
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Addressing the Uncertainty Interaction Problem in
Software-intensive Systems: Challenges and Desiderata

Javier Cámara
jcamara@uma.es

ITIS Software, University of Málaga
Spain

Radu Calinescu
radu.calinescu@york.ac.uk

University of York
United Kingdom

Betty H.C. Cheng
chengb@msu.edu

Michigan State University
USA

David Garlan
Bradley Schmerl

{garlan,schmerl}@cs.cmu.edu
Carnegie Mellon University

USA

Javier Troya
Antonio Vallecillo
{jtroya,av}@uma.es

ITIS Software, University of Málaga
Spain

ABSTRACT
Software-intensive systems are increasingly used to support tasks
that are typically characterized by high degrees of uncertainty. The
modeling notations employed to design, verify, and operate such
systems have increasingly started to capture different types of un-
certainty, so that they can be explicitly considered when systems
are developed and deployed. While these modeling paradigms con-
sider different sources of uncertainty individually, these sources
are rarely independent, and their interactions affect the achieve-
ment of system goals in subtle and often unpredictable ways. This
vision paper describes the problem of uncertainty interaction in
software-intensive systems, illustrating it on examples from rele-
vant application domains. We then identify key open challenges and
define desiderata that future modeling notations and model-driven
engineering research should consider to address these challenges.

CCS CONCEPTS
• Software and its engineering → System description lan-
guages;

KEYWORDS
Uncertainty interaction, Modeling notations, Patterns

ACM Reference Format:
Javier Cámara, Radu Calinescu, Betty H.C. Cheng, David Garlan, Bradley
Schmerl, Javier Troya, and Antonio Vallecillo. 2018. Addressing the Un-
certainty Interaction Problem in Software-intensive Systems: Challenges
and Desiderata. In Proceedings of 25th International Conference on Model
Driven Engineering Languages and Systems (MODELS’22). ACM, New York,
NY, USA, 8 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Systems in which software influences the design, construction, op-
eration, and evolution of the system in an essential manner (i.e.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS’22, Oct. 23–28, 2022, Montreal, CA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

software-intensive systems) are widely used to support tasks across
key domains that include manufacturing, communications, trans-
portation, health and entertainment. Many of these systems are
characterized by high degrees of uncertainty induced by multiple
sources that include complex interactions among physical elements
and software (e.g., in cyber-physical systems), humans in the loop,
lack of control over third-party components and services (which
may reside in the cloud), and machine learning-enabled compo-
nents [15]. Given the multiple sources of uncertainty that may
appear at different levels of abstraction, different temporal frequen-
cies, with a spectrum of impact, an emergent challenge is how
to handle interaction among these disparate sources and types of
uncertainty. This paper identifies challenges posed by the uncer-
tainty interaction problem (UIP) and proposes key desiderata for the
model-driven engineering community to address these challenges.

A growing body of work addresses the problem of mitigating
the effects of uncertainty in software-intensive systems by employ-
ing constructs that enable engineers to explicitly capture different
types and sources of uncertainty in models [1, 2, 7, 8, 12, 14, 18, 22–
25, 27, 29–31]. While these modeling paradigms consider different
sources of uncertainty individually, these are rarely independent,
and their interactions can affect the achievement of system goals
in subtle and often unpredictable ways. Sometimes, these uncer-
tainty interactions can be captured using state-of-the-art model-
ing notations in an ad-hoc manner for specific systems and types
of interaction. However, these approaches are error-prone and
labor-intensive. To improve the resilience and reliability of future
software-intensive systems, engineers need systematic approaches
to represent and manage uncertainty interactions.

This paper posits that modeling plays a central role in managing
uncertainty interactions, which should be considered as a first-class
systems development problem. Explicitly capturing interactions in
patterns that can be reused to represent and manage uncertainty
interactions across systems, using models at run time to detect
potential interactions among different sources of uncertainty, or
facilitating the interoperability of different modeling paradigms to
enable compositional analysis of the effects of uncertainty interac-
tions on the satisfaction of system requirements are examples of
how future modeling paradigms can foster more efficient develop-
ment paradigms of higher quality software-intensive systems.

1

The final version of this paper is available from ACM Digital Library:
https://dl.acm.org/doi/abs/10.1145/3550355.3552438

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://dl.acm.org/doi/abs/10.1145/3550355.3552438

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MODELS’22, Oct. 23–28, 2022, Montreal, CA

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

To achieve this vision, the modeling community needs to ad-
dress questions such as: What modeling patterns can be developed
to represent different types of uncertainty interactions? How can
modeling notations enable better compositional analysis of system
properties subject to uncertainty interactions? What types of auto-
mated analysis can be applied to models to detect interactions? How
can models at runtime be used to manage UIPs as the operational
context changes? In this vision paper, we discuss some of the chal-
lenges that arise from these questions related to the representation,
analysis, mitigation, and exploration of uncertainty interactions
through the lens of modeling. Previously, we identified UIP as a
problem from a self-adaptive systems perspective [10]. In contrast,
this vision paper considers UIP from a purely modeling perspec-
tive, stating the need for a paradigm shift in the modeling of the
numerous software-intensive systems affected by this problem. We
then map –for the first time– the high-level challenges from [10]
to concrete modeling challenges and use them to distill a set of
desiderata for new modeling paradigms that the MDE community
needs to work on in order to tackle the UIP problem.

In this paper, Section 2 explores the UIP and illustrates some
of the limitations of current modeling approaches to address it
in Znn.com, an adaptive news system exemplar broadly used in
the area of self-adaptive systems. Based on the discussion of such
limitations, Section 3 identifies key challenges to address the UIP.
Section 4 builds upon these challenges and lists desiderata for mod-
eling notations and corresponding analysis techniques that can be
used to address them. Finally, Section 5 presents some conclusions.

2 EXPLORING UNCERTAINTY INTERACTION
In this section, we explore the uncertainty interaction problem in
the context of Znn.com, which is a simple news service that uses
MAPE-K [16] to deal with varying workloads through different
tactics [26]. As Figure 1 illustrates, Znn.com has multiple servers
(some of which are inactive), a load balancer, and a database, which
are monitored by theMAPE loop to update the models of the system
and environment to make informed decisions. To accommodate
changing workloads, the self-adaptive layer executes different tac-
tics such as activating servers, enabling a CAPTCHA, or changing
the quality of the contents served, among others.

c0

c1

c2

lbproxy

s0

s1

s2

s3

db

Figure 1: Znn.com architecture.

2.1 Sources of Uncertainty
Let us consider a situation in which Znn.com receives a spike in
workload with a high request arrival rate and has to decide which of
the tactics to trigger (if any), in order to continue to satisfy system
goals. We may face different uncertainties in such a situation:

2.1.1 Model. The abstraction level of environment and system
properties (e.g., coarse-grained discretization of numerical variables
like the request arrival rate) of models in the knowledge base of the
self-adaptive layer of Znn.com are potential sources of uncertainty.

2.1.2 Adaptation Functions. The exact outcome of executing an
adaptation tactic (e.g., activating a server) is unknown, in terms of
precise improvements on throughput or response time. Sensing is
also imperfect so measurements taken, e.g., at the load balancer
to gauge the request arrival rate, may be imprecise (averaging
windows are typically employed to mitigate quick fluctuations). The
time that it takes to activate a server is also subject to uncertainty
and can fluctuate depending on environment conditions.

2.1.3 Goals. In Znn.com, dependencies among goals are not cap-
tured explicitly. Instead, the selection of adaptations to satisfy extra-
functional goals (i.e., cost minimization, user experience optimiza-
tion, security) is driven by utility functions that do not clarify under
what conditions security has priority over cost, and vice versa.

2.1.4 Environment. The evolution of the request arrival rate (e.g.,
whether it is going up, down, or remains stable) can be predicted in
some cases, but only to some degree of certainty, e.g., using a time
series predictor [20]. This is important for anticipating usage peaks
when more resources may be needed. The nature of the access of
clients to the system (i.e., whether they are legitimate clients or
bots attempting to perform a DoS attack) is unknown. We need
this information to decide if preventive measures such as the use
of CAPTCHAs, are worth the inconvenience to most users.

2.1.5 Resources. Servers may fail, and considering their expected
failure rate may provide more realistic estimates when sizing the
system. However, predictions based on high uncertainty can in-
crease the number of servers required, thereby unnecessarily in-
creasing the overall costs. Similarly, the availability of additional
servers that can be activated to spread the workload may only be
known with some degree of certainty, because they may not be
available at all times. Their performance can also vary, introducing
new sources of uncertainty when predicting system performance.

2.1.6 Managed system. This uncertainty is caused by the com-
plexity and dynamicity of the managed system, which hinders the
estimations of its behavior. The system and its parts may also evolve,
incorporating new elements whose behavior was not considered
when the system was designed. These parts may also fail or be-
have in erratic or unexpected manners, e.g., the performance of the
database can degrade, suffer attacks or intermittent failures.

2.2 Uncertainty Interaction
We are interested in the cases where two or more uncertainties
have interactions when combined. We next describe in detail a
scenario that exemplifies these situations and their effects. In the
MAPE-K adaptation loop of Znn.com, the analysis stage determines
if the triggering of adaptations is required, for instance, when an
invariant is violated. One typical example is the invariant stating
that the current system response time 𝑟 should always be below a
threshold 𝑅𝑚𝑎𝑥 . When this invariant is violated, the interaction of
the following sources of uncertainty, among others, might affect
the correct operation of the analysis:

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Addressing the Uncertainty Interaction Problem in Software-intensive Systems: Challenges and Desiderata MODELS’22, Oct. 23–28, 2022, Montreal, CA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Adaptation functions. Sensing of the response time property
could yield values within some range [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] that contains
the ground truth value 𝑟 . If the observed value is above threshold
(𝑟 ≥ 𝑅𝑚𝑎𝑥), but the real value is not (𝑟 < 𝑅𝑚𝑎𝑥), this will lead to a
false positive that will trigger an adaptation planning and execution
cycle when it is not really needed, increasing the cost of operating
the system without need. In the symmetric case (𝑟 < 𝑅𝑚𝑎𝑥 ≤ 𝑟),
the adaptation cycle will not be triggered even if it is really needed,
causing an unnecessary degradation of performance.
Model abstraction. The coarse-grained discretization of the re-
sponse time property in the managed system model can also result
in undesired adaptation triggers or the lack of required adaptations
when the discretized value 𝑟𝑑 of the property is on the other side of
the threshold, when compared to the ground truth value 𝑟 . Hence,
if we discretize with a granularity of ` = 20𝑚𝑠., response times
measured where |𝑟 − 𝑅𝑚𝑎𝑥 | ≤ 20 could be problematic.

r̂d r̂ r

Rmax µ

rd r̂dr̂r

Rmaxµ

rd

(a) (b)

Figure 2: Model-Sensing interaction: (a) causing spurious
adaptation (b) preventing required adaptation.

These two sources of uncertainty can interact in more than one
way. In the situation illustrated in Figure 2(a), the ground truth
value of the response time 𝑟 is observed with some error. Both 𝑟

and the observed value 𝑟 are below the threshold 𝑅𝑚𝑎𝑥 . Dashed
gray lines represent the values that the variable can take in the
discrete abstraction of the system model. Any real value observed
in the surrounding box is snapped to that discrete value. Even if
the observed value of the variable 𝑟 contains some error, this error
on its own would not be enough to trigger an undesired adaptation.
However, due to the discretization of the observed response time
values, 𝑟 will be snapped to 𝑟𝑑 , which is above 𝑅𝑚𝑎𝑥 , triggering a
spurious adaptation. Note that without the error induced by ob-
servation, the discretization process on its own would not have
been enough to trigger this adaptation, given that 𝑟 would have
been snapped to 𝑟𝑑 , which is below 𝑅𝑚𝑎𝑥 . Alternatively, Figure 2(b),
shows the case in which both the ground truth and the observed
value of the response time are above threshold 𝑅𝑚𝑎𝑥 . In this case,
the discretization process snaps the value of 𝑟 to 𝑟𝑑 , preventing
the triggering of adaptation in a situation in which it would have
been required. Analogously to the situation described in (a), neither
the discretization process nor the observation error on their own
would have been enough to prevent the execution of the required
adaptation. Instead, it is the compound effect of both sources of
uncertainty that causes the undesired situation.

2.2.1 Exploring uncertainty interaction through modeling. To assess
the impact of uncertainty interaction on the satisfaction of system
goals, we formalize some of the elements of Znn.com in a high-level
model of the system that we analyze using the probabilistic model
checker PRISM [17]. The model includes processes that capture the
behavior of different system components (Figure 3), which take
turns at each execution step of the scenario:

2. Sensor 3. Discretization 4. Adaptation1. System
r r̂ r̂d

Figure 3: Uncertainty interaction model structure.

(1) System. Models the managed system and includes a variable
that corresponds to the ground truth value of the response time 𝑟 ,
which is generated at each execution step according to an arbitrary
function that depends on the elapsed time 𝑡 in the scenario.
(2) Sensor. Models the behavior of the sensor that captures the
response time and contains a single variable 𝑟 (observed value
of 𝑟). At each execution step, the sensor takes the value of 𝑟 and
generates a value of 𝑟 that contains some error according to a
normal distribution of mean 𝑟 and standard deviation controlled by
an error parameter of the model designated by ^.
(3)Discretization. Captures the behavior of the abstraction process
that takes place when the values of the variables observed on the
continuous spectrum have to be rounded to their closest values on
the discrete grid that can be represented by system models. Con-
cretely, this process contains a variable 𝑟𝑑 , which is obtained from
the observed value of response time 𝑟 according to the function:

𝑑𝑖𝑠𝑐 (𝑟) = arg min
𝑥 ∈[R]`

(|𝑟 − 𝑥 |), (1)

where [R]` = {𝑥 ∈ R | 𝑥 = 𝑖`, 𝑖 ∈ Z, 𝛼 ≤ 𝑥 ≤ 𝛽 } is the discrete
set of values that the response time variable 𝑟 can take, ` is a param-
eter that controls the granularity of the discretization (smaller `
means higher model fidelity), and [𝛼, 𝛽] is the range of the variable.
(4) Adaptation. Based on the discretized value of the observed re-
sponse time 𝑟𝑑 , the adaptation process decides if adaptation should
be triggered (i.e., if 𝑟𝑑 ≥ 𝑅𝑚𝑎𝑥). If that is the case, the value of
the ground truth response time variable 𝑟 is reduced for the next
execution step. In our model, we simply assume that this reduction
corresponds to cutting by half the existing response time.

The main objective of Znn.com is maximizing accrued utility,
which we assume to have a value inversely proportional to system
response time throughout execution (in reality, multiple variables
contribute to utility, such as cost and fidelity of the contents served
to clients, but we abstract them away for brevity). To determine
the impact of uncertainty interaction on utility maximization, our
model includes a reward structure that computes the accrued error
over the execution of the scenario between the utility computed
based on the ground truth, and the discretized observed values of
the response time (𝑟 and 𝑟𝑑 , respectively):

Δ𝑈 ≡
∫ 𝑇

𝑜

|𝑟 − 𝑟𝑑 | (2)

To understand how the uncertainty due to model abstraction and
imperfect sensing interact, we analyzed four variants of a scenario
of duration𝑇 = 20 time units, where the range of the response time
variable 𝑟 is [𝛼, 𝛽] = [0, 200] ms., and the threshold for adaptation
is 𝑅𝑚𝑎𝑥 = 40 ms. These four variants correspond to the following
cases: (i) no uncertainty, in which there is full model fidelity (` = 1)
and no sensor observation error (^ = 0), (ii) sensing uncertainty,
in which ` = 1 and ^ = 20, (iii) model abstraction uncertainty, in
which ` = 30 and ^ = 0, and (iv) combined sensing and model
abstraction uncertainty, where ` = 30 and ^ = 20.

Results of the analysis (Figure 4) show that, as expected, the
accrued difference in utility Δ𝑈 for the execution of scenarios of

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MODELS’22, Oct. 23–28, 2022, Montreal, CA

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

different durations without uncertainty (` = 1, ^ = 0) is always
0, given that the ground truth, observed values, and observed dis-
cretized values always coincide (i.e., ∀𝑡 {0..𝑇 }, 𝑟 (𝑡) = 𝑟 (𝑡) = 𝑟𝑑 (𝑡)).
The case with model uncertainty (` = 30,^ = 0) shows that Δ𝑈 now
increases progressively with the duration of the scenario as multi-
ple instances of systems states in which 𝑟𝑑 ≠ 𝑟 are given, reaching
a maximum of Δ𝑈 = 217 when 𝑇 = 20. The case in which uncer-
tainty is due to imperfect sensing (` = 1, ^ = 20) shows that Δ𝑈
also increases over time in states in which 𝑟 ≠ 𝑟 , reaching a value of
Δ𝑈 = 380when𝑇 = 20. This form of uncertainty has an impact that
is in this case ≈ 1.75 times that of model uncertainty. Finally, the
case in which we have both sensing and model uncertainty (` = 30,
^ = 20) shows that impact on Δ𝑈 also accrues progressively, but at
a higher rate, compared to any of the other uncertainties considered
individually. The impact on Δ𝑈 reaches a maximum value of 584,
which is ≈ 1.53 times the impact of sensing uncertainty, and ≈ 2.69
times the impact of model uncertainty. These results indicate that
different sources of uncertainty can compound and have a notable
impact on the achievement of system goals.

Figure 4: Impact of 2-way Model-Sensing interaction on ac-
crued system utility in Znn.com.

2.2.2 Other examples of uncertainty interaction. Beyond the exam-
ple discussed in this section, there are multiple other sources of
uncertainty that can interact in software-intensive systems. These
interactions can involve an arbitrary number of uncertainty sources,
but we present only pairwise interactions for illustration purposes:
Time andmeasurement uncertainty. The uncertainty in the time
that spans between the triggering of an adaptation like activating a
server in Znn.com, which can take between seconds and minutes,
and the instant in which its effects take place, can interact with
the imperfect sensing of system variables. A delayed or anticipated
triggering of the adaptation due to error in response time measure-
ment can compound with adaptation latency, causing the system
to execute adaptations that are not required yet, or not needed
anymore after a transient change.
Model abstraction and physical environment. An autonomous
service robot operating in a healthcare facility is tasked with nav-
igating between two locations and may face uncertainty due to:
(i) its limited knowledge of the environment (e.g., presence of peo-
ple in corridors, remaining energy in the battery – which has to be
estimated based on measured voltage), and (ii) an overly abstract
model of the environment that does not represent the geometry
of obstacles in detail and can increase the chance of collision and

the need of subsequent recovery routines that increase energy con-
sumption. These uncertainty sources, when considered together
can cause the robot to deplete its battery before completing its task,
when individual sources of uncertainty would not have caused the
same situation. For instance, if the robot has an abstract model that
causes a collision, an accurate knowledge of remaining battery and
presence of people can allow re-planning that might still lead to
arriving at the target location. However, the same situation with
uncertainty in the remaining battery, or the presence of humans
who can delay the progress of the robot through a corridor can lead
to generating a plan based on unrealistic estimates prone to fail.

2.2.3 Limitations. The exercise of building the PRISM model used
to explore our example already points to some limitations that
current modeling notations exhibit when it comes to capturing
and reasoning about uncertainty interactions. The first one is the
inability to represent variables with an arbitrary precision. Proba-
bilistic model checkers like PRISM that enable exhaustive analysis
can only handle discrete variables, so representing uncertainty due
to discretization processes is cumbersome and possible only in a
limited number of cases. This also applies to time, which has to
be represented in a discrete fashion. Although some formalisms
like Probabilistic Timed Automata (PTA) and Continuous-Time
Markov Chains (CTMC) support capturing continous time, their
ability to capture time uncertainty is quite limited. Uncertainty due
to structural variability is also a limitation of this model, which
cannot systematically represent alternative system structures that
satisfy non-trivial structural invariants, such as those that can be
imposed by notations such as OCL [21]. Furthermore, all variables
in the model had to be captured at the same level of abstraction,
thus leaving out uncertainties that might propagate and interact
with uncertainty sources at other levels of abstraction.

3 CHALLENGES
Based on these examples and others, we next identify a set of chal-
lenges related to the modeling, analysis, mitigation, and exploration
of uncertainty in software-intensive systems.

3.1 Modeling Challenges
Providing means to model uncertainty interactions is key to analyz-
ing, mitigating and exploring the effects of such interactions. We
identify the following challenges in this context.
M1. Improving current modeling notations to represent and
manage uncertainty. Although the representation of uncertainty
in software models is improving [27], we are still far from hav-
ing sufficiently good solutions. For example, explicitly represent-
ing the uncertainties identified in Section 2—not to mention their
interactions—is not possible with most of the modeling notations
currently available. We need more expressive modeling notations to
represent and manage uncertainty at different levels of abstraction.

There is an ongoing effort within the OMG to develop a meta-
model for the precise specification of uncertainty in software mod-
els (PSUM) [22], which could provide the required set of concepts
and relations to represent uncertainty. Although this OMG proposal
could serve to enrich current modeling notations with such con-
cepts, it may remain at a too high level of abstraction to capture the
nuances in some uncertainties—such as some of the ones described
in Section 2. Moreover, in addition to representing uncertainty, it is

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Addressing the Uncertainty Interaction Problem in Software-intensive Systems: Challenges and Desiderata MODELS’22, Oct. 23–28, 2022, Montreal, CA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

just as important to be able to manage, propagate, and reason about
it. Links to the right tools for uncertainty analysis (propagation,
estimation, bounding, management) are also required.
M2. High-level modeling. Beyond representing the individual un-
certainties a system might be subject to and their sources, it would
be desirable to indicate at a very high level of abstraction what
uncertainty interactions will likely take place among specific uncer-
tainty sources. However, models at too high level of abstraction are
typically unable to capture and manage the individual uncertainties
with the required degree of precision to faithfully represent the real
systems. Hierarchies of related models that capture uncertainties
at different levels of abstraction could be an option to explore.
M3. Uncertainty interaction modeling. Different uncertainty
sources are normally represented using different notations and
at possibly different levels of abstraction, which may jeopardize
reasoning about their interactions. It is important to be able to rep-
resent how (and not only if as in Challenge M2) these uncertainty
sources are likely to interact. Different situations might occur when
two or more uncertainties interact. For instance, in the physical
world we see how uncertainties cancel each other out or at least off-
set each other’s effects, or in Section 2.2 we have seen examples of
the effect of two uncertainty sources when interacting. Identifying
the most suitable representation and underlying logic to capture
the interactions and possible emergent uncertainties is a difficult
challenge, given that no uniform notation able to represent all types
of uncertainties, and their interactions, seems possible. In addition,
models at different levels of abstraction can be generally very diffi-
cult to combine (cf. [28]), which may hinder the representation and
reasoning about the combination of the uncertainties that each of
them describes, and of their possible interactions.

3.2 Analysis Challenges
Developed independently by multiple research communities, the
wide range of methods for the analysis of uncertainty differ signifi-
cantly in the types of models, techniques and results with which
they operate. Several major challenges for the analysis of uncer-
tainty interactions stem from these differences.
A1. Integration of uncertainty analyses. The analyses of differ-
ent classes of uncertainty yield results that are often qualitatively
different, precluding a meaningful integration. As an example, the
statistical analysis used to analyse measurement uncertainty typ-
ically produces confidence intervals (in frequentist statistics) or
credibility intervals (in Bayesian statistics), while the probabilistic
modelling techniques used to establish dependability and perfor-
mance properties of software systems operate with point estimates
of the probabilities of transition between pairs of system states.
A2. Complex relationships between uncertainty analyses. Be-
cause of the nonlinear dependencies between different types of
uncertainty, selecting the right levels of precision for each individ-
ual analysis is challenging. The conservative analysis of each source
of uncertainty can lead to a combined overall result that cannot
guarantee compliance with the dependability, performance, and
resource use of the system because it is overly conservative. While
analyses carried out more precisely avoid this limitation, they re-
quire the acquisition of more data, larger models, and significantly
higher computational overheads and latencies.

A3. Multiple changes in uncertainty. Changes—whether gradual
or sudden—in the uncertainty characteristics (e.g., probabilities)
associated with a single source of uncertainty are already difficult
to handle in the analysis of software systems. Detecting changes
due to multiple sources of uncertainty and reapplying the analyses
required to establish their combined impact on a software-intensive
system necessitates techniques for compositional and incremental
analysis that are largely unavailable today.

3.3 Mitigation Challenges
Beyond the ability to model and analyze uncertainty interaction, an
important challenge is to be able to reason about ways to mitigate —
or reduce – the impact of uncertainty interaction [9, 19]. Such miti-
gations can take the form of actions that explicitly target sources of
uncertainty and their interaction by allocating resources to narrow
the degree of uncertainty [9]. For example, increasing the number
of active sensors on a robot can decrease uncertainty in the position
of the robot. However, given that there are costs associated with
such reductions, a key question to answer is whether the increase
in expected system utility is justified by those costs. This leads to a
significant challenge for modeling: namely, being able to predict
the consequences of uncertainty reduction and to make tradeoffs
between the costs and benefits of doing so.

When carrying out uncertainty reduction it may be possible to
exploit some common modeling patterns of uncertainty interac-
tion to reason about appropriate mitigation actions. Examples of
modelling challenges to support such inference include at least the
following three forms of interaction and mitigation.
Mt1. Dominance. It may be that one form of uncertainty domi-
nates (or subsumes another) and that by reducing the dominant
uncertainty dimension necessarily reduces the other. For exam-
ple, uncertainty about a robot’s location that is reduced through
turning on a headlight might completely dominate the uncertainty
associated with a robot’s intrusiveness.
Mt2. Augmentation: Some uncertainties may be highly correlated
with each other (but neither dominating the other), so that un-
certainty reduction of one type may positively affect reduction of
another. For example, uncertainty about a robot’s location may be
augmented by uncertainty about the safety of the robot, and that
by reducing location uncertainty (e.g., turning on a spotlight in a
dark area) the other uncertainty is also partially reduced. Models
should be able to help determine the degree of such correlation.
Mt3. Conflicts. Reduction of uncertainty of one form may increase
uncertainty in another form. For example, devoting resources to
reduce uncertainty about robot location, may remove resources
from another aspect of a robot’s behavior, increasing its uncertainty.
For example adding sensors to improve localization may increase
uncertainty about a robot’s power reserve. Models of uncertainty
reduction should expose and allow reasoning about such tradeoffs.

3.4 Exploration Challenges
Given the range of uncertainty sources, the different types of un-
certainty interaction, and the potentially negative consequences of
uncertainty interaction, it becomes increasingly important to have
effective proactive uncertainty interaction exploration capabilities.
Taking a model-driven engineering approach to UIP provides a
number of opportunities with respect to scalability and automated

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MODELS’22, Oct. 23–28, 2022, Montreal, CA

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

analysis capabilities. For UIP exploration, however, the aforemen-
tioned challenges become accumulative, with an added complexity
posed by the human in the loop. We identify three key model-based
challenges when exploring UIP.
E1. Exploring Multiple Sources of Uncertainty.With multiple
modeling notations to capture the different types of uncertainty,
each of which captures different levels of abstraction, temporal gran-
ularity, and precision, the corresponding but disparate uncertainty
analysis techniques make it difficult to explore different scenar-
ios of uncertainty interaction. As such, in addition to overcoming
the analysis challenges (i.e., A1-A3), UIP exploration requires the
ability to understand tradeoffs between different configurations
of uncertainty sources, which will be limited by the respective
modeling expressiveness and analysis techniques. How can the
different uncertainty models incorporate and process historic data,
synthetic data (e.g., adversarial, diverse known unknown environ-
ment, probabilistic), to provide predictive capabilities? For example,
how can frameworks, such as MODA [11] be leveraged and cus-
tomized to provide data-centric exploration of heterogeneous mod-
els to explore uncertainty interaction scenarios. In Section 2.2.1, we
illustrated how formal analysis techniques can be used to detect un-
certainty interaction, but we are also interested in more open-ended
exploration – how can the disparate uncertainty models be inte-
grated for exploration in search-based frameworks, such as game
theory, probabilistic analysis, and general "what if?" scenarios?
E2. Executable Environments.Many of the sources of uncertainty
require dynamic, behavioral analysis. For uncertainty interaction
exploration purposes, executable models are invaluable. "What if?
scenario exploration requires a broad range of configuration capabil-
ities to handle the different sources of uncertainty and range/types
of data. Digital Twin frameworks have largely focused on system
functionality and performance, but how they can be revised to
explore uncertainty interaction explicitly remains a challenge.
E3. UIP Visualization. Exploring uncertainty interaction will in-
volve humans in the loop to both configure uncertainty interaction
model-based exploration (e.g., identify relevant uncertainty models,
identify relevant data, identify appropriate uncertainty analysis
techniques), but also to interpret the resulting exploration results.
As such, informative and interactive visualization techniques are
needed to support uncertainty interaction exploration tools.

4 DESIDERATA
We build upon the challenges identified to pin down desiderata for
modeling notations that can help to address the UIP and, ultimately,
to provide better system assurances.
D1. Uncertainty Patterns. One way to address challenge M2 is to
develop a set of high-level patterns that account for the different
uncertainty sources. These patterns should be able to express the
uncertainty sources and interactions that can have an influence on
the system, and appropriately combine them when required. Stan-
dardisation efforts, such as the PSUM, can help lay the groundwork
for describing such patterns in a precise and uniform way. Such
patterns could also provide uncertainty mitigation actions in the
form of model transformations or analyses for reducing uncertainty,
addressing mitigation challengesMt1-Mt3.
D2. Hierarchy of domain-specificmodeling languages (DSMLs).
Uncertainty sources and interactions can be specified in models

either in an intrusive or non-intrusive way. The former approach
requires extending the models’ syntax and semantics with nota-
tions to represent uncertainties. A non-intrusive approach can be
addressed with the use of external DSMLs that contain references
to the system’s models. Indeed, the uncertainty patterns mentioned
above can be specified with appropriate high-level DSMLs, address-
ing challenge M2. In fact, we can think of a hierarchy of DSMLs
for uncertainty representation. High-level DSMLs would allow to
indicate the likely occurrence of uncertainty sources and their in-
teractions through the instantiation of patterns. Then, lower-level
DSMLs must allow to specify how each uncertainty pattern is to be
materialized in each specific system. The lower-level DSMLs would
address challenge M3. These DSMLs must allow describing how
each uncertainty source might affect the system and modeling how
the interaction of the uncertainty sources can affect the system,
addressing challenge A1. All uncertainty sources and interactions
should be defined at the same level of abstraction.

The amount of detailed information we have during modeling
can vary, so we need to be able to define uncertainty sources and
interactions with different level of detail—this is akin to the concept
of multi-fidelity in the field of digital twins [3]. This emphasizes
the importance of a hierarchy of DSMLs: the user must employ
the DSMLs at the appropriate level of abstraction. Hierarchical
modeling languages could provide a basis for addressing challenge
A2 by reasoning at multiple levels about uncertainty mitigation by
providing both abstract and concrete operations and ways to reason
about cross-model interactions, where the impact of uncertainty
reduction of one type can impact positively or negatively other
types of uncertainty.
D3. Robustness. The analysis of uncertainty models should yield
results that are not affected significantly by small changes and/or
small estimation errors in the model parameters. This is required
in order to limit the frequency with which the models need to be
re-analysed after changes (challenge A3) and to support “what
if” scenario exploration (challenge E2). Advances in confidence-
interval model checking [5, 6] and the synthesis of robust software
system designs [4] satisfy this desideratum for a single source of
uncertainty, but cannot yet handle the uncertainty interactions.
D4. Reusability. Having a library of high-level patterns and non-
intrusive DSMLs as described above, these should be reusable across
different systems and models. This involves challenges M1, M2,
andM3. Such reusability also applies to adressing challenges across
across analysis, mitigation, and exploration.
D5. Compositionality. This is another feature that the DSMLs
should have. In order to more effectively use a hierarchy of reusable
DSMLs, these should be defined in a compositional fashion. Com-
positionality would enable us to address challenges such as M3
by facilitating the description of interactions of uncertainty from
multiple sources and at different levels of abstraction, and A3 by en-
abling the compositional and incremental analyses of qualitatively
different aspects of the system (e.g., uncertainty due to structural
variability vs. stochastic behavior).Compositional reasoning should
also be extended to understanding how uncertainty mitigations
(Mt1-Mt3) performed on one model affect uncertainties in another.
D6. Configurability. In order to support model exploration for
different combinations and instantiations of uncertainty sources,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Addressing the Uncertainty Interaction Problem in Software-intensive Systems: Challenges and Desiderata MODELS’22, Oct. 23–28, 2022, Montreal, CA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

the models and their respective analysis techniques should be in-
dependently and correlated configurable. With configurability, the
reusable patterns can be better leveraged for both the models and
the applicable analysis techniques to address interaction detection
and mitigation, thereby addressing E1-E3 and Mt1-Mt3. For ex-
ample, the different sources of uncertainty for the robot can be
configured (i.e., instantiated), either manually or automatically, to
detect and explore the different types of uncertainty interaction,
while not being limited to pairwise interaction.
D7. Executability.To facilitate uncertainty interaction analysis and
exploration, model executability is an important property. When
combined with configurability, uncertainty interaction exploration
can be dynamically observed, which would better inform the devel-
oper how to mitigate the interaction problem(s), thereby addressing
both E1-E3 andMt1-Mt3.

5 CONCLUSIONS
This paper described the Uncertainty Interaction Problem, focusing
on it from a model-driven engineering perspective. The motivation
has been illustrated with a detailed example in the context of an
autoscaling news website infrastructure. We have outlined a set
of challenges that concern the representation, analysis, mitigation,
and exploration of interactions among uncertainties, as well as
desiderata for future modeling notations to tackle those challenges.

Future work will involve building a repository of patterns to
capture uncertainty interactions and their corresponding solutions.
We will leverage the template from Gamma et al [13] and extend
it to include fields specific to capture UIP concerns, including the
sources of uncertainty, the level(s) of abstraction in which interac-
tion occurs, effects of interaction and properties of interest.

We believe that this is an important area that deserves the atten-
tion of the modeling community, and that research in this direction
will pave the way towards more holistic approaches that enable the
construction of safer andmore resilient software-intensive systems.

ACKNOWLEDGEMENTS
This work was partially supported by the Assuring Autonomy In-
ternational Programme project ‘Ambient Assisted Living for Long-
term Monitoring and Interaction Integration’, the European Com-
mission (FEDER) and Junta de Andalucía under projects MBT-I4A
(P20-00067-FR) and EKIPMENT-PLUS (P18-FR-2895), by the Spanish
Government (FEDER/Ministerio de Ciencia e Innovación – Agencia
Estatal de Investigación) under project COSCA (PGC2018-094905-
B-I00), by Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) through the Carnegie Mel-
lon Portugal Program under Grant SFRH/BD/150643/2020, projects
(POCI-01-0247-FEDER-045915, POCI-01-0247-FEDER-045907), by
NASA (Award 80NSSC20K1720), and by EPSRC grant EP/V026747/1.
Cheng’s work has been sponsored by National Science Foundation
(DBI-0939454), Ford Motor Company, General Motors Research,
and ZF; and the research has also been sponsored by Air Force
Research Laboratory (AFRL) under agreement numbers FA8750-16-
2-0284 and FA8750-19-2-0002. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copy-right notation thereon. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of Air Force Research
Laboratory (AFRL), the U.S. Government, National Science Founda-
tion, Ford, GM, ZF, or other research sponsors.

REFERENCES
[1] Naif Alasmari, Radu Calinescu, Colin Paterson, and Raffaela Mirandola. 2022.

Quantitative verification with adaptive uncertainty reduction. Journal of Systems
and Software 188 (2022).

[2] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios Paliouras.
2017. Probabilistic Complex Event Recognition: A Survey. ACM Comput. Surv.
50, 5 (2017), 71:1–71:31. https://doi.org/10.1145/3117809

[3] Aitor Arrieta. 2021. Multi-Fidelity Digital Twins: a Means for Better Cyber-
Physical Systems Testing? CoRR abs/2101.05697 (2021). arXiv:2101.05697

[4] Radu Calinescu, Milan Češka, Simos Gerasimou, Marta Kwiatkowska, and Nicola
Paoletti. 2018. Efficient synthesis of robust models for stochastic systems. Journal
of Systems and Software 143 (2018), 140–158.

[5] Radu Calinescu, Carlo Ghezzi, Kenneth Johnson, Mauro Pezzé, Yasmin Rafiq,
and Giordano Tamburrelli. 2016. Formal verification with confidence intervals
to establish quality of service properties of software systems. IEEE Transactions
on Reliability 65, 1 (2016), 107–125.

[6] Radu Calinescu, Kenneth Johnson, and Colin Paterson. 2016. FACT: A proba-
bilistic model checker for formal verification with confidence intervals. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 540–546.

[7] Radu Calinescu, Raffaela Mirandola, Diego Perez-Palacin, and Danny Weyns.
2020. Understanding uncertainty in self-adaptive systems. In IEEE International
Conference on Autonomic Computing and Self-organizing Systems. 242–251.

[8] Javier Cámara, David Garlan, Won Gu Kang, Wenxin Peng, and Bradley R.
Schmerl. 2017. Uncertainty in Self-Adaptive Systems: Categories , Management ,
and Perspectives. Technical Report CMU-ISR-17-110. Carnegie Mellon University.
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/CMU-ISR-17-110.pdf

[9] Javier Cámara, Wenxin Peng, David Garlan, and Bradley R. Schmerl. 2018. Rea-
soning about sensing uncertainty and its reduction in decision-making for self-
adaptation. Sci. Comput. Program. 167 (2018), 51–69.

[10] Javier Cámara, Javier Troya, Antonio Vallecillo, Nelly Bencomo, Radu Calinescu,
Betty H.C. Cheng, David Garlan, and Bradley Schmerl. 2022. The Uncertainty
Interaction Problem in Self-Adaptive Systems. Software and Systems Modeling
21, 4 (2022).

[11] Benoît Combemale, Jörg Kienzle, Gunter Mussbacher, Hyacinth Ali, Daniel
Amyot, Mojtaba Bagherzadeh, Edouard Batot, Nelly Bencomo, Benjamin Benni,
Jean-Michel Bruel, Jordi Cabot, Betty H. C. Cheng, Philippe Collet, Gregor Engels,
Robert Heinrich, Jean-Marc Jézéquel, Anne Koziolek, Sébastien Mosser, Ralf H.
Reussner, Houari A. Sahraoui, Rijul Saini, June Sallou, Serge Stinckwich, Eugene
Syriani, and Manuel Wimmer. 2021. A Hitchhiker’s Guide to Model-Driven
Engineering for Data-Centric Systems. IEEE Softw. 38, 4 (2021), 71–84.

[12] Naeem Esfahani and Sam Malek. 2013. Uncertainty in self-adaptive software
systems. In Software Engineering for Self-Adaptive Systems II (LNCS, Vol. 7475),
R. de Lemos et al. (Eds.). Springer, 214–238.

[13] Erich Gamma, Richard Helm, Ralph Johnson, Ralph E Johnson, John Vlissides,
et al. 1995. Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH.

[14] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J. Ramirez, Paola Inver-
ardi, Sebastian Wätzoldt, and Siobhán Clarke. 2014. Living with Uncertainty
in the Age of Runtime Models. In Models@run.time (LNCS, Vol. 8378). Springer,
47–100. https://doi.org/10.1007/978-3-319-08915-7_3

[15] Sara M. Hezavehi, Danny Weyns, Paris Avgeriou, Radu Calinescu, Raffaela Mi-
randola, and Diego Perez-Palacin. 2021. Uncertainty in Self-Adaptive Systems: A
Research Community Perspective. ACM Trans. Auton. Adapt. Syst. 15, 4 (2021).

[16] Jeffrey O. Kephart and David M. Chess. 2003. The Vision of Autonomic Comput-
ing. Computer 36 (2003). Issue 1.

[17] M. Kwiatkowska et al. 2011. PRISM 4.0: Verification of Probabilistic Real-time
Systems. In Proc. of CAV’11 (LNCS, Vol. 6806). Springer.

[18] Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. 2017. A Classi-
fication Framework of Uncertainty in Architecture-Based Self-Adaptive Systems
With Multiple Quality Requirements. Morgan Kaufmann, Chapter 3, 45 – 77.
https://doi.org/B978-0-12-802855-1.00003-4

[19] Gabriel A. Moreno, Javier Cámara, David Garlan, and Mark Klein. 2018. Uncer-
tainty reduction in self-adaptive systems. In Proc. of SEAMS’18. ACM, 51–57.

[20] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.
Proactive Self-Adaptation under Uncertainty: A Probabilistic Model Checking
Approach (ESEC/FSE 2015). ACM, 1–12.

[21] Object Management Group. 2014. Object Constraint Language (OCL) Specification.
Version 2.4. OMG Document formal/2014-02-03.

[22] Object Management Group. 2017. Precise Semantics for Uncertainty Modeling
(PSUM) RFP. OMG Document ad/2017-12-1.

7

https://doi.org/10.1145/3117809
https://arxiv.org/abs/2101.05697
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/CMU-ISR-17-110.pdf
https://doi.org/10.1007/978-3-319-08915-7_3
https://doi.org/B978-0-12-802855-1.00003-4

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MODELS’22, Oct. 23–28, 2022, Montreal, CA

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

[23] Diego Perez-Palacin and Raffaela Mirandola. 2014. Uncertainties in the modeling
of self-adaptive systems: a taxonomy and an example of availability evaluation.
In Proc. of ICPE’14. ACM, 3–14. https://doi.org/10.1145/2568088.2568095

[24] Andres J. Ramirez, Adam C. Jensen, and Betty H. C. Cheng. 2012. A taxonomy
of uncertainty for dynamically adaptive systems. In Proc. of SEAMS’12. IEEE
Computer Society, 99–108. https://doi.org/10.1109/SEAMS.2012.6224396

[25] Ahmad M. Salih, Mazni Omar, and Azman Yasin. 2017. Understanding Uncer-
tainty of Software Requirements Engineering: A Systematic Literature Review
Protocol. In Proc. of APRES’17 (Communications in Computer and Information Sci-
ence, Vol. 809). Springer, 164–171. https://doi.org/10.1007/978-981-10-7796-8_13

[26] Bradley R. Schmerl, Javier Cámara, Jeffrey Gennari, David Garlan, Paulo
Casanova, Gabriel A. Moreno, Thomas J. Glazier, and Jeffrey M. Barnes. 2014.
Architecture-based self-protection: composing and reasoning about denial-of-
service mitigations. In Proc. of HotSoS’14. ACM, 2.

[27] Javier Troya, Nathalie Moreno, Manuel F. Bertoa, and Antonio Vallecillo. 2021.
Uncertainty representation in software models: A survey. Softw. Syst. Model. 20,

4 (2021).
[28] Antonio Vallecillo. 2010. On the Combination of Domain Specific Modeling

Languages. In Proc. of ECMFA’10 (LNCS, Vol. 6138). Springer, 305–320.
[29] W.E. Walker, P. Harremoës, J. Rotmans, J.P. van der Sluijs, M.B.A. van Asselt, P.

Janssen, and M.P. Krayer von Krauss. 2003. Defining Uncertainty: A Conceptual
Basis for Uncertainty Management in Model-Based Decision Support. Integrated
Assessment 4, 1 (2003), 5–17. https://doi.org/10.1076/iaij.4.1.5.16466

[30] Man Zhang, Shaukat Ali, Tao Yue, Roland Norgren, and Oscar Okariz. 2019.
Uncertainty-Wise Cyber-Physical System Test Modeling. Software and System
Modeling 18, 2 (April 2019), 1379–1418. https://doi.org/10.1007/s10270-017-0609-
6

[31] Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and Roland Norgren.
2016. Understanding Uncertainty in Cyber-Physical Systems: A Conceptual
Model. In Proc. of ECMFA’16 (LNCS, Vol. 9764). Springer, 247–264.

8

https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1109/SEAMS.2012.6224396
https://doi.org/10.1007/978-981-10-7796-8_13
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.1007/s10270-017-0609-6
https://doi.org/10.1007/s10270-017-0609-6

	Abstract
	1 Introduction
	2 Exploring Uncertainty Interaction
	2.1 Sources of Uncertainty
	2.2 Uncertainty Interaction

	3 Challenges
	3.1 Modeling Challenges
	3.2 Analysis Challenges
	3.3 Mitigation Challenges
	3.4 Exploration Challenges

	4 Desiderata
	5 Conclusions
	References

