The published version of this paper can be found on: https://ieeexplore.ieee.org/document/9643725

Using UML and OCL Models to Realize
High-Level Digital Twins

Paula Muiioz, Javier Troya, and Antonio Vallecillo
ITIS Software. Universidad de Mdlaga, Spain
{paulam,jtroya,av} @uma.es

Abstract—Digital twins constitute virtual representations of
physically existing systems. However, their inherent complexity
makes them difficult to develop and prove correct. In this paper
we explore the use of UML and OCL, complemented with an
executable language, SOIL, to build and test digital twins at
a high level of abstraction. We also show how to realize the
bidirectional connection between the UML models of the digital
twin in the USE tool with the physical twin, using an architectural
framework centered on a data lake. We have built a prototype
of the framework to demonstrate our ideas, and validated it by
developing a digital twin of a Lego Mindstorms car. The results
allow us to show some interesting advantages of using high-level
UML models to specify virtual twins, such as simulation, property
checking and some other types of tests.

Index Terms—Model-based Software Engineering, Model-
based Testing, Digital Twins, UML, OCL, USE.

I. INTRODUCTION

In general, a Digital Twin (DT) is a digital replica of an
object, process or service that exists in the physical world
along with a bi-directional connection between the physical
entity and its virtual representation. The ideas behind Digital
Twins go back to the NASA/Apollo project, in which an iden-
tical space capsule on Earth was used to simulate the behavior
of the capsule in space. Although both objects were physical
entities, the evolution of digital technologies soon enabled the
development of full-fledged digital replicas of the physical
objects to be simulated, thus opening up new possibilities
beyond simulation, such as monitoring or what-if analysis
of the physical systems [1]. The advances in Al and Big
Data allowed adding further features to DT, such as behavior
prediction, preventive maintenance, or optimizations [2].

Engineering DT systems, and in particular testing them [3],
is challenging for many reasons, one of them being their
complexity: the digital replica has to faithfully emulate its
physical counterpart. One way to address this challenge is by
raising the level of abstraction, and this is where software
models, and in particular model-based software engineering,
can be of real help [4], [S]. Some authors have already claimed
the potential benefits of using high-level models to specify
and design the virtual replicas (i.e., the digital twins). These
lightweight models reflect the simplified structure, physics
and behavior of the physical twin “to reduce computational
load especially in upfront engineering activities; they allow
simulations of complex systems with fidelity in the appropriate
dimensions to answer questions with minimal computational
costs” [6]. The concept of multi-fidelity digital twins has also

been introduced [7], describing the advantages of modeling the
physical entity at different levels of abstraction, in this case,
for testing purposes.

Still, the problem of integrating these high-level models into
a DT system and connecting them to the physical entity is
not easy. Some solutions propose dedicated component-based
architectural frameworks that implement the basic infrastruc-
ture, and define domain-specific languages to describe the
models [8]-[12], with MontiArc [13] being the most notable
architectural language in this context.

In this paper, we explore the use of standard UML models,
enriched with OCL constraints, for the specification of digital
twins. We shall rely on USE [14] as modeling tool, since
it provides a wide variety of analysis capabilities for UML
models, including model validation, instance generation, or
invariant checking [15]. The behavioral aspects of the sys-
tems will be specified in SOIL [16], an executable language
available in USE. Incorporating these types of analyses into
the engineering of DT systems will allow engineers to exploit
the benefits of early analysis and testing of their DT, at a high
level of abstraction, and with reasonable computational costs.

The problem we address in this paper is how to connect
the high-level UML models of a digital twin with the actual
system, i.e., its physical twin. Another goal is to achieve this
in a modular way, so that, once validated, these lightweight
models could be replaced by more detailed models of the
system that provide finer-grained specifications.

We have defined a framework for the specification and
deployment of DT systems, that uses UML models to specify
the digital twins, and connects them through a Data Lake
repository [17] implemented in Redis [18] that provides the bi-
directional communication infrastructure between the digital
and physical twins. We have built a prototype to demonstrate
our ideas and validated it by developing a digital twin system
of a Lego Mindstorms car.

The structure of this document is as follows. After this intro-
duction, Sect. II briefly describes the background of our work
and presents the example used to motivate our proposal. Next,
Sect. III describes our proposed architecture for specifying and
deploying digital twins, and Sect. IV illustrates how to use it
applying it to the example case study. Finally, Sect. V relates
our work to other similar approaches and Sect. VI concludes
with an outline of future work.

https://ieeexplore.ieee.org/document/9643725

Figure 1. The Lego car used as physical twin.

II. BACKGROUND
A. Digital Twins

A Digital Twin (DT) is a comprehensive digital representa-
tion of an actual system, service or product (the Physical Twin,
PT), synchronized at a specified frequency and fidelity [19].
The digital twin includes the properties, condition and be-
havior of the physical entity through models and data, and
is continuously updated with real-time system data about the
PT performance, maintenance, and health status throughout its
entire lifetime [4], [6], [20]. The exchange of data between
the digital and the physical twins takes place through bi-
directional data connections. This is why many authors have
argued that a DT system contains three dimensions: physical,
digital, and the connections between them [1].

Additionally, other authors consider that a DT system may
also comprise a set of Services that permit exploiting the
data exchanged by the two twins in different ways [21], [22].
Examples of such services include, among others: Dashboards
for visualizing and displaying the data in different formats;
Machine Learning (ML) components to provide decision sup-
port and alerts to users, or to predict changes in the PT over
time, e.g., to achieve preventive maintenance; or algorithms to
analyze the available data to improve the PT performance or
implement self-adaptive mechanisms.

This is the architecture that we shall adopt and use in our
proposal, as described later in Sect. III, see Fig. 3.

B. Motivating example: a Lego Mindstorms vehicle

To demonstrate our proposal and to initially validate it, as
physical entity we will use a Lego Mindstorms NXT car,
which is a small car-like vehicle with sensors, see Fig. 1.
The car is able to move, detect obstacles, and interact with its
environment in different ways, e.g., by following a colored line
on the floor. It uses a bluetooth connection to exchange data
and commands with a computer, including the information
about the current state of the car (position, speed) and the
readings of its sensors.

In addition to a pose-provider, which determines its planar
coordinates and the angle of its current direction, the car has
an engine to move forward and rotate its direction at a certain
angle. It also has three types of sensors: an ultrasonic sensor
capable of detecting the distance to the object in front of it, a

c&cC

Out In

Figure 2. A simplified view of a physical entity.

light sensor that can establish the color of the ground beneath
it, and two touch sensors used as a bumper to determine
whether the car has collided or not.

The car downloads from the computer the software that
drives the vehicle, which can define different behaviors. For
example, in the LineFollowingBehavior, the car keeps moving
forward as long as it detects a black line beneath it. If the color
detected is not black, it means that the car is no longer above
the line it was supposed to follow. Then, the car stops and
starts turning left and right, increasing the angle each time,
until the color is detected again. Once the line is found, the
car continues moving. Further behaviors can be defined and
incorporated to the car, such as turning a number of degrees
when an obstacle hits the bumper, or when the distance to the
object in front is below a given threshold, for example. Note
that this software is integrated in the car, i.e., it is part of the
physical twin.

A digital twin can be used to improve the existing physical
entity (in this case, the car) in several ways, for instance:

o Simulation analysis. Mindstorms vehicles can execute
user-defined software to perform specific tasks. The DT
could specify the intended behavior of such applications
and simulate their behavior. A testing component could
compare the traces of both twins and check that the they
both behave as expected [5].

o Calibration. Simulations would help deciding the best
values for the configuration parameters of the car software
to save energy or to perform its tasks faster.

o Improve the system behavior. The DT can learn from the
obstacles encountered by the car and build a floormap of
the area around which the car is moving. Such a map
can be used to avoid future collisions. Note that the car
simply knows how to obey orders or to follow a colored
line, without any other intelligence. A DT would allow
the implementation of additional self-adaptive features.

III. A FRAMEWORK FOR DEFINING AND DEPLOYING DTS

To realize our proposal, we have defined a reference ar-
chitecture for the specification and deployment of DTs. In
our work, we define the DT using high-level UML models,
but this architecture can be applied to the final systems by
replacing the UML models by lower-level implementations.
Before describing its main components, let’s start with how
physical entities are represented in it. Figure 2 shows the
relevant elements of a physical entity for our purposes.

In general, a physical entity interacts with its environment
through a set of inputs (In) and outputs (Out). The values of

BT L

Digital Data Physical
Twin (DT) Lake Entity (PT)
In Out (DL)

lOut ! In
\

—_
LA] [A | [An]

Figure 3. Our proposed Digital Twin System Framework.

inputs are normally generated by sensors that detect events or
changes in its environment. For example, the distance to an
obstacle, the presence of a particular color on the ground, or
the fact that the car bumper has detected a collision. Outputs
constitute the reactions of the physical entity to input events
from its environment, to commands issued to it or to internal
changes. Examples include changes in the speed of the car
or its direction. They are usually captured by other sensors,
which also allow knowing the state of the physical entity, e.g.
the battery level or the exact position of the car.

Physical entities can also accept external orders in terms of
commands that control their behavior (such as move or rotate)
or changes in the values of their configuration parameters (e.g.,
the speed of the car at cruising mode). This is represented in
Fig. 2 by the Command and Control (C&C) incoming arrow.

Figure 3 shows the architecture that we propose for specify-
ing and deploying digital twins. It is inspired in the architec-
ture proposed by several authors for realizing DTs, composed
of the physical part, the digital part, the connection between
them, and a set of services [21], [22]. Here, the physical entity
that was depicted in Fig. 2 is shown to the right, acting as the
physical twin (PT). The digital twin (DT) is a replica of the
physical entity, i.e., its specular image.

The communication between them is achieved through a
Data Lake (DL). As defined in [17], a data lake is “a
flexible, scalable data storage and management system, which
ingests and stores raw data from heterogeneous sources in
their original format, and provides query processing and data
analytics in an on-the-fly manner.”

The rest of the components of the architecture use the DL
to write data and obtain information, in a loosely-coupled and
asynchronous manner. Basically, this implements a Blackboard
architectural pattern [23] but with the property that the in-
formation is stored in raw format (i.e., as produced by the
sources). The different components access the DL by means
of drivers that transform the data into the formats that each
component understands. The drivers are represented in Fig. 3
by the white rectangles surrounding the DL.

The white square boxes attached to the physical entity con-
nections In, Out, and C&C, are able to intercept the information
that flows through them and record it in the DL. Similarly,
the drivers can query the DL for commands or inputs to the

physical entity that have been stored by other components, and
send them to the physical entity. This allows, e.g., emulating
the environment of the physical entity. They can also be
used to change parameters during run-time or implement self-
adaptive behaviors. From the perspective of the DT, the drivers
can be used, e.g., to emulate the inputs and commands received
by the physical entity and to record its outputs in the DL.

The Service components (Si,So,..., S,) are in charge of
implementing the additional functionality that a digital twin
system can provide. Examples of such components include
dashboards that dynamically visualize the data, or algorithms
that learn from the past movements of the car and its collisions,
draw floormaps, and avoid the obstacles. Note that in the
Blackboard architectural pattern, any (permitted) component
can write in the DL. This allows the services to issue com-
mands to the physical entity, as if they were its external users.

Finally, given that our emphasis is on testing digital twins,
the Analysis components (Ai,As,..., A,) are in charge of
implementing different types of tests on the physical entity, the
digital twin, their connection, behaviors, or synchronization.
For example, a monitoring component can check that the
traces produced by both the DT and the PT are equivalent [5].
Another analysis component can exercise only one of the
twins, sending commands to it and checking that the responses
are as expected. The analysis components can also serve to
test the Service components, validating that the algorithms
they implement to provide self-adaptive behaviors or machine
learning predictions do work.

Note as well that the framework’s architecture allows having
more than one digital twin, each one focusing on specific as-
pects of interest of the physical entity. Likewise, more than one
physical twin can be integrated into the architecture. Service
or analysis components can also be dynamically added to the
system during its execution, given that all communications
between the components happen through the DL.

IV. IMPLEMENTATION

This section describes how we have implemented the main
components of our reference architecture, and how they are
connected between them. As mentioned above, all connections
are made through the DL. The description of all framework
components is illustrated for the case of the Lego car.

A. High-level UML Digital Twins

In this work we are interested in the specification of digital
twins using UML and OCL models. This allows high-level
specification of relevant characteristics of the physical entity,
providing lightweight models that represent its simplified
structure and behavior. These models can be produced during
the early engineering stages, with lower development costs
than the full implementation of the digital replica, and allow
simulations and different types of analysis to be performed
with considerably reduced computational costs.

For example, in the case of the Lego car, Fig. 4 shows a
UML model with its main components: the engine (Motor) to
move forward and to rotate its direction a certain angle, and

CarSnapshot

twinld : String
xPos : Real
yPos : Real

InputCarSnapshot

Clock
ActiveObject |+ ao {ordered} | now : Integer
action() 1 clock | tickTime : Integer
[P tick()
UltrasonicSensor | sound 1 Car
distance : Integer g 1 twinld : Strin
car ; g : Motor
executionld : String
Lightsensor | light 1| xpos : Real 1 moto R
lightValue : Integer [0 1 /| yPos : Real > ; isMoving : Boolean
angle : Real car forward()
TouchSensor |touch 1 | action : Action rotate(angle : Real)
isPressed : Boolean ini
0.1 car init()
action()

«enumeration»
Action

1 car
1..*| behavior {ordered}

Behavior N

LineFollowingBehavior

rotating : Boolean
sweep : Integer

Forward

executeBehavior()

Rotate

executeBehavior()

Figure 4. A UML model of the Lego car.

the three sensors mentioned in Sect. II-B. They were able to
detect the distance to the object in front of the car, the color
of the ground beneath it (using a light sensor) and the state of
the bumper (pressed, not pressed).

In addition to the car planar coordinates and the angle of its
current direction, the UML model of the car depicted in Fig. 4
shows other elements used in the simulations, such as the
car identifier (twinld, to allow different cars in a simulation),
the execution identifier (executionld, to distinguish between
simulations), as well as a Clock object that is used to simulate
the passage of time. With each tick of the clock, the action()
method of all active objects is invoked. In case more than one
behavior is defined for the car, it will execute them in order,
using the executeBehavior() method.

To specify the behavior of the methods in the model we have
used SOIL [16], a textual executable language defined for the
USE modeling environment [14]. For example, the following
piece of code shows the specification of the behavior of class
Motor methods forward() and rotate() in SOIL.
forward()

begin

self.car.xPos := self.car.xPos + self.speed =*
self.car.clock.tickTime = self.car.angle.cos();

self.car.yPos := self.car.yPos + self.speed =*
self.car.clock.tickTime = self.car.angle.sin();

end
rotate(angle: Real)

begin

self .car.angle :=
end

angle;

In some of our previous works we have extensively em-
ployed USE to analyze different types of physical systems
using their UML and OCL specifications [24]-[27]. However,
these specifications were defined and simulated independently
and completely detached from the system they specified. In a
Digital Twin context, our goal is to simulate them synchro-
nized with the physical entity they represent, establishing a
bidirectional connection between the UML models and the

angle : Real

Snapshot

- speed : Real
umestampELnteoey q_ isMoving : Boolean

distance : Integer

4/ setValues(c : Car)
K

executionld : String

OutputCarSnapshot

bump : Boolean
light : Integer
action : Action

init(car : Car, now : Integer)

processingQueue : Boolean

Figure 5. A UML model of the information exchanged with the system.

physical twin, allowing them to exchange data and control.
This is precisely the objective of this work.

In our running example, the model of the information used
by the digital twin to communicate with the physical twin is
shown in Fig. 5. Instances of class InputCarSnapshot represent
the data that is produced by the physical twin (i.e., the car).
They contain snapshots of the state of the car at a given
moment in time (timestamp, expressed in POSIX format [28]),
namely its position, angle, and the values of the sensors’
readings.

In general, the behavior of a digital twin depends on the
aspects of the physical twin it is intended to emulate. In this
example, we will show a behavior whereby the digital twin
simulates the way the physical car reacts each time the sensors
produce their readings. Thus, for every InputCarSnapshot
object in the model, which describes the state of the physical
car, the virtual twin will generate an OutputCarSnapshot object
that represents the expected state of the physical car after a
time elapse of “tickTime” time units (see class Clock).

This is shown in figures 6 and 7, respectively. The first one
shows an object model with three input snapshots, each one
at different moments in time, while Fig. 7 shows the corre-
sponding output snapshots produced by the digital twin. This
shows an example of the simulation of a reactive behavior.

The question now is how the input snapshots are created in
the UML object model, and how the output objects produced
by the model are stored in an external data-store for later
analyses. This is precisely the goal of the next subsections.

B. The Data Lake (DL)

To implement the Data Lake repository that provides the
bidirectional communication infrastructure between the digital
and physical twins, we chose Redis [18]. This open-source in-
memory data structure can be used as a database, cache, and
message broker. It is also lightweight and optimized to deliver
fast responses to a massive amount of petitions, which is one
of the reasons why we chose this database since we want to
ensure scalability for future versions of the tool.

Redis is a key-value database and supports various abstract
data structures such as strings, lists, maps, or sets. We chose
maps as the data structure to store the input and output
snapshots as lists of key-value pairs. Maps are called Redis
Hashes, and they have a primary key that identifies them.
Inside the hash, each of the fields has its own key.

clock:Clock

now=1627484735

| i2inputCarSnapshot |
timestamp=1627484755
executionld='1627484055'
twinld="NXJCar'
xP0s=5.56

yPos=0.0

angle=0.0

speed=31.28
isMoving=true
distance=94

bump=false

light=45

action=#Forward

processingQueue=false

| _id:nputCarSnapshot |
timestamp=1627484775
executionld='1627484055'
twinld="NXJCar'
xPos=11.12

yPos=0.0

angle=0.0

speed=31.28
isMoving=true
distance=89

bump=false

light=45

action=#Forward

processingQueue=false

tickTime=20 i1:InputCarSnapshot
TouchSensor1:TouchSensor timestamp=1627484735
isPressed=false car:Car executionld='1627484055'
\‘ twinld="NXJCar' tvsnlc:l\éXJCar
[LightSensort:LightSensor| executionld='1627484055' | Motori:Motor | XPOS:O.O
- @ xP0s=0.0 (@ speed=31.28 yioss0;
lightValue=45 N o angle=-0.52
yPos=0.0 isMoving=false
——® rgle=0.0 speed=31.28
| UttrasonicSensort:UltrasonicSensor| | action=Undefined isMoving=false
distance=40 distance=40
bump=false
light=45
| LineFollowingBehavior t.LineFollowingBehavior action=#Rotate
rotating=false processingQueue=false
sweep=10

Figure 6. A UML object model of the Lego car with three input snapshots.

| OutputCarSnapshot1:OutputCarSnapshot|
timestamp=1627484755
executionld='1627484055"
twinld='"NXJCar'
xPos=5.56

yPos=0.0

angle=0.0

speed=31.28
isMoving=true
distance=94

bump=false

light=45

action=#Forward
processingQueue=false

| QutputCarSnapshot2:OutputCarSnapshot)
timestamp=1627484775
executionld='1627484055"
twinld='"NXJCar'
xPos=11.13

yPos=0.0

angle=0.0

speed=31.28
isMoving=true
distance=89

bump=false

light=45

action=#Forward

processingQueue=false

| QutputCarSnapshot3:OutputCarSnapshot)
timestamp=1627484795
executionld='1627484055"
twinld='"NXJCar'
xPos=16.67

yPos=0.0

angle=0.0

speed=31.28
isMoving=true
distance=83

bump=false

light=43

action=#Forward

processingQueue=false

Figure 7. The three output snapshots produced by the digital twin.

The following code fragment shows a record with infor-
mation produced directly by the car, corresponding to an
InputCarSnapshot instance (output snapshots are similarly
stored). In the fragment, we can see how records are listed
as sequences of strings, alternating the key of each attribute
and its value. The displayed values correspond to the sensors’
readings (distance, isMoving, bump, light), the car state (po-
sition, heading angle, action), and some auxiliary values to
ease the later analysis process (twinld, executionld, timestamp,
processingQueue).

HGETALL NXJCar:1627484055:1627484375

1) ”twinId” 2) ”NXJCar”
3) “bump” 4) 707
5) ”processingQueue” 6) 70~
7) “light” 8) 745”7
9) “angle” 10) 7-0,52"
11) ”executionId” 12) 71627484055~
13) ”yPos” 14) 7-0"
15) ”speedFactor” 16) 731,287
17) ”isMoving” 18) 70~
19) ”xPos” 20) 70~
21) “action” 22) "Rotate”
23) ”distance” 24) 7407
25) ”timestamp” 26) 71627484375

The command to query a hash is HGETALL, followed by the
key of the record we want to retrieve. As shown in the code
fragment, we have created a key composed of three elements
separated by semicolons. The first element is the identifier
of the twin, in our case, the unique name we gave to the
car. The second element is the executionld, which matches the
timestamp of the first snapshot produced during the running

execution. Finally, the third element is the timestamp of the
current snapshot.

Since Redis is a simple, lightweight, NoSQL database, it
does not allow complex queries. Therefore, to retrieve hashes
by the values of their fields, it is necessary to store additional
records that include the field’s value and a reference to the
hash key. For instance, the following fragment shows how we
add a record to a list of executionlds to be able to filter every
snapshot of a given execution.

ZADD executionId_list 1627484055
NXJCar:1627484055:1627484375

Following this approach, we store lists of any numerical
value that we want to use for filtering. For example, the
processingQueue attribute is used to determine if the DT has
already processed the record or not, in order to identify the
records that still need to be processed.

C. The Physical Twin

A connection between the PT and the data lake is required
to store the raw information produced by the physical entity.
The connection drivers are implemented using Java since both
the Lego Mindstorms libraries and the USE API employ this
language. The Redis client we use is Jedis [29], which is an
open-source, small, and easy-to-use client that provides all
the functionalities that we require to interact with the DL,
including a publish-subscribe service.

Using the Jedis client, we take the raw data received through
the car’s Bluetooth connection and store it in the DL.. However,

the Lego Mindstorms car is unable to execute external libraries
such as Jedis. For this reason, we had to connect the process
controlling and reporting the information from the car to
another driver. This driver is in charge of processing and
storing the raw information from the car in the DL. The
connection between these two drivers uses a socket in order
to ensure driver compatibility and reusability when the car is
changed by any other device

D. Connecting the UML models to the Data Lake

Once we have a model of the physical entity that serves
as a digital twin for it, the question is how the model can be
integrated into the architecture described in Sect. IIT (Fig. 3).

To enable USE to interact with the DL, we have devel-
oped a plugin using its API, which allows creating model
elements, i.e., classes, associations, and instances. Our plugin
establishes two communication channels: from the DL to the
DT and vice-versa. The first one sends queries about the raw
data produced by the PT and creates an InputCarSnapshot
instance for each unprocessed record found. The second one
detects OutputCarSnapshot instances in the object model and
processes them, creating a new record in the DL for each one,
and deleting the corresponding snapshots once processed. This
way, any of the Services or Analysis components can query
the input and output snapshots and perform analysis without
interacting with either the digital or the physical twin directly,
i.e., using a decoupled approach through the DL.

Since both USE and the DL cannot send notifications
once new data has arrived, the plugin also implements a
publish-subscribe service. The structure for each direction is
implemented as follows:

o From USE to the DL: There is a process listening to the
object model that checks periodically if there are new
OutputCarSnapshot instances. Once it finds one, it sends
a message through the output channel that notifies all
subscribed processes, which retrieve the new snapshots
and store them in the DL.

e From DL to USE: A process is always listening to the
DL, checking periodically for new records produced by
the physical twin. Once a new record is found, the sub-
scribed processes are notified through the input channel.
The process retrieves the new records, processes them,
and creates new InputCarSnapshot instances in the USE
model. These instances will then be handled by the digital
twin according to its specified behavior.

This plugin and the rest of the system implementations are

all available on our GitHub repository [30].

E. Service and Analysis components

Essential parts of any DT system are also the Service and
Analysis components, which are used to implement any smart
behavior of the system, or to check that the twin system
works as expected. Due to the loosely-coupled architecture
of our framework, these components could be independently
developed using any technology of choice, and then plugged
into the framework via the data lake.

Monitor
precision : Real K>
action()

mismatch

0..1 monitor

1 physical 1 virtual

| InputCarSnapshot| | OutputCarSnapshot

M

CarSnapshot
twinld : String

xPos : Real

Snapshot yPos : Real

timestamp : Integer <]— anglchiiReal

executionld : String speed : Real
isMoving : Boolean

distance : Integer

«enumeration» bump : Boolean
Action light : Integer
Forward action : Action
Rotate processingQueue : Boolean

Figure 8. The UML model of the Monitor analysis component.

In this paper we will show how several of these components,
namely some analysis components, can be realized using high-
level UML and OCL models too. Working at this level of
abstraction introduces interesting benefits, mainly reducing
the accidental complexity of using lower-level programming
languages, and also achieving platform-independence.

For example, let us illustrate here the specification of one
analysis component that checks that the behavior of the two
twins is the same, by monitoring the traces produced by both
twins and checking that they are equivalent [5].

The model of such Monitor component is shown in Fig. 8.
Class Monitor is in charge of comparing the snapshots pro-
duced by both the digital and the physical car. Each time a
mismatch is detected between two snapshots, they are recorded
in a list of pairs, whose elements are of type Mismatch.

The behavior of the action() method simply has to check
that the input and output snapshots of the same execution of a
car with the same timestamps, have “similar” attribute values.
Given that we are dealing with physical entities, it would be
unrealistic to ask the values to be identical. Imprecision of
measurements, tolerances and deviations cannot be neglected.
This is why class Monitor provides an attribute, precision, that
represents the allowed precision in the comparisons.

With this, the behavior of the Monitor can be specified in
SOIL as the following code fragment shows. First, it selects
the set of input and output snapshots that are not part of a
mismatch already (lines 7-9). Then, a loop iterates over the
set of input snapshots (coming from the physical car) and
tries to select an output snapshot (produced by the virtual car)
that corresponds to the same car execution, with the same
timestamp (lines 11-14). In case such an output snapshot is
found (line 15), it is compared against the input snapshot
(line 16). Should they differ, a new mismatch is created and
both snapshots are linked to it (lines 17-20). Otherwise, the
snapshots are destroyed (lines 22-23).

Monitor::action()
begin
declare iSnap: Set(InputCarSnapshot),
oSnap: Set(OutputCarSnapshot),
os:OutputCarSnapshot, mm:Mismatch;

iSnap := InputCarSnapshot.allInstances—>
select (i|i.mm—>isEmpty());
oSnap := OutputCarSnapshot.allInstances—>

select (o|o.mm—>isEmpty());
for is in iSnap do
os:=oSnap->select (o]
(o.twinId = is.twinId) and
(o.executionId = is.executionId) and
(o.timestamp=is.timestamp))—>any(true);
if os<null then
if not self.compare(is,os) then
mm:=new Mismatch() ;
insert(self ,mm) into Mismatches;
insert(mm,is) into SourceMismatch;
insert(mm,os) into TargetMismatch;
else
destroy(is);
destroy(os);
end ;
end;
end;
end

The following method, compare(), is in charge of checking
whether an input and output snapshots are “similar” or not
(modulo the value of the precision attribute of class Monitor).

compare(i:InputCarSnapshot,o:OutputCarSnapshot): Boolean =

(1i.xPos—0.xPos).abs() <= self.precision and
(i.yPos—o.yPos).abs() <= self.precision and
(i.angle-o.angle).abs() <= self.precision

Figure 9 shows an object model that contains one mismatch.
It is due to a deviation between the expected position of the PT,
as computed by the DT, and its actual position. The car seems
to move slower than expected for some unknown reason.

The connection between this model and the rest of the
system is again via the data lake. The driver associated to
this component gets the input snapshots from the DL, and
creates the corresponding snapshot objects. When mismatch
instances are created in the model, the driver is notified and
moves these instances (and their corresponding references) to
the associated snapshots to the DL, and then deletes them from
the model.

Some other interesting examples of analysis components are
those defined to test the digital twin, by issuing commands to
it and checking that the outputs are correct. Further analysis
include the verification of temporal or safety properties of the
system, such as checking that certain states are reached, or
in case of a system with more than one Lego car, ensuring
that they maintain a certain distance. Note the benefits of
using a high-level representation of the models, which allow a
simpler specification of these kinds of properties. Furthermore,
we can make use of all the USE toolkit for the analysis and
validation of UML models, including test case generation,
invariant checking, or even the analysis of emergent behaviors
of the system [15], [31].

V. RELATED WORK

Our contribution can be related to several kinds of works.
First, we have those that show how USE can be employed for
runtime monitoring of Java applications [32], [33]. We have

1 Mismatch1:Mismatch
precision=0.1
| InputCarSnapshotd:inputCarSnapshot) | OutputCarSnapshot4:OutputCarSnapshot|
timestamp=1627484835 timestamp=1627484835
executionld='1627484055' executionld='1627484055'
twinld='"NXJCar' twinld="NXJCar
xPos=27.81 xP0s=27.93
yP0s=0.0 yP0s=0.0
angle=0.0 angle=0.0
speed=31.28 speed=31.28
isMoving=true isMoving=true
distance=89 distance=89
bump=false bump=false
light=45 light=45
action=#Forward action=#Forward
processingQueue=false processingQueue=false

Figure 9. Object model showing one mismatch, as detected by the monitor.

used these ideas and the API that USE provides to connect
the USE UML models with our data lake.

We have previously employed USE for simulating the
behavior of different types of physical systems specified in
UML [24]-[27]. These simulations have proved to be very
useful for the specification of digital twins in our present
work. However, they were not synchronized with the physical
systems they emulated or specified.

Other authors have also proposed different architectures for
DT systems, with different number of components types (also
called dimensions in some papers). The initial architectures
defined three main components: the digital twin, the physical
twin and the connections between them [1], [3]. Further
proposals define five [21], [22], or even more dimensions [34].

The potential usages and advantages of MBSE for leverag-
ing DT technologies are discussed in [4], [6] in general terms.
Concrete proposals include, e.g., [9] that introduces a reference
framework for leveraging model repositories for digital twins,
connecting models at design and runtime. The closest works
to ours are [8], [11], [12], [35], which propose variations of a
model-based reference framework for developing digital twins
of manufacturing machines (e.g., injection molding machines),
a hot rolling machine on a steel production chain, or a fire
extinguisher system. These proposals use a domain-specific
language [13] to specify in the digital twin the events that oc-
cur in its physical counterpart. Our proposal differs from these
works in three main aspects. First, our framework is defined
to be independent from the system to be modeled. Second, it
is architected in a loosely-coupled manner. Finally, we have
shown how the digital twin can be effectively specified in
UML within the context of the USE tool, and how the UML
models can be connected to the physical twin.

Despite its relevance [3], up to our knowledge testing and
validating digital twins has not received much attention, with
just a few works that explicitly consider it. For example, [5]
proposes a model-based testing approach for validating be-
havioral equivalence between the two twins. Further types of
specific tests for digital twins are described in generic terms
in [3]. Finally, [7] introduces the idea of defining digital twins

of the same physical twin at different levels of abstraction, in
order to obtain the most cost-effective tests depending on the
property we want to validate. However, no concrete proposal is
given in that paper. This is precisely where our work provides
its main contribution, showing how high-level UML models
could be perfectly connected to a DT reference framework,
and be used not only to specify digital twins but also to define
tests for them at the appropriate level of abstraction.

VI. CONCLUSIONS

In this paper, we have described a framework for engineer-
ing digital twins systems using a loosely-coupled and modular
architecture. This framework is suitable not only for high-
level models but also for lower-level implementations, since
the models could be later replaced by their corresponding
implementations. With our approach, the UML model of the
digital twin can be specified at the right level of abstraction,
depending on the specific type of analysis required. This also
allows any part of the software, such as the behavioral logic
or performance of a specific element, to be independently
analyzed and validated.

We also described a realization of this framework to demon-
strate our proposal using a Lego Mindstorms NXT car. We
include the complete communication system between the twins
and the data lake and an analysis module to test the behavior
logic of the physical twin against its digital counterpart.

Of course, we are aware that full-fledged digital twins
require much more complex implementations than those de-
scribed here. However, our claim is that digital twins are
software artifacts and, as such, require appropriate software
engineering methods and practices, including rigorous specifi-
cation, validation and verification processes. Our contribution
has shown how it is possible to use high-level UML and OCL
models for the specification of digital twins to verify their
expected behavior in the early stages of their construction, and
with very low computational costs and development efforts.

There are several lines of work that we plan to address
in the near future. First, we want to further validate this
proposal through a more detailed analysis of other physical
systems to assess its applicability. Second, we plan to create
other analysis and services modules for monitoring and testing
different properties in the system. For example, we want to
analyze systems with more than one digital twin to evaluate
synchronization with our proposal. Third, we intend to eval-
uate the framework’s performance under stressful conditions
to determine its scalability and applicability to larger systems,
as well as the effects of the synchronization latency in the
overall behavior and fidelity of the digital twin system. Finally,
we plan to improve the proposed implementation to configure
any connection and any physical twin easily.

ACKNOWLEDGMENT

We would like to thank the reviewers for their insightful
comments and constructive suggestions, which helped us to
improve the paper. This work was partially funded by Research
Projects PGC2018-094905-B-100 and P20-00067-FR.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

M. Grieves, “Digital twin: Manufacturing excellence through virtual
factory replication,” Florida Institute of Technology, White Paper, 2014.
M. M. Rathore, S. A. Shah, D. Shukla, E. Bentafat, and S. Bakiras,
“The Role of Al, Machine Learning, and Big Data in Digital Twinning:
A Systematic Literature Review, Challenges, and Opportunities,” IEEE
Access, vol. 9, pp. 32030-32052, 2021.

M. Grieves and J. Vickers, Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems. Springer, 2017,
pp. 85-113.

F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and
M. Wimmer, “Towards model-driven digital twin engineering: Current
opportunities and future challenges,” in Proc. of ICSMM’20, ser. CCIS,
vol. 1262. Springer, 2020, pp. 43-54.

A. Khan, M. Dahl, P. Falkman, and M. Fabian, “Digital twin for legacy
systems: Simulation model testing and validation,” in Proc. of CASE’18.
IEEE, 2018, pp. 421-426.

A. M. Madni, C. C. Madni, and S. D. Lucero, “Leveraging digital twin
technology in model-based systems engineering,” Systems, vol. 7, no. 1,
p. 7, 2019.

A. Arrieta, “Multi-fidelity digital twins: a means for better cyber-
physical systems testing?” CoRR, vol. abs/2101.05697, 2021.

J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Model-driven digital twin construction: synthesizing the integration
of cyber-physical systems with their information systems,” in Proc. of
MoDELS’20. ACM, 2020, pp. 90-101.

D. Lehner, S. Wolny, A. Mazak-Huemer, and M. Wimmer, “Towards
a reference architecture for leveraging model repositories for digital
twins,” in Proc. of ETFA’20. 1EEE, 2020, pp. 1077-1080.

T. Bolender, G. Biirvenich, M. Dalibor, B. Rumpe, and A. Wort-
mann, “Self-adaptive manufacturing with digital twins,” CoRR, vol.
abs/2103.11941, 2021.

M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann, “To-
wards a model-driven architecture for interactive digital twin cockpits,”
in Proc. of ER’20, ser. LNCS, vol. 12400. Springer, 2020, pp. 377-387.
P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalz-
ing, M. Schmitz, and A. Wortmann, “Model-driven development of a
digital twin for injection molding,” in Proc. of CAiISE’20, ser. LNCS,
vol. 12127. Springer, 2020, pp. 85-100.

A. Haber, J. O. Ringert, and B. Rumpe, “Montiarc - architectural
modeling of interactive distributed and cyber-physical systems,” CoRR,
vol. abs/1409.6578, 2014.

M. Gogolla, F. Biittner, and M. Richters, “USE: A UML-based specifica-
tion environment for validating UML and OCL,” Sci. Comput. Program.,
vol. 69, no. 1-3, pp. 27-34, 2007.

M. Gogolla, F. Hilken, and K.-H. Doan, “Achieving model quality
through model validation, verification and exploration,” Computer Lan-
guages, Systems & Structures, vol. 54, pp. 474-511, Dec. 2018.

F. Biittner and M. Gogolla, “On OCL-based imperative languages,” Sci.
Comput. Program., vol. 92, pp. 162-178, 2014.

R. Hai, C. Quix, and M. Jarke, “Data lake concept and systems: a
survey,” CoRR, vol. abs/2106.09592, 2021.

RedisLabs, “Redis,” 2021. [Online]. Available: https://redis.io/

Digital Twin Consortium, “Glossary of digital twins,” 2021. [Online].
Available: https://www.digitaltwinconsortium.org/glossary/index.htm

S. Haag and R. Anderl, “Digital twin -— proof of concept,” Manufac-
turing Letters, vol. 15, pp. 64-66, 2018.

F. Tao, M. Zhang, Y. Liu, and A. Nee, “Digital twin driven prognostics
and health management for complex equipment,” CIRP Annals, vol. 67,
no. 1, pp. 169-172, 2018.

F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Trans. Ind. Informatics, vol. 15, no. 4, pp. 2405—
2415, 2019.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern—Oriented Software Architecture: A System of Patterns. John
Wiley & Sons, 1996.

P. Muifioz, P. Karkhanis, M. van den Brand, and A. Vallecillo, “Modeling
objects with uncertain behaviors,” Proc. of ECMFA’21. Journal of Object
Technology, vol. 20, no. 3, pp. 8:1-24, Jun. 2020.

M. F. Bertoa, L. Burguefio, N. Moreno, and A. Vallecillo, “Incorporating
measurement uncertainty into OCL/UML primitive datatypes,” Softw.
Syst. Model., vol. 19, no. 5, pp. 1163-1189, 2020.

[26]

[27]

[28]

[29]
[30]

[32]

[33]

[34]

[35]

A. Vallecillo and M. Gogolla, “Modeling behavioral deontic constraints
using UML and OCL,” in Proc. of ER’20, ser. LNCS, vol. 12400.
Springer, 2020, pp. 134-148.

M. Gogolla and A. Vallecillo, “(An Example for) Formally Modeling
Robot Behavior with UML and OCL,” in Proc. of MORSE@STAF’17,
ser. LNCS, vol. 10748. Springer, 2017, pp. 232-246.

IEEE Std 1003.1-2008, The Open Group Base Specifications. Issue 7,
Sect. 4.16, Seconds Since the Epoch, 2016.

“Jedis,” 2021. [Online]. Available: https://github.com/redis/jedis

P. Muioz, J. Troya, and A. Vallecillo, “Digital Twins Modeling
Framework - Git repository,” 2021. [Online]. Available: https:
//github.com/atenearesearchgroup/digitalTwinModelingFramework

A. Vallecillo and M. Gogolla, “Modeling behavioral deontic constraints
using UML and OCL,” in Proc. of ER’20, ser. LNCS, vol. 12400.
Springer, 2020, pp. 134-148.

L. Hamann, O. Hofrichter, and M. Gogolla, “Ocl-based runtime monitor-
ing of applications with protocol state machines,” in Proc. of ECMFA’12,
ser. LNCS, vol. 7349. Springer, 2012, pp. 384-399.

L. Hamann, M. Gogolla, and M. Kuhlmann, “Ocl-based runtime mon-
itoring of JVM hosted applications,” Electron. Commun. Eur. Assoc.
Softw. Sci. Technol. (ECEASST), vol. 44, 2011.

A. Sharma, E. Kosasih, J. Zhang, A. Brintrup, and A. Calinescu, “Digital
twins: State of the art theory and practice, challenges, and open research
questions,” CoRR, vol. abs/2011.02833, 2020.

M. Liebenberg and M. Jarke, “Information systems engineering with
digital shadows: Concept and case studies,” in Advanced Information
Systems Engineering. Springer, 2020, pp. 70-84.

