The final version of this paper is available on ACM Digital Library:

https://dl.acm.org/doi/10.1145/3550356.3563135

Using Trace Alignments for Measuring the Similarity between a
Physical and its Digital Twin

Paula Mufoz
paulam@uma.es
ITIS Software. Universidad de Malaga
Malaga, Spain

Javier Troya
jtroya@uma.es

ITIS Software. Universidad de Malaga
Malaga, Spain

ABSTRACT

A common problem in the development of digital twin systems is
the validation that the behavior of both twins, the physical and the
digital, is the same, or at least similar enough given the requirements
of the digital twin system. In this paper, we propose a method for
the alignment of the traces of both twins. Traces are sequences of
snapshots that capture the progressive states of each entity. Our
approach is based on a bioinformatic algorithm that we adapt and
use for the alignment of snapshots. Additionally, we include a set
of measures to evaluate the quality of these alignments and reason
about the level of fidelity of the digital twin system. Two case studies
are used to demonstrate our proposal and evaluate its accuracy and
effectiveness.

CCS CONCEPTS

« Software and its engineering — Operational analysis.

KEYWORDS
Digital twins, Trace analysis, Trace alignment, Conformance testing

ACM Reference Format:

Paula Murfioz, Manuel Wimmer, Javier Troya, and Antonio Vallecillo. 2022.
Using Trace Alignments for Measuring the Similarity between a Physical
and its Digital Twin. In ACM/IEEE 25th International Conference on Model
Driven Engineering Languages and Systems (MODELS "22 Companion), Octo-
ber 23-28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3550356.3563135

1 INTRODUCTION

A Digital Twin (DT) is a digital representation of an actual system,
service or product (the Physical Twin (PT)), synchronized at a spec-
ified frequency and fidelity [8]. DTs are usually employed for tasks
such as: providing self-adaptive mechanisms for the PT; making
predictions to enable calibration; optimizing its performance by ad-
justing its configuration parameters; or providing what-if analysis
for decision support and alerts [15].

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9467-3/22/10...$15.00
https://doi.org/10.1145/3550356.3563135

Manuel Wimmer
manuel. wimmer@jku.at
CDL-MINT, Johannes Kepler University
Linz, Austria

Antonio Vallecillo
av(@uma.es
ITIS Software. Universidad de Malaga
Malaga, Spain

To implement these tasks, the DT’s behavior must be faithful to
the PT’s, i.e., the behavior of the DT must emulate with sufficient
precision the behavior of its PT. In case this requirement is not
met, the DT’s recommendations might lead to wrong decisions
being made or problems during execution time. For example, let
us assume we have a DT of a robot arm that implements self-
adaptive behavior, enabling the change of trajectories to avoid
collisions with unexpected obstacles. If the DT movements are not
sufficiently faithful with respect to the PT, the orders provided may
be inaccurate and lead to damages to the PT.

Although DTs are convenient to test what-if scenarios or pro-
vide optimizations, it is imperative to measure the fidelity between
both twins to assess if the results obtained are good enough for its
required purpose. It is essential to keep in mind that it is impossible
to develop a DT that emulates the physical system with complete
accuracy since we will never be able to realize a perfect model [13].
Simulation of high-fidelity DTs is quite costly because it involves
the simulation of physical phenomena and the interaction of a great
number of components.

To tackle this challenge, some authors, e.g., [1, 2, 5, 10, 24, 25],
propose the use of a hierarchy of DTs with different levels of fidelity,
some of them being lower fidelity DTs with a very specific goal.
These lighter DTs provide abstractions of the PT by selecting the
properties of interest and defining them with the required resolu-
tion. This reduces the level of fidelity with respect to the original
system in order to enable the optimization of resource consump-
tion and reduce response times [25]. However, there are only a
few systematic approaches to automatically measure the fidelity of
these hierarchies of models at different abstraction and resolution
levels [5] to validate whether they are fit for their purpose.

In our proposal, we provide a systematic method to align the
execution traces of a DT and a PT, and based on this alignment, we
propose a set of similarity measures to reason about the quality of
the alignment. These measurements allow reasoning about the level
of fidelity of the DT with respect to the PT to assess if it is enough for
its given purpose. This approach not only provides a set of similarity
measures but also enables the location of discrepancies between the
PT and the DT. Our proposal is based on a bioinformatics algorithm
named Needleman-Wunsch (NDW) [20] which is used for global
alignment of character sequences in order to find similarities in
the amino acid sequences of two proteins. We have adapted this
algorithm to enable the comparison between executions traces

https://doi.org/10.1145/3550356.3563135
https://doi.org/10.1145/3550356.3563135
https://dl.acm.org/doi/10.1145/3550356.3563135

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

composed of sequences of snapshots [9]. Each snapshot defines the
system’s state at a given instant in time, specifying the objects, the
relationships between them, and their specific values. Our adapted
algorithm aligns the traces by matching the snapshots that are
considered to be equivalent, and we define measures to analyze the
results of the alignment and the fidelity of the system.

This paper is structured as follows. In Section 2, we provide
a general background of all the concepts on which we base our
proposal, including the NDW algorithm and an introduction to
similarity measurement. This section also presents the running
example used to illustrate the proposal. In Section 3, we explain our
adaptation to the NDW algorithm and present the results of our
analysis using the running example and an additional case study of
a robot arm. Finally, in Section 4, we present the conclusions and
discuss some future work.

2 BACKGROUND AND RELATED WORK

2.1 Fidelity, Abstraction and Resolution

This work unfolds around the concept of fidelity. Fidelity is defined
as “the degree to which a model reproduces the actual state and
behavior of a system in a measurable way” [11]. It determines how
closely a model realistically represents the actual system. In our case,
we aim to determine the fidelity between the DT (the model) and
the PT (the actual system). Some works define the interrelationship
between the concepts of abstraction, resolution, and fidelity [16].

Abstraction is defined as “the process of selecting the essential
aspects of a system to be represented in a model or simulation while
ignoring those aspects that are not relevant to its purpose” [11],
while resolution has been defined as “the degree of detail used to
represent certain aspects of the real world in a model” [16]. The
purpose of resolution is to determine how precise the elements of
the system will be modeled, whereas abstraction determines which
elements will be included in the model.

From these definitions, we can naively think that the greater
the abstraction, the lower the fidelity since we would be removing
elements from the model. Analogously, we can also think that the
lower the resolution, the lower the fidelity because we would be
reducing the level of detail of its elements. This is not always the
case as presented in [16] since it depends on the influence of such
changes on the scope of the model.

In our work, we use traces to define the behavior of the system
over time. These traces are composed by sequences of snapshots [9],
i.e., a set of objects, a set of links between them, and the specific
values of the attributes of these objects at a specific moment in time.
These snapshots are selected sets of elements abstracted from the
PT using an abstraction function.

Given two models A and C of a system S at different levels of
abstraction (e.g., A is more abstract than C), the abstraction function
defined between C and A is a function that maps the elements of the
more concrete model C into elements of the more abstract model A.
It explains how to interpret each element of the concrete model that
is relevant to the user in terms of elements in the abstract model.
Abstraction functions are useful for bringing models — or specific
elements of models — to the same level of abstraction to enable
comparison between them. We use these abstraction functions to

Paula Mufoz et al.

compare execution traces defined at different levels of abstraction,
in case we are dealing with a hierarchy of DTs.

2.2 Similarity Measurement

We record the different states of the DT and the PT reached during
execution as sequences of snapshots, which could be interpreted
as trajectories, time-series, or even probability distributions if we
consider a set of executions. In this section, we analyze some of the
proposals in the literature to measure similarity both in simulation
executions in general and in some concrete DT use cases.

In recent works, the question of measuring the level of similarity
in a DT system arises [2], emphasizing the importance of defining
the DT at the minimum required level of fidelity to optimize com-
putational costs. Some existing proposals, such as [1], assess the
required level of fidelity using a validity frame. This validity frame
is defined along with a semi-automated methodology to establish
the suitability of a given simulation. In other works, such as [24],
they propose to measure the similarity between two groups of sim-
ulations using the Kullback-Liebler Divergence (KLD). This measure
calculates the difference between two probability distributions in
order to assess the degree of variability between runs. Other pro-
posal [5] uses the Jensen-Shannon Distance, which is a normalized
symmetrical version of KLD that takes into account the uncertainty
involved in non-deterministic executions, checking for a certain
level of variability.

Other methods for assessing similarity use different measure
distances. There are two main groups of measure distances: the
lock-step measures, which compare the i-th point of one time series
with the i-th point of the other; and the elastic measures, which
allow one-to-many points or one-to-none points matching [17].

Lock-step measures. Let us suppose that we have two traces A =
{a1,..,an} and B = {by, .., by} that have been already aligned, i.e,
they have the same number of points (n) and the elements a; and
b; describe the state of each system at step i. Then, assuming that
d(p, q) is a distance measure between a pair of points p and g (e.g,
the Euclidean or the Manhattan distance), we can compute the
average distance between the two traces, d(A, B), as well as its
sample standard deviation, s(A, B), as follows:

dAB) = - dlab) 1)
i=1
SAB) =y | b2 -n-dA B2 @)
i=1

These two numbers together provide a measure of the distance
between the two traces. For example, in [25], they developed two
versions of a DT at different levels of fidelity. To measure their
similarity, they manually aligned the execution traces and used a
lock-step measure based on the Manhattan’s distance.

Elastic measures. Sometimes, a more flexible alignment between
the traces is desirable, especially when one-to-many or one-to-
none point matchings need to be considered. One of the most
representative measures is the Fréchet distance.

The Fréchet distance F(A, B) between two given curves A and B
is defined as the infimum over all reparametrizations a and f of the

Using Trace Alignments for Measuring the Similarity between a Physical and its Digital Twin

maximum over all ¢ € [0, 1] of the distance between A(«(t)) and
B(B(1)). It is generally explained through this example: Imagine a
person who walks from one end of A to the other end, being their
position A(a(t)); likewise, a dog walks from one end of B to the
other end, being its position B(f(t)), with the person holding the
dog by a leash. The Fréchet distance between both is the minimum
leash length needed to walk the dog following their trajectories.
Formally, assuming that d(A(a(t)), B(f(t))) is a distance measure
such as the Fuclidean or the Manhattan’s distance, the Fréchet
distance is:

F(A,B) = lanlg o {d(A(a(1)), B(B(1))) } ®)

2.3 Trace Analysis

In our work, we not only aim at measuring the similarity between
the traces but also to provide the alignment between the snapshots,
in order to check the possible incompatibilities between the ex-
ecutions and to provide a better diagnosis of possible execution
errors.

In the literature, there are works that perform trace analysis to
obtain higher level information about the system behavior or per-
form validation by comparing traces of equivalent systems. In [23],
they obtain the states through which the system transitions from its
state machine. In [3], they infer high-level tasks analyzing the exe-
cution of web services to improve the developer’s comprehension
of such processes. In [6], they propose the use of these techniques
to identify the common and frequent behavior to distinguish it from
exceptional behavior, potentially helping in validation. In the field
of comparison between traces, works such as [12] define seman-
tic matching rules which enable us to tell the difference between
traces. In [14], they define operations for processing traces. They
propose the Levenshtein distance to measure similarity. The Leven-
shtein distance measures the number of operations to transform
one string into another and describes the required transformations.
They adapt this measurement to use it for trace analysis. In [10],
they use Dynamic Time Warping to measure the similarity between
a person and a robot arm during real-time imitation, comparing
the sequences of traces retrieved from its execution. In [3, 14], they
adapt algorithms meant for analyzing sequences of characters to
analyze traces, considering each of the instant measurements as a
character.

Our work focuses on this latter aspect: validating the confor-
mance of one process to another; in our case the execution of the
DT against that of the PT. We adapt an algorithm for analyzing
sequences of characters to analyze traces. These algorithms usually
belong to the field of bioinformatics, since they usually need to
perform alignments to compare biological sequences. There are
two main types of sequence alignment algorithms depending on
whether they use local or global alignment.

Local alignment algorithms are used for comparing two dissimi-
lar sequences in which we expect to find some regions of similarities
between the two sequences. An example of a local alignment al-
gorithm is the Smith-Waterman [22] algorithm based on dynamic
programming. In contrast, global alignment algorithms attempt to
align all the elements of the sequences, so they are suitable for cases
in which the sequences are similar. An example of a global align-
ment algorithm is the Needleman-Wunsch algorithm (NDW) [20].

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

It is also based on dynamic programming and it is one of the most
simple but powerful algorithms for sequence alignment and the
one that will be adapted to perform alignments in our proposal.
There are further attempts in recent years to improve the per-
formance of the aforementioned algorithms for aligning sequences.
One of these algorithms, BLAST [4], provides an improved ver-
sion of the Smith-Waterman algorithm optimized with the use of
heuristics. In [7], they provide an optimization of the dynamic pro-
gramming approach used in NDW algorithm reducing its time and
space complexity from O(n?) to O(n?/log(n)). Since this is a first
attempt at our proposal, we will be using the original version of the
NDW algorithm. However, we plan to check its performance on
larger data sets and make use of the optimized version if needed.
The Needleman-Wunsch algorithm [20] is a global alignment
algorithm based on dynamic programming to find the optimal align-
ment between two sequences of characters. It divides the problem
of comparing two full sequences into a series of small problems (the
comparison of partial sets of the full sequence) to find the optimal
solution to the full problem. We enumerate below the different
steps followed by this algorithm to reach the optimal solution:

(1) Set a scoring system. In general, given two sequences there
is no unique alignment between them. Thus, we need a scor-
ing system to evaluate the quality of the alignment depend-
ing on our intentions. In the NDW algorithm there are three
main outcomes when comparing two characters C, and Cp,
belonging to sequence a and b respectively:

(a) Match. The two characters at the current index are the
same.

(b) Gap. The characters are different and we decide to leave
a gap in the alignment and not choose a character from
any of the sequences.

(c) InsDel. The characters are different and we include a char-
acter from either sequence a (insertion) or from sequence
b (deletion).

The scoring system will assign a specific score for each
of these situations. There are two main types of scoring
schemes:

(a) Basic scoring scheme. We assign a score for each of the
situations. For example, +1 for a Match, -1 for Mismatch,
and 0 for InsDel. This way, we will prioritize alignments
that include a lesser number of gaps.

(b) Frequency scoring scheme. We assign a different set of
these three scores for each of the possible comparisons
between the different available characters. This generates
an input matrix that the algorithm takes for processing
the alignment. It is common in bioinformatics use cases
in which certain proteins are more common than others.

(2) Fill the similarity matrix. Once we have selected the scor-
ing scheme, we fill the similarity matrix in which we compare
each of the characters and try to optimize the score, choos-
ing between the three main outcomes. The pseudocode for
this process is shown in Algorithm 1. In this algorithm, m
is the similarity matrix, t, and t;, are the traces to align and
the scores are the ones of the selected scoring system. The
scoreSubstitution is evaluated after comparing the charac-
ters and determining whether it is a match, line 12. If this is

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

Algorithm 1 Calculation of the similarity matrix for the
Needleman-Wunsch algorithm [20]

1: m[0][0] « O

2 c«1

3. while ¢ < m[0].size do > Fill the first row of the matrix
4 m[0][c] < m[0][c — 1] + scorelnsertion

5: c—c+1

6: end while

7. r 1

8: while r < m.size do

9 m([r][0] < m[r — 1][0] + scoreDeletion v Fill first column
10: while ¢ < m[0].size do

1t ins < m[r][c — 1] + scorelns

12: sub « m[r —1][c — 1] + scoreSub(ty[r — 1], t3[c — 1])
13: del «<— m[r —1][c] + scoreDel

14: m(r][c] « max(ins, sub, del)

15: ce—c+1

16: end while

7: end while

_

the case, it assigns the match score. Otherwise, it assigns a
gap score, line 14.

(3) Build the alignment. Once the matrix is filled, we need
to trace it back from the bottom right, by choosing the op-
timal scores (highest or lowest depending on whether we
are maximizing or minimizing). This leads us to the opti-
mal alignment given our sequences and the selected score
system.

2.4 Running Example

In previous works [18, 21], we presented the example of the DT
of a Lego Mindstorms NXJ Car to demonstrate our proposals. The
NX]J is a small car-like vehicle with sensors. It can move, detect
obstacles, and interact with its environment in different ways by
using its sensors, e.g., following a path defined by a colored line
or avoiding obstacles. The NXJ uses Bluetooth to exchange data
and commands, e.g., information about its current state (such as
position, speed, etc.) as well as other sensor readings about the
environment, that will compose the snapshots.

The NXJ has a pose provider for determining its planar coor-
dinates and the angle it is heading to. To move, it has an engine
that enables forward movement and allows it to rotate its direction
at a certain angle. Furthermore, it is equipped with three types of
sensors: (i) the ultrasonic sensor detects the distance to any object
which is in front of the car, (ii) the light sensor reads the color of
the ground beneath the car, and (iii) two touch sensors are utilized
as a bumper to report if the car has collided with an obstacle.

In Figure 1, we can see the attributes that we will take from this
system as properties of interest for our analysis. Every snapshot
includes a timestamp to determine the exact moment at which the
system was at such state, as well as an executionId to identify it.
It coincides with the first timestamp of the execution. The twinId
attribute is a unique identifier for the twin for storing its snapshots
in the data lake, in case there is more than one car, for example.
The rest of the attributes describe the state of the car: its position

Paula Mufoz et al.

CarSnapshot

twinld : String
xPos : Real
yPos : Real
Snapshot angle : Real
timestamp : Integer <]— speed : Real
executionld : Integer isMoving : Boolean
distance : Integer
bump : Boolean
light : Integer
action : Action

Figure 1: A UML class model representing the information
which is exchanged with the system.

(xPos, yPos); the angle the car is heading to (angle); its speed;
whether it is moving or not (isMoving); the distance in front of
it as detected by the ultrasonic sensor; if the car has collided or
not, as detected by the touch sensor (bump); the color of the floor
beneath it, as detected by the light sensor (1ight); and the action
it is performing: going #Forward or #Rotate.

Figure 2 shows an excerpt of two of the traces used in our analy-
sis, one from the PT (above) and one from the DT (below). This will
be the information used by our approach to match the sequences
of snapshots of the DT to the PT. These snapshots are composed
using an abstraction function which maps the selected attributes
to the corresponding properties of the actual system. This enables
the comparison between snapshots defined at different abstraction
levels, since we could find the equivalence between their elements
by checking the mapping provided by the abstraction function. For
example, let us suppose we have an low-fidelity DT which only
calculates the position of the car, including only the attributes xPos,
yPos and angle, named x, y and heading. If we want to perform
an alignment with the snapshots of Figure 2, we would need to
check the abstraction function for the equivalence between these
given attributes, to know that we need to compare xPos with x, for
example. In the following sections, we will use a set of synthetic
traces generated from this example to illustrate our proposal and
discuss some initial results.

3 APPROACH

In this section, we first show how we adapt the NDW algorithm for
trace alignment, and subsequently, we apply the resulting approach
for our running example. All the algorithms and materials used
for the realization of our proposal are available in our GitHub
repository [19].

3.1 Leveraging the Needleman-Wunsch
Algorithm for DTs Trace Alignment

To perform the global alignment between execution traces, we se-
lected the NDW algorithm and adapted it to assess the equivalence
between snapshots. In contrast to original approaches based on com-
paring single characters, snapshots are composed of both discrete
and continuous attributes, which makes it challenging to check this
equivalence. Additionally, to assess the equivalence between the

Using Trace Alignments for Measuring the Similarity between a Physical and its Digital Twin

| snpA_PT:CarSnapshot |
timestamp=1627847357
executionld=1627847357
twinld='"NXJCar_PT'
xP0s=0.27630113
yP0s=-0.00120589
angle=0.0

speed=31.28
isMoving=true
distance=43

bump=false

light=45
action=#Forward

| snpB_PT:CarSnapshot |
timestamp=1627847367
executionld=1627847357
twinld='"NXJCar_PT'
xP0s=0.55362172
yP0s=0.00256402
angle=0.0

speed=31.28
isMoving=true
distance=25

bump=false

light=45
action=#Forward

| snpC_PT:CarSnapshot |
timestamp=1627847861
executionld=1627847357
twinld='"NXJCar_PT'
xP0s=13.90084235
yP0s=0.00256402
angle=0.52

speed=31.28
isMoving=false
distance=190
bump=false

light=45

action=#Rotate

| snpA_DT:CarSnapshot |
timestamp=1627847360
executionld=1627847360
twinld="NXJCar'
xP0s=0.278
yP0s=0.00256402
angle=0.0

speed=31.28
isMoving=true
distance=43

bump=false

light=45

action=#Forward

| snpB_DT:CarSnapshot |
timestamp=1627847370
executionld=1627847360
twinld="NXJCar'
xP0s=0.556
yP0s=0.00258137
angle=0.0

speed=31.28
isMoving=false
distance=46

bump=false

light=45

action=#Forward

Figure 2: A UML object model of Lego Car snapshots. PT
snapshots (above), DT snapshots (below).

| snpC_DT:CarSnapshot |
timestamp=1627847860
executionld=1627847360
twinld='NXJCar'
xPos=13.9
yPos=-0.00416814
angle=0.52

speed=31.28
isMoving=false
distance=190
bump=false

light=45

action=#Rotate

Algorithm 2 Equivalence function between two snapshots

1: i< 0

2: while equals and i < snpy.size do

3 if snpa[i] is numerical then

4 equals — (|snpai] — snpp[i]| < tolerance)
5 else

6 equals — (snpali] = snppli])

7: end if

8 ie—i+1

9: end while

values of the DT and the PT, we cannot suppose that the values
should be identical, for different reasons. First, the snapshots are
taken periodically, and we cannot assume that are taken simultane-
ously for both systems. Second, the PT is usually a cyber-physical
system that deals with physical phenomena, and therefore its mea-
surements may include some uncertainty. Third, we may have to
deal with computation errors derived from simulation — especially
for floating point numbers, which always required a certain level
of tolerance in their comparison.

Under these assumptions, it is clear that the equivalence compar-
ison must consider some kind of accuracy in order to address some
of these situations. The specific algorithm to assess this equivalence
is shown in Algorithm 2, where snp4 and snpp are the snapshots
to compare. They include a list of attributes. We also introduce a
parameter called tolerance, line 4, that determines the maximum
difference between numerical values that we accept for considering
two snapshots equivalent. In this first approach, we are consid-
ering the same level of tolerance for all the attributes. To make
this comparison, we normalize the attributes rescaling them to the
range between 0 and 1 using their maximum value. Concerning the
discrete attributes, line 6, we consider that they all need to be equal
in order to consider them equivalent.

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

It is important to note that our proposal assumes that the snap-
shots are taken at the same time steps in both the DT and the PT. The
question about how to compare traces with different periods is still
open for future work. Since time steps are the same in both systems,
we do not take into account this attribute in the equivalence check.
This way, we can detect missing states, stuttering or delays between
traces, since the snapshots of two identical processes should match
given some degree of tolerance if they reach the same states. If
we included the timestamp in the equivalence check, we would be
measuring synchronization of the traces. However, we would be
unable to detect behavior equivalence in case of delays for example,
since the algorithm would consider that case as a full mismatch,
because the timestamps would not correspond. Additionally, we
assume that the traces of the PT and the DT are at the same level
of abstraction, i.e., they contain the same attributes. Otherwise, we
could use the abstraction function mentioned in Section 2.1.

Figure 3 shows an example of an alignment of two sequences
of snapshots of the Lego Car using a tolerance of 0.1. To simplify
this example, we have only considered the x coordinate of the car
(xPos). The snapshots presented for both the DT and PT simulate a
car moving forward along the x-axis. However, the starting point of
the DT is located before the one of the PT, and the DT slows down
and then suddenly accelerates again. This generates a difference in
both twins’ trajectories that is reflected in the alignment shown on
the right part of the figure. If we carefully analyze the alignment, we
can see how the first snapshot of the PT was marked as deleted as
a result of the alignment, because the algorithm is unable to match
it with any of the PT’s snapshots, since the DT’s starting position
was different. Second, our algorithm detects a missing snapshot
in the DT on the third position since it reaches the location faster
than the PT. The remaining snapshots are matched.

This alignment can help us not only to assess the possible differ-
ences between the traces but also to identify where these differences
are exactly located. In the following sections, we analyze how to
use the tolerance value and some distance measures in order to
reason about the level of fidelity of the DT with respect to its PT.

3.2 Fidelity Measures

During the following sections, we will use an additional scenario
to the car example to evaluate our proposal. Let us assume that
we have a DT system of the Lego Mindstorms NX]J car. The DT’s
purpose is to monitor the trajectory of the PT to provide recom-
mendations to avoid collisions. In this illustrative scenario, the PT
describes a square trajectory and the DT tries to simulate the same
movement. However, the DT describes the trajectory with a con-
stant speed, while the PT goes slower and then accelerates at some
point, catching up with the DT. Figure 4 shows the two trajecto-
ries aligned using a tolerance of 0.01 and 0.1, respectively. In the
top chart, our algorithm only aligned the overlapped parts of the
trajectory, considering the non-overlapping as gaps between the
sequences. However, in the chart below, which uses a higher value
of the tolerance (0.1), the algorithm aligns most of both trajectories.

To assess the level of fidelity with which the DT emulates the
PT’s behavior, we use different distance measures, which are shown
in Table 1. If we check the columns from left to right, the first one
is the tolerance used to align the traces. Columns 2 and 3 show the

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

(—

' DT Trace PT Trace timestamp=350
xP0s=0.5

timestamp=350 timestamp=352 Tolerance: 0.1 timestamp=360 timestamp=352
xPos=0.5 xPos=1.2 xPos=1.2 xPos=1.2
timestamp=360 timestamp=357 @ timestamp=370 timestamp=357
xPos=1.2 xPos=1.25 xPos=1.3 xPos=1.25

|snpC_DT:CarSnapshot | |snpC_PT:CarSnapsho| NDW .
! . |snpC_PT.CarSnapshot|
timestamp=370 timestamp=367 Algorithm timestamp=367
xPos=1.3 xPos=3.1 E> E> xPos=3.1
timestamp=380 timestamp=380 timestamp=380 timestamp=380
xPos=3 xP0s=3.25 xPos=3 xPo0s=3.25
timestamp=390 timestamp=388 timestamp=390 timestamp=388
xPos=5 xPos=5.2 xPos=5 xPos=5.2

|snpF DT:CarSnapshoil | | [snpF PT.GarSnapsholl SnpF_DT:CarSnapshol] '

|snpF_PT:CarSnapshot |

timestamp=400 timestamp=398 : -
xPos=5.25 xPos=5.5 :r;oessiasrr;p—sgs

timestamp=400
(os:&&’)

Paula Mufoz et al.

\2 00© 00 ®)/

Figure 3: Alignment of a set of traces using our approach with a tolerance of 0.1.

Table 1: Mapping scores and percentages of matched snapshots for the alignments, and results of several distances between the

two trajectories, for different tolerance values.

Tolerance | Score % matched | Fréchet (E) Fréchet (M) | Avg+Std (E) Avg+Std (M)

0.01 86 41.04% 0.19 0.19 0.76 = 0.06 0.78 £ 0.06
0.025 102 48.58% 3.02 3.38 0.78 £ 1.10 0.82 = 1.17
0.05 137 65.09% 9.05 9.94 3.64 £ 4.12 3.79 £ 433
0.075 163 77.36% 12.08 13.41 5.71 £ 5.66 5.98 £ 5.97

0.1 180 85.38% 9.02 9.55 7.68 £ 7.15 8.03 = 7.52

0.25 206 97.64% 3.12 3.13 1.54 + 1.12 1.54 + 1.12

0.5 211 100.00% 3.12 3.13 1.78 + 1.39 1.78 + 1.39

results of the mapping, expressed in terms of the score obtained
in the NDW algorithm and the percentage of snapshots matched
by that algorithm. These two measures are important to assess the
degree of matching between the traces. The rest of the columns
in Table 1 show the distances between the traces using different
measures, both elastic (i.e., the Fréchet distance) and lock-step (i.e.,
the Average distance), see Section 2.2. First, the Fréchet distance
calculated using the Euclidean (E) and the Manhattan (M) distances,
respectively; and then the average distance (Avg) between each
matched pair of points using the Euclidean and the Manhattan
distances, respectively, together with their corresponding sample
standard deviations (Std).

Analyzing the values in these columns, we can see some inter-
esting insights. Firstly, and as expected, the use of Euclidean or
Manhattan distances is not really relevant, and the results obtained
are practically the same — both for the elastic and the lock-step
distances. Second, the scores increase as more points are included
since the size of the NDW matrix also increases. In the rest of the
columns, we can see how the distance increases as the tolerance de-
creases since we are reducing the requirement for equivalence and

therefore we would expect the alignments to keep getting worse.
However, this happens until we reach the 0.075 tolerance value,
where the distance starts to decrease again until, for the 0.25 and
0.5 tolerance values, we get a value similar to that obtained for a
tolerance of 0.025.

In view of these results, it is clear that we cannot base our fidelity
measure only on the results of the distance measures: we should
take into account both the tolerance and the percentage of points
matched. To illustrate this claim, let us suppose that we have two
almost identical trajectories; in this case, regardless of the value of
the tolerance, the percentage of points matched would be close to
100% and the distances really close to zero. In our case, this happens
in the first row, when we get distances really close to zero, which
means that the alignment is almost perfect — and therefore the
fidelity is very high. However, the alignment only includes 40% of
the points with a tolerance of 0.01.

With these results, we would need to assess if the deviation
detected in the non-overlapping parts is acceptable for our purpose,
e.g., whether differences in the behaviors of the two twins represent
a problem or not.

Using Trace Alignments for Measuring the Similarity between a Physical and its Digital Twin

Trace alignment PT against DT

20 —— PT
m DT
g Tolerance 0.01
> -
£ 15
Q
g
5 10
o oo,

3 8
o
x ¢
57
7500 7750 8000 8250 8500 8750 9000 9250
Timestamp (seconds) .

20 — PT
0 DT
Q
B 15 Tolerance 0.1
E
Q
©
o
5 10
S
Q
o
x

5¢

7500 7750 8000 8250 8500 8750 9000 9250
Timestamp (seconds)

Figure 4: Computed mappings between the trajectories of the
PT (orange) against the DT (blue) showing its x coordinate
along time, for two different values of tolerance: 0.01 (top)
and 0.1 (bottom).

ace alignment PT against DT

1 — PT
DT

'\ Tolerance 0.1

Servo 4 angles (degrees)

0 2000 4000 6000 8000 10000 12000 14000 16000
Timestamp (seconds)

Figure 5: Trajectory of the PT (orange) against the DT (blue)
showing servo4 positions against time. Tolerance 0.1.

3.3 The DT of a Robotic Arm

Another example that we have used for evaluating our proposal and
validating our results is the DT of an Arduino Braccio, presented
in [21]. The TinkerKit Braccio! is a fully operational robotic arm,
controlled using an Arduino Board. It has 6 servos: one of them
rotates the arm around its base, three servos control the arm’s move-
ments and position, and the last two allow rotating and controlling
the gripper. Figure 5 shows a scenario in which the execution of
servo4 of the DT is delayed with respect to the same servo of the
PT. The DT holds a certain position and then moves, but a bit later
than the PT has moved. Our alignment is able to detect this delay
when comparing the traces and also detects the parts of the tra-
jectory which are equivalent after this point. This helps to better
assess the fidelity of the DT since we only have to compare the
parts of the executions that are equivalent to assessing their fidelity.

Ihttps://store.arduino.cc/products/tinkerkit-braccio-robot

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

3.4 Discussion

After analyzing the results obtained in our example, we can discuss
how these measures may point us to an assessment of the level of
fidelity of the DT against the PT based on a given set of execution
traces.

First of all, it is essential to consider the relationship between
the percentage of matched points, the tolerance used to perform this
matching, and the distance between the matched snapshots. The
higher the percentage, and the lower the tolerance and the distance,
the higher the quality of the alignment. This means, that the ideal
match (which would lead us to assume that our DT’s behavior
is a replica of that of the PT) should include all the points, with
tolerance and distance values close to zero. If we get higher distance
values and a lower percentage of matched snapshots, we would
be dealing with a lower fidelity DT, i.e, its behavior would deviate
from that of the PT.

Once we have defined the matching algorithm and the measures
for calculating the distance, our next step is to further study the
interrelationship of these three parameters (required tolerance,
percentage of matched points, and distance between the traces)
to define concrete measures to assess the level of fidelity of DT
systems from their performance traces, as well as indicators to make
decisions on whether the degree of fidelity achieved is acceptable
or not.

4 CONCLUSIONS AND FUTURE WORK

In this work, we have introduced a method and a set of measures
to assess the fidelity of the DT against the PT. We introduced an
adaptation of the NDW algorithm by providing an equivalence
function to compare snapshots. We also defined a set of measures
based on distances between snapshots that enable reasoning about
the quality of the alignments. From these measures, we can reason
about the level of fidelity based on the results of the alignment and
the interrelationship between tolerance, percentage of matched
snapshots, and the distance between them. We have validated our
proposal with synthetic traces derived from two initial case studies.
We have also discussed the importance of considering the interrela-
tionship between abstraction, resolution, and fidelity when defining
the alignments and measuring the fidelity level.

As part of our future work, we plan to check the performance of
the trace alignment algorithm with a higher workload. We would
also like to further analyze and interpret the results obtained for
the traces, and their impact on the degree of fidelity of the system,
deriving a specific measure and appropriate indicators to assess it.
We plan to compare our algorithm with the optimized version of the
NDW algorithm presented in [7], to see whether it really pays off
in our context (it was originally devised to align DNA sequences).
In our efforts to optimize the alignment algorithm, we also plan on
define our own Frequency scoring scheme, cf. Section 2.3, to assign
different scores to snapshots’ elements according to their impact in
the matching process. For instance, an attribute which is always the
same may have less impact than attributes having very different
values. Another interesting line of work is to explicitly take into
account the possible uncertainties involved in the process while
assessing the fidelity level, due to imprecision in the sensors’ read-
ings, delays in the communication channels, unreliable networks,

https://store.arduino.cc/products/tinkerkit-braccio-robot

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

or rounding errors. Finally, we want to contrast our results with
traces taken from industrial DT systems to assess the applicability
of our proposal in further scenarios. We would like to understand
the factors that contribute to the complexity: the size of the system’s
snapshots, the size of the traces, etc.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their useful comments
and suggestions. This work is partially funded by the Austrian
Science Fund (P 30525-N31) and by the Austrian Federal Ministry
for Digital and Economic Affairs and the National Foundation for
Research, Technology and Development (CDG). It is also funded
by the Spanish Research projects PGC2018-094905-B-100 (COSCA)
and P20-00067-FR (MBT4IA).

REFERENCES

[1] Bert Van Acker, Paul De Meulenaere, Joachim Denil, Yuri Durodie, Alexander Van
Bellinghen, and Kris Vanstechelman. 2019. Valid (Re-)Use of Models-of-the-
Physics in Cyber-Physical Systems Using Validity Frames. In 2019 Spring Simula-
tion Conference, SpringSim 2019, Tucson, AZ, USA, April 29 - May 2, 2019. IEEE,
1-12. https://doi.org/10.23919/SpringSim.2019.8732858

John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann

George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon M. M. Lucas,

Erik Meijer, Steve Omohundro, Rubmary Rojas, Silvia Sapora, and Norm Zhou.

2021. Facebook’s Cyber-Cyber and Cyber-Physical Digital Twins. In EASE 2021:

Evaluation and Assessment in Software Engineering, Trondheim, Norway, June

21-24, 2021. ACM, 1-9. https://doi.org/10.1145/3463274.3463275

Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2018. Inferring hier-

archical motifs from execution traces. In Proceedings of the 40th International

Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -

June 03, 2018. ACM, 776-787. https://doi.org/10.1145/3180155.3180216

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.

Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology

215, 3 (1990), 403-410. https://doi.org/10.1016/S0022-2836(05)80360- 2

K. Bojarczuk, N. Gucevska, S. Lucas, I. Dvortsova, M. Harman, E. Meijer, S.

Sapora, J. George, M. Lomeli, and R. Rojas. 2021. Measurement Challenges for

Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s

WW Simulation System. In Proceedings of the 15th ACM / IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM) (Bari,

Italy) (ESEM’21). ACM, 10 pages. https://doi.org/10.1145/3475716.3484196

[6] R.P.Jagadeesh Chandra Bose and Wil M. P. van der Aalst. 2012. Process diag-
nostics using trace alignment: Opportunities, issues, and challenges. Inf. Syst. 37,
2(2012), 117-141. https://doi.org/10.1016/j.i5.2011.08.003

[7] Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. 2002. A
Sub-Quadratic Sequence Alignment Algorithm for Unrestricted Cost Matrices
(SODA’02). Society for Industrial and Applied Mathematics, 679-688.

[8] Digital Twin Consortium. 2021. Glossary of Digital Twins. https://www.
digitaltwinconsortium.org/glossary/index.htm.

[9] Martin Gogolla, Jorn Bohling, and Mark Richters. 2005. Validating UML and OCL
Models in USE by Automatic Snapshot Generation. SoSyM 4, 4 (2005), 386-398.

[10] Liang Gong, Binhao Chen, Wenbin Xu, Chengliang Liu, Xudong Li, Zelin Zhao,

and Lujie Zhao. 2022. Motion Similarity Evaluation between Human and a Tri-Co

Robot during Real-Time Imitation with a Trajectory Dynamic Time Warping

Model. Sensors 22, 5 (2022), 1968. https://doi.org/10.3390/s22051968

David C. Gross. 1999. Report from the fidelity implementation study group. In

Proc. of the Fall Simulation Interoperability Workshops.

[12] Philip Langer, Tanja Mayerhofer, and Gerti Kappel. 2014. Semantic Model Differ-
encing Utilizing Behavioral Semantics Specifications. In Model-Driven Engineering
Languages and Systems - 17th International Conference, MODELS 2014, Valencia,
Spain, September 28 - October 3, 2014. Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 8767). Springer, 116-132. https://doi.org/10.1007/978-3-319-11653-2_8

[13] Edward A. Lee and Marjan Sirjani. 2018. What Good are Models?. In Formal
Aspects of Component Software - 15th International Conference, FACS 2018, Pohang,
South Korea, October 10-12, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 11222). Springer, 3-31. https://doi.org/10.1007/978-3-030-02146-7_1

[14] Dorian Leroy, Erwan Bousse, Anaél Megna, Benoit Combemale, and Manuel Wim-
mer. 2018. Trace Comprehension Operators for Executable DSLs. In Modelling
Foundations and Applications - 14th European Conference, ECMFA@STAF 2018,
Toulouse, France, June 26-28, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10890). Springer, 293-310. https://doi.org/10.1007/978-3-319-92997-2_19

[2

—

3

=

[4

=

&

[11

Paula Mufoz et al.

[15] Azad M. Madni, Carla C. Madni, and Scott D. Lucero. 2019. Leveraging Digital
Twin Technology in Model-Based Systems Engineering. Systems 7, 1 (2019), 7.
https://doi.org/10.3390/systems7010007

[16] 1I-Chul Moon and Jeong-Hee Hong. 2013. Theoretic interplay between abstrac-
tion, resolution, and fidelity in model information. In Proc. of WSC’13. IEEE,
1283-1291. https://doi.org/10.1109/WSC.2013.6721515

[17] Usue Mori, Alexander Mendiburu, and José Antonio Lozano. 2016. Distance
Measures for Time Series in R: The TSdist Package. R Journal 8, 2 (2016), 451.
https://doi.org/10.32614/1j-2016-058

[18] Paula Mufioz, Javier Troya, and Antonio Vallecillo. 2021. Using UML and OCL
Models to Realize High-Level Digital Twins. In Proc. of ModDiT2021@MODELS 21.
IEEE, 212-220. https://doi.org/10.1109/MODELS-C53483.2021.00037

[19] Paula Muiioz. 2022. GitHub repository: Trace alignment for DTs. (2022). https:
//github.com/atenearesearchgroup/trace-alignment-for-dts

[20] Saul B. Needleman and Christian D. Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48, 3 (1970), 443-453. https://doi.org/10.1016/0022-2836(70)
90057-4

[21] Daniel Pérez-Porras, Paula Mufioz, Javier Troya, and Antonio Vallecillo. 2022.
Key-Value vs Graph-based data lakes for realizing Digital Twin systems. In Proc.
of MeSS@STAF’22.

[22] TF. Smith and M.S. Waterman. 1981. Identification of common molecular

subsequences. Journal of Molecular Biology 147, 1 (1981), 195-197. https:

//doi.org/10.1016/0022-2836(81)90087-5

Sabine Wolny, Alexandra Mazak, Manuel Wimmer, and Christian Huemer. 2019.

Model-driven Runtime State Identification. In 40 Years EMISA 2019, May 15-17,

2019, Tutzing, Germany (LNI, Vol. P-304). Gesellschaft fiir Informatik e.V., 29-44.

https://dl.gi.de/20.500.12116/33137

K. Worden, E. J. Cross, R. J. Barthorpe, D. J. Wagg, and P. Gardner. 2020. "On Digital

Twins, Mirrors, and Virtualizations: Frameworks for Model Verification and

Validation". ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,

Part B: Mechanical Engineering 6, 3 (2020). https://doi.org/10.1115/1.4046740

V Zhidchenko, I Malysheva, H Handroos, and A Kovartsev. 2018. Faster than

real-time simulation of mobile crane dynamics using digital twin concept. Journal

of Physics: Conference Series 1096 (2018), 012071. https://doi.org/10.1088/1742-
6596/1096/1/012071

[23

[24

[25

https://doi.org/10.23919/SpringSim.2019.8732858
https://doi.org/10.1145/3463274.3463275
https://doi.org/10.1145/3180155.3180216
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1145/3475716.3484196
https://doi.org/10.1016/j.is.2011.08.003
https://www.digitaltwinconsortium.org/glossary/index.htm
https://www.digitaltwinconsortium.org/glossary/index.htm
https://doi.org/10.3390/s22051968
https://doi.org/10.1007/978-3-319-11653-2_8
https://doi.org/10.1007/978-3-030-02146-7_1
https://doi.org/10.1007/978-3-319-92997-2_19
https://doi.org/10.3390/systems7010007
https://doi.org/10.1109/WSC.2013.6721515
https://doi.org/10.32614/rj-2016-058
https://doi.org/10.1109/MODELS-C53483.2021.00037
https://github.com/atenearesearchgroup/trace-alignment-for-dts
https://github.com/atenearesearchgroup/trace-alignment-for-dts
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://dl.gi.de/20.500.12116/33137
https://doi.org/10.1115/1.4046740
https://doi.org/10.1088/1742-6596/1096/1/012071
https://doi.org/10.1088/1742-6596/1096/1/012071

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Fidelity, Abstraction and Resolution
	2.2 Similarity Measurement
	2.3 Trace Analysis
	2.4 Running Example

	3 Approach
	3.1 Leveraging the Needleman-Wunsch Algorithm for DTs Trace Alignment
	3.2 Fidelity Measures
	3.3 The DT of a Robotic Arm
	3.4 Discussion

	4 Conclusions and future work
	Acknowledgments
	References

