Journal on Software and Systems Modeling manuscript No.

On the Assessment of Generative AI in Modeling Tasks: An
Experience Report with ChatGPT and UML

Javier Camara - Javier Troya -

Lola Burgueno - Antonio Vallecillo

The final version of this paper is available on Springer's website:
https://link.springer.com/article/10.1007/s10270-023-01105-5

Received: date / Accepted: date

Abstract Most experts agree that Large Language
Models (LLMs), such as those used by Copilot and
ChatGPT, are expected to revolutionize the way in
which software is developed. Many papers are currently
devoted to analyzing the potential advantages and limi-
tations of these generative Al models for writing code.
However, the analysis of the current state of LLMs with
respect to software modeling has received little attention.
In this paper, we investigate the current capabilities of
ChatGPT to perform modeling tasks and to assist mod-
elers, while also trying to identify its main shortcomings.
Our findings show that, in contrast to code generation,
the performance of the current version of ChatGPT for
software modeling is limited, with various syntactic and
semantic deficiencies, lack of consistency in responses,
and scalability issues. We also outline our views on how
we perceive the role that LLMs can play in the soft-
ware modeling discipline in the short term, and how
the modeling community can help to improve the cur-
rent capabilities of ChatGPT and the coming LLMs for
software modeling.

Keywords Large Language Models - ChatGPT -
Software models - Modeling languages - UML

Javier Camara
ITIS Software.
mara@Quma.es

Universidad de Malaga, Spain. jca-

Javier Troya
ITIS Software. Universidad de Mélaga, Spain. jtroyaQuma.es

Lola Burgueno
ITIS Software. Universidad de Malaga, Spain.
gueno@uma.es

lolabur-

Antonio Vallecillo
ITIS Software. Universidad de Malaga, Spain. av@Quma.es

1 Introduction

The emergence of Generative Al and Large Language
Models (LLMs), such as those used by GitHub’s Copi-
lot [9] and OpenAl’'s ChatGPT [I4], is causing quite
a stir in the Computer Science community. Most ex-
perts foresee a major disruption in the way software is
developed and software engineering education is also
expected to drastically change with the advent of these
LLMs [12]. These issues are a recurrent topic in many
universities and are being covered by most specialized
forums and blogs. A plethora of papers are now analyz-
ing the potential advantages, limitations, and failures
of these models for writing code [3], as well as how
programmers interact with them [2l[19]. Most studies
seem to agree that LLMs do an excellent job in writing
code: despite some minor syntactical errors, what they
produce is essentially correct.

However, what about software modeling? What is the
situation of LLMs when it comes to performing modeling
tasks or assisting modelers to accomplish them? A few
months ago we started looking at these issues, trying
to investigate the current status of LLMs with respect
to conceptual modeling, a topic that does not seem to
have attracted much attention so far. Our premise is
that LLMs are here to stay. So, instead of ignoring them
or rejecting their use, we posit that it would be better
to embrace and use them in an effective manner to help
us perform modeling tasks.

We are aware that the current LLM situation is
very volatile, with new models, versions and tools being
released frequently, each one improving over the previous
ones. However, our goal is to assess the current situation
and to provide a set of experiments that can enable us
to identify possible shortcomings of current tools for
performing modeling tasks and assisting modelers, as

https://link.springer.com/article/10.1007/s10270-023-01105-5

Javier Camara et al.

well as a way to measure the improvement of future
versions.

In this paper, we focus on the development of soft-
ware models and, more specifically, on how to build
UML class diagrams enriched with OCL constraints.
Of the existing LLMs, we will focus on ChatGPT, an-
alyzing its possible use as a modeling assistant. To do
so, we investigate several issues, such as: (1) the cor-
rectness of the UML and OCL models produced by
ChatGPT; (2) the best way to ask ChatGPT to build
correct and complete software models—in particular,
UML class diagrams; (3) its coverage of different model-
ing concepts and mechanisms; (4) its expressiveness and
cross-modeling language translation capabilities, and
(5) its sensitivity to context and problem domains.

Our findings show that the performance of the cur-
rent Versionﬂ of ChatGPT’s capabilities for software
model development is not as good as for code genera-
tion. Our experiments concluded that ChatGPT is only
able to deal with small models, and unable to properly
handle some basic modeling concepts, such as associa-
tion classes or multiple inheritance. The variability and
inconsistency of the models produced in response to the
same prompts was too high to ensure the repeatability
and reproducibility of the results. Some obvious errors
(such as associations that had composition symbols at
both ends) were more frequent than expected. We also
realized that the problem domain had a remarkable im-
pact on the results. For example, in domains for which
there is a large code base (e.g., banking), the models
produced by ChatGPT had a very low level of abstrac-
tion, were very close to the programming level, and
mostly correct. However, the models generated for more
abstract domains, such as university courses or theater
plays, were fundamentally flawed. In contrast, we found
that ChatGPT’s performance with OCL expressions and
constraints was remarkable. We attribute this to the
fact that OCL is very similar to SQL, for which there
is an extensive base of programs on which ChatGPT
seems to have been trained.

The structure of this paper is as follows. First, Sec-
tion 2] introduces the context of our work and our main
objectives. Section [3] describes the experiments we have
conducted to understand the current capabilities of Chat-
GPT for performing modeling tasks. The results of these
experiments are presented and analyzed in Section [
Section [5] sets out our views of the present and foresee-
able future of generative LLMs for performing software
modeling tasks, how modelers can make the best use
of them, and outlines some ideas on how the software
modeling community can help to improve these tools.
Finally, Section [6] concludes with some ending remarks.

1 Stable release February, 2023.

2 Context

This section introduces the context of our work and our
main objectives, formulated through a set of research
questions.

2.1 Al-based assistant tools

Software assistants and conversational bots have been
around for a long time [I8]—think, for example, of
Microsoft’s infamous Clippy. However, they have not
received much attention until recently, when their per-
formance has been found to be outstanding and their
responses have seriously challenged the Turing test in
some instances. From the Arts to the Sciences, LLMs
are demonstrating their great potential and value in
helping with numerous tasks.

The way to use LLMs and interact with them de-
pends on numerous factors. For example:

— Interaction mode: Interactions with assistants in
software development are bimodal [2]: in acceleration
mode, the programmer knows what to do next and
uses a LLM such as Copilot or ChatGPT to get
there faster; in exploration mode, the programmer is
unsure about how to proceed and uses the assistant
to explore options.

— Type of assistance: We can distinguish between two
types of Al-based tools for software modeling depend-
ing on their use. First, there are auto-completion
wizards that propose new classes, attributes and rela-
tionships while the model is being developed, e.g., [4
OL[7T16L17,20]. Second, there are tools that can be
asked to perform the complete task, and then the
user can sometimes refine or extend the tool’s results
based on their correctness, completeness or suitabil-
ity, if needed. Examples of such tools are Copilot
and ChatGPT.

LLMs are deep learning models trained with massive
datasets to perform specific tasks. They all incorporate
from millions to billions of parameters that, in some
occasions, can be fine-tuned to be adapted to problems
similar to those for which they have been initially trained.
Usually, these models contain a series of hyperparame-
ters that allow users to customize the predictions. The
choice of good hyperparameter values has an important
impact on the quality of the results. An appropriate
hyper-parametrization for a specific task could be as im-
portant as the dataset used for training—see, e.g., [§] on
how the hyper-parametrization of LLMs such as Copilot
or Codex affects their results. However, it is not clear
whether the advantages of choosing the most appro-
priate hyperparameters for the task at hand outweigh

ChaptGPT for Conceptual Modeling

their limitations, in terms of the needed knowledge and
skills, complexity, required effort, and payoff in the re-
sults. For instance, tools such as ChatGPT do not allow
users to configure their hyperparameters and these are
inferred from the prompt. In contrast, the new Bing
search engineEI allows the non-expert user to set only
a few hyperparameters, but not all. For this, Bing has
modified how the hyper-parametrization of the LLM is
done and allows the user to choose the conversation style
with three options: “more creative”’, “more balanced” and
“more precise”, instead of asking them to select a value
(i.e., the so-called temperature value) within a given
interval, usually a Real number between 0 and 1.

2.2 ChatGPT

ChatGPT is a tool developed by OpenAl, a for-profit
research organization co-founded by Elon Musk and
Sam Altman, strongly funded by Microsoft. The users
interact with ChatGPT in a conversational way via text
prompts.

When asked about its modeling knowledge, Chat-
GPT reports that it knows most UML diagrams, includ-
ing Class diagrams, Use cases, State machines, Sequence
diagrams, and Activity diagrams.

Regarding the UML notations ChatGPT can han-
dle, being a language model, it cannot generate models
in graphical form. ChatGPT produces models in tex-
tual UML notations, including PlantUML, USE (the
UML-based Specification Environment), Yuml, Mark-
down UML, Mermaid and UMLet. It also produces some
rudimentary class diagrams using plain characters to
draw boxes and lines, but sometimes these are difficult
to parse and understand. Fig. [I] shows one example of
these textual diagrams.

We discovered that ChatGPT can also handle Ecore
models. You can ask it to generate models in Ecore and
also use them as inputs for prompts. Its treatment of the
Ecore language is comparable to that of other modeling
languages, with similar mistakes and correct answers.

We also asked ChatGPT about other textual lan-
guages that it knows, which are used in UML for rep-
resenting different aspects of software systems. It men-
tioned the Object Constraint Language (OCL), the Ac-
tion Language for Foundational UML (ALF), the UML
Profile Definition Language (UML PDL), and the UML
Testing Profile (UTP). We checked in depth its skills
with OCL, which are excellent, but in contrast, the initial
tests with the other notations did not yield satisfactory
results.

2 https://www.bing.com/search?q=Bing+AI&showconv=1&
FORM=hpcodx

| name: String |
| accounts: List |

| savingsAccount |

| balance: double |
| limit: int |

| balance: double |
| interest: double |

Fig. 1 A textual diagram generated by ChatGPT.

2.3 Research questions

As mentioned in the introduction, our primary goal was
to analyze the use of ChatGPT as an assistant tool for
conceptual modeling. In line with this, we address the
following Research Questions:

RQ1. Does ChatGPT generate syntactically correct UML
models?

Does ChatGPT generate semantically correct mod-
els, i.e., semantically aligned with the user in-
tents?

How sensitive is ChatGPT to the context and to
the problem domain?

How large are the models that ChatGPT is able
to generate or handle?

Which modeling concepts and mechanisms is Chat-
GPT able to effectively use?

Does prompt variability impact the correctness/qual-
ity of the generated models?

Do different use strategies (e.g., prompt partition-
ing) result in different outcomes?

How sensitive is ChatGPT to the UML notation
used to represent the output models?

RQ2.

RQ3.
RQ4.
RQ5.
RQ6.
RQT.

RQS.

To answer these research questions, we devised a set
of experiments, which are detailed in the next section.

3 Experiments

This section describes the experiments we conducted to
understand the current capabilities of ChatGPT to per-
form modeling tasks. We defined two phases. In the first
one, we carried out some exploratory experiments to
gain a basic understanding of how ChatGPT works with
software models, as well as its main features and limita-
tions. The experiments in the second phase were more
systematic and aimed to further characterize ChatGPT’s
modeling capabilities. The results of these experiments
are presented and discussed later in Section [

https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx
https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx

Javier Camara et al.

3.1 First phase: exploration

Objective. In this exploratory phase, the four authors
of this paper interacted individually with ChatGPT to
become acquainted with its modeling capabilities. We
also explored some of its general characteristics. Since we
are not able to set hyperparameters such as the number
of tokens, we explored the size of the models it was
able to handle. We also explored its skills with various
modeling notations, which depend on the training data.
Method. For this phase, we did not use any systematic
approach but tried to explore all the ideas that came
to mind based on the findings we were making and the
results we were obtaining.

Materials. We wrote prompts asking ChatGPT to
create models of different sizes, as well as to create the
target models of some of the assignments that we use in
our modeling lectures. The size of these models ranged
from 10 to 40 classes and associations. We wrote all our
interactions and findings in a shared document used as
a logbook [I].

First findings. We became aware of several basic ca-
pabilities and limitations of ChatGPT. Some of them
were not surprising, given how language models work,
but they are still worth reporting here.

F1. Problem domain and semantics: The problem
domain is important for ChatGPT. In general, it works
poorly when the names of the entities to be modeled
have no meaning, such as X, Y, Z, or A, B, C. The more
meaningful and representative entity names are, the
better the class model it produces. Similarly, the more
ChatGPT “knows” about the domain, the more accurate
and complete the UML model it generates. Purchase
Orders, Banks, or Employees are concepts for which it
is able to produce semantically rich models (too rich
sometimes, as it completes them with information that
was not requested).

F2. Problem domain and syntax: The problem do-
main also seems to influence the structure and contents
of the resulting models, as well as their level of abstrac-
tion. In some domains, the models generated had a
very low level of abstraction, quite close to a software
program represented in UML. In others, the level of
abstraction was higher, although it heavily depended
on the particular conversation. As we know, LLMs have
semantic and syntactic capabilities. When mixing these
two abilities to produce class models, depending on the
concrete domain (and thus the amount of data about
that domain in the training dataset), ChatGPT seems to
rely on its translation capabilities. Sometimes, given our
prompt, ChatGPT’s outputs seem to be the UML repre-
sentation of a possible solution that it found/produced
in a different language, i.e., with a different syntax. If

this other language is a low-level language such as Java
or C++, the abstraction level is lower than if it finds
a solution represented as a software model such as a
relational schema. In other words, the problem domain
influences the result, as the latter depends on the data
with which ChatGPT has been trained for that domain.

F3. Publicly available models: Related to the previ-
ous point, if you ask ChatGPT to build a UML model
that is on the Internet (such as the example given in the
OCL 2.4 standard), ChatGPT will generate a correct
model. OpenAl has not disclosed what data was used
to train ChatGPT or how the training process was con-
ducted, but it looks like these publicly available models
have served as training models for ChatGPT.

F4. Size of the models to build: The current version
of ChatGPT does not work well when asked to generate
a class model of more than 8-10 classes from scratch.
However, it works much better if you ask it to build a
small initial model and progressively add information to
it. In fact, ChatGPT was unable to cope with any of the
exams of our modeling course, because these UML mod-
els were too large (more than 20 classes and associations)
for its current capabilities or hyperparametrization, and
it either did not finish the task (which had to be aborted)
or built rather small and incomplete models.

F5. Notations: We also experimented with various
notations to represent the generated UML model. By
default, ChatGPT seems to use a diagrammatic notation
that employs characters to draw boxes and lines on
the screen. This notation is too difficult to read and
understand when there are more than four or five classes
in the model, so we started to explicitly ask ChatGPT to
produce models in specific notations, such as Plant UML
or USE. Apart from small syntactic errors, the results
are generally good; we cannot say the same for the
semantics of the generated models, which were full of
errors, as we shall later see.

F6. Conversation history: Although there is a limit
to the amount of information ChatGPT can retain, it
is able to “remember” what was said earlier in a con-
versation. This is, ChatGPT is conversation-aware and
results are heavily conversation—dependentﬁ Depending
on the session, and on our previous interactions, the
results may present remarkable variations. In fact, when
asked to build a model, ChatGPT takes information
from previously developed models within the same con-
versation, even if they have nothing to do with the model
in question. This is why it is important to start a new
chat every time we want to develop a new model. One
exercise we did was to ask ChatGPT to generate a UML
model in three different chats using the same prompt.

3 OpenAl states that, when replying to a prompt, ChatGPT
does not access previous conversations.

ChaptGPT for Conceptual Modeling

In two of them we had been previously creating models
from other domains, and the third chat restarted afresh.
The results generated in the first two conversations were
very similar to the previously generated models, despite
the fact that the new model was from a different domain.
The results of the same prompt in the new chat were
closer to the desired target.

F7. Cross-language translation facilities: When test-
ing the translation facilities across modeling languages,
the results are conversation-dependent. For example,
we gave ChatGPT a model in USE with association
classes, and asked it to represent the model in Plant-
UML. The result was not correct, because ChatGPT
does not seem to know how to handle association classes.
Now, given that same PlantUML model, if asked to con-
vert it to USE, depending on whether it is within the
same conversation or in a different one, sometimes Chat-
GPT converts it to the original USE model (even with
association classes) or to a different model (this time
with syntactic errors in USE). Interestingly, this does
not seem to be specific only to modeling, but also to
translation between other languages, even natural ones.

F8. Integrity constraints: When the description of
the model to be represented includes integrity con-
straints (which we would expect to be specified by means
of OCL expressions), what ChatGPT usually does for
each constraint is either to create a note or to define an
operation that checks the constraint on the class that
would correspond to the context of the OCL expression.
We soon learned that if what we want to represent are
the integrity constraints of a UML class model using
OCL, it is better to develop the model without con-
straints, and then explicitly ask ChatGPT to generate
the constraints in OCL, one by one. ChatGPT works
significantly better with OCL than with UML. We sus-
pect that this is possibly due to the fact that the data
sources used for the construction of OCL expressions
are usually SQL, Rust, and other declarative languages
for which there is a much larger corpus than for UML.

3.2 Second phase: focused experiments

Objective. In the first phase we managed to obtain a
basic understanding of how ChatGPT works, as well as
of its main features and limitations. We also obtained ini-
tial responses to some of the research questions, namely
those about its sensitivity to context and problem do-
main (RQ3, addressed by findings F1, F2, F3 and F6),
its scalability (RQ4, addressed by finding F4), and partly
about its sensitivity to the modeling notation of choice
(RQ8, addressed by findings F5, F7 and F8). The goal of
this second phase was to address the rest of the research
questions, which demanded a more systematic approach.

Method. For this phase, we developed a set of models
that were intended to cover the most important modeling
concepts and mechanisms (see left column of Table .
Each author independently proposed ten UML models.
All of them were small in size (three to six classes) so
that ChatGPT could handle them without problems.
They represented different user intents, and for each
one of them, the exercise consisted in asking ChatGPT
to produce the corresponding UML model using one or
more prompts.

Figure [2| shows one of these exercises (Video club).
The prompt used to generate the UML class diagram
is shown on the left and the ChatGPT response (in
PlantUML) is shown on the right. For readability pur-
poses, we have included the graphical representation
of the PlantUML model in the central box. On this
occasion, ChatGPT managed to generate the intended
model after a few interactions, so the exercise was con-
sidered successful. However, to illustrate the variability
of ChatGPT’s responses, Figure [3| shows another model
generated by ChatGPT in response to exactly the same
prompt, but from a different conversation (both were
fresh conversations). Although there are deterministic
language models, most modern LLMs (such as Chat-
GPT) are designed to be probabilistic, and not determin-
istic. This lack of repeatability of the results represents
a major obstacle to the reproducibility of the experi-
ments, and is one of the main current challenges of these
assistants from our point of view.

Even if prompts were carefully designed, very often
ChatGPT did not generate the expected result. To im-
prove the result, we always tried to follow a conversation
with the bot by providing multiple successive prompts
in which we asked to modify some aspect of the gener-
ated result. For example, if ChatGPT generates a class
Movie that does not contain an attribute name, we can
tell ChatGPT that movies must have a name. The same
can be done to add the multiplicities and role names
of the associations, remove unwanted methods, or fix
incorrect details (such as using compositions when there
is a multiplicity 1..* in the composite end As we will
mention later, ChatGPT does not always fix or add
what we ask for such as repairing the multiplicity of
an association. When it does it, ChatGPT sometimes
introduces additional errors in other parts of the model.

From the complete set of 40 exercises, we selected two
from each author. The resulting eight models covered
the concepts and mechanisms listed in Table [I] Their
intent models are shown in Figure [4]

Each author tried to make ChatGPT generate these
UML intent models as faithfully as possible, using dif-
ferent strategies to create the prompts. A summary of
the results of this experiment is shown in Table [2} The

Javier Camara et al.

Prompt

I would like to write a
class diagram in
PlantUML in which a

The Videoclub has
customers, and both
the Videoclub, the
movies and the
customers must have
names.

Videoclub rents movies.

UML Class diagram

© Videoclub

o name: String

*
rents has
+

© Movie

©Customer

o name: String

o name: String

PlantUML
@startuml
class Videoclub {
- name: String

class Movie {
- name: String
}
class Customer {
- name: String

}

Videoclub "*" -- "*" Customer: has
Videoclub "*" o-- "*" Movie: rents
@enduml

Fig. 2 Prompt used to ask ChatGPT to generate a UML class diagram of a video club system, and the resulting model.

@ Videoclub

© Movie

© Customer

o name : string

o name : string

o name : string

o getName() : string

o setName(name: string) : void

o getName() : string

@ Rental

o setName(name: string) : void

o getName() : string
o setName(name: string) : void

o customer : Customer
o0 movie : Movie

o rentedDate : Date

o returnedDate : Date

o getCustomer() : Customer

o setCustomer(customer: Customer) : void

o getMovie() : Movie

o setMovie(movie: Movie) : void

o getRentedDate() : Date

o setRentedDate(rentedDate: Date) : void

o getReturnedDate() : Date

o setReturnedDate(returnedDate: Date) : void

Fig. 3 Another model generated by ChatGPT in response to exactly the same prompt, but in a different session.

Table 1 Coverage by the selected examples of the main modeling concepts and mechanisms.

Concept/Mechanism Students Airlines

File System

Robots | Video club | Theaters | Amphibious Cars

Enumerations
Classes X X
Attributes X

X
X
X

Generalization
Association
Aggregation
Composition
Assoc. Class

X
Operations X
X

o]
KA XK

s

X
X X
X

Multiple inheritance
Abstract classes

OCL constraints

Roles (as assoc. ends)
Roles (as inherited classes)
Roles (as entity types)
Materialization [15]

L Eo T i I
L Eo T e e
KA

>

columns list the exercise, the number of authors that
could make ChatGPT successfully generate the intended
model, the average number of sessions that were used,
and the average number of prompts that were required
per session until the solution was generated or the au-
thor gave up. Reasons for restarting a new chat or giving
up included that: (1) ChatGPT entered an endless loop,
e.g., saying “Sure, I will fix it” but repeating the previous
response, and (2) class diagrams that had an increasing

number of errors despite our indications to fix them, or
diagrams that were not worth fixing.

Materials. The complete set of UML models of the 40
exercises is available from our GitHub repository [1], as
well as the reports that each author produced during
their interactions with ChatGPT.

Findings. The exercises of this phase revealed some
very interesting findings, which are summarized below.

ChaptGPT for Conceptual Modeling 7
Airlines Students Cars
-~ Airport Make
@Alrllne « operates * © 'rpo © el ©DormUn|t ©
st String code String name S S Theaters
rnng name
2 | String city String numcCredits Real price p ——
i " v ’ @) person @rime
i © odel String name ﬁlagyht
1.» 5 1.4 © name: String
© Dotals @Professor ©Student 1
Real operatingCost . A, o
start() String name String name
stop() © car ©Participant
updateCost(Real newCost. . o numberPlate: String —
= 4 J Video Club e,
.
Robots © Videoclub 1 X ©Author acts
®ocoin o name: String (©) Eengine © wheel ©) seat
(©CleaningRobot| |(@) TransportRobot S : o power: Real o diameter: Real o size: Real P
orridors
Rooms
rents has . Session
Amphibious © Theater _ ,©.
Y String location writes Ere——_
int timeEnd
© Movie ©Customer ® Vehicle
Robx | ®Env|ronment *
(@ robot o name: String o name: String tion: S
| | land position: String |
Stnog ater speed: Integer plays
o Fil s t air environment: String oo
performs iie System move(time: Integer) @ Play
© File String name
Folder |
(©)Taskexecution © | StrngeXtension Time time
_ Istringid
mt"s"tga;tTlme Int size @Landvehlc le @ MarineVehicle
Location location B |
¥ ‘@ Musical ‘@Opera
FileSystemElement
(@.raSk © ©Amph\blousvehlc\e
String id String name |
Fig. 4 Intent models of the eight selected exercises.
Table 2 Results of the experiment where the four authors | ©) course
. . DormuUnit
tried to make ChatGPT generate the intent models of the o name: String ©
o credits: int o price: int

selected exercises.

F9. Relationships: ChatGPT is able to capture asso-
ciations and inheritance adequately, although not always.
The ability seems to depend on the domain being mod-
eled. Modeling of role names, on the other hand, seems
to work well for most domains.

F10. Determinism: Results are rather random, with
major differences for the same prompt in different chats,
as discussed above and illustrated in Figures [2 and [3]

F11. Semantics: Syntactically, results are mostly cor-
rect. However, semantically they are not always correct.
Examples of common mistakes include:

1. Duplicating aggregations (and sometimes even asso-
ciations) by defining, in addition to the association,
an attribute in the containing class with the list of re-
lated elements, which is equivalent to the association
and therefore redundant.

2. Mistakenly modeling relations as directed associa-
tions. When asked to convert them into bidirectional
associations, two opposing directed associations are

o professors: Set<Professor> o students: Set<Student>

Exercise Successful | Avg. Sessions Prompts/Sess. @ enrolledStudents: Set<5tudent>- hosta
Students 4/4 2.5 2.5 teaches/ is taken by
Airlines 0/4 3 2.75 professors enrolledCourses residentStudents /students
File System 4/4 2 2.25
Robots 0/4 3 3.5
Video club 4/4 2 2.3 (@ Professor @ student
Theaters 0/4 3 3 = o nam?; aﬁ;""g set<c
s o name: String o enrolledCourses: Set<Course>

émpllaubzous i?i 2é2 12‘735 — o dormunit: Dormunit

ar Parts . L

Fig. 5 Example showing some of the mistakes made by Chat-
GPT when representing associations (real ChatGPT output).

created. These cannot be merged later, even if we
explicitly ask ChatGPT to do so.

3. Creating compositions or aggregations with two com-
posite ends, as illustrated in the example shown in
Fig. [5l Note that the multiplicities of these relations
are semantically incorrect, too.

F12. Tterative process is required: Several iterations
with explicit requests for modification are usually needed
to approximate the user intent model (cf. Table[2)). Thus,
the task of developing a model usually consists of a
dialogue with ChatGTP, rather than a single request-
response interaction. Normally, we start with an initial
prompt and refine the result until we achieve the desired
intent model. Given the large variability of ChatGPT’s
responses to exactly the same prompt, it is even a good
strategy to start several conversations and continue with
the one whose initial model is most promising, both re-

Javier Camara et al.

garding its level of abstraction and its contents (classes,
attributes and associations). This is also important be-
cause the iterative process does not always converge.
Sometimes the requested changes were implemented so
poorly that the models became badly flawed and we had
to start from scratch (or from some regenerated model
in an intermediate step of the dialogue).

F13. Constructs of the UML language not handled
properly: There are UML constructs that ChatGPT can
incorporate but does not always handle adequately. For
example, if we give it a UML model with an association
class, ChatGPT is able to handle it and even define
correct OCL constraints involving that association class.
However, none of the models that ChatGPT generates
include association classes, even when they would be
the most natural way to model the problem. We also
tried to give ChatGPT a USE model that contained
an association class and asked it to write the model
in PlantUML. ChatGPT converted it to a model with-
out association class. We explicitly asked ChatGPT to
rewrite the model to have association classes, and it
said yes, but did not. In fact, none of the three intent
models of the experiment containing association classes
could be created with ChatGPT: Airlines, Robots and
Theaters (cf., Table [2).

F14. Enumerations: In most cases, enumerations
are not used by ChatGPT unless explicitly requested.
It rather uses either inheritance or strings. Unlike with
association classes, when explicitly asked to use enumer-
ations, it does so correctly.

F15. Multiple inheritance: Multiple inheritance is
not handled correctly. We needed to explicitly describe
the type of relationship and what the source and tar-
get classes were to obtain the desired result. Although
ChatGPT most times ends up producing the right re-
sult, there is high variability in its responses, producing
correct and incorrect models seemingly at random.

F16. OCL constraints: Initially, ChatGTP does not
include constraints in the model even when they were
stated in the prompt. When explicitly asked to include
them, ChatGPT first proposes using notes, and then op-
erations. When we asked ChatGPT about whether OCL
could be used instead, mostly correct OCL constraints
were generated (apart from minor syntactic mistakes on
a few occasions).

F17. Capacity for abstraction: ChatGTP (unlike
human modelers) has no capacity for abstraction. If
it is asked to represent the UML model of a car with
four wheels, it sometimes creates four such attributes,
as opposed to a more general form of modeling that is
capable of using a collection of wheels that now has four
but at another time might have more or less. For a small
number of elements, this strategy is acceptable, but it is

suboptimal when the number increases above a certain
threshold. Similarly, ChatGPT does not factor out the
common attributes of subclasses and place them in the
superclass on its own.

F18. Effort required by the modeler: Finally, the
amount of time and effort required to produce the correct
intent models is not negligible, especially considering
the small size of these models. For example, in all the
intent models that could be correctly produced, the
total number of interactions with ChatGPT (counting
the prompts of all sessions until the model was correct)
exceeded the number of model elements.

4 Analysis

After carrying out the experiments and analyzing our
experience with ChatGPT, this section is dedicated
to answering the research questions identified in Sec-

tion 231

RQ1. Does ChatGPT generate syntactically correct
UML models?

The UML models produced by ChatGPT are gener-
ally correct, although they may contain small syntactic
errors (see finding F5). This also depends on the nota-
tion used. Although we did not test it thoroughly, the
level of syntactic correctness of the models produced
in PlantUML was much higher than those generated in
USE, for example.

RQ2. Does ChatGPT generate semantically correct
models, i.e., semantically aligned with the user’s
intent?

This is the weakest point that we observed during our
interaction with ChatGPT. Some studies suggest that
LLMs are better at syntax than producing semantically
correct results [I1]. Our findings (e.g., F13) corroborate
this fact. This includes errors in both the semantics of
the language and the semantics of the domain being
modeled. On many occasions we observed that ChatGPT
proposed seemingly random models that made no sense
from either a modeling or domain standpoint.

RQ3. How sensitive is ChatGPT to the context and to
the problem domain?

Our findings F1, F2, F3 and F6 clearly show that not
only the problem domain influences the resulting models,
but also the information exchanged during the dialogues
with ChatGPT. In addition, the more ChatGPT “knows”
about a domain (i.e., the more data about a domain was
used during training), the closer-to-correct class models
it produces. ChatGPT produces its worst results when

ChaptGPT for Conceptual Modeling

it has little or no information about the domain or the
entities to be modeled, as it happened when asked to
produce software models of entities such as Snarks or
Zumbats, for which it did not seem to have any reference
or semantic anchor.

RQ4. How large are the models that ChatGPT is able
to generate or handle?

As mentioned in Finding F4, ChatGPT currently has
strict limitations on the size of the models it can handle.
It has serious problems with models larger than 10-12
classes. Even the time and effort required to produce
smaller models (Finding F19) are not insignificant.

RQ5. Which modeling concepts and mechanisms is
ChatGPT able to effectively use?

The modeling concepts that we analyzed were shown
in Table[I} There is a high degree of variability in how
ChatGPT handles them. We observed that it is able to
manage reasonably well (with some exceptions) associa-
tions, aggregations and compositions, simple inheritance,
and role names of association ends (F9). However, it re-
quires explicit indications for using enumerations (F14),
multiple inheritance (F15) and integrity constraints
(F16). Finally, we found out that its results are not
acceptable when using abstraction (F17), and it cannot
handle association classes (F13).

RQ6. Does prompt variability impact the correctness/qual-

ity of the generated models?

We observed that there is plenty of variability when
ChatGPT generates responses to same prompt (F10).
We learned that it is useful to start a new conversation
from scratch when the results were not good, in order
to find better solutions for the same intent model (F12).

RQ7. Do different use strategies (e.g., prompt parti-
tioning) result in different outcomes?

First, as noted in finding F4, the size of the models
that ChatGPT is capable of handling in a single query
forces the modeling task to become an iterative pro-
cess in which the user starts with a small model and
progressively adds details to it (F12). The variability
and randomness of ChatGPT responses (F10) or when
results within a conversation start to diverge often force
the modeler to repeat conversations to try to obtain
better models.

RQ8. How sensitive is ChatGPT to the UML notation
used to represent the output models?

ChatGPT is capable of representing models with
several notations (F5), although in general it makes

fewer syntactic mistakes with PlantUML. It is also much
better with OCL than with UML (F8). Finally, we
also looked at how accurate ChatGPT was with cross-
modeling language translation (F7), realizing that this
task works better within the same conversation, but not
across conversations.

5 Discussion

From our study, we conclude that ChatGPT is not yet a
reliable tool to perform modeling tasks. Does that mean
we should discard it, or at least wait to see how it evolves
before taking any action? Our position is that, on the
contrary, we should start working now to improve the
modeling skills of ChatGPT and other LLMs to come,
and to build a future where these assistants are destined
to play a prominent role in modeling.

This section sets out our views about the future
of LLMs that we foresee when it comes to performing
software modeling tasks, and about how modelers can
make the best use of them. It is divided into three parts.
First, we describe the Model-Based Software Engineer-
ing (MBSE) tasks in which LLMs can be helpful, and
how we can use LLMs to accomplish them. Second, we
discuss the consequences that the new status quo may
have on the way we develop models and teach modeling,
including the new possibilities it opens and the new roles
that software engineers could play in this new context.
Finally, we discuss what we think is needed to realize
this vision.

5.1 The role of assistants in MBSE

In our opinion, ChatGPT or any other LLM can be of
invaluable help in many areas of MBSE, complementing
the current work of software modelers and letting them
focus on the tasks for which they really provide value.

Model development. LLMs can help develop models both
in acceleration and exploration modes [2]. Modelers typ-
ically generate models by composing (usually in their
heads) model fragments, each of which addresses a con-
cern or implements a feature. These model fragments
are reused from existing conceptual patterns or solutions
known to the modeler, adapting them to the problem
at hand. Assistants could be of great help in this case,
identifying these existing patterns or solutions and au-
tomatically performing the adaptation. For example, in
acceleration mode, the tool can provide solutions to add
security aspects to a model, extend an existing model
to implement more entities or functionalities, or pro-
vide model elements with new features, among other
tasks. In exploration mode, an LLM can provide a set

10

Javier Camara et al.

of options to a modeler on how to model certain system
aspects. For example, whether it would be better to use
association ends, inheritance or entity types to model
certain roles in the application. We could also ask the
LLM about how to model certain requirements, and
ask it to add to our model the one that best suits our
needs. In this context, the modeler would identify the
features or functionalities to be incorporated into the
model, using natural language, and the wizard would be
in charge of automatically adding them, until the model
is complete.

Another task in which LLMs could be very useful
is the generation of object models that conform to a
given class diagram. We have tested this functionality in
ChatGPT and the results have been very good, although
we found similar problems to those we had during model
generation. Namely, ChatGPT is able to produce very
diverse instance models quickly and efficiently, although
the quality of those models is not optimal. For example,
most of them do not respect the integrity constraints of
the class diagram. As soon as the quality of ChatGPT
improves, e.g., by including some grammatical checks
such as those available for SQL [10], it could outperform
the current instance model generators, thus successfully
taking on this tedious and costly task.

Model-based testing. In addition to generating sets of
instance models from a UML class model, that could
serve as test inputs, LLMs can also be used to generate
test cases for the system. For several simple systems
(such as a bank account, a microwave, an online shop-
ping system, and a flight reservation system) we gave
ChatGPT class diagrams with the specification of their
structure and operations, and state machines with the
specification of their behaviors, and asked it to generate
test cases for them. The results were very accurate and
complete, covering all relevant cases. Investigating in
depth the quality of the test cases that ChatGPT is able
to generate is part of our future work.

MBSE Education. The methods for teaching modeling
are likely to be one of the things that will change the
most. A few ways in which LLMs can be used to improve
modeling education include:

— FEnhanced Learning: LLMs can help students to learn
modeling languages by providing real-time feedback
on syntax, highlighting common errors, and offering
suggestions for improvement. Additionally, they can
provide contextual help, e.g., providing definitions
and examples of modeling concepts.

— Model Completion: LLMs can provide auto-complete
functionality when students are developing models,
which can save time and improve accuracy.

— Model Generation: LLMs can also generate models
based on natural language descriptions. This can be
useful for students who are just starting and may not
yet be familiar with modeling, or with the syntax of
a particular modeling language.

In addition, other tasks where LLMs could be of
great help—although they would require more elaborate
tool support—are the following.

— Personalized Learning: As with other subjects, LLMs
can be used to provide personalized learning in com-
puter science education. If complemented by a tool
that analyzes the student’s strengths, weaknesses
and learning style, LLMs can provide tailored in-
struction and feedback that meets the individual
needs of students.

— Automated grading and assessment: LLMs can pro-
vide instant feedback to students on their perfor-
mance. This can save teachers time and help them
provide more effective feedback to students.

5.2 How will the game change?

Overall, the use of large language models has the po-
tential to revolutionize software modeling engineering
and education, making it more accessible, personalized,
and efficient. To get to that point, we will first need to
improve the current consistency and reliability of the
models produced by LLMs such as ChatGPT. Second,
we will need to change the way in which we currently
develop software models and teach modeling. These two
issues are described in the following.

First of all, modeling assistants will become key
components in model development processes. Software
modelers will be able to interact with them in natural
language in order to build and test their models. For ex-
ample, modelers may rely on LLMs to explore modeling
choices, add new features to a model, or change a model
to accommodate to new or evolving requirements.

Secondly, new software engineering roles will also
appear. For example, companies have started incorpo-
rating the new role of prompt engineer [13|, whose job
is to test Al chatbots using natural language instead of
code. Their goal is to identify both errors and hidden
capabilities so that developers can either fix or exploit
them. They are also experts on how best to ask an LLM
to perform a particular task so that it is carried out in
the most accurate and efficient manner by the chatbot.

New opportunities also emerge for experts in config-
uring the hyperparameters that allow users to customize
the LLM predictions in order to improve the quality of
the results. As mentioned earlier, an appropriate hyper-
parametrization for a specific task could be as important

ChaptGPT for Conceptual Modeling

11

as the dataset used for training the LLM [8] or the actual
choice of the (deep learning) algorithm. Similarly, LLM
trainers can help provide the appropriate datasets to
improve the prediction accuracy of an LLM in particular
domains, and for specific tasks.

MBSE educators will have to change the way they
perform most of their tasks today. Since LLMs will
be ubiquitous, professors will not be able to prevent
students from using LLMs for their assignments. On the
contrary, one of their goals will be to help students use
modeling assistants in the best possible way to learn
new concepts, develop software models, and test them.
In addition, they will need to help students to develop
critical thinking skills that enable them to distinguish
when the information provided by an assistant is useful
and correct and when it is not.

Finally, researchers and academics will be able to
use LLMs to analyze large amounts of models, identify
patterns and insights, and generate new ideas from them.

5.3 How do we make this happen?

The prospects are certainly encouraging. The question
is whether they are really attainable and, if so, how they
can be achieved. It is clear that ChatGPT’s abilities to
perform modeling tasks are not yet up to the job. In this
section, we would like to propose some suggestions that
the modeling community could implement to improve
the reliability and accuracy of ChatGPT and other
Generative Al models.

First, we should make more (correct) software mod-
els available in public repositories, thus increasing the
accessibility of datasets that can be used for training
LLMs and other Generative Al models. The more UML
and software models that are publicly available from
different domains, the more accurate and reliable the
responses from these Al models will be.

Second, we should start using LLMs/Generative Al
models in our software modeling tasks to familiarize
ourselves with them, explore their possibilities and dis-
cover their limitations. We should strive to use them
not only for developing software models, but also for
testing them, generating instances and test cases, etc.
Exploring their use for other MBSE tasks and activities
could also be valuable. We are sure that Al models can
open new ways to make use of models in software and
systems engineering tasks.

Providing feedback to the results of Al models, when-
ever available, will benefit the whole community. Train-
ing them should become a community effort, i.e., a
responsibility of each and every one of us.

Developing a body of knowledge that incorporates
a set of guidelines about the best strategies to interact

with Al-based assistants for various types of modeling
tasks, as well as a catalog of capabilities and common
limitations, can also contribute to streamline the assim-
ilation of AI models for modeling tasks.

Finally, let us incorporate LLMs and Generative Al
models into our teaching practices. Making students
acquainted with them and aware of their possibilities
and limitations will help them not only to improve their
modeling skills, but also their critical thinking. They
should learn to discriminate when to use these Al models
and when not to, as well as when to trust their answers.

6 Conclusions

Generative Al and Large Language Models are becom-
ing ubiquitous, and their upcoming impact on our dis-
ciplines and professions cannot be overlooked. In this
paper, we have investigated their current capabilities
and limitations for generating UML class diagrams and
for assisting software engineers to perform modeling
tasks. Our findings show that, in contrast to code gen-
eration and completion, the performance of the current
version of ChatGPT for software modeling is still quite
limited.

Our intention was not to conduct an exhaustive
set of experiments regarding the capabilities of LLMs
for assisting in modeling tasks, as they are currently
changing very fast. However, we wanted to address the
growing need to have a picture of their current state, as
accurate as possible. We also did not want to address
other issues related to these types of tools, such as their
ethical concerns. Although equally important, in this
article we have focused mainly on their technical aspects.

In general we believe that, far from detracting from
the use of this type of generative Al-based tools, we
should try to help improving them as much as possible.
In addition, we should start adapting our model-based
engineering practices to these new assistants and the pos-
sibilities they offer. Likewise, we should start changing
our modeling education methods to incorporate them.

Successfully addressing the challenge of seamlessly
integrating these new LLMs and Generative Al models
into our MBSE methods and practices is crucial. It could
significantly increase the impact of MBSE on society
and lead to a major step forward for our profession.

Acknowledgements We would like to thank Jorg Kienzle
for his comments and very valuable feedback on an earlier draft
of this paper. This work was partially funded by the Spanish
Government (FEDER/Ministerio de Ciencia e Innovacion—
Agencia Estatal de Investigaciéon) under projects PID2021-
125527NB-100 and TED2021-130523B-100.

12

Javier Camara et al.

References

10.

11.

12.

13.

14.

15.

16.

. Atenea Research Group: Git

repository: chatgpt-
uml (2023). URL https://github.com/
atenearesearchgroup/chatgpt-uml

. Barke, S., James, M.B., Polikarpova, N.: Grounded copilot:

How programmers interact with code-generating models.

CoRR abs/2206.15000 (2022). URL https://arxiv,

org/abs/2206.15000

. Borji, A.: A categorical archive of chatgpt failures. CoRR

abs/2302.03494 (2023). URL https://arxiv.org/abs/
2302.03494

. Burguertio, L., Clariso6, R., Gérard, S., Li, S., Cabot, J.:

An NLP-based architecture for the autocompletion of
partial domain models. In: Proc. of CAiSE’21, LNCS, vol.
12751, pp. 91-106. Springer (2021). DOI 10.1007/978-3-
030-79382-1_6

. Cabot, J., Raventods, R.: Roles as entity types: A concep-

tual modelling pattern. In: Proc. of ER’04, LNCS, vol.
3288, pp. 69-82. Springer (2004). DOI 10.1007/978-3-540-
30464-7\ 7

. Capuano, T., Sahraoui, H.A., Frénay, B., Vanderose, B.:

Learning from code repositories to recommend model
classes. Journal of Object Technology 21(3), 3:1-11 (2022).
DOI 10.5381/j0t.2022.21.3.a4

. Chaaben, M.B., Burgueno, L., Sahraoui, H.: Towards

using few-shot prompt learning for automating model
completion. In: Proc. of ICSE (NIER)’23. IEEE/ACM
(2023)

. Doéderlein, J., Acher, M., Khelladi, D.E., Combemale,

B.: Piloting copilot and codex: Hot temperature, cold
prompts, or black magic? CoRR abs/2210.14699 (2022).
URL https://arxiv.org/abs/2210.14699

. GitHub: Copilot: Your AI pair programmer (2023). URL

https://github.com/features/copilot/

Kim, H., So, B.H., Han, W.S.| Lee, H.: Natural language
to SQL: Where are we today? Proc. VLDB Endow. 13(10),
1737-1750 (2020). DOT 10.14778/3401960.3401970. URL
https://doi.org/10.14778/3401960.3401970
Marcusarchive, G., Davisarchive, E.: GPT-3, Bloviator:
OpenAl’s language generator has no idea what it’s talking
about (2020). URL https://www.technologyreview,
com/2020/08/22/1007539/gpt3-openai-language-
generator-artificial-intelligence-ai-opinion/
Meyer, B.: What Do ChatGPT and Al-based Au-
tomatic Program Generation Mean for the Fu-
ture of Software. Commun. ACM 65(12), 5
(2022). URL https://cacm.acm.org/blogs/blog-
cacm/268103-what-do-chatgpt-and-ai-based-
automatic-program-generation-mean-for-the-
future-of-software/fulltext

Mok, A.: ‘Prompt engineering’ is one of the
hottest jobs in generative Al. Here’s how it
works. Business Insider (2023). URL https:
//www.businessinsider.com/prompt-engineering-
ai-chatgpt-jobs-explained-2023-3

Open AI: ChatGPT (2023). URL https://chat.openai,
com/chat

Pirotte, A., Ziményi, E., Massart, D., Yakusheva, T.:
Materialization: A powerful and ubiquitous abstraction
pattern. In: Proc. of VLDB’94, pp. 630-641. Morgan Kauf-
mann (1994). URL http://www.vldb.org/conf/1994/
P630.PDF

Rocco, J.D., Sipio, C.D., Ruscio, D.D., Nguyen, P.T.: A
GNN-based recommender system to assist the specifica-
tion of metamodels and models. In: Proc. of MODELS’22,

17.

18.

19.

20.

pp. 70-81. IEEE (2021). DOI 10.1109/MODELS50736.
2021.00016

Saini, R., Mussbacher, G., Guo, J.L.C., Kienzle, J.: Auto-
mated, interactive, and traceable domain modeling em-
powered by artificial intelligence. Software and Systems
Modeling 21(3), 1015-1045 (2022). DOI 10.1007,/s10270-
021-00942-6

Savary-Leblanc, M., Burgueno, L., Cabot, J., Pallec, X.L.,
Gérard, S.: Software assistants in software engineering:
A systematic mapping study. Software: Practice and
Experience 53(3), 856-892 (2023). DOI 10.1002/spe.3170
Vaithilingam, P., Zhang, T., Glassman, E.L.: Expectation
vs. Experience: Evaluating the Usability of Code Gen-
eration Tools Powered by Large Language Models. In:
Proc. of CHI’22, pp. 332:1-332:7. ACM (2022). DOI
10.1145/3491101.3519665

Weyssow, M., Sahraoui, H.A., Syriani, E.: Recommending
metamodel concepts during modeling activities with pre-
trained language models. Software and Systems Modeling
21(3), 1071-1089 (2022). DOI 10.1007/s10270-022-00975-
5

https://github.com/atenearesearchgroup/chatgpt-uml
https://github.com/atenearesearchgroup/chatgpt-uml
https://arxiv.org/abs/2206.15000
https://arxiv.org/abs/2206.15000
https://arxiv.org/abs/2302.03494
https://arxiv.org/abs/2302.03494
https://arxiv.org/abs/2210.14699
https://github.com/features/copilot/
https://doi.org/10.14778/3401960.3401970
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://cacm.acm.org/blogs/blog-cacm/268103-what-do-chatgpt-and-ai-based-automatic-program-generation-mean-for-the-future-of-software/fulltext
https://cacm.acm.org/blogs/blog-cacm/268103-what-do-chatgpt-and-ai-based-automatic-program-generation-mean-for-the-future-of-software/fulltext
https://cacm.acm.org/blogs/blog-cacm/268103-what-do-chatgpt-and-ai-based-automatic-program-generation-mean-for-the-future-of-software/fulltext
https://cacm.acm.org/blogs/blog-cacm/268103-what-do-chatgpt-and-ai-based-automatic-program-generation-mean-for-the-future-of-software/fulltext
https://www.businessinsider.com/prompt-engineering-ai-chatgpt-jobs-explained-2023-3
https://www.businessinsider.com/prompt-engineering-ai-chatgpt-jobs-explained-2023-3
https://www.businessinsider.com/prompt-engineering-ai-chatgpt-jobs-explained-2023-3
https://chat.openai.com/chat
https://chat.openai.com/chat
http://www.vldb.org/conf/1994/P630.PDF
http://www.vldb.org/conf/1994/P630.PDF

	Introduction
	Context
	Experiments
	Analysis
	Discussion
	Conclusions

