The published version of this paper can be found on: https://ieeexplore.ieee.org/document/9626186

Incorporating Trust into Collaborative Social
Computing Applications

Paula Mufioz!, Alejandro Pérez-Vereda?, Nathalie Moreno!, Javier Troyal, and Antonio Vallecillo!

HTIS Software. Universidad de Mdlaga, Spain

2Universidad de Castilla-La Mancha, Spain
{paulam,nmv,jtroya,av } @uma.es, alejandro.pvereda@uclm.es

Abstract—Mobile-based collaborative social computing appli-
cations represent an alternative to the server-centric models
currently offered by major IT vendors, where users own the
information they generate and take control over how other
users access and exploit it. In this context, trust is fundamental
for sharing information and making decisions based on the
data collected from other users. This work develops a trust
management system embedded in the Digital Avatars framework
for collaborative social computing applications, using Subjective
logic. It enables explicit representation and operation with trust
information about both service providers (functional trust) and
other users’ opinions about these providers (referral trust) in
peer-to-peer environments. The proposal is specified using high-
level models that can also be simulated and validated, and serve
as a guide for the corresponding implementations in an existing
social computing application platform. The proposed solution has
been successfully applied in a collaborative carpooling system,
where users need to trust other users with whom they share
travels.

Index Terms—collaborative social computing applications, un-
certainty, trust.

I. INTRODUCTION

Social computing (SC) is the area of Information Technol-
ogy (IT) that deals with the interrelationships between social
behavior and computer systems. Originally focused on the
processing and analysis of social information, the term has
progressively evolved towards a wider meaning that includes
the use of computer systems to support any type of social
behavior, and where humans become the main protagonists,
not only as beneficiaries but also as active players.

To support social computing, current systems are mostly
based on server-centric applications, where content created by
distributed users is transferred to cloud servers. This is, for
example, the model commonly used in most social applications
from Google, Facebook, Amazon and the rest of the big IT
players. This server-centric approach is also widely exploited
in smart city applications, a domain where social computing
is rapidly gaining relevance.

One of the problems of this centralized architectural model
is that the users’ personal information is owned and man-
aged by the applications’ vendors, and users lose control
over it. An alternative approach advocates the adoption of
collaborative peer-to-peer models based on mobile devices,
e.g., smartphones or tablets, as the main components of
the system architecture. This is also known as mobile-based

collaborative social computing (MCSC) applications. This
model of collaborative computing enables the empowerment
of users, allowing them to take control of the information
and contents they generate, and how all that information is
accessed and exploited in a secure manner by third parties.
Our proposal leverages the capabilities currently offered by
mobile phones, which are widely-used devices, using the
Digital Avatars collaborative framework. This framework is
based on the People-as-a-Service (PeaaS) model [1|], which
promotes the user to become a service provider with her own
information. This model has been presented in previous works
and already used in contexts such as the Internet of Things
(I0T) [2f], smart cities [3]] or gerontology [4].

With the Digital Avatars collaborative framework, we intro-
duce the concept of a Digital Avatar (DA), an entity residing in
a person’s smartphone or tablet that records information about
the owner and offers different services for the interaction with
the environment and with the DAs of other users, ensuring
the levels of privacy and security dictated by their owners —
i.e., DAs serve as smart proxies for them. Because users of
such mobile social network applications may not have had any
previous interactions, it is important to establish an acceptable
level of trust relationships among them. This is critical for
sharing information and for making decisions based on the
data collected from other users. In this context, trust becomes
an aspect of key relevance.

Trust management in peer-to-peer social networks has not
received much attention yet. Its treatment is much more
difficult than in traditional centralized environments, mainly
due to the absence of a central authority, the dynamic topology
of the network, and the lack of a global view of the system.
These factors limit the trust management process to local
information, resulting in uncertainty [5]] and incompleteness of
trust. In addition, there may be malicious users who provide
fake or erroneous information, so trust establishment would be
based on incomplete and incorrect data [6]. Other restrictions
of these applications are due to the limitations of system
resources and network connectivity, which require the use of
lightweight algorithms and techniques.

In this paper, we develop a trust management system for
Digital Avatars in the context of collaborative social computing
applications. We show how the records of a DA can be
enriched with confidence about their truthfulness (the so-called
functional trust) and the information coming from other users’

https://ieeexplore.ieee.org/document/9626186

DAs can be further qualified with the degree of confidence
we have about these users’ opinions (referral trust). We use
Subjective Logic [7] to represent both types of trust, for two
main reasons. First, subjective logic extends probabilistic logic
with information concerning the level of ignorance we have
about a statement, providing richer reasoning mechanisms
to arrive at informed decisions, as they consider not only
the degree of belief and disbelief, but also the degree of
uncertainty. Second, subjective logic provides some useful
operators to deal with both functional and referral trusts,
allowing their smooth and effective combination.

We have developed a prototype of the Digital Avatars
framework with the trust management system integrated to
serve as a proof-of-concept for the proposal and to evaluate
its advantages and limitations. An exemplary application of a
collaborative carpooling system has been developed using the
framework, and the results are discussed in this paper.

The structure of this document is as follows. After this
introduction, Section [[I| briefly describes the background of
our work and presents the example that is used to motivate
our proposal. Then, Section describes our work and the
implementation we have developed of the framework. Finally,
Section relates our work to other similar approaches and
Section [V] concludes and with an outline of future work.

II. BACKGROUND

To set the paper terminology, this section briefly describes
the context of the work and the main concepts used in the
paper. We also introduce a running example that illustrates
how DAs are used in collaborative applications.

A. Digital Avatars

The Digital Avatars framework is a realization and extension
of the PeaaS model [1]. PeaaS provides a conceptual frame-
work for application development focused on the smartphone
as a representative and interface to its owner. A DA contains
a set of records that store the persistent information defined
by the user, captured by the smartphone sensors and external
devices, and by the different applications the user participates
in. All this information is stored locally in the smartphone,
ensuring that its owner keeps full control over which data
is being shared and with whom. This information is the
target of the interaction services provided by the Digital
Avatars framework. Using the framework, third parties are
able to generate value-added interfaces for their own services,
resulting on dynamic interactions that are always under the
control of the data owner

The information is partly acquired by the Digital Avatars’
Complex Event Processing (CEP) engine [8]] able to dynami-
cally execute rules capable of processing events coming from
different sources and perform actions accordingly. Sources
include raw data collected by the smartphone’s sensors or
by other devices connected to it, as well as events produced
by the CEP rules themselves, by applications installed in the
smartphone, or by the CEP engines of other external users’

DAs. One of the main advantages of CEP is that it works in
real time, reducing latency in the decision-making process.

Digital Avatars applications are then specified and de-
veloped in terms of a set of CEP rules that are installed
in the smartphone engine and handle the received events.
Applications implement their behavior by executing the CEP
rules and performing read and write operations on the Digital
Avatar, which implements an API to manage the DA records.
The Digital Avatar API is the second service (apart from the
CEP engine) offered by the DA framework to application
developers for interacting with the DA.

B. Trust

In our context, trust can refer to the degree of confidence
we have either in people or in things. The first one refers to
the degree of reliability (trustworthiness) we assign to people
to perform an action (functional trust) or to report about the
reliability of other people (referral trust) [7], [9]. Trust in
things refers to the level of certainty we assign to them, for
example, the accuracy of information stored in a data record,
the precision of a measurement, or the degree of belief about
the occurrence of an event. We shall call confidence the trust
we have in things [10]].

When specifying trust in people, we need to identify two
parties. The Truster is the party that states its degree of trust
in the Trustee, a second entity who is supposed to provide the
required service [[11]. Such a relationship does not necessarily
have to be one-to-one, but could also be one-to-many, and
does not need to be either mutual or symmetric [12].

Trust is also context-dependent, which means that a trustee
does not need to be trusted in all situations. For example, Ada
may trust Bob as a reliable driver, but she does not trust Bob’s
ability to look after her pets. Therefore, trust is not absolute,
but must be specified within a scope [[7], [12].

Finally, trust in people is subjective, i.e., it depends on the
truster, and is normally conditioned by uncertain factors [13]].
As stated in [14]: “Trust is a psychological state involving
positive confident expectations about the competence, benev-
olence, integrity and predictability of another person and will-
ingness to act on the basis of these expectations. Issues of trust
arise in contexts that involve risk, vulnerability, uncertainty
and interdependence. Trust expectations are created primarily
by the interaction of the perceived qualities of the trustee and
contextual factors in play when trust decisions are made.”

C. Confidence

As mentioned earlier, we need to distinguish between the
trust in people and the trust we place in things, that we
shall call confidence [10], [15], [[16]], and which is caused
by uncertainty. Here, by uncertainty we mean ‘“the quality
or state that involves imperfect and/or unknown information.
It applies to predictions of future events, estimates, physical
measurements, or unknown properties of a system” [|17].

From a generic decision-making perspective, confidence is
the degree of belief in a given hypothesis [15] and this is why
we will use the term confidence to refer to the degree of belief

that a person (the truster) has in something. For example, the
confidence that Bob assigns to the readings of the temperature
or humidity sensors of his room. In our context, confidence
can be used by a DA to assign degrees of beliefs about the
truthfulness of the information stored in its records, if required.
The treatment of confidence in software models was already
described in some of our previous works [[10[], [18]], [19], and
therefore we will not consider it further in this paper.

D. Subjective logic

Traditionally, degrees of trust or confidence have been
modeled using numbers between 0 and 1 that represent prob-
abilities, and reasoning about trust has been accomplished
using probability theory [20], [21]. However, this approach
has some limitations, especially when it comes to representing
subjective opinions for which users cannot easily express
their uncertainty, e.g., their ignorance about the facts they are
considering, or their inability to assign an accurate probability
to a fact. For example, when the user has total ignorance
about some statement x, it might be preferable to say “I don’t
know” than assigning = a confidence of 0.5. In general, forcing
users to set probabilities to express their opinions could lead
to unreliable conclusions [19]. This is when Subjective logic
comes into play.

Subjective logic, by Audun Jgsang [7], is an extension
of probabilistic logic that explicitly takes uncertainty into
account. Subjective opinions express beliefs about the truth
of propositions under degrees of uncertainty. They can also
indicate confidence, or trust, on a given statement and this is
what makes them suitable in our context.

Let = be a Boolean predicate. A binomial opinion about
the truth of x is defined as a quadruple w, = (by, dy, Uz, Gz)
where:

o b, (belief) is the degree of belief that x is true.

o d, (disbelief) is the degree of belief that x is false.

o U, (uncertainty) is the degree of uncertainty about z, i.e.,
the amount of uncommitted belief.

e a, (base rate) is the prior probability of x.

These values satisfy the constraints that b, + d, + u, = 1,
and by, dy, Uy, a, € [0,1].

Intuitively, the base rate of an opinion represents the objec-
tive probability that can be assigned to the statement using
a priori evidences or statistical estimates, whilst the other
elements of the tuple represent the subjective degrees of belief,
disbelief and uncertainty about the statement assigned by the
expert. Thus, regardless of the value of the prior probability,
different belief agents can express their subjective opinions
about the statement, including their degree of uncertainty. This
is precisely what allows different experts to simultaneously
express their individual opinions on the same fact, something
common in most collaborative systems where separate users
interoperate with each other to achieve their goals.

In addition to the traditional logical operators (and, or,
implies, etc.) used to combine the opinions of the same expert
about different truth statements, Subjective logic implements
fusion operators for combining the subjective opinions of

Clock
now : Integer
tick(time : Integer)

TripRequest
maxDistance : Real =
maxWaitingTime : Integer

*tripRequest

1 clock 0..1tripRequest

1requestor * tripProposal

*da
1da DigitalAvatar

* tripProposal TripProposal
1 proponent accepted : Boolean

1 ownerDA
* records %
DigitalAvatarRecord Trip
lastModification : Integer :] origin : Real
readPrivacy : PrivacylLevel destination : Real <]_

tripDate : Integer

Application

* localApp

writePrivacy : PrivacylLevel | .

LF * write

1/me

«enumeration»
Personallnfo .
— PrivacyLevel
contactDA : DigitalAvatar -
. private
name : String R
X writeGrovRs \!readGroups public
phone : String .
X * person rante
address : String P ContactGroup g
email : String *group EV—4

TripShareApp

newTripProposal(tr : TripRequest) : TripProposal

newTripRequest(origin : Real, dest : Real, date : Integer, mxD : Real, mxT : Integer)
showCurrentOptions(tr : TripRequest) : Sequence(TripProposal)
selectTripProposal(tp : TripProposal) : Boolean

confirmTripProposal(tp : TripProposal) : Boolean

Figure 1: Class Diagram of the Carpooling application.

different users about the same statement. The goal is to
produce a single opinion that better reflects the collection of
opinions, or is closer to the truth than each opinion in isolation.
This is essential for permitting collaborative modeling and
enabling cooperative work between users when they need to
reach agreements about how to proceed.

To represent and operate with Subjective logic values,
in [19] we defined the new primitive datatype SBoolean
that extends type Boolean with uncertainty information, and
provides all corresponding operations. A SBoolean value is
defined by the quadruple (b,d,u,a) that represents the cor-
responding opinion in Subjective logic. The embedding of a
Probability c representing a confidence into type SBoolean is
achieved by assigning the opinion w, = (¢,1 — ¢,0,¢) to x.
Considering the embedding of type Boolean into Probabilities,
we have that Boolean values true and false correspond, respec-
tively, to opinions (1,0,0,1) and (0, 1,0, 0). Examples of the
use and application of Subjective logic in models represented
with UML/OCL can be found in [19].

E. A motivating example

The UML model of our running example of a carpooling
system is displayed in Fig. [I] Let us focus for now on the
shaded classes — the remaining classes model the Digital
Avatars framework, as explained in Section

Suppose that Bob is a university student who uses the bus
every day to get to the university and back to his hometown.
Today, Bob has finished his classes earlier than usual and the
next bus does not leave for another two hours. Therefore, he
decides to use his DA to launch a query to find alternative
means of transportation. From the responses received from
the DAs predicting a similar trip by car this afternoon, Bob

% BobTSApp:TripShareApp
T

1
newTripRequest(1234.0,1267.5,1618774439,1,60) > .

AdaTSApp TripShareApp | [CamTSApp:TripShareApp
T T

newTripProposal(TripRequest1)

1
1
!
1
|
1
1
!
e TripProposal2 _ _ _ _ _ _ __ :
| 1
| !
| 1
! !
| 1
| 1
< - Seauence{TripProposalt. TripProposalzh_ _ _ _L ! !
N N 1 1 1
selectTripProposal(TripProposal1) > | |
1 1
confirmTripProposal(TripProposal1) o !

0 >

|
ke e e e oo tfrue _ _ o ___ |.,.|

1
true 1
1
!
1
!
1
!
1

4
1
1
1
1
1
1
1
1
I

Figure 2: An exemplar Sequence Diagram of the carpooling application.

selects the one from Cam, since she is expected to leave the
campus soon and they both live nearby. Next, their DAs ask
each other if they are willing to make the trip together.

This app is modeled by class TripShareApp (cf. Sec-
tion [[TI-A). It manages three types of records: a Trip defines
the trip origin, destination, and departure date and time; a
TripRequest also specifies the requesting DA (requestor) as
well as the maximum distance and time the requestor is happy
to accept as deviations from the original request; finally, a
TripProposal specifies the details of the proponent’s trip, and
a reference to the trip request it responds to.

The operations of class TripShareApp specify how the DAs
interact. This is shown in Fig. [2| First, the requestor (Bob,
in this case) asks his local application to find a suitable trip
by issuing a newTripRequest() event. The local application,
using the framework, sends a newTripProposal() event to all
his contacts. Those running the same application are able to
process this event and respond to the request. In this case,
the DAs of Ada and Cam return trip proposals because they
match Bob’s trip requirements. Bob then asks his local app
to display all received proposals and selects one of them (in
this case, Cam’s), and asks his DA to confirm the trip. Should
Cam decline the confirmation, Bob continues asking the rest
of the proposers until one of the proposals is accepted (and
hence Bob shares the trip with that contact), or all proposals
are rejected (and Bob has to wait for the bus).

III. TRUST MANAGEMENT IN DIGITAL AVATARS
A. Modeling Digital Avatars

The initial architecture we propose for the DAs framework
was described in [4]. We shall mention that communication
between DAs is performed using the Siddhi CEP engine. We
have extended its functionality to allow sending and receiving
information between DAs.

To show how Digital Avatars applications can be specified
in a high-level and platform-independent manner, we have
developed a UML model of the framework, which is shown
in Fig. [} The central part of the class diagram presents
a Digital Avatar (class DigitalAvatar). It contains a set of
records (class DigitalAvatarRecord), and participates in a set of
local applications (class Application), which represent the local
instances of the general application when deployed in the local
smartphones of the users. The DA records are used to store the
persistent data managed by the different applications the DA
participates in. In addition, records of class Personallnfo repre-
sent information about other users, including their associated
DA, name, phone, address and email. One of these records
corresponds to the phone owner (related though role “me”
with the DA). Groups of users can be defined and stored in
records, too. Each DA record stores the last time it was updated
(lastModification) and defines the level of privacy required to
read or write it: public if any application can access it, granted
if only certain users can access it, and private if the record can
only be accessed by the DA. In case of a granted privacy level,
readGroups and writeGroups define the groups of users that
have permissions to read and write the record, respectively.
For example, a DA can define that only physicians can write
and read the records that contain the health information about
the user, while the close family can only read them. Finally,
class Clock is used to keep track of time, which is represented
by an Integer value using the POSIX notation [22].

Now, if we have a look at Fig.|I} we can see the application
of the Digital Avatars framework to our carpooling system.
An application is modeled by class Application. A DA can
participate in several local applications, i.e., those installed
in the phone. Classes TripShareApp, Trip, TripProposal and
TripRequest model our DA application (cf. Section [[I-E).

TripRequest

Clock
now : Integer
tick(time : Integer)

maxDistance : Real
maxWaitingTime : Integer

* tripRequest

0..1tripRequest

1 clock
*da

1da | pigitalavatar

1requestor. * tripProposal

* tripProposal TripProposal

Application
* localApp accepted : Boolean
TrustApplication * records J7
DigitalAvatarRecord Trip

directFunctionalTrust(truster : Personallnfo, trustee : Personalinfo) : SBoolean
directReferral Trust(truster : Personallnfo, trustee : Personalinfo) : SBoolean
combinedFunctionalTrust(trustee : Personallnfo) : SBoolean

AN

1 scope

* opinion

lastModification : Integer
readPrivacy : PrivacylLevel
/v writePrivacy : PrivacylLevel

1/me ?l * wfite

origin : Real
:] destination : Real

tripDate : Integer

* read

TrustOpinion Personallnfo * writeGrouos «enumeration»
expirationDate : Integer — contactDA : DigitalAvatar * readGroups P PrivacyLevel
* myOpinion 1 truster .
trust : SBoolean name : String * person _ private
* othersOpinion 1 trustee honeyIstin i
P : 9 * group V——7=— public
address : String granted
| FunctionalTrust | | ReferralTrust I email : String
TripShareApp

newTripProposal(tr : TripRequest) : TripProposal

selectTripProposal(tp : TripProposal) : Boolean
confirmTripProposal(tp : TripProposal) : Boolean

newTripRequest(origin : Real, dest : Real, date : Integer, mxD : Real, mxT : Integer)
showCurrentOptions(tr : TripRequest) : Sequence(Tuple(trust:SBoolean,proposal: TripProposal))

Figure 3: Class Diagram of the TripShare application incorporating trust concepts (shaded in blue color).

B. Modeling Trust

Note how at this level, the model abstracts away the details
of how distributed communications between DAs take place,
i.e., how methods are actually implemented in terms of CEP
events that are passed between the corresponding CEP engines,
or how the DA records are created, updated or deleted. When
a DA wants to invoke a method, it creates an event with the
appropriate information and passes it to its local CEP engine,
which sends it to the intended recipients. These events include
not only the source and destination DA identifiers, but also the
identifier of the application itself, which provides the scope for
the interaction. Upon arrival at the target engines, events are
passed to the rules defined by the corresponding application,
which processes them and performs the appropriate actions.
Responses to the initial DA can also be generated as a result
of this process, which will follow a similar communication
path. For the purposes of this work all these details are not
relevant and therefore we will abstract them away from our
UML models, which remain at a higher level of detail.

Figure [3] shows a high-level model of our proposal for
incorporating trust in DA applications. It adds four new classes
to the model previously shown in Fig. [} These new classes
are shaded in blue in Fig.

In the first place, abstract class TrustApplication extends
class Application to represent those local applications able
to deal with trust. Then, class TripShareApp now inherits

from TrustApplication. Two new classes, FunctionalTrust and
ReferralTrust, represent the degree of trust (functional and
referral, resp.) that a truster has on a trustee. These two
entities are modeled by the corresponding DA records of type
Personallnfo that represent the persons playing these roles. The
common attributes of classes FunctionalTrust and ReferralTrust
are stored in the abstract class TrustOpinion, which is just
another DA record. Attribute trust represents the degree of
trust, while attribute expirationDate sets a limit for the validity
of the trust opinion (-1 if it never expires). Again, type
Integer is used since time is represented in POSIX format.
The scope of every opinion is given by the corresponding
class TrustApplication, which provides three methods that allow
computing the degree of trust that a truster has in a trustee in
the scope defined by the application. The first two methods
return the direct functional or referral trusts, respectively. They
do that by simply looking for an opinion of such type within
the scope of the application that specifies this information. If
no record is found, they return the null value.

Method combinedFunctionalTrust() provides the main ser-
vice of class TrustApplication. Using the DA of the owner as
truster, it computes the degree of trust of a given trustee in the
scope of the application. First, if there is a record that defines
the direct functional trust of the truster on the trustee, this
method returns such a value. If not, the method looks for those
other records of people for whom the truster has a referral

Code 1: Assigning trust to a trustee.

combinedFunctionalTrust (trustee:PersonalInfo):SBoolean =
let myFunctionalTrust : SBoolean =
self .directFunctionalTrust(self.da.me,trustee) in
—— if I have a functional trust, I return this value
if myFunctionalTrust <>null then myFunctionalTrust
else —— Do I know people who trust that person?
let RT : Set(PersonalInfo) = —- contacts who have a
—— functional trust about "trustee" in this app
self .opinion
—>select(o|o.oclIsTypeOf (FunctionalTrust) and
o.trustee = trustee)
—>collect(o|o.truster) -- from these, I select those
—— for which I have a referral trust
—>select(c
self .directReferralTrust(self.da.me,c)<>null)
—>asSet () in

if RT—>isEmpty then -- no idea about that person
SBoolean (0,0,1,0.5)
else -- compute the direct opinions of referrers

let opinions:Sequence(SBoolean) =
RT->iterate(c ; s:Sequence(SBoolean) = Sequence{}
s—>append(self .directFunctionalTrust(c,trustee).
—— and discount their referral opinions
discount (Sequence{self.
directReferralTrust(self.da.me,c)}))) in
let f:SBoolean = opinions—>first() in
let Q:Sequence(SBoolean) = opinions—>excluding(£f) in
if O—>isEmpty() then £ -- only one opinion
else f.aleatoryCumulativeBeliefFusion(Q) -- fuse them
endif
endif
endif

trust, and who have a direct functional trust in the trustee. It
then applies the discount operator on these indirect opinions,
and fuses them using the Cumulative Fusion operator [7].

More precisely, shows the OCL specification of the
method that computes the trust of a person (trustee) by the
truster (self.da.me) in the scope of an application (self).

Using this new model and the associated operations, the pro-
cess is exactly the same as the one shown in Fig. |2 but now the
operation showCurrentOptions() of class LolcalTripShareApp
returns a sequence of proposals, together with their associated
degree of trust. The following listing shows an example of the
result of this operation, including the degree of trust associated
to each proposal. Now Bob can make a much more informed
decision about ordering the two trip proposals, and will ask
Ada first, instead of Cam.

Sequence {
Tuple{proposal = TripProposal2,
trust = SBoolean(0.8,0.0,0.2,0.5)},
Tuple{proposal = TripProposall,
trust = SBoolean(0.4,0.2,0.4,0.5)}
}

Note that we have used a base rate of 0.5 because we
assume that we have no prior evidence about these users. More
precise values could be derived if we were able to evaluate the
users’ reputation [7]], or from estimations made using Machine
Learning tecnhiques from previous experiences.

As for the discount and fusion operators, we have used the
extended versions of those originally defined by Jgsang in [[7].
In particular, the discount operator uses projection instead of
belief as the discounting factor, which obtains more natural
results [23]], [24]. Similarly, the fusion operator is based on the
improved version of the original one, as defined in [25]]. The

implementation of the extended types and their corresponding
operations (including the discount and fusion operators) is
available from our Github repository [26].

C. Implementation

This section describes the implementation that we have
developed for the carpooling application TripShareApp.

First of all, we have to differentiate the three main compo-
nents involved in any Digital Avatars application:

— The Digital Avatar itself, with its records of information
and the local API for their management;

— the CEP engine, with a list of rule scripts running in
parallel; and

— the specific third-party application, which defines apart
from the rule scripts for CEP, its specific behavior for
the information processing.

These three components are deployed in the smartphone,
where all the data is handled, therefore ensuring the required
levels of privacy and control by the user.

The DA records are stored as JSON documents using a
CouchBase Lite NoSQL databaseP_-] They are managed and
accessed via the DA API, which is accessible only locally
on the smartphone. It handles all security and privacy issues,
controlling the operations executed on the data and checking
access permissions.

The CEP engine is the second component of the framework.
It is also application-independent, and has been implemented
using Siddhi’s lightweight CEP engine [27]] and its extensions
for Android devices. It is capable of running in the back-
ground, always ready to receive events from the smartphone’s
sensors. The engine can also perform actions on the phone,
for example, emitting a sound or displaying a notification.

The engine is able to run several scripts in parallel with
their own rules and event sources. We have extended the func-
tionality of Siddhi to support our own features. Specifically,
we support communication between distributed CEP engines
running on different smartphones by exchanging events. We
use the OneSignal platform, which is based on Firebase Cloud
Messaging. It provides an API service that allows smartphones
to send and receive notifications. We integrated this service
into the Siddhi engine by adding a new type for interfaces
@source and @sink. These are the Siddhi interfaces for the
different data sources and actuators. We developed the android-
message type for both interfaces, using the OneSignal API for
receiving push notifications or sending them.

The third component of the Digital Avatars framework is
the applications. To illustrate how they are implemented, let
us focus on the carpooling scenario, realized by means of the
TripShareApp application. First, it stores its information (i.e.
the user trips) using the DA records. To work with the CEP
engine, the TripShareApp implements an Android Broadcast
Receiver. This class is continuously listening for Android
events with a specific action (i.e., identifier) that are sent as
an endpoint of the CEP script. This is illustrated in the script

Uhttps://www.couchbase.com/products/lite

https://www.couchbase.com/products/lite

excerpt in which shows the code to be executed when
a trip query arrives at the CEP engine of one of Bob’s contacts.

A @source of type android-message (line 1) receives the
external message with the query. This is the source that is
listening using the OneSignal platform. It specifies an app
identifier (line 2) that allows the CEP engine to identify the
application script that should handle the event. The attributes
of this message are defined in lines 5-13. They are mapped
to the attributes of the event that is going to be transmitted
through the receiveTripQuery stream in line 14. In this ex-
ample, Bob requests to take a trip from origin to destination,
specifying the date and time he wants to take the trip. Bob also
defines the maximum distance he is willing to deviate from his
origin and destination points, as well as the maximum waiting
time before departure. The OneSignalld indicates the identifier
of the sender, so that respondents can reply to it.

Once the external message is captured, it is passed to the
application using a @sink of type android-broadcast (line 24).
The stream (line 27) defines the event that the application will
receive. The connection between the source and the sink is es-
tablished in line 37. The receiver of the TripShareApp is always
listening for events whose identifier is TripShare_TripQuery
(as defined in the @sink) and will invoke the corresponding
operation as soon as the event is received.

Sending messages from the contact’s application to Bob’s
CEP engine follows a similar process. Thus, to respond to the
trip proposal, the application places the response message in
the CEP engine using a @source of type android-broadcast,
which is connected to a @sink of type android-message,
specifying the requester as recipient of the message.

These communication mechanisms enable the applications
running in the smartphones to exchange information, request
services and respond to them. The behavior of the application
can be written in Java to implement the required functionality.

To implement trust management, on top of the basic func-
tionality, we proceed as specified in Sect. Thus, every
trip proposal is endowed with the trust that the requester
assigns to the proposer, using the algorithm described in
For this, the DA uses the records that determine the
functional trust on the trustee or, in case this information does
not exist, the TripShareApp uses the API to consult the DA for
functional trust of all the personal contacts for which it has
a referral trust in the context of the application. If there are
several of them, the DA combines them using the aleatory
cumulative belief fusion (ACBF) operator [7].

Then, every DA needs to store and manage a set of trust
records (see Fig. [3). The TrustOpinion records that specify the
phone owner’s functional trust over these contacts are defined
when the user configures the application, as it provides the
scope of such trust opinions. Similarly, the phone owner needs
to specify the ReferralTrust records with their referral trust
over their contacts in the scope of the application. A third
set of records is also required: the functional trust over the
trip proposer of each of the owner’s contacts for whom a
referral trust is defined. Two strategies are possible to obtain
this information. Upon receipt of a trip proposal, the DA

Code 2: Excerpt of Siddhi CEP script for the TripShareApp.

1 @source(type=’android-message’ ,

2 appid =’TripShare_TripQuery’ ,

3 @map(type='keyvalue’ ,
fail.on.missing.attribute=’false’,

5 @attributes (

6 originLatitude=’originLatitude’ ,

7 originLongitude='originLongitude’ ,

8 destinationLatitude='destinationLatitude’ ,

9 destinationLongitude=’destinationLongitude’ ,

0 date=’date’ ,

11 time='time’ ,

12 maxDistance="maxDistance’ ,
13 waitingTime=’'waitingTime’ ,
14 onesignalld=’sender’)))

15 define stream receiveTripQuery(

16 originLatitude double,

17 originLongitude double,

18 destinationLatitude double ,
19 destinationLongitude double,
20 date String,

21 time String,

22 maxDistance double ,

23 waitingTime double ,

24 onesignalld String);

25 @sink (type=’android-broadcast’ ,

26 identifier='TripShare_TripQuery’,
27 @map(type='keyvalue’))

28 define stream tripQuery(

29 originLatitude double,

30 originLongitude double,

31 destinationLatitude double ,
32 destinationLongitude double,
33 date String,

34 time String,

35 maxDistance double ,

36 waitingTime double,

37 onesignalld String);

3¢ from receiveTripQuery select # insert into tripQuery;

sends a query to all the contacts for whom it has defined a
referral trust, asking them for their functional trust on the trip
proposer. Once the replies to these queries are received, the
trust is computed. Alternatively, a separate process running in
background is in charge of asking these queries to the phone
owner’s contacts for whom a referral trust is defined, in case
this information is not available in the DA, or it has expired.
Using this approach, the application can readily use the
available DA records, because it can assume the information is
always updated. This is the approach we currently follow, since
it allows more efficient trust management and calculation.

The complete code of the example application, along with
the current version of the Digital Avatars framework, can
be found on GitHub [28]]. The implementation uses the Java
library with the datatypes extended with uncertainty and in
particular datatype SBoolean, which represents trust opinions
and its operations [26].

IV. RELATED WORK

Since the 90’s, the scientific community has shown an
enormous interest in the study of the ideas underlying the
concept of trust [29], [30]. Experiments have been conducted
in different areas like electronic commerce, information sys-
tems, or other disciplines such as psychology, economics or
security. In this section we will review some of these works.
We have organized it according to three main dimensions: the

trust model used, i.e., how trust is represented and calculated;
how Subjective logic is used for representing trust; and how
trust is modeled in social computing applications.

A. Trust model

The different proposals vary from each other in a number of
important points, with the most relevant being the underlying
trust model, i.e., how they compute trust, the inputs they
accept and the produced outputs (binary, discrete or real values
and linguistic labels). Proposals also vary in the algorithms
employed to compute trust and to detect false information
(simple heuristics, learning and stochastic models).

Trust models can be classified as either quantitative or
qualitative. In quantitative models, users provide numeric
inputs and models estimate and convey trust in the same
terms. In qualitative models, the exchanged information is not
numerical, but usually binary or ordinal.

Jelenc and Trcek [31]], [32] propose both a formal system
and a simulation framework based on qualitative and ordinal
values. Their model allows estimating the most representative
qualitative value on the basis of past evaluations, judgement
of received opinions and degrees of trust in trust estimations.

Along the same line, using linguistic values with 3 and 5
level qualitative scales, Abdul-Rahman [33]] proposes a model
for determining agents’ trustworthiness based on statistics
collected by the agent on both direct experiences and rec-
ommendations from other agents. Agents do not maintain a
database of specific trust statements in the form of “a trusts
b with respect to context ¢”. Instead, at a given point in
time, the trustworthiness of a particular agent is obtained by
summarizing the relevant subset of recorded experiences. The
main advantage of these kinds of models is that they are more
intuitive to humans. For example, a probability is generally
more difficult to interpret than a qualitative value. However,
quantitative models estimate trust with finer granularity, often
exceeding the accuracy of qualitative models [34]. This is why
in our proposal we decided to use a quantitative model, based
on subjective opinions.

Among the works that use probability theory for the rep-
resentation of trust we find the work of Travos [35]]. Trust is
calculated using past interactions between the agents. When no
such interactions exist, the model uses reputational information
obtained from third parties, which maybe inaccurate.

Yu et al. [36] also use a probabilistic approach to derive a
trust model for rating the quality of certain services. Most pro-
posals that apply polling algorithms to extract ratings needed
for trust calculation are based on the Gnutella protocol [37]]
where each user queries its neighbors. In that sense, Yu’s
proposal improves those strategies by sending queries to a
calculated subset of neighbors whose credibility is maximized.
To avoid values that may be noisy or unreliable, Yu labels
users’ ratings as complementary, exaggerated positive, and
exaggerated negative, and tries to identify misleading and
unreliable peers.

Our work differs from these types of works in two main as-
pects. First, we use subjective opinions instead of probabilities

in order to incorporate the agents’ uncertainty into the decision
process. Second, these trust models are mostly based on polls
and reputations, which is not our case. In our work, both
functional and referral trusts are individually decided by the
phone user because of the individual nature of digital avatars
and the explicit intention of our approach to avoid centralized
information or that coming from external untrusted sources.

B. Trust computing based on subjective logic

Unlike other proposals that considered trust as a single
value, e.g., a probability, Jgsang [7]], [38]], [39] used subjec-
tive opinions that enabled the incorporation of two essential
features of trust: subjectivity and uncertainty. Additional op-
erators were defined to propagate and combine trust, namely
discounting and opinion fusion.

The original works by Jgsang were later extended by
different authors. For example, improved versions of the
fusion operators were defined in [25] in order to deal with
some specific situations not correctly covered in the original
versions. Similarly, the discount operator was also improved
in [23]] to produce more natural results. The specification and
Java implementations that we have developed for the Digital
Avatar Framework are based on these latter works.

Some authors have proposed other trust models based on
Subjective logic. For example, Feng et al. [24] have extended
Jgsang’s trust model to situations where trust is not only
asymmetric but mutual, can dynamically change, and is influ-
enced by external events. They also used the discount operator
defined in [25]]. Feng’s model is based on a previous work [40]]
that uses a Bayesian model instead of Subjective logic and
introduces a sliding time window to update trust values. Some
of these mechanisms (such as time windows, given by the
records’ expiration date) are present in our model, although
we deviate significantly from these works because in our case,
trust is asymmetric but may not be mutual due to the individual
nature of the decisions made by the Digital Avatar owner. In
this sense, our model of trust is closer to Jgsang’s but using
the improved versions of his original operators.

C. Trust in social computing

The Internet of Things (IoT) paradigm has driven the
creation of complex networks of users where they often
cooperate and coordinate, using their mobile devices, to carry
out collaborative social computing. In this context, the need
to infer the degree of trust between users plays a crucial role
in carrying out social collaboration. Hence, many works have
attempted to discover relationships between entities with social
trust models.

Chen et al. [41] propose a global system for building hier-
archical trust models for mobile social networks. Given two
users, the approach is able to calculate the best communication
path between them by providing the one that maximizes trust.
They propose a clustering algorithm to produce a hierarchy of
clusters and groups. Trust is calculated by taking into account
the trust value of the group, the level of contacts, the evolution
of the interaction and the user attributes. However, the trust

they propose is a static trust (based on user attributes) that
does not take into account an indispensable consideration: the
scope.

The trust model proposed by Li et al. [6] defines three
factors: the similarity between user profiles, the reputation of
the users, and the history of common friends. They also work
with User Profiles, similar to what we call Digital Avatars, and
compute the semantic distance between profiles to find their
similarity. However, the trust they calculate is based on a set of
quantifiable facts that both users have in common: similarities
in the profile, friends in common, and so on. Trust is in itself
a much more subjective aspect, as we note in our proposal,
and even if two subjects have many properties in common,
their trust can be very low based on shared experiences.

Ceolin and Potenza [42]] propose a framework for estimating
trust in social networks, based on user demographics, knowl-
edge and network centrality. They use subjective logic, as we
do, although they calculate their trust estimates using a global
view of the social network, whereas we rely only on local
(individual) information.

In his work, Golbeck [43]] developed two implementations
for computing trust in the context of social networks: one for
binary-valued trust networks (i.e., trust-no trust) and one for
networks that assigns continuous values to trust, in the range
[0,1], called TidalTrust. In TidalTrust, trust is computed by
performing a recursive search following the paths connecting
people in the network and the trust values associated with
each of those links. The depth of the search can be bounded
for efficiency reasons. This approach can be seen as similar
to the Trust networks defined by Jgsang [7]]. Currently, we
use just one level because our initial experiments showed that
trust decreased rapidly when traversing the network of contacts
beyond neighbors of neighbors. Anyway, we need to further
investigate this issue.

Trust has also been extensively studied in collaborative P2P
environments. In most cases, the concept of reputation [44]-
[46] is used for its computation. Reputation has been defined
as “the common opinion that people have about someone
or something: the way in which people think of someone
or something” [7]. Thus, reputation is a quantity derived
from the underlying social network, which is globally visible
to all members of the network. Reputation can be thought
of as a collective measure of trust based on the referrals
or ratings from members in a community. Note that the
collective (global) nature of reputation differs from that of
individual trust, and therefore its definition and management
in peer-to-peer social computing applications requires different
mechanisms than those described in this paper. Here we have
tackled the representation and management of trust from the
point of view of individual digital avatars, given the decen-
tralized nature of our proposal and the explicit intention to
avoid any kind of centralized global information. Incorporating
reputation to our model is part of our future work.

Social Net [47] infers shared interests between people by
storing the IDs of the nearby devices and analyzing over a long
period of time their proximity. However, the relationship be-

tween geographic proximity and trust may be entirely casual,
rather than causal. The fact that you share nearby locations
with some people repeatedly over time does not imply that
you have more trust in them.

V. CONCLUSIONS

This contribution proposes a trust management system for
collaborative social computing applications. It builds on the
Digital Avatars framework, extending it with the explicit
representation and management of trust information about both
service providers (functional trust) and other users’ opinions
about these service providers (referral trust) in peer-to-peer
environments.

We have specified the proposal using high-level, platform-
independent UML models, and provided the OCL specification
of trust management operations. As a proof of concept of the
proposed approach, and to demonstrate the proposal, we have
developed an implementation of a mobile-based application
that takes into account trust opinions for making informed
decisions.

This work can be continued in several directions. First,
we plan to evaluate our proposal with more applications to
better understand and appraise its advantages and limitations.
One domain of particular interest is healthcare, where there
are elements of patient trust in clinicians and also the use of
digital health records to support direct care delivery or even
secondary research activities. This could also open up some
questions about how to model the evolution of trust in both
clinical service providers and IT solution providers. Second,
we want to conduct dedicated empirical experiments with real
users to evaluate its usability and usefulness. As mentioned
above, the implementation of a reputation management system
in peer-to-peer environments may require further research,
due to its global nature. Thus, combining global reputation
with individual trust in the context of collaborative social
applications is another line of research we want to explore.
For example, this could allow us to more precisely define
the base rate of subjective opinions that represent individual
trust. Incorporating our trust model to other social computing
application frameworks, such as [48]|-[51]] could be an inter-
esting line of research, too. Finally, we would like to extend
this approach with the use of Machine Learning techniques
that can automatically modify users’ trust based on their past
experiences and the quality of service they obtain.

ACKNOWLEDGMENT

We would like to thank the reviewers for their insightful
comments and constructive suggestions, which have signifi-
cantly helped us to improve the paper. This work was funded
by the Spanish Research Projects PGC2018-094905-B-100
and RTI2018-098780-B- 100.

REFERENCES

[1] J. Guillén, J. Miranda, J. Berrocal, J. Garcia-Alonso, J. M. Murillo, and
C. Canal, “People as a service: A mobile-centric model for providing
collective sociological profiles,” IEEE Software, vol. 31, no. 2, pp. 48—
53, 2014.

[2]

[3]

[4]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

J. Miranda, N. Mikitalo, J. Garcia-Alonso, J. Berrocal, T. Mikkonen,
C. Canal, and J. M. Murillo, “From the internet of things to the internet
of people,” IEEE Internet Computing, vol. 19, no. 2, pp. 40-47, 2015.
A. Pérez-Vereda and C. Canal, “A people-oriented paradigm for smart
cities,” in Proc. of ICWE’17, ser. LNCS, vol. 10360. Springer, 2017,
pp- 584-591.

M. E. Bertoa, N. Moreno, A. Pérez-Vereda, D. Bandera, J. M. Alvarez-
Palomo, and C. Canal, “Digital avatars: Promoting independent living for
older adults,” Wirel. Commun. Mob. Comput., vol. 2020, pp. 8 891 002:1—
8891002:11, 2020.

J. Troya, N. Moreno, M. F. Bertoa, and A. Vallecillo,
“Uncertainty representation in software models: A survey,”
Software and Systems Modeling, 2021. [Online]. Available:

https://doi.org/10.1007/s10270-020-00832-3

J. Li, Z. Zhang, and W. Zhang, “Mobitrust: Trust management system in
mobile social computing,” in Proc. of CIT’10. 1EEE Computer Society,
2010, pp. 954-959.

A. Jgsang, Subjective Logic - A Formalism for Reasoning Under
Uncertainty. Springer, 2016.

O. Etzion and P. Niblett, Event Processing in Action.
Publications, 2010.

D. Gambetta, “Can we trust trust?” in Trust: Making and Breaking
Cooperative Relations. University of Oxford, 2000, pp. 213-237.

L. Burguefio, M. F. Bertoa, N. Moreno, and A. Vallecillo, “Expressing
confidence in models and in model transformation elements,” in Proc.
of MODELS’18. ACM, 2018, pp. 57-66.

D. de Siqueira Braga, M. Niemann, B. Hellingrath, and F. B.
de Lima Neto, “Survey on computational trust and reputation models,”
ACM Comput. Surv., vol. 51, no. 5, pp. 101:1-101:40, 2019.

T. Grandison and M. Sloman, “A survey of trust in internet applications,”
IEEE Commun. Surv. Tutorials, vol. 3, no. 4, pp. 2-16, 2000.

D. H. McKnight and N. L. Chervany, “Conceptualizing trust: A typology
and e-commerce customer relationships model,” in Proc. of HICSS-34,
2001.

B. Adams and R. Webb, “Model of trust development in small teams,”
Department of National Defense, Tech. Rep. CR 2003-016, 2003.

D. Griffin and A. Tversky, “The weighing of evidence and the determi-
nants of confidence,” Cognitive Psychology, vol. 24, no. 3, pp. 411-435,
1992.

W. Petrusic and J. Baranski, “Judging confidence influences decision
processing in comparative judgments,” Psychonomic Bulletin & Review,
vol. 10, p. 177-183, 2003.

JCGM 100:2008, Evaluation of measurement data — Guide to the
expression of uncertainty in measurement (GUM), Joint Committee
for Guides in Metrology, 2008, http://www.bipm.org/utils/common/
documents/jcgm/JCGM_100_2008_E.pdf.

M. F. Bertoa, L. Burguefio, N. Moreno, and A. Vallecillo, “Incorporating
measurement uncertainty into OCL/UML primitive datatypes,” Softw.
Syst. Model., vol. 19, no. 5, pp. 1163-1189, 2020.

P. Muifioz, L. Burguefio, V. Ortiz, and A. Vallecillo, “Extending OCL
with Subjective Logic,” Journal of Object Technology, vol. 19, no. 3,
pp. 3:1-15, Oct. 2020.

W. Feller, An Introduction to Probability Theory and Its Applications.
Wiley, 2008.

B. de Finetti, Theory of Probability: A critical introductory treatment.
John Wiley & Sons, 2017.

IEEE Std 1003.1-2008, The Open Group Base Specifications. Issue 7,
Sect. 4.16, Seconds Since the Epoch, 2016.

H. A. Kurdi, B. Alshayban, L. Altoaimy, and S. Alsalamah, “Trustyfeer:
A subjective logic trust model for smart city peer-to-peer federated
clouds,” Wirel. Commun. Mob. Comput., vol. 2018, 2018.

J. Tian, J. Zhang, Z. Peipei, and X. Ma, “Dynamic trust model based
on extended subjective logic,” KSII Trans. Internet Inf. Syst., vol. 12,
no. 8, pp. 3926-3945, 2018.

R. W. van der Heijden, H. Kopp, and F. Kargl, “Multi-source fusion
operations in subjective logic,” in Proc. of FUSION’1S. IEEE, 2018,
pp. 1990-1997.

Atenea Research Group, “Uncertain datatypes — Git repository,” https:
//github.com/atenearesearchgroup/uncertainty, 2021.

S. Suhothayan, K. Gajasinghe, I. L. Narangoda, S. Chaturanga, S. Perera,
and V. Nanayakkara, “Siddhi: a second look at complex event processing
architectures,” in Proc. of SC@GCE’11. ACM, 2011, pp. 43-50.

A. Pérez-vereda, “Digital avatars: Trip share application — Git reposi-
tory,” https://github.com/apvereda/Digital- Avatars- TripShare, 2021.

Manning

[29]

[30]

[31]

(32]

[33]

[34]

[35]

(36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

(51]

G. C. M. Amaral, T. P. Sales, G. Guizzardi, and D. Porello, “Towards a
reference ontology of trust,” in Proc. of OTM’19, ser. LNCS, vol. 11877.
Springer, 2019, pp. 3-21.

G. C. M. Amaral, R. S. S. Guizzardi, G. Guizzardi, and J. My-
lopoulos, “Ontology-based modeling and analysis of trustworthiness
requirements: Preliminary results,” in Proc. of ER’20, ser. LNCS, vol.
12400. Springer, 2020, pp. 342-352.

D. Jelenc and D. Trcéek, “Qualitative trust model with a configurable
method to aggregate ordinal data,” Auton. Agents Multi Agent Syst.,
vol. 28, no. 5, pp. 805-835, 2014.

D. Trcek, “Computational trust management, QAD, and its applications,”
Informatica, vol. 25, no. 1, pp. 139-154, 2014.

A. Abdul-Rahman and S. Hailes, “Supporting trust in virtual com-
munities,” in Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, 2000, pp. 9 pp. vol.1-.

A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics
and biases,” Science, vol. 185, no. 4157, pp. 1124-1131, Sep. 1974.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/17835457
W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck, “Travos: Trust and
reputation in the context of inaccurate information sources,” Autonomous
Agents and Multi-Agent Systems, vol. 12, no. 2, pp. 183-198, March
2006. [Online]. Available: https://eprints.soton.ac.uk/262129/

B. Yu, M. Singh, and K. Sycara, “Developing trust in large-scale peer-
to-peer systems,” in IEEE First Symposium onMulti-Agent Security and
Survivability, 2004, 2004, pp. 1-10.

D. Han and J. Zhang, “An optimized gnutella-like P2P protocol in mobile
networks,” J. Networks, vol. 7, no. 9, pp. 1464-1471, 2012.

Z. Milosevic, A. Jgsang, T. Dimitrakos, and M. A. Patton, “Discretionary
enforcement of electronic contracts,” in Proc. of EDOC’02. 1EEE
Computer Society, 2002, pp. 39-50.

T. Dimitrakos, I. Djordjevic, Z. Milosevic, A. Jgsang, and C. I. Phillips,
“Contract performance assessment for secure and dynamic virtual col-
laborations,” in Proc. of EDOC’03. IEEE Computer Society, 2003, pp.
62-75.

R. Feng, X. Han, Q. Liu, and N. Yu, “A credible bayesian-based trust
management scheme for wireless sensor networks,” Int. J. Distrib. Sen.
Netw., vol. 2015, Jan. 2015.

S. Chen, G. Wang, and W. Jia, “Cluster-group based trusted computing
for mobile social networks using implicit social behavioral graph,”
Future Generation Computer Systems, vol. 55, pp. 391-400, 2016.

D. Ceolin and S. Potenza, “Social network analysis for trust predic-
tion,” in Proc. of IFIPTM’17, ser. IFIP Advances in Information and
Communication Technology, vol. 505. Springer, 2017, pp. 49-56.

J. A. Golbeck, “Computing and applying trust in web-based social
networks,” Ph.D. dissertation, University of Maryland, 2005. [Online].
Available: http://hdl.handle.net/1903/2384

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in P2P networks,” in Proc. of
WWw’03. ACM, 2003, pp. 640-651.

E. Damiani, S. Vimercati, S. Paraboschi, P. Samarati, and F. Violante,
“A reputation-based approach for choosing reliable resources in peer-to-
peer networks,” in Proc. of CCS’02. ACM, 2002, pp. 207-216.

P. Michiardi and R. Molva, “CORE: a collaborative reputation mecha-
nism to enforce node cooperation in mobile ad hoc networks,” in Proc.
of IFIP TC6/TC11 Sixth Joint Working Conference on Communications
and Multimedia Security, ser. IFIP Conference Proceedings, vol. 228.
Kluwer, 2002, pp. 107-121.

M. A. Terry, E. D. Mynatt, K. Ryall, and D. Leigh, “Social net: using
patterns of physical proximity over time to infer shared interests,” in
Extended abstracts of CHI’02. ACM, 2002, pp. 816-817.

H. Mao, M. Xiao, A. Liu, J. Li, and Y. Hu, “OCC: opportunistic crowd
computing in mobile social networks,” in Proc. of DASFAA’IG6, ser.
LNCS, vol. 9645. Springer, 2016, pp. 254-267.

J. Bajo, A. T. Campbell, and X. Zhou, “Mobile sensing agents for social
computing environments,” in Proc. of PAAMS’16, ser. AISC, vol. 473.
Springer, 2016, pp. 157-167.

S. Mohan, N. Agarwal, and L. Al-Doski, “Mobile network-aware social
computing applications: a framework, architecture, and analysis,” J.
Ambient Intell. Humaniz. Comput., vol. 4, no. 1, pp. 43-56, 2013.

H. M. Tran, K. V. Huynh, K. D. Vo, and S. T. Le, “Mobile peer-to-peer
approach for social computing services in distributed environment,” in
Proc. of SoICT’13. ACM, 2013, pp. 227-233.

https://doi.org/10.1007/s10270-020-00832-3
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://github.com/atenearesearchgroup/uncertainty
https://github.com/atenearesearchgroup/uncertainty
https://github.com/apvereda/Digital-Avatars-TripShare
https://www.ncbi.nlm.nih.gov/pubmed/17835457
https://eprints.soton.ac.uk/262129/
http://hdl.handle.net/1903/2384

	Introduction
	Background
	Digital Avatars
	Trust
	Confidence
	Subjective logic
	A motivating example

	Trust Management in Digital Avatars
	Modeling Digital Avatars
	Modeling Trust
	Implementation

	Related Work
	Trust model
	Trust computing based on subjective logic
	Trust in social computing

	Conclusions
	References

