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Model transformations are the key technique in Model-Driven Engineering (MDE) to manipulate and construct 
models. As a consequence, the correctness of software systems built with MDE approaches relies mainly on 
the correctness of model transformations, and thus, detecting and locating bugs in model transformations 
have been popular research topics in recent years. This surge of work has led to a vast literature on model 
transformation testing and debugging, which makes it challenging to gain a comprehensive view of the 
current state of the art. This is an obstacle for newcomers to this topic and MDE practitioners to apply these 
approaches. This paper presents a survey on testing and debugging model transformations based on the 
analysis of 140 papers on the topics. We explore the trends, advances, and evolution over the years, bringing 
together previously disparate streams of work and providing a comprehensive view of these thriving areas. In 
addition, we present a conceptual framework to understand and categorise the different proposals. Finally, we 
identify several open research challenges and propose specific action points for the model transformation 
community.
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1 INTRODUCTION
In Model-Driven Engineering (MDE) [174], models are the central artifacts to represent complex 
systems from various viewpoints and at multiple levels of abstraction using appropriate modeling 
formalisms. Model transformations (MTs) are the cornerstone of MDE [189, 207, 225], as they 
provide the essential mechanisms for manipulating and constructing models. They are considered
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an excellent compromise between strong theoretical foundations and applicability to real-world
problems [207, 225]. Existing MT languages often provide dedicated language concepts to realize
MT rules. Each rule matches input elements from the source model and deals with either the
construction of part of the new target model—in the case of out-place MTs—or the evolution, i.e.,
modification, of the source model—in the case of in-place MTs [189].

The correctness of software systems built with MDE approaches largely depends on the correct-
ness of the operations executed using MTs. Therefore, it is critical in MDE to test and debug MTs
as it is done with source code in classical software engineering, but it has to be emphasized that
MTs also come with their own challenges in this respect [167]. MT testing aims to reveal failures
by executing the MT under test with a set of input models and checking whether it produces the
expected output; if it does not, then a bug has been detected. Once one or more unexpected outputs
are observed (i.e., bugs), MT debugging focuses on isolating the bug causing it and fixing it.

Selim et al. [244] reviewed the state of the art in MT testing in 2012. They organized the papers
according to the phase of the testing process they belong to. They considered 29 works in their
study and concluded that more research is needed.

This article presents a comprehensive survey on testing and debugging MTs, providing a unified
view and a classification of the vast literature on the topics. Testing and debugging are closely
related activities as explained above, and thus we decided to cover both to make our survey more
thorough and helpful for readers—a similar approach is followed in other surveys, such as on
compiler testing [183]. Overall, the survey is based on the analysis of 140 papers published between
2004 and 2020. This represents a largely updated survey with respect to the survey by Selim et
al. [244] from 2012, since our study includes more than 100 additional papers. As a part of our
survey, we first propose a conceptual framework for classifying current and future contributions on
MT testing and debugging. Then, we report the trends, advances and evolution of MT testing and
debugging over the years, and some of the open research challenges and specific action points to be
addressed in the future. This article also aims to serve as a reference point for future contributions,
and thus, special emphasis is put on how the approaches are evaluated, pointing readers to the
most popular case studies and tools.
The remainder of this paper is structured as follows. Section 2 briefly describes some concepts

related to MDE, presents an MT excerpt serving as a running example throughout the paper and
discusses previous surveys related to MT testing and debugging. Then, Section 3 presents our
conceptual framework for MT testing and debugging, while Section 4 formulates our research
questions and describes the review methodology followed in our survey. The state of the art in MT
testing and debugging is described in Sections 5, 6 and 7, and the research challenges identified
are described in Section 8. Finally, Section 9 concludes the paper and Appendix A presents some
interesting statistics about the selected papers.
2 BACKGROUND
Model-Driven Engineering (MDE) [174, 190] advocates models as first-class entities throughout the
system life-cycle. It is meant to increase productivity bymaximizing automation and interoperability,
simplifying the design process and promoting communication between stakeholders. The use of
MDE principles and techniques is growing, being well established, for instance, in the development
of embedded and production systems. This section introduces MDE’s main building blocks, namely
(meta)models and MTs. It also presents a running example used throughout the paper and describes
the existing surveys related to MT testing and debugging.
2.1 Models and Metamodels
A model is an abstraction of a system used to replace the system under study for a particular
purpose [222, 226]. This abstraction process allows to better manage, understand, study, and analyze
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models in contrast to the full system under study. Of course, this also helps for communication and
discussion means. Thus, models are frequently used to share and communicate a common vision
among technical and non-technical stakeholders [190].
In MDE, it is common that a model must conform to its metamodel. A metamodel defines

the structure for a family of models [229]. Technically, metamodels are just a special type of
models. Thus, they have to conform again to another model—the so-called meta-metamodel. Thus,
metamodels are written in the language defined by their meta-metamodel. A metamodel specifies
the concepts of a language, the relationships between these concepts, the structural rules that
restrict the possible elements in the valid models and those combinations between elements [174].
Metamodels are typically expressed with class diagrams, and they can be extended with textual
expressions that add further constraints, typically expressed using languages like OCL [181, 221].
2.2 Model Transformations
Model transformations play a key role in MDE [174, 207, 246]. They allow querying, synthesizing
and transforming models into other models or code. Thus, they are essential for building systems
with MDE approaches. A model transformation (MT) can be considered as a program executed by a
dedicated transformation engine that takes one or more source models and produces one or more
target models [174, 246], as illustrated by the model transformation pattern [189] in Fig. 1. As MTs
are specified on the metamodel level, they are reusable for all models of the source metamodel or
at least for the subset of models that qualify for a transformation in case the transformation has
additional pre-conditions. OCL often plays an important role in MTs as expression language [180].
Depending on the nature of the source and target artifacts, there are model-to-text (M2T),

text-to-model (T2M) and model-to-model (M2M) transformations [174]. M2T transformations are
typically used to implement code and documentation generators, model serialization, and model
visualization [237]. Among the frameworks and languages to define M2T transformations, we can
find Acceleo [170], EGL [238], MOFScript [233] and Xtend [172]. T2M transformations are typically
used for reverse engineering [134], e.g., transforming legacy applications to models for model-driven
software modernization. MoDisco [175] is currently the most popular tool for defining this kind
of transformation. Most research on MTs is devoted to M2M transformations. There are different
classifications for M2M transformations [189, 230], such as out-place and in-place. A transformation
is considered out-place when it creates new models from scratch, e.g., transforming a class diagram
into a relational model [224]. We say a transformation is in-place if it rewrites the source models to
produce the target models, as it is, for instance, the case in model refactoring. There is currently a
plethora of frameworks and languages available to define M2M transformations, such as AGG [249],
ATL [216], AToM3 [191], e-Motions [236], Henshin [165], JTL [185], Kermeta [214], Maude [187],
MOMoT [196, 197], QVT [203] and VIATRA [188].
Running example. Listing 1 displays an excerpt of the Class2Relational MT in the ATL language
available on the ATL Zoo [142], and its source and target metamodels are displayed in Fig. 2. The
Class2Relational MT is a simple yet complete scenario traditionally used as a case study to present
new approaches or languages for the development of MTs. It was proposed as the challenge of the
Model Transformations in Practice workshop of 2005 [178] and has been used as a benchmark for
MT approaches ever since. According to rule 1, every object of type DataType in the source model
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(line 5) is transformed to an object of type Type in the target model (line 6) with the same name
(line 7). As for the second rule, it receives as input objects of type Attribute whose type reference
points to an object of type DataType and whose multiValued attribute is set to false (line 10), and it
creates an object of type Column with the same name (line 12) and whose type reference points to
the Type object created from the attribute’s type (line 13).
Listing 1. Excerpt of Class2Relational MT [142].
1 module Class2Relation;
2 create OUT : RelationalMM from IN :

ClassMM ;
3
4 rule DataType2Type{ -- Rule 1
5 from dt : Class!DataType
6 to t : Relational!Type(
7 name <-dt.name)
8 }

9 rule SingleValuedDataTypeAttribute2Column{
-- Rule 2

10 from at : Class!Attribute (at.type.
oclIsKindOf(Class!DataType) and not
at.multiValued)

11 to co : Relational!Column(
12 name <-at.name ,
13 type <-at.type)
14 }

An example of a source model and the target model created by this MT excerpt is shown in Fig. 3.
Note that we have included a so-called trace model in the figure. MT engines typically create a trace
model and populate it during MT execution. A trace model basically registers which elements in the
target model are created from which elements in the source model and by which rule. Trace models
are specifically useful in some testing and debugging approaches, as we shall see throughout the
paper. Looking at the figure, please note that object c of type Class (in the left-most part of the
figure) has not been transformed, as we see no trace pointing to this object. The reason is that there
is no rule in our MT excerpt that takes objects of type Class as input in our MT excerpt.
2.3 Previous Surveys on MT Testing and Debugging
To the best of our knowledge, there is no paper presenting a study of the literature concerning
MT debugging. Regarding MT testing, Selim et al. [244] published a paper in 2012 reviewing the
state of the art. They organized 29 primary studies according to the phases of the testing process
and concluded that more research into all testing phases would be useful. These phases are also
identified by Baudry et al. [168], and they are (𝑖) model generation, (𝑖𝑖) oracle function, and (𝑖𝑖𝑖)
test adequacy criteria. These are the MT testing phases we consider in our survey too.

Although the scope is different from our survey (cf. Section 4.2), it is worth mentioning surveys
on MT verification. In 2013, Calegari and Szasz [182] performed a survey on the state of the art
of MT verification. Their survey analyzes three components in MT verification: the MT itself, the
properties of interest, and the verification techniques used to establish the properties. Later, in
2015, Amrani et al. [164] explored the question of the formal verification of MT properties through
a three-dimensional approach that dealt with the same three components proposed in [182]; and
Rahim and Whittle [235] published a survey of approaches for verifying MTs. They presented a
coarse-grained classification based on the technical details of the approaches and a finer-grained
classification according to criteria such as MT languages supported or properties verified.
This article differs from the surveys about MT verification [164, 182, 235] in its scope: testing

and debugging. Also, our survey largely updates and complements the work of Selim et al. [244] by
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also considering debugging and reviewing about 100 additional papers, most of them published
from 2012 onward.
3 TESTING AND DEBUGGING MODEL TRANSFORMATIONS
To survey the state of the art in testing and debugging of MTs, we propose the conceptual framework
displayed in Fig. 4, whose goal is to provide a way to understand the different proposals and how
they are connected, as well as to categorise current and future contributions. As illustrated, we
have used the original model transformation pattern presented in Fig. 1, and we have augmented
it to include testing and debugging concepts, highlighted with grey color in the figure. The parts
under study are described below and they are exemplified with our running example:

• Transformation Definition (SUT). This is the actual MT, typically implemented with MT
languages. In the context of our survey, we will refer to this as the SUT (System Under Test).
An example is the MT implementation of our running example (cf. Listing 1).

• Model Transformation Testing. This refers to the execution of the MT with the aim of revealing
failures (i.e., unexpected outputs). Testing approaches are typically classified according to
the testing phase to which they contribute [168, 244], namely:
– Model Generation. This is referred to as the generation of so-called test models, which are
input models that conform to the input metamodels of the transformation. A test model
in our running example is shown on the left-hand side of Fig. 3. Results of our survey on
model generation are provided in Section 5.1.

– Oracle Function. In software testing, a test oracle determines if the result of a test case is
correct [258] by obtaining Oracle Outputs. A test case includes source and target models.
There are different ways to construct a test oracle for a model transformation. It typi-
cally depends on the available artifacts. For instance, if the expected model is available, a
straightforward oracle compares the obtained target model with the expected model. In
our running example, the target model obtained from the model on the left-hand side of
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Fig. 3 is shown on the right-hand side of the same figure. If we do not have the expected
model, an alternative oracle defines properties that the obtained model must satisfy. For
instance, in our running example, we can check that if the source model contains objects
of type DataType, the target model must contain objects of type Type with the same name.
Results of our survey on oracle function are provided in Section 5.2.

– Test Adequacy Criteria. Test adequacy criteria measure the quality of a test suite with
respect to one or more objectives. They help define testing goals to be achieved as a
result of software testing, e.g., covering a certain percentage of code [168]. In the context
of MT testing, test adequacy criteria can be based, for example, on how well the input
metamodel is covered or on how effective the oracle functions are on identifying synthetic
bugs (so-called mutants) introduced in the MT under test. For example, to cover all the
transformation rules of our running example, the union of all test models should contain
at least one instance of each non-abstract class in the source metamodel (left-hand side of
Fig. 2). Results of our survey on test adequacy criteria are provided in Section 5.3.

• Debugging. This consists in locating and fixing bugs in the model transformation specification,
typically starting from the failures observed during testing (Oracle Outputs in our figure).
For instance, if we observe that the target model does not contain an object of type Type in
the target model with the same name as one of the objects of type DataType in the source
model, then lines 5 and/or 6 in Listing 1 likely contain a bug that needs to be identified and
fixed. Debugging techniques can be classified as dynamic or static, depending on whether
they require running the MT or not, respectively. Results of our survey on debugging are
provided in Section 6.

4 REVIEWMETHOD
To collect the papers related to MT testing and debugging, we followed a structured method
partially inspired by the guidelines of Kitchenham [220] and Webster et al. [257]. In addition, we
took inspiration from existing surveys on related topics such as formal verification of static software
models [202], MT design patterns [223], UML model execution [186], and MT tools [217].
4.1 ResearchQuestions
We aim to answer the following research questions (RQs):

• RQ1 - Testing. In which part of the testing process do the studies focus and what do they
propose? We aim to classify the papers according to the three phases devoted to testing (cf.
Section 3), namely model generation, test oracle definition and test adequacy criteria. These
will be further categorized into subcategories within each phase. Answered in Section 5.

• RQ2 - Debugging. What are the approaches for debugging MTs? We aim to identify the
papers focusing on MT debugging, classifying them in subcategories of dynamic and static
approaches. Answered in Section 6.

• RQ3 - Experimental Evaluations. How are testing and debugging approaches on MTs evalu-
ated? We aim to provide insights on the current practices for evaluating research proposals in
the context of MT testing and debugging. To this end, we explore different dimensions of the
evaluations, such as tools proposed and MTs employed as case studies. Answered in Section 7.

• RQ4 - Challenges. What are the research challenges for the future? Based on our survey
results, we aim to identify and categorize open research challenges in the field of model
transformation testing and debugging and give concrete action points. Answered in Section 8.

Apart from these RQs, in Appendix A we show the trends in testing and debugging of MTs and
some interesting statistics from the surveyed papers, such as the number of publications per year
and country, top co-authors, frequently used transformation languages, etc.
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Table 1. Search engines and number of studies retrieved

Digital Library ACM DBLP Elsevier IEEE Xplore Scopus SpringerLink Web of Science
# Studies 309 227 242 748 716 369 478

4.2 Inclusion and Exclusion Criteria
We scrutinized the existing literature looking for papers focusing on MT testing or debugging
including methods, tools or guidelines. Specifically, we focus on the steps identified in Fig. 4, namely
(𝑖) model generation, (𝑖𝑖) test adequacy criteria, (𝑖𝑖𝑖) oracle function, and (𝑖𝑣) debugging (bug
location and fix). Surveys and exploratory papers (e.g., [162, 168, 244]) have not been included as
primary studies, but have been considered for setting the scope of this paper, as explained before.
As described in the proposed conceptual model, and inline with the widely adopted notion of

testing [198], we focus on testing approaches running the MT under test to identify failures, often
referred to as “dynamic testing” [211]. Formal and static (i.e., those not running the MT under test)
approaches for identifying bugs in MTs such as formal verification [194, 199, 231, 245, 255, 256] and
model checking [262] have been largely studied in related papers and surveys [164, 182, 235] and
are out of the scope of our work. We also excluded papers on model-based testing [208, 213, 218],
where MTs are often used as a means to test other programs. Regarding debugging, a topic not
studied in previous surveys to the best of our knowledge, we included both static and dynamic
approaches to provide a complete view of the topic. As we can see from Figure 4, we focus on
debugging approaches that read the output of the testing phase.

As models can be treated as graphs [246], we include approaches for testing and debugging graph
transformations since they can be considered MTs in this setting. Besides, graph transformations
are applied to the problem of instance generation [207]. Therefore, we include the term “graph
transformation” in the search (cf. Section 4.4). Note, however, that graph transformations are often
used as a suitable formalism for verification [207], and that is the reason why many papers on
graph transformations are not considered in this survey. Finally, we excluded PhD theses, papers
not related to computer science, not written in English, or not accessible from the Web.
4.3 Data Sources
The search was performed in the online repositories1 of ACM, DBLP, Elsevier, IEEE Xplore, Scopus,
SpringerLink, and Web of Science. They all provide an advanced search engine, which fits our
purpose very well, as explained later on. We also selected repositories supporting batch retrievals
of the bibliographical references. This allowed us to use reference managers for managing the
extracted references such as JabRef and Zotero. This drastically reduces the time for processing the
references and removing duplicated entries compared to using repositories in isolation.
4.4 Search Strategy and Paper Selection
Table 1 summarizes the number of publications retrieved from each digital library. We used different
engines for executing the conceptual query (“model transformation” OR “graph transformation”)
AND (“test*” OR “debug*” OR “validat*” OR “verificat*”) in title, abstract and keywords. Testing is
considered one of the Verification & Validation (V&V) activities [210] and that is why we included
the terms “validat*” and “verificat*” in our searches. This way, we try to gather papers focused
on testing that might be referring to the terms “verification” or “validation” and not explicitly to
“testing”. Also, our search query uses wildcards. Please note that not all search engines support
this type of queries. However, we aimed to match the concrete search terms for a particular search
engine as closely as possible when queries containing wildcards were not supported. In addition,
not all engines allow searching in the title, abstract, and keywords of the papers. For instance,
SpringerLink only supports searching in the papers’ title and main text.
1Throughout the paper, we use the terms “repository”, “search engine” and “digital library” indistinctly.
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We did not add any time constraints on the search since we did not know the exact point in
time when research on the survey topic began. Finally, selected papers were published between
2004 and 2020. Please note that this time frame is reasonable, since the first workshop on model
transformations was held in 2005 and this topic started to gain more attention ever since.

We generated one BibTeX file for each digital library by following the process reported in [253].
As SpringerLink only allows to produce CSV files, we performed a pre-processing step using Zotero
to obtain a BibTeX file. Subsequently, we collected all references of the individual files together in
one single common BibTeX file. As illustrated in Fig. 5, we started with an initial set of 3099 papers.
Next, we employed JabRef and Zotero to remove duplicates, resulting in 2099 papers.

Then, we read the title of all 2099 publications to decide which ones to discard according to the
title. Two authors of the paper were in charge of this process. We identified and removed 1717
papers that were clearly not related to the survey topic according to their title, so we kept a set of
382 publications. The next step was to read the abstract of the papers to keep discarding unrelated
papers, this meant 185 more works were dropped out. There were still some papers whose adequacy
to this survey was not apparent according to their title and abstract, so we needed to glance at the
text for reasoning about their inclusion. After this step, 26 more papers were discarded, having a
set of 171 papers. Every relevant step of the review process was followed by meetings where all the
authors discussed the doubts and minor disagreements until reaching a consensus.

Then, the 171 papers were distributed among the four authors of the article, who read them and
extracted information out of them, as explained in Section 4.5. In this process, 53 more papers were
discarded, having a total of 118 papers. This step also included performing a process of backward
snowballing [259] by considering the related works described in the papers selected. The rationale
of this process is to “rescue” papers that had either not been obtained by any search engine or that
were discarded by mistake in the filtering process. 17 papers were obtained after this process.

Since most papers were in the context of M2M transformations, and considering that T2M
and M2T approaches can be referred to with the terms reverse engineering and code generator,
respectively, we repeated the complete search process, this time with the query (“reverse engineer*”
OR “code generat*”) AND (“test*” OR “debug*” OR “validat*” OR “verificat*”). Five more papers were
obtained, so the final set of publications is composed of 140 papers, henceforth referred to as
primary studies. The list of primary studies is publicly available on a companion website [254].

4.5 Data Extraction
All 140 primary studies were carefully analyzed to answer our RQs. For each work, we extracted:
the full reference, brief summary, type of contribution, context (model generation, oracle function,
test adequacy criteria, or debugging), testing dimension (functional vs non-functional), type of
MT considered (M2M, M2T, T2M), MT language supported, tool support, characteristics of the
experimental evaluation (including techniques, case studies, and availability of experimental assets),
and challenges reported. Primary studies were read at least twice by two authors to reduce misun-
derstandings or missing information. We recorded all the information collected in a spreadsheet.
The few disagreements that arose were handled in group discussions involving all the authors.

As a sanity check, we shared a preliminary and a final version of this article with the authors of
the primary studies to confirm that the information collected was correct. Some minor changes
were proposed and integrated.
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Fig. 6. Categorization of test model generation

4.6 Limitations
The main threat to validity of our work lies in the review method, which did not follow existing
systematic guidelines strictly. As a result, there is a chance that some of the reviewed papers do
not meet a minimal quality criteria or that we missed some papers. To mitigate this threat, we
performed a comprehensive review process, including searching in online repositories, snowballing,
and contacting the authors of the reviewed papers for inaccuracies or missing publications. A
similar procedure was followed in related popular surveys (e.g., [166, 169, 215, 228, 260]). This
makes us confident in the correctness of the reported results. In any case, there may be additional
approaches, such as commercial ones, which are not accompanied by publications available in the
used databases. Thus, finding these may require multivocal literature reviews [200].
5 MODEL TRANSFORMATION TESTING (RQ1)
This section answers RQ1 (cf. Section 4.1). As explained in Section 3, we classify the MT testing
process in three phases: input model generation, test oracle definition, and test adequacy criteria.
There are papers that target only one phase, and papers that target more than one, in which case
we include them in all phases they target. Next, we summarize the papers and their categorization.
5.1 Test data generation
Test data—test models in our domain—are generated to exercise the MT under test as thoroughly
as possible. The categorization we propose for the generation of test models, largely based on the
classification of testing techniques proposed by Fraser and Rojas [198], is shown in Figure 6; while
the papers that fall under each category, together with some relevant features, are displayed in
Table 2. Regarding the table columns, category indicates the categorization of each study according
to Fig. 6. Inputs comprises those inputs needed by the approaches (‘*’ means it is needed), where
seeds refer to initial models needed as input. Features collect some interesting properties of the
approaches. Nothing appears in MT type and MT language when nothing is mentioned in the
paper. Regarding generation, it indicates whether the studies construct the models with a proposed
algorithm or they rely on third-party model finders (such as SAT solvers)—in the latter case, a
proposed algorithm likely orchestrates the whole process. Finally, under output we display the
model format in which the models are generated.

We have identified 60 primary studies that address the generation of test models—note that the
same study can fall under more than one subcategory, but we put each work in the one that best
represents it. For brevity, in the table as well as in the explanations below, we group papers of the
same authors that focus on the same line of work. The categories and the works falling under each
category are described below.

5.1.1 Black-box approaches. In black-box approaches, only the specification of the system under
test is required, which in the context of MTs refers to the source/target metamodels and, in some
cases, a specification of the MT. However, some primary studies proposing a black-box approach
focus on an MT language (cf. Table 2) for exemplary purposes. We further categorize black-box
studies in the following categories.
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Table 2. Approaches for test model generation (Testing Type => F: Functional; NF: Non-Functional;MT Lan-
guage => ACG: Auto-Code Generator; GTL: Graph Transformation Languages;Generation => Al: Algorithm;
MF: Model Finder)

Primary Study Inputs Features Output
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Burgueño et al. [20–22] B-MP * * * F M2M * MF USE
Gogolla et al. [45, 61] B-MP * * * F M2M * MF USE
Jahanbin et al. [63] B-MP * * F M2M * Al .model
Motu et al. [82] B-MP * * * F M2M Kermeta * MF
Nguyen et al. [87] B-MP * * * F M2M RTL * MF USE
Sen et al. [109, 110] B-MP * * * F M2M * MF EMF
Wu et al. [138, 139] B-MP * * * F * MF
Gogolla et al. [43] B-SD * * F M2M * MF USE
Guerra and Soeken [48, 52] B-SD * * * F M2M ATL * MF USE
Lamari et al. [73] B-SD * * * F M2M * Al
Popoola et al. [90] B-SD * F M2M Al
Runge et al. [94] B-SD * * F M2M Al
Sampath et al. [91, 96] B-SD * * F M2T ACG Al
Scheidgen et al. [101] B-SD * F M2M Al EMF
Almendros-Jiménez et al. [3] B-RG * * F M2M ATL * Al EMF
Ehrig et al. [36, 37] B-RG * F Al GGX
Fiorentini et al. [40] B-RG * * F M2M Al
He et al. [56–58, 140] B-RG * * NF M2M Al EMF
Nassar et al. [86] B-RG * NF M2M Henshin Al EMF
Gómez-Abajo et al. [46, 54] B-EM * * * F * Al EMF
Sen et al. [108] B-EM * * F * Al
Brottier et al. [17] B-EC * * F M2M Al
Min-Hue et al. [62] B-EC * * F M2M * MF TCSL
Semerath et al. [106, 107] B-EC * * * F M2M * MF EMF
Sen et al. [111] B-EC * * F M2M Any * MF EMF
Batot et al. [11] B-SB * * F * Al EMF
Rose and Poulding [93] B-SB * * F M2M ETL Al HUTN
Shelburg et al. [112] B-SB * * F M2M Al
Wang et al. [130] B-SB * * F M2M Al
Alsibahi et al. [1] W-SE * * * F M2M Any MF
Calegari and Delgado [23] W-SE * * F M2M QVT-R Al
Gonzalez and Cabot [47] W-SE * * * F M2M ATL * MF
Lengyel and Charaf [74] W-SE * * * F M2M GTL * Al
Mottu et al. [83] W-SE * * * F M2M Kermeta * MF
Nguyen et al. [88] W-SE * * * F M2M RTL * MF USE
Sánchez-Cuadrado [97] W-SE * * * * F M2M ATL * MF EMF
Schoenboeck et al. [103] W-SE * * * F M2M Any * MF
Stürmer et al. [113] W-SE * * F M2T TargetLink Al
Wang et al. [129] W-SE * * F M2M Tefkat Al EMF
Wieber et al. [131, 133] W-SE * * * F M2M GTL Al EMF
Aranega et al. [5] W-M * * * * F M2M Kermeta Al
Darabos et al. [32] W-SE * * F M2M GTL Al
Guerra et al. [53] W-M * * * F M2M ATL * MF EMF
Alkhazi et al. [2] W-SB * * * F M2M ATL * Al
Jilani et at. [65] W-SB * * * F M2M ATL * Al EMF
Sahin et al. [95] W-SB * * * F M2M ATL * Al EMF

Metamodel (MM) partitioning. Approaches in this category—based on the well-known testing
technique equivalence partitioning [198]—split the input metamodel into different partitions, so
that generated models must cover all these partitions and models that cover the same partitions
are considered equivalent. For instance, for the Class metamodel in Figure 2, a partition could
consider the DataType class, and another partition could include Class and Attribute classes. In
the works by Sen et al. [109, 110], metamodel partitions and constraints are both transformed
into Alloy [212] to generate a Boolean CNF formula and solve it using a SAT solver to obtain
the models. Wu et al. [138, 139] propose an approach in the same line, considering metamodel
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partitions and OCL constraints. Gogolla and Burgueño et al. apply metamodel partitioning by
employing the so-called classifying terms so that models generated are classified into equivalent
classes [20–22, 45, 61]. Classifying terms are represented as arbitrary OCL terms on a class model
that calculate a characteristic value for each object model [45, 61]. This approach is implemented
in the context of the UML-based Specification Environment (USE) tool [201]. Nguyen et al. [87]
also propose to use the classifying terms of Hilken et al. [61] for test models generation. Mottu
et al. [82] aim to discover new MT preconditions by generating a set of input models based on
input domain partitioning, for which the PRAMANA tool based on Alloy is used. Since some of
these models may be incorrect or incomplete, the execution of the transformation is analyzed to
correct or complete them. Finally, Jahanbin and Zamani [63] propose to enrich the Epsilon Model
Generation language (EMG) [90], which uses random operations for producing test models with
equivalence partitioning.
Specification-driven. Approaches in this category propose to generate models through specific
domain-specific languages (DSLs) or specifications. We find works that define the specification of
test models and others that define the specification of MTs. Gogolla et al. [43] propose to generate
input models using ASSL (A Snapshot Sequence Language), which is built as an extension of the
USE tool [201]. Lamari [73] proposes a formal language for the specification of MTs (MTSpecL) and
an accompanying tool. Guerra and Soeken [48, 52] extend the PAMOMO DSL [206] for test model
generation. Since a specification of the MT is used, and not the MT itself, the approach is classified
by its authors as black-box. This specification is translated to OCL expressions, which together
with the metamodel are fed to a SAT solver. Runge et al. [94] also use as input a specification
of the MT, this time in the form of visual contracts. They obtain the dependency graph for the
contracts and propose an algorithm to generate test cases from the graph based on maximizing
coverage. Scheidgen [101] defines a DSL called rcore that drives the model generation allowing to
specify how to deal with concrete choices, such as concrete multiplicities or chosen alternatives.
Popoola et al. [90] present the DSL and framework Epsilon Model Generation (EMG), aiming for
a semi-automated model generation approach. The validation of the generated models is left to
the tester. Finally, Sampath et al. [91, 96] focus on test model generation for testing auto-code
generators (ACG). They focus on covering not only the syntactic aspects of a translation, but its
semantics too. The approach needs as input a syntactic and semantic metamodel of a modeling
language expressed using inference rules and a test specification in the form of a coverage criterion
over the metamodel, and generates a test suite that can be used to test any code generator for
this language. In this context, a test case consists of a model, inputs to drive the model and the
corresponding outputs from the model.
Random. This category includes works that generate models (pseudo-)randomly, a common testing
strategy [198]. Ehrig et al. [36, 37] propose instance-generating graph grammars for creating
metamodel instances. They implement an MT algorithm that obtains an operational description of
the language defined by the metamodel. This allows deriving instances of an arbitrary metamodel
in a systematic and random way. The approach by Fiorentini et al. [40] supports exhaustive and
random generation for generating small models. The works by He et al. [56–58, 140] propose the
opposite: the generation of large randommodels for performance testing. Inputs to their approaches
are the metamodel and a configuration model that serves to specify structure-related constraints,
such as number of elements or constraints in the relationships. A similar performance testing
approach was proposed by Nassar et al. [86], where large EMF-conformant models are generated
applying transformation rules either randomly or following user preferences. Finally, the model
generator by Almendros-Jiménez and Becerra-Terón [3] generates models randomly satisfying
input OCL constraints, after the user indicates the number of elements to create in the models.
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Fig. 7. Mutation and Completion of existing models

Existing models - Mutation. This category groups those approaches where test models are created
by applying changes to existing models. This idea of creating test data by applying changes to
existing inputs is often called data perturbation [232] or data mutation [247]. Changes are driven
by so-called mutation operators, where each operator addresses a specific type of change to the
model, e.g., modifying attributes. An example is displayed in Fig. 7, which shows in the left-hand
side a model conformig to the Class metamodel of Fig. 2. In the top part of the right-hand-side we
can see a mutation of the model, where the name attribute of the DataType class has changed from
“String” to “Integer”. Sen and Baudry [108] synthesize a set of primitive mutation operators from
the metamodel as graph-grammar rules [195]. These rules are automatically obtained from any
metamodel using a proposed MT, where only operations of addition of elements, relationships and
attributes are considered. Further constraints on the metamodel are not considered in the rules.
Gómez-Abajo et al. [46, 54] present the domain-specific language WODEL for the specification and
generation of model mutants. WODEL provides dedicated language concepts for specifying model
mutation (such as deletion and addition of elements), item selection strategies (such as random),
and specific concepts for the composition of mutations.
Existing models - Completion. This category considers works where the model generation does not
start from scratch, but where existing models, typically called partial models, are completed or
extended to obtain new models. Please note that the concept of completing a model is very similar
to mutating it, where the mutations performed in the former are related to expanding the model
size and complexity. For instance, in the example shown in Fig. 7, we can see in the bottom part
of the right-hand-side how the model is completed by adding a new Class class, so that the class
whose name is car now inherits from this one. Brottier et al. [17] propose an algorithm that takes
an effective metamodel and fragments of models as input and produces a set of test models. The
effective metamodel is the part of the input metamodel that is relevant to the MT. Sen et al. [111]
provide a methodology to generate effective test models from partial models with a semi-automated
tool. In this context, a partial model is a model conforming to a relaxed version of the original
source metamodel of the MT. Partial models are automatically completed. Minh-Hue et al. [62]
propose to generate models in a modeling language named Test Case Specification Language (TCSL).
They start with a UML class model and a use case specified in the Use Case Specification Language
(USL). Test models expressed in TCSL are obtained by means of MTs and the solver in USE, all
orchestrated in their USLTG tool. Finally, Semerath et al. [106, 107] integrate a structural graph
solver using partial models with the Z3 SMT-solver [192] to generate models that fulfill structural
and attribute constraints. The approach is implemented in the VIATRA framework.
Search-based. Some approaches rely on search-based algorithms for the generation of models that
optimize one or more objectives, a well-known general testing approach referred to as search-
based testing [198, 228]. Rose and Poulding [93] adapt Poulding’s search-based algorithm [234] for
obtaining an optimised probability distribution over the models on which the transformation acts.
The optimised distribution is then employed to generate test models by using sampling techniques.
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Shelburg et al. [112] propose a multi-objective search-based approach to generate test models from
existing ones when the metamodel is modified. Objectives are maximizing the coverage of the
updated metamodel, minimizing the number of test model changes, and minimizing the number
of test model elements that do not conform to the new metamodel. Wang et al. [130] propose a
genetic algorithm to generate test models with the objectives: (𝑖) maximizing similarities with given
expected metrics’ values, (𝑖𝑖) maximizing metamodel coverage, and (𝑖𝑖𝑖) minimizing number of test
cases. It uses a mono-objective optimization algorithm. Finally, Batot et al. [11] apply search-based
multi-objective model generation. Input models are generated such that they target specific parts of
the metamodel tagged as mandatory, i.e., metamodel coverage is one objective. Several minimality
criteria are supported as additional optimization objectives in their approach.

5.1.2 White-box approaches. In these approaches, access to the source code of the MT is required
for testing. We further categorize white-box studies in the following categories.
Symbolic execution. This category, based on the standard testing technique symbolic execution [198],
includes proposals that analyze the MT implementation for generating test models that maximize a
certain coverage criteria. For instance, if a proposal aims to generate models that trigger all rules,
then, for the MT excerpt of Listing 1, there should be at least a model containing an object of type
DataType, so that rule 1 is triggered, and at least a model containing an object of type Attribute
that is not multivalued and whose type is an object of type DataType, so that rule 2 is triggered.
There are two papers that explicitly mention symbolic execution. First, Schoenboeck et al. [103]
propose TETRABox as a generic framework for execution-based white-box testing of MT languages.
The path constraints collected from the MT together with the source metamodel are used by the
UMLtoCSP constraint solver [179] to generate source models that fulfil all path constraints. The
other work is by Alsibahi et al. [1], who present a model finder that uses the relational constraint
solver KodKod [252] to check the existence of suitable models.
Some other related approaches are included in this category despite they do not explicitly

mention symbolic execution. Wang et al. [129] derive an effective metamodel by analyzing the MT
rules. They also identify representative values (classes, associations) from the MT rules based on
the effective metamodel. Furthermore, they generate so-called coverage items (combinations of
representative values). Based on this collected information, they finally generate test input models.
The approach by Gonzalez and Cabot [47] focuses on ATL. The MT is firstly analyzed and a

dependency graph is obtained. Then, this graph is traversed a number of times and, finally, test
cases are created using the EMFtoCSP tool [179]. Sánchez-Cuadrado [97] also focuses on ATL.
He uses static analysis, coverage analysis and model finding to generate test models (pairs of
input-output models). His approach needs a seed test model, which can be then extended to cover
the MT, for which the USE Model Validator [159] is used. This approach is implemented as a
new feature in the AnATLyzer tool [141] and is also used for debugging the MT (cf. Section 6).
Mottu et al. [83] propose an approach to statically analyze the MT in order to obtain a metamodel
footprint. This, plus other inputs such as OCL invariants, pre-conditions, and the input metamodel
are transformed to Alloy [212]. Calegari and Delgado [23] propose to use the dependencies graph
for generating test models not covering the whole transformation, but the minimal sets of rules
that satisfy every top rule. Similarly, Wieber et al. [131, 133] systematically generate so-called
requirement graph patterns from the MT to support test case construction and present a framework
for test generation based on Triple Graph Grammars (TGG) [241]. Their test generator produces
test cases consisting of pairs of test input models and expected output models. In the work by
Nguyen et al. [88], TGG rule dependencies are extracted and test cases are created for covering
all rule dependencies of declarative TGG rules. Then, as oracle, patterns for input/output test
conditions are transformed into OCL classifying terms with the USE tool [201]. In the approach by
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Lengyel and Charaf [74], generated test models cover all execution paths of the MT. To achieve
it, the proposed algorithms access the pre and postconditions of the MT rules, so they predict
whether the models to be generated exercise all MT rules. Finally, the work by Stürmer et al. [113]
deals with M2T transformations, and specifically with model-based code generators. Starting with
the transformation, which is expressed as graph rules, they generate test models (they call them
first-order test cases) and a set of corresponding test vectors for the models (which they call second-
order test cases), the latter being time-dependent. To generate the models, they systematically
partition the input space of the graph transformation rules into equivalence classes.
Mutation. This category includes those approaches that propose creating buggy variants (i.e.,
mutants) of the MT by applying syntactic changes to the implementation of the transformation.
This is an application of the well-know testing technique for general-purpose programs mutation
testing [215]. The MT mutants play an important part in the model generation process. An example
of a mutation in rule 1 of the Class2Relational MT excerpt of Listing 1 is displayed in Listing 2,
where the value given to the name attribute of the Type object created by the rule has been modified.
Three studies fit in this category. Darabos et al. [32] generate models (they call them test graphs)
based on a set of mutation rules applied on the rule’s preconditions. Aranega et al. [5] propose to
apply mutation analysis to semi-automatically improve an initial set of test models. The purpose
of this approach is to mutate the MT under test to generate a set of mutants. The initial set of
test models serves as input for these mutants. Guerra et al. [53] present a framework for effective
mutation testing for ATL. This framework allows to automatically generate mutants for any ATL
MT (cf. Section 5.3). Besides, it also allows to synthesize test models able to detect injected bugs in
ATL MTs.

Listing 2. Mutation in rule 1 of Class2Relational MT.
1 rule DataType2Type { -- Rule 1
2 from dt : Class!DataType
3 to t : Relational!Type (name <-'NewType ') -- Mutated; previously: (name <-dt.name)
4 }

Search-based. This category includes those papers proposing the use of search-based techniques
for test model generation. The approach by Jilani et at. [65] supports the generation of test input
models reflecting different coverage criteria such as statement coverage, branch coverage, and
multiple condition/decision coverage. Sahin et al. [95] formulate the MT testing problem as a
bi-level optimization problem [239] in order to integrate test case generation with mutation testing,
and focus on ATL MTs. The objective of the upper level is test case generation to provide a high
coverage of the source and target metamodels, and at the same time, to detect the bugs (i.e.,
mutants) in the MT introduced by the lower level. Hence, the objective is maximizing the number
of generated mutants that cannot be detected by the test cases. Finally, Alkhazi et al. [2] present the
first approach for test case selection in the context of MTs using multi-objective search. They employ
the non-dominated sorting genetic algorithm NSGA-II [193] to find the best trade-offs between
two conflicting objectives, namely maximizing MT rule coverage and minimizing execution time.
5.2 Test oracle
Test oracle approaches in the context of MTs depend on the available artefacts. For instance, if
the expected model is available, a straightforward oracle is comparing the obtained target model
with the expected model. When it is not available, the most common solution is to come up with
a set of properties that the generated models must fulfill. These properties are normally called
contracts or assertions. Approaches that propose contracts or assertions vary depending on the way
these are obtained. The proposed categorization of test oracle approaches—partially based on the
classification of test oracles proposed by Barr et al. [166]— is shown in Fig. 8. Table 3 displays the 43
primary studies that propose test oracle approaches. They are classified according to the categories
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Fig. 8. Categorization of techniques for oracle function

of Fig. 8 and some relevant features are displayed. For instance, we show whether approaches
support OCL and propose any DSL. Oracle column displays the type of oracle, mainly classified as
contracts, expected model or traces; and whether these can be obtained (semi)automatically by the
approach or they have to be manually specified—see table caption. In the following we describe all
categories and primary studies.
5.2.1 Contracts/assertions. Asmentioned before, the so-called contracts or assertions are properties
that themodels generated by anMT should satisfy. Otherwise, theMTmust contain errors. Typically,
these assertions are expressed as OCL conditions, so that it is straightforward to evaluate them
as true or false. Listing 3 displays a couple of OCL assertions for the MT excerpt of Listing 1. We
can see that classes of the source metamodel are prefixed by “Src”, while classes in the target
metamodel al prefixed by “Trg”. This is a common practice in some works [44, 122, 127]. There are
approaches that propose a language different than OCL for specifying such conditions, and the
way of obtaining the assertions or contracts can also differ depending on the proposal. Thus, we
categorize the approaches that propose the use of contracts or assertions as test oracles according
to the way in which these are defined or generated. We distinguish the following categories.

Listing 3. Sample OCL assertions for the Class2Relational MT.
1 --Assertion 1. For each DataType , a Type is created with the same name
2 SrcDataType.allInstances ()->forAll(d|TrgType.allInstances ()->exists(t|t.name=d.name))
3 --Assertion 2. For each single valued attribute whose type is a datatype , there must exist

a column with the same name
4 SrcAttribute.allInstances ()->collect(a|not(a.multiValued) and a.type.oclIsKindOf(

SrcDataType))->forAll(at|TrgColumn.allInstances ()->exists(c|c.name=at.name))

Metamorphic testing. This is a technique to alleviate the oracle problem [184, 242, 243]. It is based
on the idea that often it is simpler to reason about relations between two or more executions of the
program under test, than to fully formalise its input-output behavior [242]. In the context of MTs,
metamorphic testing has been applied to automatically infer assertions (so-called metamorphic
relations) that should hold between two or more executions of the MT under test. Let us explain
it with the example of Fig. 9 for our running example of Listing 1. We have a source model (SM)
and we do a controlled modification in it, such as adding or deleting elements, in order to obtain
the so-called follow-up source model (fuSM). When the MT is executed taking as input SM, we
obtain the target model (TM), while when we execute it taking as input the fuSM, we obtain the
follow-up target model (fuTM). In this context, a metamorphic relation (MR) is defined as a relation
among the four parts:𝑀𝑅 = 𝑅(𝑆𝑀, 𝑓 𝑢𝑆𝑀,𝑇𝑀, 𝑓 𝑢𝑇𝑀), such as the MR displayed in the figure. In
our example, we observe that the SM contains two DataTypes and an Attribute, and in the fuSM
one more DataType and one more Attribute have been added. When we execute the MT shown in
Listing 1 over the SM, we obtain the TM, which contains two Types and one Column. When the
input for the MT is the fuSM, it produces a fuTM that contains three Types and two Columns. In
the metamorphic relation shown in the figure, |𝑇𝑚 | indicates the number of elements of type T that
model m contains. Therefore, the MR in the figure can be read as “If two elements of type DataType
and one element of type Attribute are added in fuSM with respect to SM, then fuTM must contain
two more elements of type Type and one more element type Column than TM”.
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Table 3. Approaches for oracle function (Oracle=> C-M: Contract Manual; C-A: Contract Automatic; C-
SA: Contract Semiautomatic; E-M: Expected output Manual; E-A: Expected output Automatic; Tr-A: Trace
Automatic)

Primary Study Category
(Fig. 8) MT Type MT Lang. OCL

supported
DSL

proposed Oracle

Jiang et al. [64] C-MT M2M ATL * C-M
Troya et al. [123, 124] C-MT M2M ATL * C-A
He et al. [55] C-MT M2M ATL * C-M
Du et al. [34] C-MT M2M ATL * C-M
Cariou et al. [25] C-OCL M2M Any * C-M
Braga et al. [15, 16] C-OCL M2M Any * C-M
Gogolla and Vallecillo (et al.) [44, 127] C-OCL M2M Any * C-M
Cariou et atl. [24, 72] C-OCL M2M ATL * C-SA
Guerra et al. [48, 49, 52] C-OCL M2M Any * C-A
Nguyen et al. [87, 88] C-OCL M2M RTL * C-A
Selim et al. [105] C-OCL M2M ATL * C-A
Cheng and Tisi [26, 27] C-OCL M2M ATL * C-A
Sánchez-Cuadrado et al. [116] C-OCL M2M ATL * C-A
Wimmer and Burgueño [134] C-OCL M2T/T2M Any * C-M
Guerra et al. [51] C-DSL M2M QVT-R * PAMOMO C-M
Ciancone et al. [28, 29] C-DSL M2M QVTO MANTra C-M
Rodriguez-Echeverria et al. [92] C-DSL M2M ATL MoTe C-M
Anastasakis et al. [4] C-DSL M2M Alloy * Alloy C-M
Narayan and Karsai [85] C-DSL M2M GReAT GReAT C-M
Tiso et al. [119] C-DSL M2T Acceleo * Unnamed C-M
Bonfanti et al. [14] C-DSL M2T Xtext AsmetaL C-M
Guerra et al. [50] C-EMT M2M ETL * transML C-M
Mazanek et al. [78] MC-E M2M Any E-M
Wieber et al. [131] MC-E M2M Any E-A
Lin et al. [76] MC-E M2M ECL E-M
Tiso et al. [117] MC-E M2T Acceleo E-M
Stürmer et al. [113] MC-S M2T TargetLink E-A
Finot et al. [38, 81] MC-S M2M Any E-M
Kolovos [71] MC-S M2M ECL E-M
Kessentini et al. [68, 69] BE/TB M2M Kermeta E-A
Matragkas et al. [77] BE/TB M2M ETL Tr-A
Jörges and Steffen [66] BE/TB M2T CG Tr-A

The first work proposing to apply metamorphic testing for MTs is by Jiang et al. [64]. They
empirically demonstrated the feasible application of metamorphic testing for MTs, and metamor-
phic relations were defined manually. Later, Troya et al. [123, 124] automated the generation of
metamorphic relations, also expressed in OCL. This was possible by identifying a set of patterns
in the execution traces of MTs. He et al. [55] applied metamorphic testing to bidirectional MTs,
but they followed a different approach where testers must manually identify generic metamorphic
relations of the MT. Finally, Du et al. [34] proposed to combine metamorphic testing and bug
localization to debug MTs (cf. Section 6). For the metamporphic testing part, they rely on existing
works such as [55, 124].
Object Constraint Language (OCL). Here we describe papers that use or propose OCL contracts
(also called “assertions”) as test oracles. We first describe approaches that do not automate their
generation. The work by Cariou et al. [25] is the first that investigates and discusses the relevance
of OCL for defining MT contracts. Then, Braga et al. [15, 16] formalize the concept of contract
as transformation contract, which is essentially a transformation model. Similarly, Gogolla and

MT execution MT execution

SM DataType

AttributeDataType

fuSM

TM

Type

fuTM
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MR: |DataTypeSM|=(|DataTypefuSM|-2) and |AttributeSM|=(|AttributefuSM|-1) => |TypeTM|=(|TypefuTM|-2) and |ColumnTM|=(|ColumnfuTM|-1)
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Type
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DataType
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Type
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Fig. 9. Application of metamorphic testing in the context of model transformations
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Vallecillo (et al.) [44, 127] present the concept of Tract as a generalization of the concept of contract.
Tracts are OCL conditions that can be used to specify preconditions and postconditions on the
transformation as well as constraints that need to be satisfied by any pair of source/target models.
They propose the USE tool [201] to check the conformance of the tracts. This approach and tool
are used as oracle in some other works [22, 61, 134], where contracts need to be defined manually.
Finally, the work by Wimmer and Burgueño [134] proposes to test M2T/T2M transformations by
representing text within a generic metamodel.

Regarding works that propose a (semi-)automation in the generation of OCL contracts/assertions,
Cariou et al. [24, 72] propose a tool to help in the definition of the contracts, so that these can
be semi-automatically built. Guerra et al. [48, 49, 52] generate assertions from MTs specified in
PAMOMO. To do this, they provide a script that traverses all invariants and postconditions in the
MT specification and generate the corresponding OCL assertions. Nguyen et al. [87, 88] follow
a similar approach for the generation of OCL assertions. They apply the same scripts, but this
time for MTs specified in RTL (Restricted Transformation Language). There are a number of
works that implement approaches for ATL. Selim et al. [105] propose an approach to automatically
generate OCL contracts. For this, ATL MTs are first translated to transformation models [177].
Cheng and Tisi [26, 27] design sound natural deduction rules for ATL and apply these rules on the
postconditions of the MT to generate further OCL contracts. The approach helps the user pinpoint
the bug. Finally, Sánchez-Cuadrado et al. [116] present and automate a method to translate target
OCL constraints (constraints defined on the target metamodel of an MT) to the source metamodel
using information from ATL transformations. The method allows us to ensure that if a source
model satisfies the source constraints, the transformed target model will satisfy the target ones.
Domain-specific languages (DSLs). There are works that propose domain-specific languages to
specify assertions/contracts. In [51], PAMOMO is proposed to manually define visual contracts
specifying preconditions, postconditions, and invariants for the transformation. The visual contracts
are tested by translating them into the QVT-Relations language, and subsequently, using a QVT
engine in check-only mode. Ciancone et al. [28, 29] focus on testing QVTO transformations, for
which they present the MANTra proposal and tool. Assertions have to be manually defined, for
which MANTra provides an assertions API to define them. Rodriguez-Echeverria et al. [92] present a
DSL called MoTe for manually defining contracts with a semantics based on graph transformations.
The test oracle execution consists in the computation of precision and recall metrics for every
relation between input and output patterns defined by a contract. Anastasakis et al. [4] propose
to analyze MTs via Alloy. Assertions are manually defined using the so-called Alloy statements.
Narayan and Karsai [85] use the term correspondence rules for the contracts, which are manually
expressed as path expressions. In the context of M2T transformations, Tiso et al. [119] formulate
the oracles in terms of the properties of the generated text files, such as the structure of text
fragments or which files and folders must be present and how they are named. They propose a
DSL to manually define such oracles. Finally, Bonfanti et al. [14] present an M2T transformation
that implements a code generator from ASMs to C++, for which they use Xtext. Along with the
C++ generated code, they also obtain unit tests from the tests defined at model level in the ASMs.
The authors argue that these tests can validate the M2T transformation.
Embedded in MT. In this category we consider approaches that inject the definition of assertions
into the model transformation code. We include here the work by Guerra et al. [50], which analyzes
a formal specification of the MT. Assertions generated from patterns specifying pre-conditions
on input models are included in a dedicated pre section of the MT definition, while assertions
generated from patterns specifying correctness properties of the MT or of the expected output
models (so to speak post-conditions) are injected in a dedicated post section of the MT.
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Model comparison. The most intuitive way to check the output of a system is to compare it with the
expected output. Some approaches aim for equality, while others for similarity.
Equality. In the MT context, there are several approaches that propose to compare the output
model(s) with expected ones. There are some works that rely on EMFCompare [163] or existing
comparison procedures, like hash comparison and link creation, for comparing models [78, 131],
while others propose specific algorithms or techniques. For instance, Lin et al. [76] propose an
algorithm that provides an output based on new elements, deleted elements and changed elements
between the two models. Finally, Tiso et al. [117] present a testing framework for M2T transforma-
tions, where the oracle part is delegated to the developer, who needs to manually compare the text
generated with the expected text.
Similarity. Stürmer et al. [113] focus on M2T transformations by proposing the systematic testing
of model-based code generators. As oracle function, they propose to compare the test outputs of
the model with the test outputs of the resulting code. The comparison yields correct if a sufficiently
similar behavior of the outputs is observed, for which a signal comparison algorithm is proposed.
Finot et al. [38, 81] propose an approach to compute the difference between the output model
and a partial expected model, returning a difference model. Kolovos [71] presents the Epsilon
Comparison Language (ECL), a task-specific model management language that allows to develop
language-specific algorithms for establishing matches between different models. The result of
comparing two models with ECL is a trace mainly consisting of a number of rule matches that
basically indicates if the elements found in a model are present in the other.
By example / trace-based. Approaches in this category need to either inspect the trace model
generated by the MT execution—the concept of trace model is explained in Section 2 using our
running example—or the traces that the input and output may generate (such as in the case of code
generators). We identify three types of approaches in this category. First, Kessentini et al. [68, 69]
present an oracle function based on the notion that the more an MT deviates from well-known MT
examples, the more likely it is to be faulty. They compare the output model not with a corresponding
expected output for the given input model, but with an already available set of examples which
contain good quality MT traces from past MTs. The main benefit of this work is that it is not
necessary to have an expected output model. Second, Matragkas et al. [77] propose to enrich the
execution traces after the MT execution with domain-specific semantics and check for conformance
with respect to the MT specification. In this context, an MT generating non-conforming traces is
considered as erroneous and requires fixes. Finally, Jörges and Steffen [66] focus on testing code
generators. Since their input test models are executable, their approach proposes to obtain execution
traces from the input test models as well as execution traces from the source code generated from
the input test models by the code generator under test. A matcher compares the two execution
traces to check whether the same atomic actions occurred in the exact same order.
5.3 Test adequacy criteria
As explained in Section 3, test adequacy criteria measure the quality of a test suite with respect
to one or more objectives. Test adequacy criteria help in defining testing goals to be achieved
as a result of software testing, e.g. covering a certain percentage of code [168]. In the context of
MT testing, test adequacy criteria can be based, for example, on how well the input metamodel is
covered by the test models, or on how effective the oracle functions are on identifying synthetic
bugs (so-called mutants) introduced in the MT under test (cf. Fig. 4). Fig. 10 depicts the proposed
categorization of test adequacy criteria for MT, mostly inspired on the seminal survey on test
coverage and adequacy by Zhu et al. [263]. The 19 primary studies that propose approaches for test
adequacy criteria are displayed in Table 4, where they are grouped by categories (cf. Fig. 10). The
table also displays some relevant information of the studies, such as whether they support OCL,
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Fig. 10. Categorization of test adequacy criteria approaches

Table 4. Approaches for test adequacy criteria (Mutation => the approach proposes Manual (M), Partially
Automated (PA) or Automated (A) mutation of the MT; Coverage=> the approach proposes the coverage of
In/Out MM, Spc (MT Specification) or Imp (MT Implementation))

Primary Study Category
(Fig. 10) MT Type MT Language OCL

supported Mutation

Aranega et al. [5, 8, 9] MA M2M Kermeta M
Guerra et al. [53] MA M2M ATL * A
Kahn and Hassine [70] MA M2M ATL M
Mottu et al. [80] MA M2M Any M
Sánchez-Cuadrado et al. [99] MA M2M ATL * A
Troya et al. [120] MA M2M ATL PA

Coverage

Finot et al. [39] C-MM M2M Any * Out MM (Class, Asc, Attr)
Fleurey et al. [41] C-MM M2M Kermeta * In MM (Class, Asc, Attr)
Wang et al. [128] C-MM M2M Tefkat In-Out MM (Class, Asc, Attr)
Bauer et al. [12, 13] C-MTS M2M Any * MM (Class, Asc, Attr), Spc (contracts)
Tiso et al. [118] C-MTS M2T Acceleo * MM (Class, Asc, Attr), Spc (template)
Arifulina et al. [10] C-MTI M2M GTL Imp (rule, path)
Calegari and Delgado [23] C-MTI M2M QVT-R Imp (rule)
García et al. [42] C-MTI M2T MOFScript * Imp (rule)
Heckel et al. [59] C-MTI M2M GTL Imp (dataflow)
McQuillan and Power [79] C-MTI M2M ATL * Imp (rule, instruction, decision)
Wieber and Schürr [132] C-MTI M2M GTL Imp (pattern)

the type of coverage proposed or the mutation activity—see table caption. The different categories
and the primary studies are explained in the following.
5.3.1 Mutation analysis. Approaches in this category measure the effectiveness of test cases
according to their ability to detect bugs, for which they propose mutation analysis [215] as test
adequacy criteria. The idea is to generate buggy variants (i.e., mutants) of the model transformation
under test. These mutants contain one or more bugs. An example of mutation for rule 1 of the MT
shown in Listing 1 is displayed in Listing 2. The adequacy of the testing approach is measured
according to its ability to detect the mutants. It is noteworthy that some works apply mutation
analysis in order to evaluate their research contributions (such as [18, 39, 110, 122, 131, 133] and
many more)—in fact, mutation analysis is the most frequently used technique in the evaluations.
These works are not considered as primary studies in this category, since they do not advance the
state of the art in mutation analysis of MT, but they use existing proposals. Here we only include
those papers that present a contribution in the context of mutation analysis for MTs.

Mottu et al. [80] were the first authors to explore mutation analysis for MTs. They study potential
bugs that developers may introduce in MTs. They do not focus on a specific MT language, but
define a set of generic mutation operators for MTs based on model navigation, model’s elements
filtering, output model creation and input model modification. They give detailed explanations
of the mutations proposed. Aranega et al. [5, 8, 9] focus on the mutation operators presented by
Mottu et al. [80] and describe a way to systematically and automatically generate them for the
Kermeta language.

The works by Kahn and Hassine [70], Troya et al. [120], Sánchez-Cuadrado et al. [99] and Guerra
et al. [53] focus on mutation operators for ATL MTs. Kahn and Hassine [70] propose a set of 10
mutation operators that are mainly based on the operators presented by Mottu et al. [80]. They
exemplify the operators in an ATL MT example but do not provide means to automate them.
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Troya et al. [120] derive a systematic set of 18 ATL mutation operators by proposing a general
language-centric synthesis approach. They explain each of the mutation operators proposed and the
consequences they have in the generated output model(s). They also automate the generation of MT
mutants by realizing a framework that exploits the concept of Higher-Order Transformations [250],
but only describe the solution and implementation for a couple of mutants. Sánchez-Cuadrado
et al. [99] present a set of 27 mutation operators that they use to evaluate their AnATLyzer tool,
and they automate the mutants generation. Finally, Guerra et al. [53] revise mutation operators
proposed in the literature and, in addition, propose a new set of operators emulating the most
frequent typing errors in ATL transformations. Regarding operators proposed in the literature, they
integrate (𝑖) the operators presented by Troya et al. [120], which they name syntactic operators,
(𝑖𝑖) the operators proposed by Mottu et al. [80], which they name semantic operators, and (𝑖𝑖𝑖) the
operators presented by Sánchez-Cuadrado et al. [99], which they call typing operators. Furthermore,
they analyze the entire ATL zoo [142] in order to discover new mutation operators derived from
most common errors. For this, they use their AnATLyzer tool to discover errors in the MTs available
on the Zoo and extract a new set of mutation operators. This approach provides tool support for
the automated generation of a wide variety of ATL MT mutants.

5.3.2 Coverage-based. This category includes those papers that propose to measure the effective-
ness of a testing approach for MTs according to its ability to cover the input/output metamodels
and/or the MT under test. We collect papers in the following three categories.
Metamodel coverage. This includes the papers measuring test adequacy according to the portion of
the input/output metamodels covered. As an example of this kind of coverage, the model obtained
by completion in the bottom of the right-hand-side of Fig. 7 covers a larger part of the metamodel
than the model in the left-hand side because it additionally includes (i) a Class instance whose
isAbstract attribute is set to false and (ii) a relationship of type super. Wang et al. [128] study how
much the MT under test is covering the input and output metamodels. They measure coverage
from different perspectives, such as feature coverage, inheritance coverage, association coverage,
model element coverage and metamodel coverage; and they propose an algorithm to compute
them. Fleurey et al. [41] propose to measure the quality of a set of test models by measuring how
much they cover the input metamodel, which they propose to measure in terms of class coverage,
attribute coverage, and association coverage. Finot et al. [39] propose to compute the coverage of
the output metamodel. They measure the elements of the output metamodel that are exercised by
the oracle. The metamodel coverage is measured as proposed by Fleurey et al. [41].
Model transformation specification coverage. Approaches in this category measure the adequacy
of the testing approach based on the portion of the MT specification covered. These approaches
are typically used to test the adequacy of test oracles. Bauer et al. [12, 13] present a coverage
analysis approach for measuring test suite quality for MT chains. They focus on the coverage
of the metamodel and a specification of the transformation chain expressed by contracts that
specify conditions for the models used and created by the MT. To compute coverage, footprints are
extracted for the test cases, which contain the main characteristics of the test case execution. Tiso
et al. [118] discuss coverage in the context of M2T transformations. Despite they do not present
any specific approach, they describe a coverage criterion that checks that the various templates on
the preconditions of the rules are instantiated on the input models.
Model transformation implementation coverage. We include here those works that focus on coverage
of the MT under test. Wieber and Schürr [132] focus on the coverage of the pattern matching
in graph transformations. Their basic idea is to stimulate the pattern matching engine so that
combinations of variable binding and unbinding steps do occur. Heckel et al. [59] and Arifulina et
al. [10] also deal with graph transformations. The former propose a data-flow coverage approach
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Fig. 11. Classification of debugging techniques
Table 5. Approaches for model transformation debugging (Contracts: the approach proposes contracts
to check the presence of errors; SbS: the approach allows step-by-step debugging; Activity => BL: Bug
Localization; BF: Bug Fix)

Primary Study Category
(Fig. 11) MT Type MT Lang. OCL

supported
DSL

proposed Contracts SbS Activity

Ege and Tichy [35] D-MB M2M Any graphical BL & BF
Jukss et al. [67] D-MB M2M Any * AToMPM * BL
Mészáros et al. [84] D-MB M2M GTL VMTS * BL
Schönböck et al. [103] D-MB M2M Any * PaMoMo * BL
Wimmer et al. [102, 104, 135–137] D-MB M2M QVT-R * TROPIC * * BL
Du et al. [34] D-SB M2M ATL * * BL
Li et at. [75] D-SB M2M ATL * * BL
Troya et al. [121, 122] D-SB M2M ATL * * BL
Aranega et al. [6, 7] D-TB M2M QVTO * BL
Corley et al. [30, 31] D-TB M2M MoTif * BL
Dhoolia et al. [33] D-TB M2T Any * BL
García et al. [42] D-TB M2T MOFScript * BL
Hibberd et al. [60] D-TB M2M Tefkat * BL
Ujhelyi et al. [125, 126] D-TB M2M VIATRA2 BL
Sánchez-Cuadrado et al. [97–100, 114, 115] S-TI M2M ATL * BL
Burgueño et al. [18, 19] S-F M2M ATL * * BL
Oakes et al. [89] S-SE M2M DSLTrans * BL

implemented by generating a dependency graph between the rules that registers whether a rule
creates/deletes/updates an element, while the latter produce an invocation graph representing all
possible sequences of rules that can result from executing every possible input model. McQuillan
and Power [79] define coverage measures for ATL MTs. For this, they first propose processing
the compiled ATL transformations (i.e., instructions for the ATL VM) to collect information such
as operations, branch locations, etc. Then, they run the transformation and process the resulting
log file to estimate the actual coverage for the executed transformation. They present three types
of coverage metrics: rule coverage, instruction coverage and decision coverage. Calegari and
Delgado [23] focus on QVT-Relations transformations and define a test adequacy criteria based
on the coverage of every possible rule chain and, thus, the whole MT. Finally, García et al. [42]
deal with M2T transformations in the MOFScript language. They argue that the transformation
coverage by the test suite may be informed based on the executed transformation lines, so the
approach builds on trace models (cf. Section 2), and coverage is conducted at the rule level.
6 MODEL TRANSFORMATION DEBUGGING (RQ2)
This section aims to answer RQ2. As described in our conceptual model, debugging focuses on
locating and fixing bugs in the MT, often starting from the failures observed during testing. Fig. 11
depicts the proposed classification for approaches on MT debugging, partially inspired on the
survey on fault localization by Wong et al. [260]. Table 5 displays the 31 primary studies that
propose debugging approaches, classified by the categories of Fig. 11. Some interesting properties
of the studies are also displayed—see table caption. The different categories as well as the primary
studies are summarized in the following.
6.1 Dynamic approaches
This category includes approaches where the model transformation needs to be executed in order
to debug it. This means that a model transformation engine as well as a (set of) input model(s) need
to be available. We further classify these papers in the following categories:
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Model-based. Approaches in this category typically propose a modeling notation in order to debug
the model transformation, claiming to perform debugging at model level. The works by Wimmer
et al. [135–137] and by Schönböck et al. [102, 104] propose a model-based debugger representing
QVT Relations on basis of TROPIC, a transformation language representing a variant of Colored
Petri Nets (CPNs). In order to provide a convenient debugging environment, TROPIC aims for a
dedicated view on all artifacts of a transformation, i.e., the metamodels, models, and transformation
logic. This is possible by having a dedicated runtime model which also enables the investigation of
each operational step of a MT. Later, Schönböck et al. [103] employ their Pattern-based Modeling
Language for Model Transformations (PAMOMO) to compute failure traces that can be mapped
back to the MT implementation as an input for further debugging steps. Jukss et al. [67] describe a
layered approach to debugging by mapping familiar debugging operations to different formalisms
in order to raise the abstraction for debugging to a similar level as the models being transformed.
Declarative queries can be performed during the debugging session. This approach is evaluated by
an implementation in AToMPM [227], a browser-based tool for Multi-Paradigm Modeling.
A couple of approaches base their model-based debugging mechanisms on a graphical syntax.

Mészáros et al. [84] present a visual model transformation debugger realized in the Visual Modeling
and Transformation System. The solution facilitates the step-by-step execution of model transfor-
mations, the visualization of the overall state of the transformation and also supports individual
matches. In addition, the transformations can be dynamically updated when being executed which
allows for interesting debugging possibilities. Ege and Tichy [35] present an approach for debugging
visual declarative model transformation languages. It proposes to highlight the parts of the MT
that likely need a change. It also proposes changes to the models and MT for repair.
Spectrum-based Fault Localizatoin (SBFL). SBFL is a testing technique that uses the results of test
cases and their corresponding code coverage information to estimate the likelihood of each program
component of being faulty [260]. We have included it as a category since several works have applied
it in the context of model transformation. The recent works by Troya et al. [121, 122] were the first
ones applying this technique in the context of MTs, obtaining promising results. They propose
to apply SBFL to MTs by using the model transformation rules as program components under
examination. By executing the MT under test with a number of input models, some executions result
in success and some other in failure according to an oracle composed of OCL assertions that pairs of
<input,output>models must satisfy.With the results given by the oracle as well as the rules triggered
when executing the transformation with different input models, the so-called coverage matrix and
error vector can be built. With different mathematical formulae proposed in the literature [260],
transformation rules are ranked according to their likelyhood in containing a bug [121, 122]. Later,
Li et at. [75] present a similar approach, where they propose to use weighted test models as well as
weighted rule coverage to improve the performance of SBFL. Finally, Du et al. [34] propose to apply
SBFL without the need to count on an oracle. To achieve this, the oracle is obtained by applying
metamorphic testing techniques [242], similar as it is done in [124] (cf. Section 5.2).
Trace-based. We group in this category all dynamic approaches that make use of the trace model in
the debugging process (cf. Section 2 for the definition of trace models). Most dynamic approaches
for MT debugging make use of traces. For instance, approaches in the category of SBFL need to
check which rules were executed, for which they need to look into the traces. However, we include
in this trace-based category those approaches whose main contribution in MT debugging is the use
of traces or the way of constructing them.
Hibberd et al. [60] coin the term forensic debugging of MTs to refer to ad-hoc debugging, i.e.,

debugging once the model transformation execution finishes. They do not propose an approach
to forensic debugging, but classify MT bugs and explore debugging approaches. In their study,
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they highlight that the trace of a MT is a key-enabling factor. They argue that the information
provided by the traces of MTs can be leveraged for more effective post-hoc debugging techniques
than it is possible with traditional languages. In the works by Aranega et al. [6, 7], local and global
traces are built during the MT execution. When there is an error in the output model, the traces are
inspected by an algorithm until a set of likely buggy rules is found. However the exact localization
of the actual buggy rule is manually done. Ujhelyi et al. [125, 126] present a dynamic backward
slicing approach for MT implementations and their associated models by exploiting the generated
execution trace models of MT engines. Corley et al. [30, 31] apply omniscient debugging to MTs.
According to the authors, omniscient debugging is a natural extension of stepwise execution that
enables reverse execution. The authors define a trace-based omniscient debugger that supports
basic omniscient debugging features such as backwards execution for MTs.

There are a couple of works that aim at debugging model-to-text (M2T) transformations. García
et al.’s work [42] heavily rests on trace models, which capture a ternary relationship between the
source model elements, the elements of the MT, and the produced code (i.e., text). The authors
choose MOFScript as the M2T transformation language, and complement MOFScript’s native
trace model with an additional trace model that enables full fine-grained traceability between MT
elements and locations in generated text files. The other approach is by Dhoolia et al. [33], who
associate taint marks with input model element, and propagate them using an instrumented model
transformer, to generate a taint log, in which taint marks are associated with substrings of the
output. Any erroneous substring in the output, or the location of a missing output, may thus be
associated with a taint mark and projected back to the related input model element(s).
6.2 Static approaches
This category includes approaches where the MT is not executed in order to debug it. We further
classify these papers in the following categories:
Type inference. This category groups the works by Sánchez-Cuadrado et al. [97–100, 114, 115]. They
present a method for statically analysing ATL MTs, especially to find typing and other errors such
as unresolved bindings, uninitialized features, or conflicting rules. Their approach is based on static
analysis and type inference. Furthermore, by using a constraint solver, it can be checked if there is
actually a possible source model triggering the execution of a buggy statement. To evaluate the
usefulness of the proposed method, the authors have implemented the approach in a tool named
AnATLyzer, which aims for a test-driven development of ATL MTs [97], and analysed the entire
ATL zoo [142]. AnATLyzer identified a huge number of errors in the existing MTs which shows the
need for such tool support for MTs and has been employed for the test-driven development of MTs.
Footprints. The works by Burgueño et al. [18, 19] present a static approach for locating buggy rules
in MTs. Tracts [44, 127] are used to express conditions that the MT must satisfy. By extracting the
footprints, i.e., metamodel elements, used in the tracts and in the MT rules, matching functions are
constructed to automatically generate alignments between MT specifications and implementations.
Such alignments are key for interpreting the testing results, i.e., the result of the tracts evaluation.
Symbolic execution. There is only one work that applies symbolic execution for debugging MTs [89].
The approach presented is integrated within the SyVOLT tool, which verifies DSLTrans transfor-
mations. This is achieved by generating the full state space for a MT, i.e., reflecting all possible
executions, which allows to prove structural contracts for the MT. SyVOLT allows to detect and
even localize errors in both artefact types: in the implementation and in the contracts of the MT.
7 EXPERIMENTAL EVALUATIONS (RQ3)
In order to reply to RQ3, we have analyzed the evaluations performed in the primary studies, where
we specially focus on the case studies used. Besides, we have analyzed the tools proposed for MT
testing and debugging and those used in the experimental evaluations.
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Table 6. Reported tools

Name Description Studies Language Last update

AnATLyzer [141] Static analysis of ATL transformations [98–100, 114–116] Java 2020
AToMPM [227] Generation of modeling web-based tools [30, 67] JS/Python 2021
DSLTrans [143] Contract-based language verification [89] Java 2020
Eclipse Epsilon [144] Model generation and comparison [71, 90] Java
EMF Model Generator [145] Large EMF models generator [86] Java 2019
EMFtoCSP [146] Automatic verification of UML/EMF models [47] Java 2018
MDE Testing [148] Mutation testing tool for ATL [53] Java 2020
MRs4MTgenerator [149] Generation of metamorphic relations [124] Java 2017
PAMOMO [150] Pattern-based inter-modelling [49, 50, 52] Java 2010
PRAMANA [151] Generation of models using Alloy [82, 83, 111] Java
Not named [156] Generation of model transformation mutants [120] Java
Not named [157] Model constraint mutation (USE extension) [20] Java 2019
Not named [158] Automated generation of models [57, 140] Java 2018
RandomEMF [152] Random model generation [101] Java 2015
SBFL_MT [153] Spectrum-based fault localization [122] Java 2017
SymexTRON [154] White-box test case generation [1] Scala 2016
TracsTool [155] Black-box checking of M2M transformations [19, 134] Java
USE [159] UML/OCL System specification and validation [20–22, 43–45, 61] Java 2020
VIATRA Generator [160] Graph solver for consistent model generation [106, 107] Java 2021
WODEL [161] Automated generation of model mutants. [46, 54] Java 2020

7.1 Tools
The available tool support is typically a good indicator of the maturity of a research field. To this
end, we studied the tools reported in the empirical evaluations of the primary studies. Specifically,
86 out of the 140 primary studies mentioned some kind of tool support, although many of them
were not publicly available at the time this survey was conducted (links to the available tools are
provided on the companion website [254]).

Table 6 shows the tools presented in the primary studies that are available at the time of writing
this survey. For each tool, the table shows its name (if any), brief description, primary studies
using them, and the year of the last update (if available). As illustrated, the most popular tools
are USE [159]—a modeling tool for system specification and validation using a subset of UML and
OCL, and AnATLyzer [141]—a static analysis tool for ATL transformations, referenced in 7 and 6
primary studies, respectively. Conversely, 10 tools were referenced only once. Interestingly, only
two tools, USE and Eclipse Epsilon, were used by different groups of authors. This suggests that
existing tool support is scattered and mostly exploited by the groups where they were developed.
A vast majority of the tools are written in Java, which places it as the dominant programming
language. We managed to access the source code of all the tools except of one. Only 7 tools had
been updated in the 18 months prior to writing this survey.
7.2 Case studies
We have identified 153 different case studies, out of which 24 come from industry, 123 do not, and
we could not identify the nature of the remaining 6. For the 24 cases coming from industry, we
must remark that the study was always performed outside the industrial setting.

Table 7 presents the case studies that have been used in at least three different studies. For each
case study, we show the primary studies in which it has been used, the number of studies (column
# Studies for readability purposes), and the languages in which it has been implemented. It is worth
noting that none of these frequently-used case studies comes from industry, that all transformation
scenarios focus on out-place M2M transformations and that most of them target the ATL language.
Several case studies address similar domains with slight differences. In particular, the database
domain is the most widely targeted, which includes the case studies: Class2RDBMS, Class2Relational,
UML2ER, SimplyUML2Rel, and JavaSource2Table.

Apart from the 13 case studies presented in Table 7, we identified another 13 case studies which are
each used in two papers (ER2ReL, Simplified StateChart MM, extlibrary MM, KM32EMF, Ant2Maven,
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Table 7. Most-used case studies

Case study Studies # Studies Languages Size

BibTex2DocBook [2, 18, 21, 22, 45, 52, 61, 75, 87, 100, 122] 11 ATL 9 rules, 4 helpers
Class2RDBMS [5, 9, 41, 65, 80–83, 109, 110] 10 ATL, Kermeta 1 rule, 6 helpers (ATL)
Class2Relational [34, 49, 53, 64, 72, 100, 121, 123, 124] 9 ATL 7 rules
UML2ER [2, 18, 19, 34, 53, 75, 92, 102, 122] 9 ATL 8 rules
Families2Persons [3, 18, 19, 22, 44, 45, 61, 100, 127] 9 ATL 2 rules, 2 helpers
CPL2SPL [2, 18, 53, 98, 114, 122] 6 ATL 19 rules
HSM2FSM [26, 27, 53, 55, 116] 5 XMU 6 rules
PetriNet2PNML [34, 98, 120, 124] 4 ATL 4 rules
Ecore2Maude [2, 18, 75, 122] 4 ATL 39 rules
Book2Publication [3, 28, 29, 100] 4 ATL, QVT-O 1 rule, 3 helpers (ATL)
Families2Persons Extended [34, 89, 124] 3 ATL 10 rules
SimplyUML2Rel [128–130] 3 Tefkat 6 rules
JavaSource2Table [57, 100, 140] 3 ATL 4 rules, 2 helpers

Maven2Ant, Gaspard transformation chain, SAMM2KLAPER, BPMN2PetriNets, UML2BPMN, UML2Java,
Class2Rel and Ecore). The remaining case studies were used only in one paper.

With respect to industrial case studies, we observed that only 7 out of 140 primary studies contain
at least one industrial case study and only one (UML2Java) was re-used in two papers [27, 134].
8 CHALLENGES (RQ4)
In this section, we derive several open research challenges in the field of MT testing and debugging
as synthesis from our survey results. For each challenge, we provide a name, a description of what
is currently missing, and potential directions with concrete action points to improve this situation.
Challenge 1: Exemplars for MT Testing and Debugging. Currently, there are several transfor-
mations reused across different languages and studies—as those suggested at events such as [171]—
for performing research on MT testing and debugging (cf. previous section). However, the reused
information mostly concerns the pure MT implementation itself. Most often, input models, trans-
formation specifications, and potential transformations errors are redeveloped from scratch for
each study, which is of course a major obstacle for comparison and future studies as also reported
in other specialized fields of testing, such as compiler testing [183].

Action Points. In addition to existing MT collections such as the ATL Transformation Zoo, the
community may establish additional repositories where transformation testing and debugging
packages are available. This is successfully done in related fields such as for general-purpose
programming languages, e.g., see Siemens Suite2 and Defects4j3. These types of collections typically
include buggy programs with well-documented real-world bugs. Based on such collections, existing
approaches may be more systematically compared according to their ability to detect and/or locate
these bugs. As a starting point, one may collect the cases used in the previous studies discussed in
this survey and provide them in a consolidated way.
Challenge 2: Generalization of existingApproaches toMTTesting andDebugging.Current
research conducted in this field is mostly language-specific. As we have seen in the results, there
are prominent MT languages in the previous studies for which dedicated support is developed.
However, it is still unclear which concepts and techniques may be reused for other languages as
well and what their concrete performances are.

Action Points. Further secondary studies are required to reason about more general concepts
which may be applied for all MT languages or at least for a certain category of MTs such as in-place
or out-place transformations. While metamodel-based techniques such as black-box test generation
seem reusable out-of-the-box based on standardized languages for metamodeling, transformation-
based techniques such as white-box test generation seem more challenging to abstract without
having a common transformation formalism. Finally, at least guidelines would be important for
2http://sir.csc.ncsu.edu/portal/bios/tcas.php#siemens
3https://github.com/rjust/defects4j
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the community for making decisions about how to realize a testing and debugging approach for a
particular MT language. Our feature model for evaluating existing approaches may be a first starting
point, but a more explicit decision model with some reusable technologies would be interesting to
speed-up the development of MT testing and debugging frameworks—see also Challenge 10.
Challenge 3: Going beyond Functional Tests. Although the community is starting to pay
attention to issues beyond functionality (e.g., [204, 205]), research on functional testing is dominant.
However, we also found 5 primary studies [56–58, 86, 140], four from the same group of authors,
which consider performance tests. Testing and debugging non-functional properties of MTs may
be of importance for future work as the performance of MTs has been identified by the community
as one of the reasons preventing the adoption of MT languages [176]. Interestingly, there is not a
single work on testing other quality characteristics such as usability or interoperability of MTs.
Finally, it is also worth mentioning that although the parallel execution of model transformations is
supported by emerging approaches [240, 251], not a single work on testing and debugging considers
the parallel execution of MTs, which is in contrast to the general field of software testing [198].

Action Points. Going beyond functional tests for sequential model transformation executions
requires novel approaches for MT testing and debugging potentially providing new test model
generators—or at least strategies—as well as new adequacy criteria and contract languages. The
same is true for locating issues in MTs, here enhanced and integrated tool support is needed, e.g.,
execution profilers for MT engines when it comes to performance testing.
Challenge 4: Going beyond M2M Transformations. Only 11 of our primary studies address
the testing of M2T transformations [14, 33, 42, 66, 91, 96, 113, 117–119, 134], and only one can be
applied for T2M transformations [134]. This must be partly due to the assumption that everything
is explicitly modeled, i.e., having injector/extractors between models and text-based artefacts—but
still, these components would have to be tested as well.

Action Points. The challenge here is not only to provide effective support to testing and
debugging M2T and T2M transformations, but also to improve the languages to write these MTs as
they are often realized with imperative MT languages such as template-based languages which
are consuming or producing simple text. Moreover, more specific MT languages are used in model
management such as in the Epsilon language family [144], e.g., for model comparison or merging.
This is a clear application niche in which MTs are a piece of a wider and more ambitious architecture
where, based on our survey results, testing and debugging is under-explored despite the specific
nature of domain-specific MTs may allow for dedicated support due to their specific scope.
Challenge 5: Test Case Generation and Test Process Optimization. Tools that generate input
models for MTs are of major importance. There are several approaches for input model generation
that manage to cover major parts of the input metamodel and MT. Many of them also accept
invariants and pre/postconditions. However, most of them apply constraint solvers to obtain the
models, which do not scale well. At the same time, approaches based on search-based techniques
mostly depart from already available models. Finally, many model generation approaches are
general techniques, even if they are discussed for particular MT types and languages. On the one
hand, this allows us to reuse them in many settings, but on the other hand, they are not deeply
integrated into the test process, e.g., to optimize the generated models for specific testing objectives.

Action Points.We believe that there is an opportunity for further research related to search-
basedmodel generators.With the proliferation ofmany-objective algorithms [209], the generation of
models may be driven by the optimization ofmany objectives. These could additionally overcome the
performance limitations of constraint solvers, e.g., aiming for hybrid model generation approaches,
and finally, also deal with test case selection, prioritization, and minimization [198, 261] as known
from the general field of software testing, which is also an important future research line to better
support regression testing of MTs. Finally, further research may be needed on how to link test case
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generation with the test process such as generating only models which find new issues in MTs or,
at least, do not produce the same issues again and again.
Challenge 6: Usability and Expressiveness of Contract Languages. As already discussed in a
previous study [244], the contract languages used for MTs are of high importance. In our study, we
could identify the reuse of already existing languages such as OCL or graph patterns—for instance,
14 primary studies reuse OCL as the main language for defining oracle functions.

Action Points. While the reuse of existing approaches enables the use of expressive languages
which may be already supported by different tools, the question is if they provide the right level of
usability for testing and debugging of MTs. We could not find empirical studies about the usage
of these languages by transformation developers going beyond the research teams proposing the
dedicated approaches. Also, the combination of graph patterns and OCL seems important in the
future to allow developers to explicitly express certain model patterns as well as to define complex
constraints for the oracle functions which may require the usage of a text-based language such as
OCL. Further comparison studies are needed to shed more light on these practical aspects.
Challenge 7: From Testing to Debugging and Back Again. Current approaches are either
focusing on MT testing or debugging, but the link between these two phases is mostly not explored.
How testing may further help locating a bug by generating more specific input models and how
debugging may help for regression testing has not been subject for extensive research concerning
MTs. For instance, we did not find a single approach for prioritizing bugs in MTs, a topic which
clearly falls in the intersection of testing and debugging.

Action Points. Dedicated interfaces between testing and debugging processes may be required
to stimulate the information exchange between these two phases. Especially, the combination of
spectrum-based approaches and test model generation strategies seem promising to be combined.
It may also stimulate further dedicated approaches which go into the direction of automated bug
fixing in MTs which currently have been only sparsely considered in this area by one work [35].
Challenge 8: Reusable and Realistic Evaluation Methods. As concluded from Section 7, we
consider the evaluation of approaches for MT testing and debugging as another challenge that
must be addressed with appropriate methods. In this respect, we have seen that only a few case
studies (27 out of 159) come from industry, and most of them are small-scale. Besides, most
approaches use only one case study to validate their approach. We consider as an important
challenge the use of realistic case studies, instead of small-scale academic examples. Mutation
seems to be the major evaluation technique, since at least 17 primary studies apply it in their
evaluation [5, 8, 9, 18, 26, 27, 34, 48, 55, 57, 64, 70, 83, 110, 111, 124, 131].

Action Points.We foresee more research on tools for automating the whole evaluation process,
i.e., generating mutants and calculating the mutation score of a set of test cases. The mutation
operators proposed by Mottu et al. [80] have been used in the evaluation of several approaches.
These operators are generic and not described in the context of any particular MT language, so
they are often not automated. This means that mutants must be (manually) obtained for specific
MT languages. However, mutations may be again considered as MTs for automation purposes.
This is provided for ATL by the work of Sánchez-Cuadrado et al. [53, 98–100] which automate the
generation of a large set of mutants by using several different mutation operators [70, 80, 120].
Having dedicated guidelines how to conduct such mutations and their usage for evaluation purposes
for MT languages in general may be of high interest—especially combined with the availability of
the exemplars as discussed in Challenge 1.
Challenge 9: Baseline Technology Infrastructure. The MT community benefits from stable
MDE baseline technologies, e.g., see USE and anATLyzer as two very positive examples which are
used in several research works. Such tools are of high relevance to bootstrap other techniques for
testing and debugging as they provide base support which can be reused. Moreover, this challenge
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also relates to baseline support in existing MT engines for testing and debugging. Currently, MT
engines are running the whole MTs at once to produce the output models from the input models
which is not handy for fine-grained testing, e.g., for testing explicit rules for particular behavior.

Action Points.With our set of primary studies, we see that authors tend to use already available
infrastructures. Indeed, some approaches can be helpful to evaluate some other approaches. For
instance, it is useful to use MT mutants for evaluating the efficiency of a test model generator.
Similarly, an input model generator is very important for evaluating test oracles. Therefore, making
mature tools available and sharing them with other researchers and practitioners of MT testing and
debugging is another challenge ahead. Furthermore, having open tools which employ some stan-
dards for representing input and output artefacts are beneficial, e.g., for building bridges between
different tools and formats required for covering larger portions of the testing and debugging pro-
cesses. Finally, extending existing MT engines with dedicated interfaces for testing and debugging
is a must in order to support more fine-grained capabilities in testing and debugging frameworks
for MTs in the future, see the following challenge.
Challenge 10: Comprehensive Testing and Debugging Frameworks. There is a lack of actual
automated testing and debugging frameworks for MT as they are available for general-purpose
programming languages. Such frameworks should define a simple way to write test cases, run them,
and generate test results reports. For instance, JUnit can be easily integrated with any approach for
the generation of test cases or test oracles. It would be important to have similar frameworks in the
context of MTs, perhaps extending JUnit (as REST Assured4 in the context of Web APIs).

Action Points.A future line which seems interesting to explore is to reuse ideas from executable
modeling language engineering which provide not only the execution engine for a given language
but also additional tools such as a debugger, logger, etc. Based on such meta-frameworks, MT
languagesmay be recreated in order to provide out-of-the-box tool support for testing and debugging
as well as dedicated interfaces for additional tool support [147, 173, 219].
Challenge 11: MT Testing and Debugging Unit.Most of the existing approaches surveyed in
this paper consider the full transformation as one unit when it comes to testing and debugging. For
instance, oracles are developed for the full transformation independently from the transformation
implementation. As a consequence, additional approaches for finding the links between oracles and
transformation rules are required when it comes to debugging. We only found very few approaches
for testing transformations which deal with unit tests on the transformation rule level. A few
other approaches consider integration tests of full transformation units when running a chain of
transformations, i.e., a sequence of different transformations which are feeding each other, which
is a more course-grained understanding of the unit concept.

Action Points. For the future, language extensions for developing more fine-grained unit tests
for MTs are a promising target. In addition, best practices to test rules in isolation and having
integration tests for different rules up to systems tests considering transformation chains are
needed. Such best practices in combination with enhanced MT engines, cf. Challenge 9, allow for
additional testing strategies known from software testing going beyond testing for success, i.e.,
intended output has been produced for valid input. For instance, testing for failure is currently
only supported by checking contracts before running a transformation as an additional step, but
these contracts may be injected to the transformation implementation as assertions to have them
manifested in the transformation. Moreover, ideas from bi-directional transformations [248] may
be employed even for uni-directional transformations to support testing for sanity. Currently,
developing complete bi-directional transformations is considered expensive, but for certain rules

4https://rest-assured.io/
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which are considered important it may be affordable to define a bi-directional contract which can
be used to check a forward transformation rule as well as a backward transformation rule.
9 CONCLUSION
In this paper, we have surveyed the state of the art in MT testing and debugging. We have studied
140 primary studies, classified them, and investigated their experimental evaluation methods and
subjects. When revisiting the challenges outlined more than a decade ago [168], we can conclude
that there has been much progress on generating test input models, dedicated oracle languages
for MTs, and also some progress on test adequacy criteria. However, we also identified challenges
which still have to be tackled in the future, e.g., tool support in testing and debugging is still
scattered and mostly simplistic case studies are used for evaluations.

In order to reach the next generation of testing and debugging tools for MTs, we have identified
several promising research lines. For instance, we believe it is interesting to count on exemplars
for MT testing and debugging with dedicated packages available on open repositories. It is also
important to develop techniques applicable to different MT languages, to go beyond M2M trans-
formations and to consider non-functional properties. MT testing and debugging tools need to
be more powerful, i.e., they should allow developers to move from testing to debugging and back
again, provide more support for test case generation and prioritization, and be able to reuse realistic
evaluation methods. Finally, additional studies to contrast the state of the art in testing and debug-
ging of MTs with the state of the art in the general field of software testing is another interesting
follow-up study potentially based on the corpus provided by the study presented in this paper.
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A TRENDS
This appendix presents some interesting statistics out of the 140 primary studies related to publica-
tion trends, authors, venues, and types of papers.

A.1 Number of publications
Fig. 12 illustrates the number of publications on MT testing and debugging published between 2004
and 2020. We can see a variation in the number of papers depending on the year, but certainly a good
activity between 2009 and 2018, with at least 7 publications each year and reaching a maximum of
17 publications in a single year (2013). We can also see the publication types, having a majority of
conference papers. However, from 2014 we can see that the number of journal papers in the field is
also significant, representing between 9% an 57% of the total of publications on each year. This can
mean a certain degree of maturity in the context of MT testing and debugging.
We also related the geographical origin of each primary study to the affiliation country of its

first co-author at the time of publishing the study. All 140 primary studies were originated from 22
different countries, with Spain and France ahead, as presented in Table 8. By continents, 73% of the
papers are from Europe, 12% from America, 11% from Asia, 3% from Oceania and 1% from Africa.
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Fig. 12. Number of publications (2004-2020)

A.2 Researchers and organizations
We identified 227 distinct co-authors in the 140 primary studies under review, each paper having
an average of 3.43 co-authors.

Table 9 presents the top authors on MT testing and debugging, their affiliations and country and
the average number of co-authors. As a metric of impact, it also shows, for the papers considered
in this study, the year in which their first paper was published and the total number of citations to
their papers. The number of citations was collected from Google Scholar on May 4, 2021.
Fig. 13 shows a node per each author with at least five publications and a vertex with their

co-authors who also have at least five publications. The graph easily lets us see collaborations
among authors who are active in this field.

A.3 Venues
Table 10 displays the venues where more papers have been published. We can see that the recently
extinguished International Conference on Model Transformation (ICMT) and the International Con-
ference on Model Driven Engineering Languages and Systems (MODELS) are the leading conferences,
with 12 and 11 papers published, respectively. Regarding journals, the one with the highest number
of publications is the—well-known by the modeling community—International Journal on Software
and Systems Modeling (SoSyM), with 7 papers. As for workshops, the one with more publications is
theWorkshop on the Analysis of Model Transformations (AMT), co-located in some editions of the
MODELS conference, with 7 papers. It is noteworthy that this topic is of interest for the software

Table 8. Publications per country

Country Spain France Germany UK USA Austria China Italy Hungary Canada Others
Papers 29 (20.7%) 23 (16.4%) 15 (10.7%) 8 (5.7%) 8 (5.7%) 7 (5%) 7 (5%) 7 (5%) 7 (5%) 6 (4.3%) 23 (16.5%)
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Table 9. Top Authors on MT Testing

Author Institution Country Papers Avg co-authors 1𝑠𝑡 paper # citations

E. Guerra Autonomous University of Madrid Spain 14 2.50 2010 508
J.-M. Mottu University of Nantes France 14 2.86 2006 592
M. Wimmer JKU Linz (bf. TU Wien) Austria 14 4.14 2009 467
J. de Lara Autonomous University of Madrid Spain 12 2.83 2010 401
L. Burgueño UOC (bf. Univ. of Malaga and CEA LIST) Spain 10 2.80 2012 268
B. Baudry KTH (bf. INRIA) France 9 2.67 2006 752
M. Gogolla University of Bremen Germany 8 2.75 2005 475
A. Vallecillo University of Malaga Spain 8 2.75 2011 279

Fig. 13. Co-authors

Table 10. Top venues

Venue ICMT MODELS AMT SoSyM ASE ISSRE MoDeVVa KSE
Venue type Conference Conference Workshop Journal Conference Conference Workshop Conference

Papers 12 11 7 7 5 4 4 3
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Fig. 14. MT languages most used

Table 11. TopMT Languages

Language Papers

ATL 36
QVT-O 5
QVT-R 5
Kermeta 5
Acceleo 3
Tefkat 3

engineering community, as we observe by the number of papers published in venues such as the
International Conference on Automated Software Engineering (ASE) or the International Symposium
on Software Reliability Engineering (ISSRE).

A.4 Model Transformation languages
A very interesting aspect to look into is theMT languages used in the different approaches. Certainly,
there have been many different transformation languages proposed.
We have analyzed how the different languages have been used for MT testing and debugging

along the years. The results are summarized in Fig. 14. We have also counted the total amount of
works using each language which is shown in Table 11. ATL is by far the MT language that has
been more frequently used in the context of MT testing and debugging, with a total amount of 36
studies. Besides, from 2012 we can see how its use has been intensified. ATL is followed by QVT
languages, specifically QVT-O and QVT-R, having Kermeta in fourth position.
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