .219 .250 .360 .308 .268 .225

Phi .111 .292 .282 .105 .171 .179 .128 .273 .317 .250 .429 .359 .291 .284

Pierce 1,000 .777 .335 .737 .667 .311 1,000 .781 .297 1,000 .761 .350 .746 .323

Rogers & Tani. .556 .458 .277 .053 .217 .244 .128 .184 .156 .250 .331 .290 .297 .242

Russel Rao .333 .369 .156 .105 .284 .249 .641 .563 .161 .625 .615 .260 .458 .206

Simple Matching .556 .458 .277 .053 .217 .244 .128 .184 .156 .250 .331 .290 .297 .242

Tarantula .444 .448 .264 .105 .182 .214 .231 .354 .303 .750 .693 .269 .419 .262

Zoltar .111 .177 .142 .105 .191 .220 .231 .250 .185 .250 .360 .308 .244 .214

Burgueño’15 .444 .529 .317 .131 .372 .413 .179 .365 .371 0.5 .494 .303 .440 .351

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Spectrum-Based Fault Localization in Model Transformations 1:25

than random testing, and this is true in all case studies. Regarding the other four, Dstar needs to
inspect almost 37% of the rules even in the best-case scenario, what is not a good result either. If

we go to the worst-case scenario, all these techniques need to inspect more than 40% of the rules,

so we can conclude that they do not behave good and therefore we do not recommend to use them

when applying SBFL in the MT domain.

The distributions of the results of each technique are graphically depicted in the box-plots of

Figure 6, so they are useful in order to analyze each case study separately and see if the conclusions

drawn so far are confirmed. The figure contains one box-plot per scenario (average-case labelled as

AC, best-case labelled as BC, and worst-case labelled as WC) and case study, where the Y and X

axis indicate the EXAM score and technique, respectively. These box-plots gather the results of

the EXAM scores obtained with all mutants and depict them in vertical boxes—ignore for now the

boxes for Burgueño’15, since they are commented in Section 4.5.3. The dots outside the boxes are

known as outliers.

Having a look at the average-case scenarios in Figure 6, we can appreciate how techniques are

categorized in two groups. On the one hand, techniques that perform well are represented by small

boxes located at the bottom of each box-plot. We refer to these techniques as good-performers. On
the other hand, the boxes of techniques with bad performance are stretched and typically located

around the middle of the plot. We will name this group of techniques bad-performers. It is worth
mentioning that among the group of good-performers, the most reliable ones are those with smaller

vertical line segments above the box. This means that in the cases where faulty rules are difficult to

locate, they provide lower EXAM scores than other good-performers.

For instance, in the UML2ER case study for the average-case scenario, the set of most-reliable

good-performers comprises of Kulcynski2, Mountford, Zoltar and Ochiai. In fact, the boxes of these

four techniques are quite stable and similar in all scenarios of all case studies. Some other techniques,

such as Op2, seem to provide similar performance, since for instance its boxes in the UML2ER
case study are similar to those of these four techniques. However, the boxes are clearly worse in

the Ecore2Maude and CPL2SPL case studies. At the same time, Mountford shows slightly better

performance than the other three good-performers in some box-plots, such as in the CPL2SPL case

study. Regarding the 5 techniques mentioned before that give bad results in the table of descriptive

statistics, they fit in the profile of bad-performers. We can observe that their boxes are not uniform

when comparing box-plots, having some boxes even located in the top of the charts.

Finally, it is worth noting that the box-plots in the UML2ER case study present the highest

disparity among the three scenarios and that most techniques seem to behave worse in this case

study than in the other three, showing larger boxes. This suggests that it is more challenging for the

techniques to properly rank the faulty rule in this case study than in the other three case studies.

This may be due to the high use of rules inheritance in this case study, what might complicate the

location of the fault as explained in Section 4.2.1. Please also note, as commented in Section 4.2.3,

that fewer mutants have been created for this case study compared with the other three. This could

also have an impact in the results.

In order to study the data from a different perspective, namely the average values, we have

constructed Figure 7. The figure presents a matrix where the suspiciousness computation techniques

are represented by rows, and the mutants of the different case studies are represented by columns.

Each cell is therefore colored according to its EXAM
Averaдe
m,t , wherem represents the mutant (X

axis) and t the technique (Y axis).

As we can see in the color key, cells with lower values are lightly colored, while cells with higher

values are darkly colored. The lighter the shade of cell <i, j>, the better has performed technique j
in mutant i on average. Observing the four techniques with good performance mentioned before,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 J. Troya et al.

●●●●●●●●●●●●●●

●● ●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●● ●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15
0.2

0.4

0.6

0.8

1.0
Boxplot for UML2ER on the AC

●●

●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●

●●

●

●●

●●

●●●●

●●●●●●●●●●●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●

●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●

●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●

●●

●●●●

●●●●●●●●●●

●

●●●●

●●

●●●●

●●●●●●●●●●●●●●

●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for UML2ER on the BC

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for UML2ER on the WC

●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●

●●

●
●

●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

● ●●

●

●

●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●

●

●●

●●●●

●

●

●

●

●

●● ●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●●●●

●

●●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.0

0.2

0.4

0.6

0.8

1.0
Boxplot for Ecore2Maude on the AC

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●●●

●●

●●●●

●●●●●●●

●

●

●●

●●●●

●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●●●●

●

●●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.0

0.2

0.4

0.6

0.8

1.0
Boxplot for Ecore2Maude on the BC

●●●

●

●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

●●●●●●●

●

●●●●●●●●●●●● ●●

●●●●

●●

●●●●

●

●

●●●●●●●●●●

●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.0

0.2

0.4

0.6

0.8

1.0
Boxplot for Ecore2Maude on the WC

●

●●●●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●

●●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●●●●●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for CPL2SPL on the AC

●

●

●●●

●

●●

●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●

●●

●●●●

●

●

●

●●●

●

●●

●●●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●● ●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●● ●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for CPL2SPL on the BC

●

●

●●●

●

●

●

●●●●●●●

●

●●●

●

●

●●●●●●●

●

●

●●●

●

●

●

●●●●●●●

●●●●●

●●●●●●●

●

●●●●●●

●●●●●

●●●●●●

●

●

●

●

●

●●●●●●●

●●●●●●●

●

●●●●●●●

●

●●●●● ●

●

●●●

●

●

●

●●

●●

●●●●●●● ●●

●●

●●●●●●●

●

●

●●●●●●●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15
0.2

0.4

0.6

0.8

1.0
Boxplot for CPL2SPL on the WC

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●●●

●●

●●

●

●

●●●●

●

●

●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●●●

●

●●●

●

●●●●●

●●

●

●●●

●

●●●●●

●

●●●●

●

●●●●●

●

●●

●

●●●

●●

●

●●●●●●●●●

●

●●●●

●●

●●●●●●

●●

●

●●●●●●●●●

●

●

●●

●

●●●●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●●●

●●

●●

●

●●●●●●●●●

●

●

●●●●

●

●●●

●

●

●

●

●●

●

●●

●●●●●

●●●●●

●●●

●

●

●

●●

●

●●●●●●●●●

●

●●

●

●●●●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for BibTex2DocBook on the AC

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●●●

●●

●● ●●

●

●

●●●●

●

●

●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●●●

●

●●●

●

●●●●●

●●

●

●●●

●

●●●●●

●

●●●●

●

●●●●●

●

●●

●

●●●

●●

●

●●●●●●●●●

●

●●●●

●●

●●●●●●

●●

●

●●●●●●●●●

●

●

●●

●

●●●●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●●●

●●

●

●●●●●

●

●

●

●●

●●●●●

●

●●

●

●●

●●●● ●●

●

●●●●●●●●●

●

●●

●

●●●●●

●

●●

●

●

●●●

●

●●●●●●

●●

●●

●

●

●

●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for BibTex2DocBook on the BC

●●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●●●

●●

●●

●●●●● ●●

●

●

●●●●

●

●

●

●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●●●

●

●●●

●

●●●●●

●●

●

●●●

●

●●●●●

●

●●●●

●

●●●●●

●

●●

●

●●●

●●

●

●●●●●●●●●

●

●●●●

●●

●●●●●●

●●

●

●●●●●●●●●

●

●

●●

●

●●●●

●

●

●●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●●●

●●●●●●●

●●

●●

●

●●●●

●

●

●●●●

●

●●●

●

●

●

●●

●

●●

●●●●●●●●

●

●

●●

●

●●●●●●●●●

●

●●

●

●●●●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for BibTex2DocBook on the WC

Fig. 6. Box-plot of the EXAM score of each technique per scenario and case study

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Spectrum-Based Fault Localization in Model Transformations 1:27

UML2ER Ecore2Maude CPL2SPL BibTex2DocBook

Burgueño'15

Zoltar

Tarantula

Simple Matching

Russel Rao

Rogers & Tani.

Pierce

Phi

Op2

Ochiai2

Ochiai

Mountford

Kulcynski2

Dstar

Cohen

Braun−Banquet

Barinel

B−U & Buser

Arithmetic Mean

0.2 0.4 0.6 0.8 1

Value

Color Key

Fig. 7. Value per technique and case study

namely Kulcynski2, Mountford, Ochiai and Zoltar, we see that their rows are lighter than the others

in most cases. Similarly, a dark column in the matrix points out a MT with high EXAM values,

meaning that it is hard to identify the faulty rule for such MT. This allows us to identify that

the hardest case study in the study is UML2ER, with a significant amount of dark columns, what

supports the conclusion drawn before. As mentioned earlier, we hypothesize that the reason for the

techniques to behave worse in this case study than in the others is the high use of rules inheritance,

since part of the behavior of the children rules is encoded in the parent rules, what may jeopardize

the precision in the localization of the buggy rules.

Regarding performance in terms of run time, each run of our approach has taken between 4 and

75 seconds (per mutant) on all the case studies. Please note that this is the time taken to execute

the MT with all the source models, print in the console the violated OCL assertions, and compute

and save in CSV files all the coverage matrices, error vectors and suspiciousness rankings for all 18

techniques together with the automatically computed EXAM score for each violated assertion.

4.4 Statistical Results
Themutants and input models used in the evaluation were randomly generated, and thus a statistical

analysis of the data was performed to study whether the differences observed among techniques

are due to chance or not. Since the differences observed among the best-, average- and worst-case

scenarios are not disquieting, and to keep this paper at a reasonable size, we focus on the analysis

of results obtained in the average scenario, as it provides a better approximation to the accuracy of

the technique in real settings.

4.4.1 Null Hypothesis tests. The null hypothesis (H0) states that there is not a statistically signif-

icant difference between the results obtained by different suspiciousness computation techniques,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 J. Troya et al.

while the alternative hypothesis (H1) states that at least for one pair of techniques such difference is

statistically significant. Statistical tests provide the probability (named p-value) of getting the actual
observed results based on the assumption that the null hypothesis is true. P-values range in [0, 1],

for which researchers have established by convention that p-values under 0.05 represent so-called

statistically significant values, and are sufficient to reject the null hypothesis. The results of the

study do not follow a normal distribution, as confirmed by Shapiro-Wilk normality tests, thus the

Friedman test was used for the analysis [40]. The resulting p-values were < 1
−10

for the results of the

four case studies, leading us to reject H0 for all of them. In order to find the specific techniques with

statistically significant differences, pairwise comparisons were performed using Conover-Iman’s

Test [52]. More specifically, we compared all the possible pairs of techniques, out of 18 techniques

under study, i.e.,

(
18

2

)
= 18!

2!(18−2)! = 153 pairwise comparison per case study. Additionally, we applied

a correction of the p-values using the Holm post-hoc procedure [53], as recommended in [31]. The

results of the corrected p-values for the pairwise comparisons of all techniques are available on the

project’s website [101]. In summary, the percentage of pairwise comparisons revealing statistically

significant differences was 96% in Bibtex2DocBook, 82% in CPL2SPL, 78% in Ecore2Maude, and 49%

in UML2ER. Again, these data highlight that the latter case study is the one giving worse and more

unstable results, which is consistent with the conclusion drawn in the analysis of the results in

Section 4.3.

4.4.2 Effect-size estimation. In order to further investigate the differences between the different

suspiciousness computation techniques, Vargha and Delaney’s Â12 statistic [106] was used to

evaluate the effect size, i.e., determine which technique performs better and to what extent. Table 8

shows the effect size statistic for every pair of techniques. Each cell shows the Â12 value obtained

when comparing the suspiciousness computation technique in the column against the technique in

the row. Vargha and Delaney [106] suggested thresholds for interpreting the effect size: 0.5 means

no difference at all; values over 0.5 indicates a small (0.5-0.56), medium (0.57-0.64), large (0.65-0.71)

or very large (0.72-1) difference in favour of the technique in the column; values below 0.5 indicate

a small (0.5-0.44), medium (0.43-0.36), large (0.36-0.29) or very large (0.29-0.0) difference in favour

of the technique in the row. Cells indicating medium, large, and very large differences in favor of

the column are shaded in light grey, grey, and dark grey, respectively. The values in boldface are

those where hypothesis test revealed statistical differences (p-value <0.05). As expected, there is

not a clear winner technique for all the case studies. However, the results confirm the superiority

of Mountford, Kulcynski2, Ochiai and Zoltar, showing from medium to large differences in 35, 30, 29

and 28 (out of 72) pairwise comparisons. Analogously, the results support the bad performance of

Pierce –outperformed by all of other techniques–, Barinel and Tarantula.

4.5 Comparison Study
In order to answer RQ4 and to study whether our approach performs well in the location of faults

in model transformations, we want to compare its effectiveness with a state-of-the-art approach

based on the static analysis of transformation rules and assertions that obtained good results [18].

We believe the comparison of our approach with this one is fair and adequate for several reasons.

First, the model transformation language used as proof of concept in both approaches is ATL.

Second, OCL assertions are used in both approaches as oracle, i.e., to determine whether a model

transformation is correct or not. Third, both approaches determine an order in which the rules

must be examined in order to locate the faulty rules. Fourth, we are using in the evaluation of

our approach the same four case studies proposed in [18]. Fifth, we are able to use the mutants

developed for evaluating our approach in order to evaluate the approach in [18], and we are also

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Spectrum-Based Fault Localization in Model Transformations 1:29

Table 8. Effect size estimations

A
r
i
t
h
.
M
e
a
n

B
r
a
u
n
-
B
a
n
q
u
e
t

B
a
r
i
n
e
l

B
-
U
&
B
u
s
e
r

C
o
h
e
n

D
s
t
a
r

K
u
l
c
y
n
s
k
i
2

M
o
u
n
t
f
o
r
d

O
c
h
i
a
i

O
c
h
i
a
i
2

O
p
2

P
h
i

P
i
e
r
c
e

R
o
g
e
r
s
&
T
a
n
i
.

R
u
s
s
e
l
R
a
o

S
i
m
p
l
e
M
a
t
c
h

T
a
r
a
n
t
u
l
a

Z
o
l
t
a
r

B
u
r
g
u
e
ñ
o
’
1
5

B
ib
Te

x2
D
oc

B
oo

k

Arith. Mean - .330 .465 .387 .405 .475 .627 .568 .605 .327 .620 .526 .158 .336 .403 .336 .324 .626 .303
Barinel .670 - .659 .538 .572 .651 .813 .775 .799 .445 .807 .692 .230 .431 .703 .431 .493 .813 .449
Braun-Banquet .535 .341 - .396 .425 .520 .679 .624 .659 .318 .672 .561 .150 .322 .489 .322 .335 .679 .308
B-U & Buser .613 .462 .604 - .529 .591 .745 .702 .729 .419 .739 .634 .206 .405 .603 .405 .456 .745 .416
Cohen .595 .428 .575 .471 - .574 .730 .685 .714 .389 .724 .618 .197 .387 .580 .387 .421 .730 .381
Dstar .525 .349 .480 .409 .426 - .645 .585 .623 .358 .638 .550 .230 .373 .418 .373 .344 .644 .335
Kulcynski2 .373 .187 .321 .255 .270 .355 - .428 .473 .207 .493 .401 .084 .226 .220 .226 .182 .499 .178
Mountford .432 .225 .376 .298 .315 .415 .572 - .545 .241 .564 .462 .102 .260 .298 .260 .219 .570 .212
Ochiai .395 .201 .341 .271 .286 .377 .527 .455 - .220 .519 .423 .091 .239 .249 .239 .196 .525 .191
Ochiai2 .673 .555 .682 .581 .611 .642 .793 .759 .780 - .788 .690 .272 .476 .688 .476 .548 .793 .511

Op2 .380 .193 .328 .261 .276 .362 .507 .436 .481 .212 - .408 .087 .232 .229 .232 .188 .506 .184
Phi .474 .308 .439 .366 .382 .450 .599 .538 .577 .310 .592 - .148 .318 .365 .318 .303 .598 .285
Pierce .842 .770 .850 .794 .803 .770 .916 .898 .909 .728 .913 .852 - .749 .856 .749 .763 .916 .745
Rogers & Tani. .664 .569 .678 .595 .613 .627 .774 .740 .761 .524 .768 .682 .251 - .651 .500 .562 .774 .516
Russel Rao .597 .297 .511 .397 .420 .582 .780 .702 .751 .312 .771 .635 .144 .349 - .349 .290 .779 .275
Simple Match .664 .569 .678 .595 .613 .627 .774 .740 .761 .524 .768 .682 .251 .500 .651 - .562 .774 .516
Tarantula .676 .507 .665 .544 .579 .656 .818 .781 .804 .452 .812 .697 .237 .438 .710 .438 - .818 .457
Zoltar .374 .187 .321 .255 .270 .356 .501 .430 .475 .207 .494 .402 .084 .226 .221 .226 .182 - .177
BurgueÃśo’15 .697 .550 .692 .584 .619 .664 .822 .788 .809 .489 .816 .715 .254 .483 .725 .483 .543 .822 -

C
PL

2S
PL

Arith. Mean - .274 .469 .500 .489 .285 .488 .551 .466 .477 .425 .502 .091 .505 .385 .505 .521 .488 .443
Barinel .726 - .674 .738 .715 .435 .717 .777 .683 .694 .623 .738 .145 .687 .607 .687 .772 .720 .629
Braun-Banquet .531 .326 - .526 .523 .337 .509 .570 .508 .518 .448 .526 .112 .525 .410 .525 .542 .511 .454
B-U & Buser .500 .262 .474 - .491 .291 .490 .553 .473 .484 .431 .501 .099 .508 .392 .508 .524 .491 .446
Cohen .511 .285 .477 .509 - .291 .497 .560 .476 .488 .432 .512 .092 .513 .394 .513 .531 .497 .451
Dstar .715 .565 .663 .709 .709 - .684 .739 .687 .699 .608 .712 .184 .672 .586 .672 .722 .688 .604
Kulcynski2 .512 .283 .491 .510 .503 .316 - .562 .487 .496 .443 .511 .105 .519 .404 .519 .531 .504 .449
Mountford .449 .223 .430 .447 .440 .261 .438 - .422 .432 .385 .447 .089 .465 .340 .465 .466 .438 .401

Ochiai .534 .317 .492 .527 .524 .313 .513 .578 - .513 .447 .533 .107 .531 .411 .531 .546 .515 .461
Ochiai2 .523 .306 .482 .516 .512 .301 .504 .568 .487 - .437 .522 .104 .521 .399 .521 .536 .504 .454
Op2 .575 .377 .552 .569 .568 .392 .557 .615 .553 .563 - .572 .134 .568 .465 .568 .585 .562 .487
Phi .498 .262 .474 .499 .488 .288 .489 .553 .467 .478 .428 - .091 .507 .390 .507 .522 .489 .446
Pierce .909 .855 .888 .901 .908 .816 .895 .911 .893 .896 .866 .909 - .876 .857 .876 .906 .898 .852
Rogers & Tani. .495 .313 .475 .492 .487 .328 .481 .535 .469 .479 .432 .493 .124 - .387 .500 .505 .482 .443
Russel Rao .615 .393 .590 .608 .606 .414 .596 .660 .589 .601 .535 .610 .143 .613 - .613 .626 .599 .529
Simple Match .495 .313 .475 .492 .487 .328 .481 .535 .469 .479 .432 .493 .124 .500 .387 - .505 .482 .443
Tarantula .479 .228 .458 .476 .469 .278 .469 .534 .454 .464 .415 .478 .094 .495 .374 .495 - .469 .430
Zoltar .512 .280 .489 .509 .503 .312 .496 .562 .485 .496 .438 .511 .102 .518 .401 .518 .531 - .449
BurgueÃśo’15 .557 .371 .546 .554 .549 .396 .551 .599 .539 .546 .513 .554 .148 .557 .471 .557 .570 .551 -

EC
O
R
E2

M
A
U
D
E

Arith. Mean - .286 .501 .542 .500 .289 .539 .539 .539 .500 .392 .501 .071 .543 .184 .543 .397 .439 .406
Barinel .714 - .720 .770 .713 .402 .768 .775 .766 .714 .583 .716 .096 .771 .253 .771 .600 .650 .511
Braun-Banquet .499 .280 - .545 .499 .292 .545 .540 .545 .499 .404 .500 .077 .546 .137 .546 .370 .438 .403
B-U & Buser .458 .230 .455 - .458 .270 .500 .495 .500 .458 .357 .459 .047 .502 .101 .502 .325 .390 .376
Cohen .500 .287 .501 .542 - .289 .539 .539 .539 .500 .392 .501 .072 .543 .184 .543 .398 .439 .407
Dstar .711 .598 .708 .730 .711 - .733 .730 .733 .710 .636 .713 .382 .730 .479 .730 .631 .667 .590
Kulcynski2 .461 .232 .455 .500 .461 .267 - .493 .499 .461 .357 .462 .046 .501 .099 .501 .327 .390 .375
Mountford .461 .225 .460 .505 .461 .270 .507 - .507 .461 .355 .463 .032 .508 .084 .508 .323 .389 .371
Ochiai .461 .234 .455 .500 .461 .267 .501 .493 - .461 .358 .462 .046 .501 .100 .501 .327 .391 .376
Ochiai2 .500 .286 .501 .542 .500 .290 .539 .539 .539 - .392 .501 .074 .543 .185 .543 .397 .439 .406
Op2 .608 .417 .596 .643 .608 .364 .643 .645 .642 .608 - .608 .131 .644 .261 .644 .497 .543 .482
Phi .499 .284 .500 .541 .499 .287 .538 .537 .538 .499 .392 - .067 .542 .173 .542 .394 .438 .405
Pierce .929 .904 .923 .953 .928 .618 .954 .968 .954 .926 .869 .933 - .956 .800 .956 .914 .915 .747
Rogers & Tani. .457 .229 .454 .498 .457 .270 .499 .492 .499 .457 .356 .458 .044 - .095 .500 .322 .387 .374
Russel Rao .816 .747 .863 .899 .816 .521 .901 .916 .900 .815 .739 .827 .200 .905 - .905 .753 .792 .633
Simple Match .457 .229 .454 .498 .457 .270 .499 .492 .499 .457 .356 .458 .044 .500 .095 - .322 .387 .374
Tarantula .603 .400 .630 .675 .602 .369 .673 .677 .673 .603 .503 .606 .086 .678 .247 .678 - .558 .480
Zoltar .561 .350 .562 .610 .561 .333 .610 .611 .609 .561 .457 .562 .085 .613 .208 .613 .442 - .445
BurgueÃśo’15 .594 .489 .597 .624 .593 .410 .625 .629 .624 .594 .518 .595 .253 .626 .367 .626 .520 .555 -

U
M
L2

ER

Arith. Mean - .416 .509 .510 .500 .271 .514 .499 .513 .500 .514 .500 .198 .542 .311 .542 .288 .514 .321
Barinel .584 - .624 .624 .584 .319 .629 .623 .629 .584 .629 .584 .244 .653 .465 .653 .364 .629 .420

Braun-Banquet .491 .376 - .502 .491 .275 .503 .487 .502 .491 .503 .491 .261 .532 .259 .532 .261 .503 .322
B-U & Buser .490 .376 .498 - .490 .274 .501 .485 .500 .490 .501 .490 .259 .530 .257 .530 .260 .501 .321
Cohen .500 .416 .509 .510 - .271 .514 .499 .513 .500 .514 .500 .198 .542 .311 .542 .288 .514 .321
Dstar .729 .681 .725 .726 .729 - .733 .725 .731 .729 .733 .729 .436 .759 .578 .759 .541 .733 .552
Kulcynski2 .486 .371 .497 .499 .486 .267 - .485 .500 .486 .500 .486 .256 .529 .252 .529 .255 .500 .315
Mountford .501 .377 .513 .515 .501 .275 .515 - .515 .501 .515 .501 .265 .545 .256 .545 .258 .515 .324
Ochiai .487 .371 .498 .500 .487 .269 .500 .485 - .487 .500 .487 .259 .530 .252 .530 .255 .500 .318
Ochiai2 .500 .416 .509 .510 .500 .271 .514 .499 .513 - .514 .500 .198 .542 .311 .542 .288 .514 .321
Op2 .486 .371 .497 .499 .486 .267 .500 .485 .500 .486 - .486 .256 .529 .252 .529 .255 .500 .315
Phi .500 .416 .509 .510 .500 .271 .514 .499 .513 .500 .514 - .198 .542 .311 .542 .288 .514 .321
Pierce .802 .756 .739 .741 .802 .564 .744 .735 .741 .802 .744 .802 - .780 .620 .780 .611 .744 .609
Rogers & Tani. .458 .347 .468 .470 .458 .241 .471 .455 .470 .458 .471 .458 .220 - .225 .500 .231 .471 .286
Russel Rao .689 .535 .741 .743 .689 .422 .748 .744 .748 .689 .748 .689 .380 .775 - .775 .391 .748 .493
Simple Match .458 .347 .468 .470 .458 .241 .471 .455 .470 .458 .471 .458 .220 .500 .225 - .231 .471 .286
Tarantula .712 .636 .739 .740 .712 .459 .745 .742 .745 .712 .745 .712 .389 .769 .609 .769 - .745 .560
Zoltar .486 .371 .497 .499 .486 .267 .500 .485 .500 .486 .500 .486 .256 .529 .252 .529 .255 - .315
BurgueÃśo’15 .679 .580 .678 .679 .679 .448 .685 .676 .682 .679 .685 .679 .391 .714 .507 .714 .440 .685 -

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 J. Troya et al.

able to compute the EXAM values (cf. Section 4.5.2) for such approach, so we can fairly compare

both approaches. Finally, in the set of OCL assertions that we have created for each case study in

this work, we have included all the OCL assertions the authors in [18] proposed for evaluating their

approach
8
(cf. third column of Table 4). We have used those assertions, as well as some more that

we have defined, for evaluating our approach. Since the tools developed for the static approach [18]

are available (cf. Section 4.5.1), we have been able to run the approach with them. We have used

the complete set of OCL assertions for comparing both approaches. In order to demonstrate that

the results are not biased due to the new defined OCL assertions, we have also made a comparison

considering only the OCL assertions defined in [18]. This comparison is presented in the appendix

of this paper, where the results presented and conclusions drawn are very similar.

In the following, we first summarize how the approach by Burgueño et al. works and computes

the rankings. Then, we explain how we are able to obtain EXAM values for such approach. Finally,

we present and discuss the results of the comparison.

4.5.1 Static Fault Localization in Model Transformations. The paper by Burgueño et al. [18]

proposes a static approach for the localization of faults in model transformations. As in our approach,

ATL is the language used as proof of concept and the assertions that the transformations must

satisfy are also defined in OCL. Therefore, it follows the samemethodology as proposed in this paper

(cf. Section 3.3). Also, like our approach, theirs is backed up by a tool. However, for determining

if any OCL assertion fails (step 2 in the methodology), their approach relies on an external tool,

namely TractsTool [19, 110]. This means that the user also needs to get familiarized with this other

tool.

When executed, this static approach computes, for all OCL assertions, the order in which rules

should be inspected in order to locate the bug. To do so, it computes, for each pair <assertion,

rule>, the probability that the assertion failure comes from the rule making use of the common

denominator that both have, namely the structural elements belonging to the metamodels. The

approach builds on the following steps:

(1) Footprint Extraction. The structural elements, referred to as footprints, of both model transfor-

mation and assertions are extracted.

(2) Footprint Matching. The footprints extracted are compared for each rule and assertion.

(3) Matching Tables Calculation. The percentage of types overlapping, so-called alignment, for
each transformation rule and assertion is calculated. This information is used to produce the

matching tables.

(4) Matching Tables Interpretation. The resulting tables are analyzed for identifying the order in

which rules should be inspected in case any OCL assertion fails.

In order to apply this approach, three tools need to be executed, two of which are proposed

and implemented in [18]. First, as mentioned before, the TractsTool is executed to check which

OCL assertions fail. Then, the ATL Transformation Types Extractor is executed to generate a model

with the footprints of the ATL transformation. Finally, the Matching Tables Calculator uses, among

others, such model as input and generates the matching tables, indicating also the order in which

rules should be inspected in case of failure
9
.

Three matching tables are generated by this approach. They are matrices that have the OCL

assertions as rows and transformation rules as columns. Two of them need to be inspected in

8
The OCL assertions used in [18] are available on http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB

9
The ATL Transformation Types Extractor and Matching Tables Calculator tools are available on http://atenea.lcc.uma.es/

index.php/Main_Page/Resources/MTB/MTB

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/MTB
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/MTB

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Spectrum-Based Fault Localization in Model Transformations 1:31

order to determine the order in which rules should be inspected in case of failure –for a detailed

explanation, the interested reader is referred to [18].

4.5.2 EXAM Values Computation. In order to obtain the suspiciousness-based rankings for the

approach in [18], we have obtained the matching tables of all 158 mutants, for which we have

made use of the available tools mentioned before, namely ATL Transformation Types Extractor
and Matching Tables Calculator. We have developed a program that, for each case study, takes the

matching tables as input together with a CSV file that contains information of the buggy rules

in each mutant and the OCL assertions that fail in such mutant. With those inputs, this program

computes the order in which the rules should be inspected for each of the OCL assertions that fail,

which is the same concept as the suspiciousness-based ranking proposed in spectrum-based fault

localization. Therefore, with this rules ordering, and since we have as input information of the

buggy rule of each mutant, we are able to easily compute the EXAM score. As output, our program

generates a CSV file indicating, for each mutant and each OCL assertion that fails, the EXAM score

in the best-, worst- and average-case scenarios (cf. Section 4.2.6).

All the artifacts used for the comparison, namely the 158 mutants and 117 OCL assertions,

together with all the matching tables generated for all case studies are available on our project’s

website [101].

4.5.3 Static Approach vs Dynamic Approach: Results. As described before, Table 7 provides the

descriptive statistics of the EXAM score, where Mountford, Kulcynski2, Ochiai and Zoltar show
the best numbers. Regarding the static technique proposed by Burgueño et al. [18] (Burgueño’15
in the table), it performs worse than these techniques. In the average-case scenario, the static

approach needs to inspect around 37% of the rules in order to locate the fault, which is much

more than the 20% that needs to be inspected by the best techniques. In particular, for each case

study in the average-case scenario, the static technique needs to inspect 2.3 (out of 9) more rules in

BibTex2DocBook (25.9% of the MT), 1.387 (out of 19) more rules in CPL2SPL (7.3% of the MT), 7.18

(out of 39) more rules in Ecore2Maude (18.4% of the MT), and 1.3 (out of 8) more rules in UML2ER
(16.2% of the MT) compared with the best techniques in each case. Regarding the number of ties,

there is not a uniform behavior. For instance, in BibTex2DocBook and CPL2SPL there are clearly

more ties in the static technique compared to the best dynamic techniques, since the difference in

the EXAM score in the best- and worst-case scenarios is bigger. As for Ecore2Maude and UML2ER,
the number of ties seems to be similar among both approaches.

Looking at the worst dynamic techniques, the static approach seems to behave better than some

of them. Having a look at the average mean (penultimate column), it behaves much better than

Pierce in the average-case scenario, since the latter technique needs to inspect more than 63% of

the rules in order to locate the fault. It also performs better than Dstar in this scenario, since this

technique needs to inspect more than 39% of the rules. Finally, the static technique by Burgueño et

al. performs worse than Russel Rao in the average-case scenario, but a bit better in the worst-case

scenario. Therefore, for now we can conclude that the static technique may behave better than 2

dynamic techniques and clearly behaves worse than other 15 techniques, but let us delve deeper

into the results.

We further analyze the results by looking at each case study in the box-plots of Figure 6. In

general, we notice that the results of the static approach are typically similar among the three

scenarios, although the boxes are larger than those of most dynamic techniques, indicating a worse

performance. We can appreciate that the static approach behaves normally better than Pierce,
confirming our previous finding. As for Dstar, its boxes are in many plots larger than the ones

of the static approach. However, in other plots its boxes are smaller, so we cannot confirm the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 J. Troya et al.

superiority of the static technique with regards to Dstar. For instance, in the BibTex2DocBook and

CPL2SPL case studies, the shape of the box-plots for Dstar seems to be normally better. Finally,

regarding Russel Rao, its boxes have in most cases better shapes than those of the static approach.

The effect-size estimations of the statistical analysis for the static approach are displayed in

Table 8. To begin with, we can see in the BibTex2DocBook case study that the four best SBFL

techniques are clearly better than the static approach by Burgueño et al. [18], since the values in

the row of the static approach are above 0.78 for the corresponding cells, indicating a very-large

difference in favor of the technique in the column. Also, the technique that seemed to be similar to

the static approach, namely Dstar, is proved to be better in this case study. In general, the color of

the row shows that most techniques behave better than the static one.

In fact, looking at the four case studies, the numbers in the cells of the rows of the static approach

and the columns with the best SBFL techniques –Kulcynski2, Mountford, Zoltar and Ochiai– are

always above 0.55, leaving no doubt that the static approach behaves worse. Besides, all these cells

reveal statistical differences (p-value <0.05, displayed in boldface in the table).

The superiority of the static approach regarding Pierce is confirmed in all case studies. However,

it can not be concluded that it is better than any other of the techniques, since the rows of the static

technique do not present a value <0.5 in more than two case studies for any of the other techniques.

Finally, we see that in the UML2ER case study the static approach behaves generally much worse

than most techniques. An explanation can be that the static approach, based on types matching,

does not behave well in the presence of rule inheritance.

In summary, we can confirm that all SBFL techniques have a better performance when locating

the faulty rule than the static technique, except for Pierce, where the static technique behaves clearly
better. Besides, the static approach normally presents more ties than the best dynamic techniques.

Regarding performance in terms of runtime, static approaches are typically faster since they do

not need to execute the program under test. This is the same in our case, where the static approach

is faster. In any case, it requires to perform footprints extractions –both in OCL assertions and

ATL transformation rules– and footprints matching, that also requires some resources. Altogether,

the static approach takes from less than 1 second (in UML2ER) to 42 seconds (in Ecore2Maude) per
mutant, less than required by our dynamic approach (from 4 to 75 seconds, cf. Section 4.3).

4.6 Discussion
The results of the exhaustive experiments described in the previous sections allow us to answer

the research questions formulated in Section 4.1.

4.6.1 RQ1 - Feasibility. The first research question, related to the feasibility of the approach, “RQ1:
Is it possible to automate the process of locating faults in model transformations applying spectrum-
based techniques?”, can be answered affirmatively. Indeed, we have automated the process of locating

the faulty rules in model transformations by means of a Java program
10
that orchestrates ATL model

transformations and uses the information stored in the traces to compute the suspiciousness-based

rankings based on the program spectra. This automation is explained in Section 3.4. All the artifacts

used as input and generated as output are available on our project’s website [101].

Furthermore, even though our program has been implemented for ATL model transformations,

we are confident that it can be adapted for any transformation language that is able to store in a

trace model the result of the execution. In fact, the trace model is nothing but an output model.

Therefore, any model transformation language that is able to produce more than one output model

can generate a trace model as output.

10
Available on Github: https://github.com/javitroya/SBFL_MT

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

https://github.com/javitroya/SBFL_MT

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Spectrum-Based Fault Localization in Model Transformations 1:33

4.6.2 RQ2 - Effectiveness. The second research question has to do with the comparison of

the techniques evaluated with our automated approach: “RQ2: How effective are state-of-the-art
techniques for suspiciousness computation in the localization of faulty rules in model transformations?”
This question has to do with how well the different techniques are able to position the faulty rule

in the suspiciousness-based ranking. According to the results presented in Sections 4.3 and 4.4,

we can conclude that the top 4 most-effective techniques are Kulcynski2, Mountford, Ochiai and
Zoltar, the first two presenting slightly better overall results. At the other end, we have Pierce as
the least-effective technique. The top 3 of non-effective techniques is completed by Barinel and
Tarantula.

4.6.3 RQ3 - Accuracy. The third research question is related to the accuracy of the approach:

“RQ3: Is our approach able to accurately locate faulty rules in model transformations?” The answer to
this question is related to the previous one, since depending on the effectiveness of the techniques

we will conclude whether the approach is accurate or not. In particular, we need to look at the

most effective techniques. Evaluation results revealed that the best techniques place the faulty

transformation rule among the three most suspicious rules in around 74% of the cases. Looking into

each of the four case studies, the best techniques allow the tester to locate the fault by inspecting,

on average, only 1.59 rules (out of 9) in BibTex2DocBook, 2.99 rules (out of 19) in CPL2SPL, 4.8 rules
(out of 39) in Ecore2Maude and 2.4 rules (out of 8) in UML2ER. According to these numbers, we

can conclude that the application of spectrum-based fault localization is accurate in the context of

model transformations if techniques such as Mountford, Kulcynski2, Zoltar and Ochiai are applied,
so we shall recommend to apply this approach to debug model transformations. These conclusions

are supported by the evaluation of more case studies available on our project’s website [101].

4.6.4 RQ4 - Dynamic vs Static. Our last research question has to do with the comparison of our

dynamic approach with a notable static approach [18]: “RQ4: How does our approach behave in com-
parison with a static approach?” In summary, we can conclude that most dynamic techniques based

on spectrum computation are better than the static approach for the localization of faults in model

transformations. This was expected, since dynamic techniques execute the model transformation

–from which they extract a lot of information–, and the static approach does not. However, the static

approach is still clearly better than one dynamic technique, namely Pierce. Furthermore, it also

behaves better than other techniques, such as Dstar,Tarantula, Simple Matching, Rogers & Tanimoto
and Barinel in some case studies. It is also noteworthy that both approaches are complementary

and so it should be possible to define heuristics for the selection of the best technique on each

application scenario, or even combine them. For example, it is better to apply the static approach in

environments with low resources or when the transformations are very expensive to execute [65],

for instance in the case of transforming very large models [15, 25], and when it is not possible to

get model instances of the source metamodel at the time of developing the model transformation.

4.7 Threats to Validity
According to Wohlin et al. [113], there are four basic types of validity threats that can affect the

validity of our study. We cover each of these in the following paragraphs.

4.7.1 Conclusion Validity Threats. Threats to the conclusion validity are concerned with the

issues that affect the ability to draw correct conclusions from the data obtained from the experiments.

In order to mitigate these threats, we have applied statical analysis to confirm the conclusions drawn

from the means and figures, and we have used the specific statistical tests and effect size measures

recommended by the guidelines on empirical methodology. Furthermore, all the assumptions

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 J. Troya et al.

required for the application of the tests were checked, and the raw data and scripts for replication

are available in the companion materials of this paper [101].

4.7.2 Construct Validity Threat. It is concerned with the relationship between theory and what

is observed. A possible construct validity threat (known as the mono-method bias) is related to the

use of one single metric, the so-called EXAM score, to evaluate the performance of the approach

and the suspiciousness computation techniques compared. Other metrics have been proposed [116],

such as the T-score [68], P-score [123] and N-score [43]. However, EXAM score is an accepted

metric for measuring the quality of spectrum-based fault localization techniques, and has been used

in a variety of works.[116] Moreover, we have decided to obtain the EXAM score as it is directly

applicable in the context of model transformations. By considering the transformation rules as

units of examination, the EXAM score is easy to understand, since it is directly proportional to the

amount of rules to be examined, rather than to an indirect measurement in terms of the amount of

code that does not need to be examined, as proposed by other scores.

Another possible construct validity threat is the mono-operation bias, which is related to the use

of a single treatment or technique that could bias our conclusions. Since we compare the approach

with a static alternative [18] and have used up to 18 suspiciousness-computation techniques and 4

use cases in our experiments, we consider that this threat is neutralized.

4.7.3 Internal Validity Threats. These threats are related to those factors that might affect the

results of our evaluation. First of all, we may remark that this is a debugging approach, not a

testing approach. Therefore, the objective of this work is not to generate high-quality test models,

something addressed in related papers [6, 39, 44, 48, 96], but to localize the faults that triggered

test failures. In fact, a key point in favor of our approach is that it can be used in conjunction

with any method for test model generation, either random or guided. For evaluating our work, we

have developed a light-weight random model generator that, given any metamodel, produces a

user-defined number of random model instances, as explained in Section 4.2.2. With this generator

we have obtained a set composed of 100 source models in the test suite of each case study, so a

total of 400 models have been generated. These models have achieved full coverage – all rules

and lines of code have been exercised – in all case studies. However, using more complex input

model generation approaches [6, 48] may be required in those cases where random generation is

not enough to achieve a sufficient coverage.

A second threat is that we have used in total 117 OCL assertions in the first study and 44 in

the dynamic-vs-static comparison study (cf. Table 4). We have tried to minimize this threat by

constructing a set of OCL assertions that cover much of the specifications of the transformations.

Besides, for the comparison study to be fair, we have taken the OCL assertions proposed in [18].

Third, we have tried to create a large set of mutants, composed of 158 of them, and we have aimed

at maximizing the variation of semantic faults and mutation operators used. Having used more or

fewer mutants could have had an impact in the results. For instance, we recall that fewer mutants

have been created for the UML2ER case study than for any of the other case studies, as commented

in Section 4.2.3. Having used different mutation operators could have also had an impact in the

results. For instance, some approaches propose mutation operators that yield run-time errors, such

as the work by Sánchez-Cuadrado et al. [92], which proposes a powerful approach that relies on

static analysis and type inference to locate, among others, run-time errors. However, please bear in

mind that the purpose of the approach presented in this paper is to localize semantic faults, i.e., it

needs the model transformation to finish and produce output models, so that their satisfaction can

be checked against the set of OCL assertions available. That is why we have used a subset [99] of the

operators defined in [92] and that mimic semantic faults likely to be made by programmers [78], as

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Spectrum-Based Fault Localization in Model Transformations 1:35

explained in Section 4.2.3. In any case, our approach is complementary to those aiming at spotting

bugs that produce run-time errors [92].

As a final threat to internal validity, we may mention a weakness of SBFL, and generally of all

fault localization techniques [116], which is the incapability of locating bugs resulting from missing

code [122]. Same thing happens with our approach, it is likely to produce bad results if there

are missing rules. For this reason, and as commented above, our approach can be complemented

with Sánchez-Cuadrado et al.’s [92] approach, which identifies rules absence with a static analysis.

Indeed, the target elements created in a transformation rule typically reference or are referenced

by target elements created in other transformation rules, so static analysis is a good technique for

identifying the absence of rules that should create referencing or referenced target elements. For

instance, in the model transformation shown in Listing 1, the target elements created by rule Main
reference the target elements created by all the other rules. Likewise, the target elements created

by all the other rules are referenced by those created by rule Main. Therefore, the absence of any
of these rules can be detected with a static analysis tailored at examining that there will be no

dangling references among the target elements created. Finally, this threat can also be mitigated

with the definition of proper OCL assertions. For instance, in the transformation of Listing 1, the

specification should dictate that there must be an element of class DocBook created for each element

of class BibTexFile, so that the number of instances of both classes must be the same after executing

the model transformation. This can be expressed with assertion OCL4 in Listing 2. Therefore, even

if we do not count on approaches like the one by Sánchez-Cuadrado et al. [92], the non-satisfaction

of assertions such as OCL4 can help the developer realize a rule is missing.

4.7.4 External Validity. These threats have to do with the extent to which it is possible to

generalize the findings of the experiments. The first threat is that the results of our experiments

have been obtained with four case studies, which externally threatens the generalizability of our

results. To mitigate this threat, we have tried to select a set of model transformations that considers

all ATL constructs and where the model transformations differ in their domains, size of metamodels

and transformation, and variability of features used within the transformations, as reflected in

Table 3. Furthermore, we have selected the same case studies as those used in the related paper

compared to our approach in Section 4.5, published in 2015 in the IEEE Transactions on Software
Engineering journal [18]. Second, we have analyzed a set of 18 techniques for the computation of

the suspiciousness-based rankings. Although it is a large set, result of doing a thorough literature

review, we might have left aside some techniques that could give better results than the ones

obtained with the best techniques of our study. Also, we have implemented our approach for ATL

due to its importance both in industria and academia, so it would be interesting to test it with other

transformation languages. However, we do believe our approach would produce similar results for

any model transformation language based in rules as long as the result of their executions can be

stored in traces (cf. Section 2.2.3), that allows to construct the coverage matrix and error vector

and, therefore, apply SBFL techniques.

There are two other threats related to the external validity of the results that have to do with the

program spectra creation in our implementation. In particular, we have used in our prototype the

ATLas transformation language and have considered the rules, of any type, as unit of examination

and therefore as the components to be considered for constructing the spectra. Should we also have

considered helpers in the spectra, the results of techniques effectiveness could have been different.

This decision has been made considering related works that also check (ATL) transformations

correctness against OCL assertions. While some approaches only check whether an assertion is

violated or not by a model transformation [7, 19, 42, 81, 110], others propose to locate the fault

when an assertion is not satisfied [7, 22, 23], but none of them inspect the helpers —they remain at

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 J. Troya et al.

the rule level. Crucial for our decision has been the static approach for locating faults proposed

by Burgueño et al. [18], which does not consider helpers either and only locate faults in ATL

rules. Should we have considered them, the thorough comparison with this approach presented in

Section 4.5 would have been unfair. After having proved the effectiveness of SBFL techniques in

the model transformation domain according to the extensive evaluation presented in this paper, a

natural evolution of this work is to perform a thorough study considering helpers to check if these

techniques remain effective. In any case, if our current approach determines that a rule is faulty,

and it is calling a helper, then the user of the approach would inspect the rule and, if (s)he sees no

fault, (s)he would proceed by inspecting the helper, so this threat is reduced.

Finally, the other threat is that the components considered in our approach might be too coarse-

grained: our approach works at rule level This means that the user would need, for example, to put

more effort in locating a bug in a big rule than when doing it in a small rule. However, the complexity

of transformation rules and model transformations is inherent to the bridges they try to build

among different semantic domains, and different types of model transformations can be written

depending on the problem to be solved [28, 64]. For instance, the creator of ATL recommends

to use declarative code as much as possible
11
. Besides, some approaches exist for modularizing

model transformations, so that they become as easy-to-understand and reusable as possible [34, 90].

Like with the threat before, another reason that led us to work at rule level in this approach is

that related works that aim to locate bugs in model transformations against OCL satisfaction also

propose approaches at rule level [22, 23], and specially the work with which we do an extensive

comparison [18].

5 RELATEDWORK
Due to the lack of oracles and formal semantics inmodel transformation languages, some approaches

propose to translate the transformation specifications to other domains where formal treatment

is possible. For instance, Troya and Vallecillo propose to translate ATL to the rewriting logic

framework Maude [103], where some formal analysis can be performed, although the translation is

not fully automated. Anastasakis et al. propose to translate QVT model transformations to Alloy in

order to verify if some properties hold for the transformation, and there are also approaches for

verifying contracts for ATL transformations based on the Coq proof assistant [20, 84]. Oakes et al.

propose to translate the declarative part of ATL to the visual graph-based model transformation

engine DSLTrans [81]. Visual contracts similar to our OCL assertions but less expressive can be

then tested for satisfaction in DSLTrans. Similar visual contracts, using a visual language with

formal semantics called PaMoMo, are used by Guerra et al. [47], but in this case their approach

compiles such contracts into QVT and their satisfiability is checked with the PACO-Checker tool. A

big difference of our approach with these is that we do not need to leave the model transformation

development environment in order to check for the correctness of the MTs, so our approach stays

within the Eclipse Modeling Framework dealing with Ecore metamodels and XMI models and the

user does not need to be familiar with any other domain-specific language such as Maude, DSLTrans,

Alloy or Coq. Furthermore, our approach helps locate the faulty rules, that is not addressed in these

approaches.

As in our approach, Cheng et al. [22] propose to verify if ATL transformations satisfy OCL

assertions. However, in order to prove the correctness of the ATL transformation, they encode both

the OCL assertions and the ATL transformation specification into the Boogie language [89]. Boogie

is a procedure-oriented language that is based on Hoare-logic. Then, their developed VeriATL

verification system indicates whether the ATL specification satisfies the specified OCL assertions or

11
http://www.idi.ntnu.no/emner/tdt4250/Slides/M2M-atl-intria1117.pdf

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Spectrum-Based Fault Localization in Model Transformations 1:37

not. However, this approach does not report useful feedback to help the transformation developers

fix the fault, which is the main objective of our approach. Cheng and Tisi [23] then build on this

approach and tool (VeriATL) with the goal of localizing the fault by applying natural deduction

and program slicing. However, instead of offering the developer with a rules ranking according to

their chance to contain a bug, their approach determines scenarios, which are slices of the model

transformation under test, where a certain OCL assertion is not satisfied together with the proof

tree. This is achieved by deriving sub-goals from the OCL assertions. Since this approach aims at

locating a fault from a different perspective than ours, they can complement each other.

Burgueño et al. [18] propose an approach with a similar purpose as ours, but their approach is

static. They also count on ATL model transformations and OCL assertions that must be checked

for correctness and try to locate the faulty rule without translating the OCL assertions nor ATL

transformations to any formal language. Their approach proposes to locate the faulty rules based

on matching functions that automatically establish alignments among the metamodels footprints

appearing in the transformation rules and those present in the OCL assertions. A comparison of

this approach and the one we present in this paper has been done in Section 4.5, where we have

seen that most techniques for the spectrum-based localization of model transformations give better

results than this static approach. Furthermore, this approach does not check if an OCL assertion is

satisfied, but it resorts to the Tracts tool [19]. Contrarily, our approach does not need any input

from external tools. A good aspect of the static approach is that it does not need any input model,

since actually the transformation is not executed, and it requires shorter runtimes. This aspect

makes this approach very useful in several situations. For example, it is better to apply the static

approach in environments with low resources or when the transformations are very expensive to

execute [65], for instance in the case of transforming very large models [15, 25], and when it is

not possible to get model instances of the source metamodel at the time of developing the model

transformation. Both approaches are therefore tangential.

There are other approaches that propose static analysis for debugging model transformations.

Sánchez-Cuadrado et al. [92] combine static analysis and constraint solving in order to discover

errors in ATL model transformations such as navigation errors (like invalid collection operations

and operators), disconformities between the types used in the transformation and those declared

in its source/target metamodels, integrity constraints regarding the semantics of ATL, problems

related to dependencies between transformation rules and, in summary, any error that the current

syntactic checker of ATL is not able to identify. They even provide possible suitable quick fixes

based on speculative analysis [91]. These approaches have meant an important milestone in the

evolution of ATL. Our approach is orthogonal to these and, consequently, can serve to complement

them. Finally, Sánchez-Cuadrado et al. [93] have built, on top of their so-called anATLyzer tool
described in the previous cited papers, an approach for checking contracts specified in the target

language. Their approach translates these target contracts into source contracts by using the model

transformation, so that they can predict, without the need to execute the model transformation,

whether any specific input model will yield (in)correct target models. Since they use the model

transformation for generating source contracts, it has to be correct. Therefore, different from our

approach, this is not targeted to debugging model transformations, but to statically check target

constraints in a light-weight manner.

The approach we present in this work is perfectly in line with the approach we presented in [102]

with the aim of locating bugs in three application scenarios of model transformations, namely

regression testing, incremental transformations and migrations among transformation languages.

Thus, the approach in [102] proposes to automatically derive OCL assertions from a given ATL

model transformation, which are satisfied by the transformation. The approach applies a technique

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 J. Troya et al.

known as metamorphic testing [94]. By applying metamorphic testing, and after identifying a

set of patterns that normally takes place in the trace information stored after the execution of a

model transformation, it is able to automatically derive so-called likely metamorphic relations,

which can be seen as precisely the OCL assertions used in the current work. In this way, (i) in

regression testing, (ii) when an original transformation is migrated to a different transformation

language or (iii) an incremental transformation is developed with the same behavior of the original

transformation, the approach presented in this paper can be used in order to check whether the

OCL assertions obtained for the original transformation by the approach in [102] are satisfied in

the latter evolved or modified transformations. Metamorphic testing has also been applied by He et

al. [51], in this case for bidirectional model transformation testing.

We recall that this paper focuses on debugging and not testing. Thus, we do not impose any

constraint on how the source models are generated, either manually or automatically. In any case,

some proposals for generating models have been proposed in the literature, where some of them

require input by the tester. For instance, the model generator in [17] requires the tester to provide

metamodel fragments as input, or the one in [96] requires input from the MMCC external tool [38]

to provide model fragments. Other approaches propose the generation of models in different formats

such as the Human Usable Textual Notation [41], so they need to be transformed prior to their

use as input for model transformation languages integrated in the Eclipse Modeling Framework

such as ATL. Some other more sophisticated model generators try to derive a set of input models

from model transformations [44], what is not desired in our case because we may be debugging

erroneous transformations, and from OCL constraints [6, 48]. Most of these approaches can be

used for generating test models for our approach. However, as explained in Section 4.2.2, we have

used a light-weight model generator that, given a metamodel, it returns a set of random models

conforming to such metamodel, where the models present certain variability among them with

respect to the classes of the metamodel. Since none of the case studies contain complex graph

constraints as preconditions that are difficult to cover with random graph generation, the models

we have generated have obtained full coverage in all case studies, i.e., they have exercised all rules.

However, in other cases, obtaining models with full coverage may require the use of more complex

and computationally-expensive methods and tools [5, 6, 44, 48, 96].

6 CONCLUSION
In this paper we have presented the first approach for debugging model transformations following

a spectrum-based fault localization (SBFL) approach. We have implemented and automated it for

the ATLas transformation language due to its importance in both industry and academia. However,

we are confident that the approach can be extensible to any model transformation language as

long as it can store the output of its execution in a trace model. The implemented automation has

allowed us to perform a thorough evaluation.

Taking as input the model transformation under test and a set of source models and OCL

assertions that serve as oracle, our approach determines which assertions are not satisfied and,

for each of them, it ranks the transformation rules according to their suspiciousness of being

the faulty rule causing the failure. We have compared the effectiveness of 18 state-of-the-art

techniques proposed in the literature for the suspiciousness computation of program components

(e.g., statements) in the context of model transformations. The evaluation has been carried out

using four case studies that differ regarding the application domains, size of metamodels and the

number and types of ATL features used. Our experiments conclude that the best techniques place

the faulty transformation rule among the three most suspicious rules in around 74% of the cases.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Spectrum-Based Fault Localization in Model Transformations 1:39

These conclusions are supported by more case studies, other than the four presented in this paper,

whose evaluation is available on our project’s website [101].

We have also evaluated our approach by comparing it with a static approach that presented

notable results [18]. The conclusion is that applying dynamic techniques based on spectra compu-

tation allows to identify the faulty rule more quickly. However, the runtime of the static technique

is shorter, and it does not need any input model, since the model transformation is not executed.

Therefore, both approaches are tangential and can complement each other.

Summarizing, we have proved the effectiveness in the context of model transformations of

SBFL, a technique never applied before for localizing faults in this domain. We have proved it

is feasible to automate such technique in this domain, offering novel ways of debugging model

transformations. Despite we have obtained good effectiveness results, further experiments can be

performed as future work. For instance, we can consider helpers in the program spectra, and even

each line of code could be considered as a component. In both cases, the trace model used has to

be extended. Also, in order to break ties in the suspiciousness rankings, we could use the rules

execution frequency, as some works have proposed for procedural programs [1, 67].

VERIFIABILITY
For the sake of verifiability, our prototype as well as all artifacts of the experiments are available

on our project’s website [101]. For each case study, it is available the transformation and its

metamodels, the OCL assertions defined, the transformation mutants together with information

of the mutation operators applied and the OCL assertions that fail with each mutant, as well as

the CSV files with the results generated by our program for all mutants and all OCL assertions.

For the comparison study, it is available for each case study the subset of mutants used together

with the matching tables generated with the approach in [18] for each mutant, and the subset of

OCL assertions obtained from [18]. Several files with statistical results and raw data and scripts

for replication are also available. Finally, the implemented prototype is available on Github: https:

//github.com/javitroya/SBFL_MT.

REFERENCES
[1] Abreu, R., Gonzalez-Sanchez, A., and van Gemund, A. J. C. Exploiting count spectra for bayesian fault localization.

In Proc. of the 6th International Conference on Predictive Models in Software Engineering (2010), PROMISE ’10, ACM,

pp. 12:1–12:10.

[2] Abreu, R., Zoeteweij, P., and Gemund, A. J. C. v. Spectrum-Based Multiple Fault Localization. In Proc. of IEEE/ACM
International Conference on Automated Software Engineering (Washington, DC, USA, 2009), ASE ’09, IEEE Computer

Society, pp. 88–99.

[3] Abreu, R., Zoeteweij, P., Golsteijn, R., and van Gemund, A. J. A practical evaluation of spectrum-based fault

localization. Journal of Systems and Software 82, 11 (2009), 1780 – 1792.

[4] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C. On the Accuracy of Spectrum-based Fault Localization. In

Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION
2007) (2007), pp. 89–98.

[5] Ali, S., Iqbal, M. Z., and Arcuri, A. Improved heuristics for solving ocl constraints using search algorithms. In

Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (New York, NY, USA, 2014),

GECCO ’14, ACM, pp. 1231–1238.

[6] Ali, S., Iqbal, M. Z., Arcuri, A., and Briand, L. C. Generating test data from ocl constraints with search techniques.

IEEE Transactions on Software Engineering 39, 10 (2013), 1376–1402.
[7] Almendros-Jiménez, J. M., and Becerra-Terón, A. Automatic generation of ecore models for testing ATL transfor-

mations. In 6th International Conference on Model and Data Engineering (MEDI) (2016), vol. 9893 of LNCS, Springer,
pp. 16–30.

[8] Anastasakis, K., Bordbar, B., Georg, G., and Ray, I. On challenges of model transformation from uml to alloy.

Software & Systems Modeling 9, 1 (2008).

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

https://github.com/javitroya/SBFL_MT
https://github.com/javitroya/SBFL_MT

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 J. Troya et al.

[9] Aranega, V., Mottu, J.-M., Etien, A., Degueule, T., Baudry, B., and Dekeyser, J.-L. Towards an automation of

the mutation analysis dedicated to model transformation. Software Testing, Verification and Reliability 25, 5-7 (2015),
653–683.

[10] Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentzer, G. Henshin: Advanced Concepts and Tools for

In-Place EMF Model Transformations. In Proc. of MODELS (2010), vol. 6394, pp. 121–135.
[11] Assiri, F. Y., and Bieman, J. M. Fault localization for automated program repair: effectiveness, performance, repair

correctness. Software Quality Journal 25, 1 (2017), 171–199.
[12] ATL. ATL Zoo. http://www.eclipse.org/atl/atlTransformations, 2006.

[13] Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., and Yoo, S. The Oracle Problem in Software Testing: A Survey.

IEEE Transactions on Software Engineering 41, 5 (May 2015), 507–525.

[14] Baudry, B., Dinh-Trong, T., Mottu, J.-M., Simmonds, D., France, R., Ghosh, S., Fleurey, F., and Le Traon, Y. Model

Transformation Testing Challenges. In Proc. of the ECMDA workshop on Integration of Model Driven Development and
Model Driven Testing (2006).

[15] Benelallam, A., Gómez, A., Tisi, M., and Cabot, J. Distributedmodel-to-model transformation with atl onmapreduce.

In Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language Engineering (New York, NY,

USA, 2015), SLE 2015, ACM, pp. 37–48.

[16] Brambilla, M., Cabot, J., and Wimmer, M. Model-Driven Software Engineering in Practice. Morgan&Claypool, 2012.

[17] Brottier, E., Fleurey, F., Steel, J., Baudry, B., and Traon, Y. L. Metamodel-based test generation for model

transformations: an algorithm and a tool. In Proc. of ISSRE 2006 (2006), pp. 85–94.
[18] Burgueño, L., Troya, J., Wimmer, M., and Vallecillo, A. Static Fault Localization in Model Transformations. IEEE

Tansactions on Software Engineering 41, 5 (May 2015), 490–506.

[19] Burgueño, L., Wimmer, M., Troya, J., and Vallecillo, A. Tractstool: Testing MTs based on contracts. In Invited
Talks, Demonstration Session, Poster Session, and ACM Student Research Competition (MODELS 2013) (Oct. 2013), CEUR.
http://ceur-ws.org/Vol-1115/poster5.pdf.

[20] Calegari, D., Luna, C., Szasz, N., and Tasistro, A. AType-Theoretic Framework for CertifiedModel Transformations.

In Proc. of SBMF (2010), pp. 112–127.

[21] Cariou, E., Marvie, R., Seinturier, L., and Duchien, L. OCL for the Specification of Model Transformation

Contracts. In Proc. of the OCL and Model Driven Engineering Workshop (2004).

[22] Cheng, Z., Monahan, R., and Power, J. F. A Sound Execution Semantics for ATL via Translation Validation. Springer
International Publishing, Cham, 2015, pp. 133–148.

[23] Cheng, Z., and Tisi, M. A Deductive Approach for Fault Localization in ATL Model Transformations. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2017, pp. 300–317.

[24] Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio, A. JTL: A Bidirectional and Change Propagating

Transformation Language. In Software Language Engineering, vol. 6563 of LNCS. Springer, 2011, pp. 183–202.
[25] Clasen, C., Didonet Del Fabro, M., and Tisi, M. Transforming Very Large Models in the Cloud: a Research

Roadmap. In First International Workshop on Model-Driven Engineering on and for the Cloud (Copenhagen, Denmark,

July 2012), Springer.

[26] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., and Talcott, C. All About Maude – A
High-Performance Logical Framework, vol. 4350 of LNCS. Springer, 2007.

[27] Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., andVarró, D. VIATRA - visual automated transformations

for formal verification and validation of UML models. In Proc. of the 17th International Conference on Automated
Software Engineering (ASE’02) (2002), IEEE/ACM, pp. 267–270.

[28] Czarnecki, K., and Helsen, S. Feature-based survey of model transformation approaches. IBM Systems Journal 45, 3
(2006), 621–646.

[29] da Silva, A. R. Model-driven engineering: A survey supported by the unified conceptual model. Computer Languages,
Systems & Structures 43 (2015), 139 – 155.

[30] de Lara, J., and Vangheluwe, H. AToM3: A Tool for Multi-formalism and Meta-modelling. In Proc. of the 5th
International Conference on Fundamental Approaches to Software Engineering (FASE’02), vol. 2306 of LNCS. Springer,
2002, pp. 174–188.

[31] Derrac, J., García, S., Molina, D., and Herrera, F. A practical tutorial on the use of nonparametric statistical

tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary
Computation 1, 1 (2011), 3 – 18.

[32] Durán, F., Zschaler, S., and Troya, J. On the Reusable Specification of Non-functional Properties in DSLs. In 5th
International Conference on Software Language Engineering (SLE 2012). Revised Selected Papers (2013), LNCS, Springer,
pp. 332–351.

[33] Falleri, J.-R., Huchard, M., and Nebut, C. Towards a Traceability Framework for Model Transformations in

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

http://www.eclipse.org/atl/atlTransformations
http://ceur-ws.org/Vol-1115/poster5.pdf

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Spectrum-Based Fault Localization in Model Transformations 1:41

Kermeta. In ECMDA-TW’06: ECMDA Traceability Workshop (2006), pp. 31–40.

[34] Fleck, M., Troya, J., Kessentini, M., Wimmer, M., and Alkhazi, B. Model transformation modularization as a

many-objective optimization problem. IEEE Transactions on Software Engineering 43, 11 (2017), 1009–1032.
[35] Fleck, M., Troya, J., and Wimmer, M. Marrying Search-based Optimization and Model Transformation Technology.

In Proc. of NasBASE (2015), pp. 1–16.

[36] Fleck, M., Troya, J., and Wimmer, M. Search-Based Model Transformations. Journal of Software: Evolution and
Process 28, 12 (2016), 1081–1117.

[37] Fleck, M., Troya, J., and Wimmer, M. Search-Based Model Transformations with MOMoT. In Proc. of Theory and
Practice of Model Transformations (ICMT) (2016), Springer, pp. 79–87.

[38] Fleurey, F., Baudry, B., Muller, P., and Traon, Y. L. Qualifying input test data for model transformations. Software
and System Modeling 8, 2 (2009), 185–203.

[39] Fleurey, F., Baudry, B., Muller, P.-A., and Traon, Y. L. Qualifying input test data for model transformations.

Software & Systems Modeling 8, 2 (2009), 185–203.
[40] Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. The Annals of

Mathematical Statistics 11, 1 (1940), 86–92.
[41] Giner, P., and Pelechano, V. Test-driven development of model transformations. In Proc. of MODELS’09, vol. 5795

of LNCS. Springer, 2009, pp. 748–752.
[42] Gogolla, M., and Vallecillo, A. Tractable Model Transformation Testing. Springer Berlin Heidelberg, 2011, pp. 221–

235.

[43] Gong, C., Zheng, Z., Li, W., and Hao, P. Effects of Class Imbalance in Test Suites: An Empirical Study of Spectrum-

Based Fault Localization. In IEEE 36th Annual Computer Software and Applications Conference Workshops (2012),
pp. 470–475.

[44] González, C. A., and Cabot, J. ATLTest: A White-Box Test Generation Approach for ATL Transformations. Springer,
2012, pp. 449–464.

[45] Greenyer, J., and Kindler, E. Comparing relational model transformation technologies: implementing Query/View/-

Transformation with Triple Graph Grammars. Software and System Modeling 9, 1 (2010), 21–46.
[46] Guerra, E. Specification-driven test generation for model transformations. In Theory and Practice of Model Transfor-

mations (Berlin, Heidelberg, 2012), Z. Hu and J. de Lara, Eds., Springer Berlin Heidelberg, pp. 40–55.

[47] Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., and Schwinger,

W. Automated verification of model transformations based on visual contracts. Automated Software Engineering 20, 1
(2013), 5–46.

[48] Guerra, E., and Soeken, M. Specification-driven model transformation testing. Software & Systems Modeling 14, 2
(2015), 623–644.

[49] Hamill, M., and Goseva-Popstojanova, K. Common trends in software fault and failure data. IEEE Transactions on
Software Engineering 35, 4 (2009), 484–496.

[50] Harrold, M. J., Rothermel, G., Sayre, K., Wu, R., and Yi, L. An empirical investigation of the relationship between

spectra differences and regression faults. Software Testing, Verification and Reliability 10, 3 (2000), 171–194.
[51] He, X., Chen, X., Cai, S., Zhang, Y., and Huang, G. Testing Bidirectional Model Transformation Using Metamorphic

Testing. Information and Software Technology (2018).

[52] Hollander, M., Wolfe, D. A., and Chicken, E. Nonparametric statistical methods. John Wiley & Sons, 2013.

[53] Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6, 2 (1979), 65–70.
[54] INRIA. ATL Transformation Example: BibTeXML to DocBook, 2005. https://www.eclipse.org/atl/atlTransformations/

BibTeXML2DocBook/ExampleBibTeXML2DocBook[v00.01].pdf.

[55] Janssen, T., Abreu, R., and van Gemund, A. J. Zoltar: a spectrum-based fault localization tool. In Proc. of the 2009
ESEC/FSE workshop on Software integration and evolution @ runtime (SINTER 2009) (New York, NY, USA, 2009), ACM,

pp. 23–30.

[56] Jézéqel, J.-M., Barais, O., and Fleurey, F. Model Driven Language Engineering with Kermeta. In Generative and
Transformational Techniques in Software Engineering III, vol. 6491 of LNCS. Springer, 2011, pp. 201–221.

[57] Jia, Y., and Harman, M. Higher order mutation testing. Information and Software Technology 51, 10 (2009), 1379 –
1393. Source Code Analysis and Manipulation, SCAM 2008.

[58] Jia, Y., and Harman, M. An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on
Software Engineering 37, 5 (2011), 649–678.

[59] Jones, J. A., and Harrold, M. J. Empirical Evaluation of the Tarantula Automatic Fault-localization Technique. In

Proc. of the 20th IEEE/ACM International Conference on Automated Software Engineering (New York, NY, USA, 2005),

ASE ’05, ACM, pp. 273–282.

[60] Jouault, F. Loosely Coupled Traceability for ATL. In Workshop Proc. of ECMDA (2005).

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook[v00.01].pdf
https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook[v00.01].pdf

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 J. Troya et al.

[61] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. ATL: A Model Transformation Tool. Sci. Comput. Program. 72,
1-2 (2008), 31–39.

[62] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and Valduriez, P. ATL: A QVT-like Transformation Language. In

Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages, and Applications
(2006), OOPSLA ’06, ACM, pp. 719–720.

[63] Jouault, F., Bézivin, J., Consel, C., Kurtev, I., and Latry, F. Building DSLs with AMMA/ATL, a Case Study on SPL

and CPL Telephony Languages. In ECOOP Workshop on Domain-Specific Program Development (Nantes, France, July
2006).

[64] Kirsie, B. G. Guideline and Evaluation of Model Transformation Engineering Approaches. Master’s thesis, KTH

Industrial Engineering and Management, Sweden, 2010.

[65] Kolovos, D. S., Rose, L. M., Matragkas, N., Paige, R. F., Guerra, E., Cuadrado, J. S., De Lara, J., Ráth, I., Varró,

D., Tisi, M., and Cabot, J. A research roadmap towards achieving scalability in model driven engineering. In

Proceedings of the Workshop on Scalability in Model Driven Engineering (New York, NY, USA, 2013), BigMDE ’13, ACM,

pp. 2:1–2:10.

[66] Kühne, T. Matters of (meta-) modeling. Software & Systems Modeling 5, 4 (2006), 369–385.
[67] Lee, H. J., Naish, L., and Ramamohanarao, K. Effective software bug localization using spectral frequency weighting

function. In IEEE 34th Annual Computer Software and Applications Conference (2010), pp. 218–227.
[68] Liu, C., Fei, L., Yan, X., Han, J., and Midkiff, S. P. Statistical debugging: A hypothesis testing-based approach. IEEE

Transactions on Software Engineering 32, 10 (Oct. 2006), 831–848.
[69] Lucia, Thung, F., Lo, D., and Jiang, L. Are faults localizable? In 2012 9th IEEE Working Conference on Mining Software

Repositories (MSR) (2012), pp. 74–77.
[70] Lucia, L., Lo, D., Jiang, L., Thung, F., and Budi, A. Extended comprehensive study of association measures for fault

localization. Journal of Software: Evolution and Process 26, 2 (2014), 172–219.
[71] Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G., Syriani, E., and Wimmer, M. Model Transforma-

tion Intents and Their Properties. Software and System Modeling (2014), 1–35.

[72] Ludewig, J. Models in software engineering – an introduction. Software and Systems Modeling 2, 1 (2003), 5–14.
[73] Álvaro Jiménez, Vara, J. M., Bollati, V. A., and Marcos, E. Metagem-trace: Improving trace generation in model

transformation by leveraging the role of transformation models. Science of Computer Programming 98 (2015), 3 – 27.

[74] Mao, X., Lei, Y., Dai, Z., Qi, Y., and Wang, C. Slice-based Statistical Fault Localization. J. Syst. Softw. 89 (Mar. 2014),

51–62.

[75] Maxwell, A. E., and Pilliner, A. E. G. Deriving coefficients of reliability and agreement for ratings. British Journal
of Mathematical and Statistical Psychology 21, 1 (1968), 105–116.

[76] Mellor, S. J., Scott, K., Uhl, A., Weise, D., and Soley, R. M. MDA distilled: principles of model-driven architecture,
vol. 88. Addison-Wesley, 2004.

[77] Moreno-Delgado, A., Durán, F., Zschaler, S., and Troya, J. Modular DSLs for Flexible Analysis: An e-Motions

Reimplementation of Palladio. In 10th European Conference on Modelling Foundations and Applications (ECMFA 2014)
(2014), LNCS, Springer, pp. 132–147.

[78] Mottu, J.-M., Baudry, B., and Le Traon, Y. Mutation Analysis Testing for Model Transformations. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 376–390.

[79] Naish, L., Lee, H. J., and Ramamohanarao, K. A Model for Spectra-based Software Diagnosis. ACM Trans. Softw.
Eng. Methodol. 20, 3 (Aug. 2011), 11:1–11:32.

[80] Naish, L., Neelofar, and Ramamohanarao, K. Multiple bug spectral fault localization using genetic programming.

In 2015 24th Australasian Software Engineering Conference (2015), pp. 11–17.
[81] Oakes, B. J., Troya, J., Lúcio, L., and Wimmer, M. Full Contract Verification for ATL using Symbolic Execution.

Journal on Software & System Modeling (2016), 1–35.

[82] Omar, E., Ghosh, S., and Whitley, D. Subtle higher order mutants. Information and Software Technology 81 (2017), 3
– 18.

[83] Persson, M., Törngren, M., Qamar, A., Westman, J., Biehl, M., Tripakis, S., Vangheluwe, H., and Denil, J. A

characterization of integrated multi-view modeling in the context of embedded and cyber-physical systems. In Proc.
of the 11th ACM International Conference on Embedded Software (Piscataway, NJ, USA, 2013), EMSOFT ’13, IEEE Press,

pp. 10:1–10:10.

[84] Poernomo, I., and Terrell, J. Correct-by-Construction Model Transformations from Partially Ordered Specifications

in Coq. In Proc. of ICFEM (2010), pp. 56–73.

[85] Project, E. M. Atlas Transformation Language – ATL. http://eclipse.org/atl, 2015.

[86] Qi, Y., Mao, X., Lei, Y., and Wang, C. Using Automated Program Repair for Evaluating the Effectiveness of Fault

Localization Techniques. In Proc. of the 2013 International Symposium on Software Testing and Analysis (New York,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

http://eclipse.org/atl

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Spectrum-Based Fault Localization in Model Transformations 1:43

NY, USA, 2013), ISSTA 2013, ACM, pp. 191–201.

[87] Rivera, J. E., Duran, F., and Vallecillo, A. A Graphical Approach for Modeling Time-dependent Behavior of

DSLs. In Proc. of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’09) (2009), IEEE,
pp. 51–55.

[88] Rose, L. M., Herrmannsdoerfer, M., Mazanek, S., Van Gorp, P., Buchwald, S., Horn, T., Kalnina, E., Koch, A.,

Lano, K., Schätz, B., and Wimmer, M. Graph and model transformation tools for model migration. Software &
Systems Modeling 13, 1 (2014), 323–359.

[89] Rustan, K., and Leino, M. This is boogie 2. Tech. rep., 2008. Manuscript KRML 178.

[90] Sánchez-Cuadrado, J., and García-Molina, J. Modularization of model transformations through a phasing

mechanism. Software & Systems Modeling 8, 3 (Jul 2009), 325–345.
[91] Sánchez-Cuadrado, J., Guerra, E., and de Lara, J. Quick fixing ATL transformations with speculative analysis.

Software & Systems Modeling (2016), 1–35.

[92] Sánchez-Cuadrado, J., Guerra, E., and de Lara, J. Static analysis of model transformations. IEEE Transactions on
Software Engineering 43, 9 (2017), 868–897.

[93] Sánchez-Cuadrado, J., Guerra, E., de Lara, J., Clarisó, R., and Cabot, J. Translating Target to Source Constraints in

Model-to-Model Transformations. In ACM/IEEE 20th International Conference on Model Driven Engineering Languages
and Systems (MODELS) (2017), pp. 12–22.

[94] Segura, S., Fraser, G., Sanchez, A., and Ruiz-Cortes, A. A survey on metamorphic testing. IEEE Transactions on
Software Engineering 42, 9 (2016), 805–824.

[95] Selim, G. M. K., Wang, S., Cordy, J. R., and Dingel, J. Model Transformations for Migrating Legacy Models: An
Industrial Case Study. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 90–101.

[96] Sen, S., Baudry, B., and Mottu, J.-M. Automatic Model Generation Strategies for Model Transformation Testing. In

Proc. of ICMT’09 (2009), vol. 5563 of LNCS, Springer, pp. 148–164.
[97] Sendall, S., and Kozaczynski,W.Model Transformation: TheHeart and Soul ofModel-Driven Software Development.

IEEE Software 20, 5 (2003), 42–45.
[98] Taentzer, G. AGG: A Graph Transformation Environment for Modeling and Validation of Software. In Proc. of the

2nd Workshop on Applications of Graph Transformations with Industrial Relevance (AGTIVE’03), vol. 3062 of LNCS.
Springer, 2003, pp. 446–453.

[99] Troya, J., Bergmayr, A., Burgueno, L., and Wimmer, M. Towards systematic mutations for and with ATL model

transformations. In Proc. of the IEEE 8th Int. Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2015 IEEE Eighth International Conference on (2015), pp. 1–10.

[100] Troya, J., Segura, S., Parejo, J. A., and Ruiz-Cortes, A. An Approach for Debugging Model Transformations

Applying Spectrum-Based Fault Localization. In XXII Jornadas de Ingeniería del Software y Bases de Datos (JISBD)
(2017).

[101] Troya, J., Segura, S., Parejo, J. A., and Ruiz-Cortés, A. Spectrum-Based Fault Localization in Model Transformations.

https://gestionproyectos.us.es/projects/itim/wiki, 2017.

[102] Troya, J., Segura, S., and Ruiz-Cortés, A. Automated inference of likely metamorphic relations for model transfor-

mations. Journal of Systems and Software 136 (2018), 188 – 208.

[103] Troya, J., and Vallecillo, A. A Rewriting Logic Semantics for ATL. Journal of Object Technology 10 (2011), 5:1–29.
[104] Troya, J., and Vallecillo, A. Specification and simulation of queuing network models using domain-specific

languages. Computer Standards & Intefaces 36, 5 (2014), 863 – 879.

[105] Vallecillo, A., and Gogolla, M. Typing model transformations using tracts. In Proc. of 5th Int. Conf. on Theory and
Practice of Model Transformations (ICMT 2012) (2012), Springer, pp. 56–71.

[106] Vargha, A., and Delaney, H. D. A critique and improvement of the cl common language effect size statistics of

mcgraw and wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132.
[107] Wagelaar, D. Using ATL/EMFTVM for import/export of medical data. In 2nd Software Development Automation

Conference (2014). https://es.slideshare.net/DennisWagelaar/wagelaar-sda2014.

[108] Walsh, L. M. N. DocBook: The Definitive Guide. O’Reilly & Associates, 1999.

[109] Warmer, J., and Kleppe, A. The Object Constraint Language: Getting your models ready for MDA. Addison Wesley,

2003.

[110] Wimmer, M., and Burgueño, L. Testing M2T/T2M Transformations. In Proc. of Int. Conference on Model Driven
Engineering Languages and Systems (MoDELS’13) (2013), Springer, pp. 203–219.

[111] Wimmer, M., Kappel, G., Schönböck, J., Kusel, A., Retschitzegger, W., and Schwinger, W. A Petri Net based

debugging environment for QVT Relations. In Proc. of ASE’09 (2009), IEEE, pp. 3–14.
[112] Wimmer, M., Martínez, S., Jouault, F., and Cabot, J. A catalogue of refactorings for model-to-model transformations.

Journal of Object Technology 11, 2 (Aug. 2012), 2:1–40.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

https://gestionproyectos.us.es/projects/itim/wiki
https://es.slideshare.net/DennisWagelaar/wagelaar-sda2014

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 J. Troya et al.

[113] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., and Regnell, B. Experimentation in Software Engineering.
Springer, 2012.

[114] Wong, W. E., Debroy, V., Gao, R., and Li, Y. The DStar Method for Effective Software Fault Localization. IEEE
Transactions on Reliability 63, 1 (March 2014), 290–308.

[115] Wong, W. E., Debroy, V., Li, Y., and Gao, R. Software Fault Localization Using DStar (D*). In Proc. of IEEE Sixth
International Conference on Software Security and Reliability (June 2012), pp. 21–30.

[116] Wong, W. E., Gao, R., Li, Y., Abreu, R., and Wotawa, F. A Survey on Software Fault Localization. IEEE Transactions
on Software Engineering 42, 8 (2016), 707–740.

[117] Xie, X. On the Analysis of Spectrum-based Fault Localization. PhD thesis, Faculty of Information and Communication

Technologies, Swinburne University of Technology, Australia, 2012.

[118] Xie, X., Chen, T. Y., Kuo, F.-C., and Xu, B. A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-based

Fault Localization. ACM Trans. Softw. Eng. Methodol. 22, 4 (Oct. 2013), 31:1–31:40.
[119] Xue, X., and Namin, A. S. How significant is the effect of fault interactions on coverage-based fault localizations? In

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (2013), pp. 113–122.
[120] Yoo, S. Evolving human competitive spectra-based fault localisation techniques. In Search Based Software Engineering

(Berlin, Heidelberg, 2012), G. Fraser and J. Teixeira de Souza, Eds., Springer, pp. 244–258.

[121] Yu, Y., Jones, J. A., and Harrold, M. J. An Empirical Study of the Effects of Test-suite Reduction on Fault Localization.

In Proc. of the 30th International Conference on Software Engineering (New York, NY, USA, 2008), ICSE ’08, ACM,

pp. 201–210.

[122] Zhang, X., Tallam, S., Gupta, N., and Gupta, R. Towards Locating Execution Omission Errors. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (2007), PLDI ’07, ACM,

pp. 415–424.

[123] Zhang, Z., Chan, W., Tse, T., Hu, P., and Wang, X. Is non-parametric hypothesis testing model robust for statistical

fault localization? Information and Software Technology 51, 11 (2009), 1573 – 1585. Third IEEE International Workshop

on Automation of Software Test (AST 2008) Eighth International Conference on Quality Software (QSIC 2008).

A APPENDIX - STATIC-VS-DYNAMIC COMPARISONWITH REDUCED SET OF OCL
ASSERTIONS

The comparison study presented in Section 4.5 has compared our approach with the static approach

by Burgueño et al. [18]. In that comparison, we have used all OCL assertions: those taken from [18]

and several others defined for evaluating this work. This appendix is devoted to present the figures

and results for the comparison using only the OCL assertions defined in [18]. This way we show

that the new OCL assertions defined for evaluating our approach are not tailored to defeat the

approach by Burgueño et al.

As it is shown in the second part of the third column in Table 9, 44 OCL assertions, out of the

total of 117 assertions created for the four case studies, have been taken from the static approach

we want to compare our approach with [18]. First of all, out of the 158 mutants we have created for

the four case studies, we select those that make any of the 44 OCL assertions fail. They are a total

of 104 mutants, so they are the ones to be considered in this comparison The second part of the

fifth and third columns of Table 9 display the number of mutants and OCL assertions considered in

each case study for the comparison study, respectively. All the artifacts used for the comparison,

namely the 104 mutants and 44 OCL assertions, together with all the matching tables generated for

all case studies are available on our project’s website [101].

The approach by Burgueño et al. as well as the way we compute the EXAM values are explained

in Sections 4.5.1 and 4.5.2, respectively. The descriptive statistics of the EXAM score provided by

the techniques when applied to the 104 MT mutants are shown in Table 10.

First of all, it is worth noting that the conclusions drawn from the experiments considering

all OCL assertions and mutants (cf. Sections 4.3 and 4.4) hold for this study with the 104 MT

mutants, i.e., Mountford, Kulcynski2, Ochiai and Zoltar have again the best numbers. Regarding

the static technique proposed by Burgueño et al. [18], it performs worse than these techniques. In

the average-case scenario, the static approach needs to inspect around 35% of the rules in order to

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Spectrum-Based Fault Localization in Model Transformations 1:45

locate the fault, which is much more than the 20% that needs to be inspected by the best techniques.

In particular, for each case study in the average-case scenario, the static technique needs to inspect

2.17 (out of 9) more rules in BibTex2DocBook (24.1% of the MT), 0.916 (out of 19) more rules in

CPL2SPL (4.82% of the MT), 5 (out of 39) more rules in Ecore2Maude (12.8% of the MT), and 1.58 (out

of 8) more rules in UML2ER (19.75% of the MT) compared with the best techniques in each case.

Regarding the number of ties, there is not a uniform behavior. For instance, in BibTex2DocBook
and CPL2SPL there are clearly more ties in the static technique compared to the best dynamic

techniques, since the difference in the EXAM score in the best- and worst-case scenarios is bigger.

As for Ecore2Maude and UML2ER, the number of ties seems to be similar among both approaches.

Looking at the worst dynamic techniques, the static approach seems to behave better than some

of them. Having a look at the average mean (penultimate column), it behaves much better than

Pierce in the average-case scenario, since the latter technique needs to inspect more than 65% of

the rules in order to locate the fault. It also performs better than Dstar in this scenario, since this

technique needs to inspect more than 44% of the rules. Finally, the static technique by Burgueño

et al. performs slightly worse than Tarantula in the average-case scenario, but a bit better in the

worst-case scenario. Therefore, for now we can conclude that the static technique may behave

better than 3 dynamic techniques and clearly behaves worse than other 15 techniques, but let us

delve deeper into the results.

We can further analyze the results by looking at each case study in the box-plots of Figure 8.

In general, we notice that the results of the static approach are typically similar among the three

scenarios, although the boxes are larger than those of most dynamic techniques, indicating a worse

performance. We can appreciate that the static approach behaves normally better than Pierce,
confirming our previous finding. As for Dstar and Tarantula, their boxes are in many plots similar

to the ones of the static approach, each of them presenting slightly better results than the others in

certain scenarios, so we cannot confirm the superiority of the static technique with regards to these

two techniques. Indeed, for instance, in the BibTex2DocBook case study, the shape of the box-plots

for Dstar seem to be clearly better.

We have performed a statistical analysis for the comparison study, whose effect-size estimations

are displayed in Table 11. We apply the same coloring as the one described in Section 4.4 for Table 8.

To begin with, we can see in the BibTex2DocBook case study that the four best SBFL techniques

are clearly better than the static approach by Burgueño et al. [18], since the values in the row of

the static approach are above 0.78 for the corresponding cells, indicating a very-large difference in

favor of the technique in the column. Also, the technique that seemed to be similar to the static

approach, namely Dstar, is proved to be much better in this case study. In general, the color of the

row shows that most techniques behave better than the static one.

In fact, looking at the four case studies, the numbers in the cells of the rows of the static approach

and the columns with the best SBFL techniques –Kulcynski2, Mountford, Zoltar and Ochiai– are

Table 9. Case studies and artifacts for the comparison

Case study # Input
models

OCL assertions
(/ from [18])

Test suite
(|T | = |S | × |O |)

#Mutants
(/ comparison study)

OCL assertions
violated

UML2ER 100 14 / 10 1400 18 / 16 90

BibTeX2DocBook 100 27 / 16 2700 40 / 40 269

CPL2SPL 100 34 / 15 3400 50 / 39 150

Ecore2Maude 100 42 / 3 4200 50 / 9 155

Total 400 117 / 44 11700 158 / 104 664

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 J. Troya et al.

Table 10. Descriptive statistics of the EXAM score per scenario and case study in the comparison study

Technique Bibtex2DocBook CPL2SPL Ecore2Maude UML2ER Average
mdn mean sd mdn mean sd mdn mean sd mdn mean sd mean sd

Arithmetic Mean .222 .272 .221 .066 .169 .194 .192 .267 .225 .188 .314 .239 .256 .220

Barinel .333 .397 .198 .184 .254 .179 .269 .315 .197 .438 .334 .164 .325 .185

Braun-Banquet .333 .300 .173 .079 .192 .206 .115 .167 .208 .188 .347 .349 .252 .234

B-U & Buser .444 .404 .226 .079 .169 .195 .115 .123 .081 .188 .345 .349 .260 .213

Cohen .333 .348 .207 .079 .168 .190 .192 .267 .225 .188 .314 .239 .274 .215

Dstar .111 .265 .258 .263 .296 .212 .788 .654 .270 .500 .550 .304 .441 .261

Kulcynski2 .111 .173 .139 .079 .178 .202 .115 .151 .161 .188 .345 .349 .212 .213

Mountford .111 .203 .150 .053 .156 .199 .115 .126 .078 .188 .350 .347 .209 .194

A Ochiai .111 .185 .143 .092 .179 .196 .115 .151 .161 .188 .345 .349 .225 .228

C Ochiai2 .444 .462 .244 .079 .175 .195 .192 .267 .225 .188 .314 .239 .304 .225

Op2 .111 .175 .142 .105 .213 .214 .115 .167 .208 .188 .345 .349 .225 .228

Phi .111 .253 .218 .079 .167 .194 .192 .267 .225 .188 .314 .239 .250 .219

Pierce .833 .696 .274 .737 .641 .293 .731 .674 .198 .719 .625 .322 .659 .272

Russel Rao .222 .260 .112 .105 .226 .221 .231 .272 .180 .313 .456 .301 .304 .204

Rogers & Tani. .556 .518 .256 .053 .221 .274 .115 .123 .081 .125 .287 .301 .287 .228

Simple Matching .556 .518 .256 .053 .221 .274 .115 .123 .081 .125 .287 .301 .287 .228

Tarantula .333 .402 .202 .079 .160 .196 .244 .290 .197 .438 .521 .280 .343 .219

Zoltar .111 .173 .138 .079 .176 .199 .115 .128 .094 .188 .345 .349 206 .195

Burgueño’15 .389 .414 .230 .105 .204 .197 .141 .254 .251 .500 .542 .312 .354 .248

Arithmetic Mean ..111 .256 .216 .053 .165 .191 .026 .051 .081 .125 .181 .163 .163 .163

Barinel .333 .360 .215 .158 .240 .173 .051 .051 .000 .125 .132 .050 .196 .110

Braun-Banquet .333 .299 .173 .053 .175 .177 .026 .095 .219 .125 .326 .357 .224 .232

B-U & Buser .444 .404 .226 .053 .156 .169 .026 .051 .081 .125 .324 .358 .234 .209

Cohen .333 .332 .206 .053 .165 .188 .026 .051 .081 .125 .181 .163 .182 .160

Dstar .111 .265 .258 .263 .283 .196 .692 .590 .258 .500 .513 .320 .413 .258

Kulcynski2 .111 .173 .139 .053 .165 .177 .026 .079 .170 .125 .324 .358 .185 .211

Mountford .111 .202 .150 .053 .144 .173 .026 .051 .081 .125 .326 .357 .181 .190

B Ochiai .111 .185 .143 .079 .166 .171 .026 .079 .170 .125 .324 .358 .189 .211

C Ochiai2 .444 .444 .248 .053 .162 .170 .026 .051 .081 .125 .181 .163 .210 .166

Op2 .111 .175 .142 .105 .209 .211 .026 .095 .219 .125 .324 .358 .201 .233

Phi .111 .237 .211 .053 .163 .192 .026 .051 .081 .125 .181 .163 .158 .162

Pierce .667 .592 .244 .605 .601 .268 .538 .487 .222 .438 .493 .332 .543 .267

Rogers & Tani. .556 .513 .258 .053 .214 .272 .026 .051 .081 .125 .266 .306 .261 .229

Russel Rao .111 .132 .109 .053 .174 .197 .026 .095 .219 .125 .313 .362 .179 .222

Simple Matching .556 .513 .258 .053 .214 .272 .026 .051 .081 .125 .266 .306 .261 .229

Tarantula .333 .365 .219 .053 .140 .173 .026 .026 .000 .125 .319 .362 .213 .189

Zoltar ..111 .173 .138 .053 .163 .174 .026 .056 .097 .125 .324 .358 .179 .192

Burgueño’15 .333 .342 .208 .105 .133 .111 .103 .126 .079 .500 .522 .315 .281 .178

Arithmetic Mean .222 .283 .250 .079 .173 .197 .231 .482 .452 .250 .446 .392 .346 .323

Barinel .444 .429 .232 .211 .268 .189 .487 .579 .393 .688 .536 .323 .453 .284

Braun-Banquet .333 .300 .174 .105 .209 .242 .205 .238 .210 .250 .368 .342 .279 .242

B-U & Buser .444 .404 .226 .105 .181 .228 .205 .195 .108 .250 .366 .343 .287 .226

Cohen .333 .359 .233 .105 .172 .193 .231 .482 .452 .250 .446 .392 .365 .318

Dstar .111 .265 .257 .263 .308 .237 .833 .718 .288 .500 .587 .291 .470 .268

Kulcynski2 .111 .173 .139 .105 .190 .235 .205 .223 .168 .250 .366 .343 .238 .221

Mountford .111 .203 .150 .053 .168 .232 .205 .200 .100 .250 .375 .339 .237 .205

W Ochiai .111 .185 .143 .105 .191 .229 .205 .223 .168 .250 .366 .343 .241 .221

C Ochiai2 .444 .475 .266 .105 .187 .228 .231 .482 .452 .250 .446 .392 .398 .335

Op2 .111 .175 .142 .105 .217 .218 .205 .238 .210 .250 .366 .343 .249 .228

Phi .111 .264 .248 .105 .171 .197 .231 .482 .452 .250 .446 .392 .341 .322

Pierce 1,000 .799 .327 .737 .682 .327 1,000 .862 .237 1,000 .757 .358 .775 .312

Rogers & Tani. .556 .524 .255 .053 .228 .277 .205 .195 .108 .125 .308 .299 .314 .235

Russel Rao .333 .391 .149 .105 .277 .260 .436 .449 .179 .500 .600 .280 .429 .217

Simple Matching .556 .524 .255 .053 .228 .277 .205 .195 .108 .125 .308 .299 .314 .235

Tarantula .444 .433 .234 .105 .180 .229 .462 .554 .393 .750 .723 .281 .473 .284

Zoltar .111 .173 .138 .105 .188 .232 .205 .200 .116 .250 .366 .343 .232 .207

Burgueño’15 .444 .485 .284 .105 .275 .332 .179 .382 .433 .500 .563 .318 .426 .342

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Spectrum-Based Fault Localization in Model Transformations 1:47

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15
0.2

0.4

0.6

0.8

1.0
Boxplot for UML2ER−AC

●●●●

●●●●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●●●

●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●

●●●●●

●●●●●●●●●●●●

●●●●

●●●●●

●●●●●●●●

●

●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●

●

●●●● ●●●●●●●●●●●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for UML2ER−BC

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for UML2ER−WC

●

●

●

●

●

●

●

●

●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.0

0.2

0.4

0.6

0.8

Boxplot for Ecore2Maude−AC

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.0

0.2

0.4

0.6

0.8
Boxplot for Ecore2Maude−BC

●

● ●

●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.0

0.2

0.4

0.6

0.8

1.0
Boxplot for Ecore2Maude−WC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for CPL2SPL−AC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for CPL2SPL−BC

●

●

●

●

●●●● ●●●

●

●●●●

●

●

●

●

●●●●

●

●●●●

●●

●

●●●

●

●

●

●

●●●

●●●● ●●●● ●● ●

●

●

● ●●●

●

●

●

●

●

●

●●

●●●●

●●●

●

●

●

●

●

●

●●

●●●●

●

●●●● ●●●●●●●●●●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15
0.2

0.4

0.6

0.8

1.0
Boxplot for CPL2SPL−WC

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●●

●● ●● ●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●●●●●

●

●●

●

●●●●●

●

●

●●●

●

●

●

●●●●●●●●●

●

●●

●

●●●

●

●

●●●●●

●

●●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●●●●●

●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for BibTex2DocBook−AC

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●● ●● ●● ●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●●●●●

●

●●

●

●●●●●

●

●

●●●

●

●

●

●●●●●●●●●

●

●●

●

●●●

●

●

●●●●●

●

●●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●

●

●●●●●

●

●

●

●●●●●

●

●

●

●

●●●●●●

●●

●●●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for BibTex2DocBook−BC

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●●●●●● ●● ●●●●●●●● ●●●●●

●

●

●●

●●●●●●●●●

●

●

●

●

●●●●●

●

●●

●

●●●●●

●

●

●●●

●

●

●

●●●●●●●●●

●

●●

●

●●●

●

●

●●●●●

●

●●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●●●●●●●● ●

●

●●●●●

●

●

●

●●●●●

A
rit

hm
et

ic
 M

ea
n

B
−

U
 &

 B
us

er
B

ar
in

el
B

ra
un

−
B

an
qu

et
C

oh
en

D
st

ar
K

ul
cy

ns
ki

2
M

ou
nt

fo
rd

O
ch

ia
i

O
ch

ia
i2

O
p2 P
hi

P
ie

rc
e

R
og

er
s

&
 T

an
i.

R
us

se
l R

ao
S

im
pl

e
M

at
ch

in
g

Ta
ra

nt
ul

a
Z

ol
ta

r
B

ur
gu

eñ
o'

15

0.2

0.4

0.6

0.8

1.0
Boxplot for BibTex2DocBook−WC

Fig. 8. Box-plot of the EXAM score of each technique per scenario and case study including [18] (Burgueño’15)

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 J. Troya et al.

always above 0.55, leaving no doubt that the static approach behaves worse. Besides, all these

cells reveal statistical differences (p-value <0.05, displayed in boldface in the table), except for the

Ecore2Maude case study. The latter is due to the fact that the results in Ecore2Maude have been
taken from only 9 mutants (cf. second part of fifth column in Table 9), which are the ones that make

the 3 OCL assertions considered in this case study fail, since only these assertions are defined in

the evaluation of the static approach by Burgueño et al. (cf. [18] –second part of third column in

Table 9). Indeed, in the comparison with the complete set of OCL assertions (cf. Section 4.5.3), the

cells of the Ecore2Maude also reveal statistical differences, since 42, instead of 3, OCL assertions are

considered. Please note that the conclusions of both comparisons is the same.

The superiority of the static approach regarding Pierce is confirmed in the other three case

studies. However, it can not be concluded that it is better than any other of the techniques, since

the rows of the static technique do not present a value <0.5 in more than one case study for any of

the other techniques. Finally, we see that in the UML2ER case study the static approach behaves

generally much worse than most techniques. An explanation can be that the static approach, based

on types matching, does not behave well in the presence of rule inheritance.

In summary, we can confirm that all SBFL techniques have a better performance when locating

the faulty rule than the static technique, except for Pierce, where the static technique behaves clearly
better. Besides, the static approach normally presents more ties than the best dynamic techniques.

Received July 2017; revised March 2009; accepted June 2009

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Spectrum-Based Fault Localization in Model Transformations 1:49

Table 11. Effect size estimations for the comparison with [18]

C
o
h
e
n

B
r
a
u
n
-
B
a
n
q
u
e
t

S
i
m
p
l
e
M
a
t
c
h

K
u
l
c
y
n
s
k
i
2

B
a
r
i
n
e
l

A
r
i
t
h
.
M
e
a
n

M
o
u
n
t
f
o
r
d

Z
o
l
t
a
r

O
c
h
i
a
i

P
h
i

O
p
2

R
u
s
s
e
l
R
a
o

B
-
U
&
B
u
s
e
r

P
i
e
r
c
e

O
c
h
i
a
i
2

R
o
g
e
r
s
&
T
a
n
i
.

D
s
t
a
r

T
a
r
a
n
t
u
l
a

B
u
r
g
u
e
n
o
[
1
8
]

B
i
b
T
e
x
2
D
o
c
B
o
o
k

Arithmetic Mean 0,000 0,296 0,411 0,318 0,368 0,532 0,641 0,573 0,611 0,271 0,636 0,535 0,139 0,249 0,393 0,249 0,292 0,640 0,300
Barinel 0,704 0,000 0,647 0,488 0,578 0,739 0,844 0,802 0,827 0,414 0,840 0,730 0,214 0,335 0,749 0,335 0,495 0,844 0,494

Braun-Banquet 0,589 0,353 0,000 0,362 0,439 0,631 0,742 0,683 0,717 0,295 0,738 0,622 0,150 0,250 0,565 0,250 0,348 0,742 0,355
B-U & Buser 0,682 0,512 0,638 0,000 0,579 0,709 0,811 0,769 0,793 0,434 0,807 0,707 0,212 0,354 0,694 0,354 0,507 0,811 0,498

Cohen 0,632 0,422 0,561 0,421 0,000 0,666 0,771 0,722 0,751 0,352 0,768 0,660 0,183 0,297 0,640 0,297 0,418 0,772 0,412
Dstar 0,468 0,261 0,369 0,291 0,334 0,000 0,608 0,535 0,575 0,252 0,603 0,504 0,163 0,244 0,330 0,244 0,257 0,606 0,276
Kulcynski2 0,359 0,156 0,258 0,189 0,229 0,392 0,000 0,419 0,464 0,155 0,495 0,396 0,077 0,153 0,191 0,153 0,153 0,498 0,173
Mountford 0,427 0,198 0,317 0,231 0,278 0,465 0,581 0,000 0,545 0,189 0,575 0,466 0,095 0,180 0,276 0,180 0,194 0,579 0,215
Ochiai 0,389 0,173 0,283 0,207 0,249 0,425 0,536 0,455 0,000 0,168 0,531 0,428 0,085 0,165 0,228 0,165 0,169 0,534 0,190
Ochiai2 0,729 0,586 0,705 0,566 0,648 0,748 0,845 0,811 0,832 0,000 0,842 0,750 0,262 0,410 0,763 0,410 0,581 0,846 0,576
Op2 0,364 0,160 0,262 0,193 0,232 0,397 0,505 0,425 0,469 0,158 0,000 0,401 0,078 0,156 0,197 0,156 0,157 0,503 0,175
Phi 0,465 0,270 0,378 0,293 0,340 0,496 0,604 0,534 0,572 0,250 0,599 0,000 0,129 0,231 0,342 0,231 0,266 0,602 0,277
Pierce 0,861 0,786 0,850 0,788 0,817 0,837 0,923 0,905 0,915 0,738 0,922 0,871 0,000 0,731 0,869 0,731 0,781 0,923 0,779
Rogers & Tanimoto 0,751 0,665 0,750 0,646 0,703 0,756 0,847 0,820 0,835 0,590 0,844 0,769 0,269 0,000 0,758 0,500 0,661 0,847 0,628
Russel Rao 0,607 0,251 0,435 0,306 0,360 0,670 0,809 0,724 0,772 0,237 0,803 0,658 0,131 0,242 0,000 0,242 0,246 0,808 0,278
Simple Matching 0,751 0,665 0,750 0,646 0,703 0,756 0,847 0,820 0,835 0,590 0,844 0,769 0,269 0,500 0,758 0,000 0,661 0,847 0,628
Tarantula 0,708 0,505 0,652 0,493 0,582 0,743 0,847 0,806 0,831 0,419 0,843 0,734 0,219 0,339 0,754 0,339 0,000 0,847 0,499

Zoltar 0,360 0,156 0,258 0,189 0,228 0,394 0,502 0,421 0,466 0,154 0,497 0,398 0,077 0,153 0,192 0,153 0,153 0,000 0,172
Burgueno [18] 0,700 0,506 0,645 0,502 0,588 0,724 0,827 0,785 0,810 0,424 0,825 0,723 0,221 0,372 0,722 0,372 0,501 0,828 0,000

C
P
L
2
S
P
L

Arithmetic Mean 0,000 0,274 0,472 0,503 0,497 0,274 0,493 0,547 0,474 0,483 0,436 0,504 0,103 0,507 0,391 0,507 0,520 0,493 0,444
Barinel 0,726 0,000 0,686 0,750 0,728 0,436 0,731 0,786 0,700 0,709 0,645 0,745 0,169 0,706 0,632 0,706 0,799 0,732 0,671
Braun-Banquet 0,528 0,314 0,000 0,526 0,524 0,322 0,514 0,565 0,513 0,521 0,463 0,527 0,113 0,523 0,422 0,523 0,533 0,516 0,466

B-U & Buser 0,497 0,250 0,474 0,000 0,493 0,277 0,492 0,546 0,479 0,488 0,441 0,500 0,101 0,505 0,396 0,505 0,517 0,493 0,443
Cohen 0,503 0,272 0,476 0,507 0,000 0,274 0,497 0,552 0,477 0,486 0,440 0,507 0,102 0,511 0,395 0,511 0,525 0,497 0,447
Dstar 0,726 0,564 0,678 0,723 0,726 0,000 0,706 0,752 0,707 0,714 0,642 0,728 0,184 0,686 0,622 0,686 0,737 0,709 0,657
Kulcynski2 0,507 0,269 0,486 0,508 0,503 0,294 0,000 0,553 0,488 0,496 0,449 0,509 0,106 0,510 0,404 0,510 0,522 0,501 0,449

Mountford 0,453 0,214 0,435 0,454 0,448 0,248 0,447 0,000 0,434 0,442 0,401 0,453 0,092 0,466 0,350 0,466 0,463 0,447 0,400
Ochiai 0,526 0,300 0,487 0,521 0,523 0,293 0,512 0,566 0,000 0,508 0,454 0,526 0,105 0,526 0,412 0,526 0,536 0,513 0,462
Ochiai2 0,517 0,291 0,479 0,512 0,514 0,286 0,504 0,558 0,492 0,000 0,446 0,517 0,103 0,519 0,404 0,519 0,526 0,504 0,454
Op2 0,564 0,355 0,537 0,559 0,560 0,358 0,551 0,599 0,546 0,554 0,000 0,563 0,129 0,548 0,459 0,548 0,565 0,552 0,496

Phi 0,496 0,255 0,473 0,500 0,493 0,272 0,491 0,547 0,474 0,483 0,437 0,000 0,102 0,506 0,393 0,506 0,516 0,491 0,441
Pierce 0,897 0,831 0,887 0,899 0,898 0,816 0,894 0,908 0,895 0,897 0,871 0,898 0,000 0,853 0,863 0,853 0,903 0,897 0,877
Rogers & Tanimoto 0,493 0,294 0,477 0,495 0,489 0,314 0,490 0,534 0,474 0,481 0,452 0,494 0,147 0,000 0,401 0,500 0,503 0,490 0,453
Russel Rao 0,609 0,368 0,578 0,604 0,605 0,378 0,596 0,650 0,588 0,596 0,541 0,607 0,137 0,599 0,000 0,599 0,613 0,598 0,537
Simple Matching 0,493 0,294 0,477 0,495 0,489 0,314 0,490 0,534 0,474 0,481 0,452 0,494 0,147 0,500 0,401 0,000 0,503 0,490 0,453
Tarantula 0,480 0,201 0,467 0,483 0,475 0,263 0,478 0,537 0,464 0,474 0,435 0,484 0,097 0,497 0,387 0,497 0,000 0,478 0,427
Zoltar 0,507 0,268 0,484 0,507 0,503 0,291 0,499 0,553 0,487 0,496 0,448 0,509 0,103 0,510 0,402 0,510 0,522 0,000 0,448
Burgueno [18] 0,556 0,329 0,534 0,557 0,553 0,343 0,551 0,600 0,538 0,546 0,504 0,559 0,123 0,547 0,463 0,547 0,573 0,552 0,000

E
C
O
R
E
2
M
A
U
D
E

Arithmetic Mean 0,000 0,330 0,575 0,620 0,500 0,100 0,575 0,600 0,575 0,500 0,575 0,500 0,080 0,620 0,430 0,620 0,550 0,615 0,480

Barinel 0,670 0,000 0,750 0,790 0,670 0,160 0,750 0,790 0,750 0,670 0,750 0,670 0,080 0,790 0,570 0,790 0,670 0,790 0,590

Braun-Banquet 0,425 0,250 0,000 0,505 0,425 0,075 0,505 0,485 0,505 0,425 0,500 0,425 0,050 0,505 0,175 0,505 0,310 0,505 0,470

B-U & Buser 0,380 0,210 0,495 0,000 0,380 0,060 0,495 0,480 0,495 0,380 0,495 0,380 0,000 0,500 0,150 0,500 0,270 0,495 0,440

Cohen 0,500 0,330 0,575 0,620 0,000 0,100 0,575 0,600 0,575 0,500 0,575 0,500 0,080 0,620 0,430 0,620 0,550 0,615 0,480

Dstar 0,900 0,840 0,925 0,940 0,900 0,000 0,930 0,940 0,930 0,900 0,925 0,900 0,470 0,940 0,855 0,940 0,890 0,940 0,880

Kulcynski2 0,425 0,250 0,495 0,505 0,425 0,070 0,000 0,485 0,500 0,425 0,495 0,425 0,030 0,505 0,170 0,505 0,310 0,505 0,440

Mountford 0,400 0,210 0,515 0,520 0,400 0,060 0,515 0,000 0,515 0,400 0,515 0,400 0,000 0,520 0,150 0,520 0,290 0,515 0,440

Ochiai 0,425 0,250 0,495 0,505 0,425 0,070 0,500 0,485 0,000 0,425 0,495 0,425 0,030 0,505 0,170 0,505 0,310 0,505 0,440

Ochiai2 0,500 0,330 0,575 0,620 0,500 0,100 0,575 0,600 0,575 0,000 0,575 0,500 0,080 0,620 0,430 0,620 0,550 0,615 0,480

Op2 0,425 0,250 0,500 0,505 0,425 0,075 0,505 0,485 0,505 0,425 0,000 0,425 0,050 0,505 0,175 0,505 0,310 0,505 0,470

Phi 0,500 0,330 0,575 0,620 0,500 0,100 0,575 0,600 0,575 0,500 0,575 0,000 0,080 0,620 0,430 0,620 0,550 0,615 0,480

Pierce 0,920 0,920 0,950 1,000 0,920 0,530 0,970 1,000 0,970 0,920 0,950 0,920 0,000 1,000 0,950 1,000 0,920 0,985 0,910

Rogers & Tanimoto 0,380 0,210 0,495 0,500 0,380 0,060 0,495 0,480 0,495 0,380 0,495 0,380 0,000 0,000 0,150 0,500 0,270 0,495 0,440

Russel Rao 0,570 0,430 0,825 0,850 0,570 0,145 0,830 0,850 0,830 0,570 0,825 0,570 0,050 0,850 0,000 0,850 0,430 0,830 0,675

Simple Matching 0,380 0,210 0,495 0,500 0,380 0,060 0,495 0,480 0,495 0,380 0,495 0,380 0,000 0,500 0,150 0,000 0,270 0,495 0,440

Tarantula 0,450 0,330 0,690 0,730 0,450 0,110 0,690 0,710 0,690 0,450 0,690 0,450 0,080 0,730 0,570 0,730 0,000 0,730 0,550

Zoltar 0,385 0,210 0,495 0,505 0,385 0,060 0,495 0,485 0,495 0,385 0,495 0,385 0,015 0,505 0,170 0,505 0,270 0,000 0,440

Burgueno [18] 0,520 0,410 0,530 0,560 0,520 0,120 0,560 0,560 0,560 0,520 0,530 0,520 0,090 0,560 0,325 0,560 0,450 0,560 0,000

U
M
L
2
E
R

Arithmetic Mean 0,000 0,468 0,498 0,500 0,500 0,261 0,500 0,482 0,500 0,500 0,500 0,500 0,189 0,553 0,305 0,553 0,302 0,500 0,284
Barinel 0,532 0,000 0,585 0,585 0,532 0,269 0,585 0,575 0,585 0,532 0,585 0,532 0,212 0,638 0,426 0,638 0,324 0,585 0,306
Braun-Banquet 0,502 0,415 0,000 0,503 0,502 0,261 0,503 0,482 0,503 0,502 0,503 0,502 0,279 0,547 0,257 0,547 0,272 0,503 0,321
B-U & Buser 0,500 0,415 0,497 0,000 0,500 0,258 0,500 0,478 0,500 0,500 0,500 0,500 0,276 0,544 0,249 0,544 0,272 0,500 0,319
Cohen 0,500 0,468 0,498 0,500 0,000 0,261 0,500 0,482 0,500 0,500 0,500 0,500 0,189 0,553 0,305 0,553 0,302 0,500 0,284
Dstar 0,739 0,731 0,739 0,742 0,739 0,000 0,742 0,733 0,742 0,739 0,742 0,739 0,446 0,800 0,580 0,800 0,544 0,742 0,513

Kulcynski2 0,500 0,415 0,497 0,500 0,500 0,258 0,000 0,478 0,500 0,500 0,500 0,500 0,276 0,544 0,249 0,544 0,272 0,500 0,319
Mountford 0,518 0,425 0,518 0,522 0,518 0,267 0,522 0,000 0,522 0,518 0,522 0,518 0,287 0,567 0,260 0,567 0,276 0,522 0,326
Ochiai 0,500 0,415 0,497 0,500 0,500 0,258 0,500 0,478 0,000 0,500 0,500 0,500 0,276 0,544 0,249 0,544 0,272 0,500 0,319
Ochiai2 0,500 0,468 0,498 0,500 0,500 0,261 0,500 0,482 0,500 0,000 0,500 0,500 0,189 0,553 0,305 0,553 0,302 0,500 0,284
Op2 0,500 0,415 0,497 0,500 0,500 0,258 0,500 0,478 0,500 0,500 0,000 0,500 0,276 0,544 0,249 0,544 0,272 0,500 0,319
Phi 0,500 0,468 0,498 0,500 0,500 0,261 0,500 0,482 0,500 0,500 0,500 0,000 0,189 0,553 0,305 0,553 0,302 0,500 0,284
Pierce 0,811 0,788 0,721 0,724 0,811 0,554 0,724 0,713 0,724 0,811 0,724 0,811 0,000 0,786 0,573 0,786 0,593 0,724 0,578

Rogers & Tanimoto 0,447 0,362 0,453 0,456 0,447 0,200 0,456 0,433 0,456 0,447 0,456 0,447 0,214 0,000 0,196 0,500 0,219 0,456 0,261
Russel Rao 0,695 0,574 0,743 0,751 0,695 0,420 0,751 0,740 0,751 0,695 0,751 0,695 0,427 0,804 0,000 0,804 0,383 0,751 0,442

Simple Matching 0,447 0,362 0,453 0,456 0,447 0,200 0,456 0,433 0,456 0,447 0,456 0,447 0,214 0,500 0,196 0,000 0,219 0,456 0,261
Tarantula 0,698 0,676 0,728 0,728 0,698 0,456 0,728 0,724 0,728 0,698 0,728 0,698 0,407 0,781 0,617 0,781 0,000 0,728 0,492
Zoltar 0,500 0,415 0,497 0,500 0,500 0,258 0,500 0,478 0,500 0,500 0,500 0,500 0,276 0,544 0,249 0,544 0,272 0,000 0,319
Burgueno [18] 0,716 0,694 0,679 0,681 0,716 0,487 0,681 0,674 0,681 0,716 0,681 0,716 0,422 0,739 0,558 0,739 0,508 0,681 0,000

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2017.

The final published version of this paper is available from ACM's website:
https://dl.acm.org/citation.cfm?doid=3276753.3241744

	Abstract
	1 Introduction
	2 Background
	2.1 Metamodeling
	2.2 Model Transformations
	2.3 Spectrum-Based Fault Localization

	3 Spectrum-based Fault Localization in Model Transformations
	3.1 Constructing the Coverage Matrix and Error Vector
	3.2 Calculating Suspiciousness
	3.3 Methodology
	3.4 Implementation and Automation

	4 Evaluation
	4.1 Research Questions
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Statistical Results
	4.5 Comparison Study
	4.6 Discussion
	4.7 Threats to Validity

	5 Related Work
	6 Conclusion
	References
	A Appendix - Static-vs-Dynamic Comparison with Reduced Set of OCL Assertions

