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Abstract. A critical issue in the Web of Things (WoT) is the need to 
process and analyze the interactions of Web-interconnected real-world 
objects. Complex Event Processing (CEP) is a powerful technology for 
analyzing streams of information about real-time distributed events, com­
ing from different sources, and for extracting conclusions from them. 
However, in many situations these events are not free from uncertainty, 
due to either unreliable data sources and networks, measurement uncer­
tainty, or to the inability to determine whether an event has actually 
happened or not. This short research paper discusses how CEP systems 
can incorporate different kinds of uncertainty, both in the events and in 
the rules. A case study is used to validate the proposal, and we discuss 
the benefits and limitations of this CEP extension. 

1 Introduction 

The Internet of Things (IoT) is a system of interrelated mechanical and digital 
devices, computing objects, and people, provided with unique identifiers and the 
ability to autonomously communicate and transfer data over a network. The Web 
of Things (WoT) aims at providing approaches, software architectural styles and 
programming patterns to build the IoT in an open, flexible, and scalable way. 

Processing and analysing the steadily growing number of information sources 
that continuously produce and offer data in any complex system is one of the cur­
rent challenges the WoT faces. To address this issue, stream processing systems 
are becoming widespread, specially in the IoT domain [8,9], where applications 
should process and react to events arriving from various kinds of sources includ­
ing wireless sensor networks, RFID devices, GPS, etc. 

Complex Event Processing (CEP) is a kind of stream-processing system for 
analyzing and correlating streams of information about real-time events that 
happen in a system, and deriving conclusions from them [3,7,12,13]. A distin­
guishing feature of CEP, not present in most stream-processing systems, is that 
it permits defining complex events or patterns on top of the primitive events, to 
identify elaborate meaningful circumstances and to respond to them as quickly 
as possible. Such event types and event patterns are defined using Event Pro­
cessing Languages (EPLs). 
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When dealing with physical systems and networks, the events are not free 
from uncertainty. It may be due to different causes, including unreliable data 
sources and networks, measurement uncertainty, or to the inability to deter­
mine whether an event has actually happened or not. Some rules may also have 
some associated uncertainty, when we are not 100% confident on them. Other 
authors, e.g. [1,16,15,4], have addressed these issues, using different techniques 
and covering some of the aspects related to the representation, management and 
propagation of uncertainty. However, their proposals usually suffer from two 
main limitations. First, they normally focus on particular aspects of uncertainty 
in CEP systems, with only partial coverage of the problem [1]. Second, propaga­
tion of attributes’ uncertainty through operations is manually done, which poses 
the burden of such a cumbersome task on the system modeler. 

This paper identifies and classifies different kinds of uncertainties that may 
happen in CEP systems, and discusses how to incorporate them into CEP events 
and rules. More precisely, we address uncertainty in the occurrence of the events, 
on the values of their attributes (including their timestamps), and on the con­
fidence of the derivation rules. We make use of an extension of UML and OCL 
basic datatypes [14,2] to represent uncertain values and to transparently deal 
with measurement uncertainty, greatly simplifying these tasks. A case study is 
used to describe the proposal, and an implementation on top of the Esper lan­
guage [6] is also presented. 

2 Preliminaries 

2.1 Complex Event Processing 

CEP [7,12] is a form of Information Processing [3] whose goal is the definition 
and detection of situations of interest, from the analysis of low-level event notifi­
cations [5]. Here we use the term simple events to refer to the low-level primitive 
event occurrences, and complex events to those that summarize, represent, or 
denote a set of other events. Complex events are derived by rules that define the 
relevant patterns of (simple or other complex) events, their contents, and their 
temporal relations. Something important to note is that most CEP systems share 
a common structure in their rules: 

–	 A Selection phase that identifies first the occurrence—in the selected window— 
of the source events (simple or complex) that will trigger the rule. These 
events constitute the antecedents of the derived event produced by the rule. 

–	 A Matching phase that decides whether values of the attributes of the
 
selected events fulfill the rule requirements, and evaluates the combination
 
of all rule conditions (using boolean operators and, or, ->, etc).
 

–	 A Production phase that generates the derived event and calculates the
 
values of its attributes. This step may also include the computation of ag­
gregated values of source events using sums, averages, etc.
 

Although several CEP systems and languages exist, they all share the same 
basic concepts, mechanisms and structure. In this paper we will use Esper [6] to 
write the run and perform the executions. 
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2.2 Uncertainty in CEP 

There are different kinds of uncertainty that may happen in CEP systems. Let 
us describe them using the common structure of the rules. Starting with the 
selection phase: 

–	 Uncertain events in the stream: missing events in the stream, despite the fact 
that they actually happened (false negatives, FN); or events in the stream 
that were wrongly inserted (false positives, FP). 

–	 Lack of precision in the values of the attributes of the basic events in the 
stream, including lack of precision in the events timestamp [18], due to im­
precision of the measuring methods or tools (measurement uncertainty, MU). 

In the Matching phase: 
–	 Lack of precision due to uncertainty of comparison operators (=, <, >, ->,...) 

between uncertain values of attributes of matched events. 
–	 Lack of precision due to uncertainty of logical composition operators (or, 

and, not) between uncertain statements. 

In the production phase: 
–	 Lack of precision in the values of the attributes of derived events, due to the 

propagation of uncertainty in their computation from the events’ attributes. 
–	 Lack of precision in the probability of the occurrence of the derived event, 

due to incomplete or erroneous assumptions about the environment in which 
the system operates, which many influence the confidence of the rule. 

Here we are interested in assigning probabilities to derived events, expressing 
the confidence level on their occurrence, and on the values of their attributes. 
Note that the probability we assign to an event does not mean how probable it 
is to happen in reality—something that for simple events can be expressed in 
terms of a probability distribution, or for derived events can be estimated using, 
e.g., Monte-Carlo simulations [6]—, but the confidence level that we have that 
the event will actually occur if the CEP system predicts its occurrence. 

2.3 Running example 

To illustrate our proposal, suppose we have a smart house, with sensors that 
permit detecting three basic parameters: temperature, carbon monoxide (CO) 
level, and whether the main door is open or not. These values are periodically 
sensed and notified by means of Home events, which also include information 
about the house id, the time at which the event was issued, the coordinates 
of the house, and its size in square meters. We also want to monitor whether 
the people living at a house are inside or not. Therefore, we suppose that they 
periodically issue Person events with their location (coordinates x and y). 

The following two events show how Person and Home events are issued. 

Person(id:1,ts:1519772340,x:50,y:50)
 
Home (id:3,ts:1519772340,x:0,y:0,sq:100,temp:20,co:4000,dopen:false)
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Using these simple events with the information provided by the sensors, we 
are interested in the following complex events: 

–	 TemperatureIncrease: The temperature of the house has increased 2 or 
more degrees in less than one minute. 

–	 TemperatureWarning: There are 4 TemperatureIncrease events is less 
than 5 minutes, and the temperature is always above 33 degrees. 

–	 COHigh: CO levels exceed 5000 units. 
–	 FireWarning: A COWarning event is detected, followed by a Temperature-

Warning event, everything within less than 5 seconds. 
–	 NobodyHome: The main door of the house is closed and there is nobody 

within the perimeter of the house. 
–	 CallFireDept: A FireWarning event occurs after a NobodyHome event is 

detected. 
To illustrate how CEP rules are written in Esper, the following listing shows 

the TempIncrease rule:3 

insert into TempIncrease 
select h2.ts as ts, h1.id as id, h2.temp as temp, h2.temp-h1.temp as incr 
from pattern [(every ( 

h1=Home() -> h2=Home(h2.temp-h1.temp>=2 and h2.id=h1.id))) 
where timer:within(1 minutes)]; 

3 Extending CEP to deal with Uncertainty 

3.1 Assigning probabilities to events 

Confidence in the events. As previously mentioned, we are interested in 
assigning probabilities to the derived events, i.e., those produced by the rules. 
These probabilities represent the confidence level on their occurrence. Here it is 
interesting to distinguish between the real event and the digital one: the former 
one happens in reality, while the latter is produced by the CEP system. It may 
be the case that the real event has not happened but the CEP rules forecast 
its occurrence (i.e., a false positive). With this, if e is a derived event produced 
by a rule of our CEP system, then P (e) = 0.99 means that you are 99% sure 
that the actual event has indeed happened. Note that for a simple event e, this 
probability coincides with (1 − Pfp(e)), where Pfp(e) is the probability of a false 
positive for that event. In this proposal, we will add an attribute prob to every 
event, indicating the confidence we have on its occurrence. 
Uncertainty in measurements and attributes values. Any measurement 
in a physical setting is not free from uncertainty, which can come from different 
reasons, including variability of input variables, numerical errors or approxima­
tions of some parameters, observation errors, measurement errors, or simply lack 
of knowledge of the true behavior of the system or its underlying physics [10]. 
3	 The rest of the rules, together with all implementations and project data, is available 

from http://atenea.lcc.uma.es/projects/UCEP.html. 
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In a previous paper [2] we extended the basic UML and OCL datatypes so they 
incorporate the associated uncertainty. Thus, Real values with uncertainty are 
represented in terms of UReal values, composed of pairs (x, u), also noted as 
x ± u, where x is the value, and u represents its uncertainty as the standard 
deviation of its possible variations. Likewise, a Boolean value b is lifted to an 
UBoolean, which is a pair (b, c) in which c is a real number between 0 and 1 that 
represents the confidence we assign to b. Comparison operators between UReal 
variables return UBoolean values. For example, if a = 2.0±0.3 and b = 2.5±0.25, 
we obtain that a < b with a confidence of 0.893 [2]. 
Assigning probabilities to complex events. Our approach assumes that 
the probability of a derived event in CEP depends on three main issues: the 
confidence level that we have on the occurrence of the input events of the rule 
(antecedents); the confidence level that we have on matching and comparison 
operations performed by the rule to trigger the production of the derived event, 
as well as the computation of its attributes; and, finally, the confidence that we 
have on the rule itself. 

This means that, given a rule R whose antecedents are events e1, ..., en (they 
can be either simple or complex events), that performs a matching process mR 

and produces a derived event e, the probability of event e is given by 

P (e) = P (e1, ..., en) · P (mR) · P (R)	 (1) 

where: 
–	 P (e1, ..., en) is the combined probability of the events. For example, in case 

they are all independent, P (e1, ..., en) = P (e1) · ... · P (en). Otherwise condi­
tional probabilities should be used, as detailed in, e.g., [15]. 

–	 P (mR) is the confidence level of the matching process, which not only ac­
counts for the uncertainty in the comparison operations between uncertain 
values and the combination of these comparisons using logical connectors 
(or, and, ->, etc.), but also the propagation of uncertainty in the operations 
that calculate the values of the attributes of the derived event. 

–	 P (R) is the rule confidence, represented by a probability that captures the 
possible imprecision of the rule due to incomplete or erroneous assumptions 
about the environment in which the system operates, or other factors which 
many influence the confidence on the rule. This confidence can be calculated 
by Bayesian Networks, as in [4], by expert knowledge, or by any other means. 

As we can see, the inputs of this method are the confidence level of the simple 
events (i.e., the probabilities of being false positives), and the probability of the 
rule, estimated by the expert users. 

3.2 The Smart House example with probabilities 

Let us see how the probabilities of the simple and complex events for the Smart 
House are calculated. Starting from the simple events, they are now enriched 
with the measurement uncertainty of their attributes, and with the probability 
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of the event. Remember that, for simple events, what we have called prob is 
calculated as (1 − Pfp(e)), where Pfp(e) is the probability of a false positive for 
that event. The following two events are examples of the ones we will be feeding 
now to the CEP system: 

Person(id:1, ts:(1519772340,1), x:(50,0.1), y:(50,0.1), prob:0.999) 
Home (id:3, ts:(1519772340,1), x:(0,0.1), y:(0,0.1), sq:(100,0.1), 

temp:(20,0.3), co:(4000,20), dopen:(false,0.999), prob:0.998) 

The probability of the complex events was calculated as the product of three 
factors: (1) the confidence level on its antecedents, (2) the confidence level on 
matching and comparison operations, and (3) the confidence level on the rule 
itself. For example, the probability of the previous TempIncrease event, created 
by the rule with the same name, is given by: 

P ( TempIncrease) = 
P (Home)2· //Antedecents 
P (h2.temp − h1.temp ≥ 2.0) · //Matching operations (2) 
P (h1.ts < h2.ts)· //Comparison operations 
P (T empIncreaseRule) //Rule confidence 

This has been implemented in Esper, using the Java implementation we have 
developed for the library of OCL types extended with uncertainty [2]. With this, 
the TempIncrease rule can be written to account for uncertainty as follows. 

@Name("TempIncrease")
 
insert into TempIncrease
 
select h2.ts as ts, h1.id as id, h2.temp as temp,
 

UReals.minus(h2.temp, h1.temp) as incr,
 
h1.prob * h1.prob *
 
UReals.ge(UReals.minus(h2.temp,h1.temp), 2.0).getC() *
 
UReals.lt(h1.ts,h2.ts).getC() * P(TempIncreaseRule) as prob
 

from pattern [(every (h1 = HomeEvent() -> 
h2=HomeEvent(UBooleans.toBoolean( 
UReals.ge(UReals.minus(h2.temp, h1.temp), 2)) and h2.id=h1.id))) 

where timer:within(1 minutes)]; 

We can see how the rule computes all attributes of the complex event, including
attribute prob with the associated confidence, using formula (2) above. The rest
of the rules are available from http://atenea.lcc.uma.es/projects/UCEP.html. 

4 Running the system 

One of the common issues of all the proposals that incorporate uncertainty into CEP 
systems is related to the degradation of performance [1] due to the operations required 
to accomplish the computation of the aggregated uncertainties and the probabilities of 
the rules. To evaluate our proposed solution, we executed with Esper the case study 
presented in Section 2.3, with and without incorporating uncertainty. Simulations were 
carried out on a machine with Windows 8.1 64 bits, 8Gb of RAM memory, and one 
Intel Core i7 processor with 4 hyperthreaded 3.07GHz cores (8 threads). 
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Table 1. Esper execution times (in seconds), with and without uncertainty. 
# Events 3,600 36,000 360,000 3,600,000 
Plain CEP rules 3.990 3.989 8.136 13.700 
CEP rules with Uncertainty 5.586 3.304 9.349 15.210 

Table 1 shows the results, for different input event stream sizes. Although this 
is only an initial experiment, the average overhead is just of 12%, which seems an 
encouraging result. We think that the reasons are twofold. First, users do not need to 
worry about the calculation and propagation of uncertainty in operations, our library 
of uncertain types takes care of it. Second, the probability of rules is not re-calculated 
in every rule execution, only once before the system is started. 

5 Related Work 

This proposal is inspired by existing works in the field of CEP. The work [1] pro-
vides a very interesting summary on the proposals that address uncertainty in CEP 
systems, and that partially cover some of the ideas we have mentioned here. Among 
them, [15,17,11] cover the uncertainty in the selection of the antecedents, while Was­
serkrug [16] and Cugola [4] deal with the other two phases using Bayesian Networks, 
although each one using different approaches. We depart from these approaches in two 
main ways. First, we use the extended type system for reals numbers and boolean 
values defined in [2]. This greatly simplifies the representation of the uncertainty and 
its propagation, as we have seen in Section 3. Furthermore, we separate the process of 
calculating the probability of every CEP rule from its application. In this way, we use 
a variable (that can be a constant or just a function) that determines the probability 
of a rule, independently from how such variable is calculated. It can be using Bayesian 
Networks, such as in [16] or in [4] or by any other means. Only one work [18] seems to 
deal with uncertain timestamps, as we also do, given that timestamps are modeled in 
our proposal as uncertain integers and hence naturally handled. 

6 Conclusions and Future Work 

In this paper we have presented an initial proposal to deal with uncertainty in CEP 
systems that analyze streams of real-time events coming from different sources, a tech­
nology whose importance is significantly growing in the WoT. Different kinds of uncer­
tainties have been identified and incorporated into the CEP rules and into the events, 
allowing modelers to represent and manage this kind of information. 

The example also illustrates the need to consider probability in CEP systems. 
Instead of all events being equally probable, our proposal permits assigning confidence 
to events. This introduces an implicit priorization mechanism, very useful for instance 
when two or more critical events occur (e.g., CallFireDept). In these cases we could 
discriminate among them based on their probability, attending those most probable. 

There are several lines of work that we plan to address next. First, we need to 
consider dependency between events, since in this proposal we assume they are inde­
pendent. Second, we would like to consider false negatives in the event stream. Third, 
we want to validate our proposal with more examples and realistic case studies, in order 
to gain a better understanding of its advantages and limitations. Fourth, we plan to 
improve tool support to further automate all processes, so human intervention is kept 
to a minimum. Finally, we also want to apply our proposal to further EPLs, beyond 
Esper. 
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