Lecture 8: The consumption-saving decision

José L. Torres
Universidad de Málaga

Advanced Macroeconomics

8. The consumption-saving decision

- The economy is populated by millions of households (consumers or families) and each one takes economic decisions.
- Assumption: All agents have identical preferences (they want to be happy). Concept of representative agent.
- Assumption: Agents are optimizers (that is, they maximize a given objective function). That objective function is the felicity or utility function.
- Assumption: Discrete time.

8. The consumption-saving decision

- Instantaneous utility function:

$$
\begin{equation*}
U\left(C_{t}\right) \tag{1}
\end{equation*}
$$

- Assumptions: function strictly increasing, strictly concave and two times differentiable:

$$
\begin{equation*}
U^{\prime}\left(C_{t}\right)>0 \quad U^{\prime \prime}\left(C_{t}\right)<0 \tag{2}
\end{equation*}
$$

- Additional assumption: The utility function is additively separable in time (no consumption habits).

8. The consumption-saving decision

- The household maximization problem can be defined as:

$$
\begin{equation*}
\max _{\left(C_{t}\right)} E_{t} \sum_{t=0}^{T} \beta^{t} U\left(C_{t}\right) \tag{3}
\end{equation*}
$$

where E_{t} is the conditional expectation operator at time t, given the information available at that time and where β is the intertemporal discount factor, $\beta \in(0,1)$, being:

$$
\begin{equation*}
\beta=\frac{1}{1+\theta} \tag{4}
\end{equation*}
$$

where θ is the rate of time preference $(\theta>0)$.

- The budget constraint is given by:

$$
\begin{equation*}
C_{t}+B_{t}=W_{t}+\left(1+R_{t}\right) B_{t-1} \tag{5}
\end{equation*}
$$

where B is saving, W is income and R is the interest rate.

8. The consumption-saving decision

- Consumers choose an optimal consumption path for all their lifetime.
- Main result: The optimal consumption path chosen at time t is proportional to the discount value of total wealth.
- Current consumption is not restricted to be equal to current income. Households use saving to separate the consumption path from the income path.

8. The consumption-saving decision

- Household utility maximization problem with finite live and no uncertainty:

$$
\begin{equation*}
\max _{\left(C_{t}\right)} \sum_{t=0}^{T} \beta^{t} U\left(C_{t}\right) \tag{6}
\end{equation*}
$$

subject to the budget constraint:

$$
\begin{align*}
C_{t}+B_{t} & =W_{t}+\left(1+R_{t}\right) B_{t-1} \tag{7}\\
B_{-1} & =0 \tag{8}\\
B_{T} & =0 \tag{9}
\end{align*}
$$

8. The consumption-saving decision

Consumer problem

> | Utility function | $U=U\left(C_{t}\right)$ |
| :--- | :--- |
| Budget constraint | $C_{t}+B_{t}=\left(1+R_{t-1}\right) B_{t-1}+W_{t}$ |
| Initial stock of assets | $B_{-1}=0$ |
| Final stock of assets | $B_{T}=0$ |

8. The consumption-saving decision

The auxiliary Lagrangian function to the above problem is given by:

$$
\begin{equation*}
\mathcal{L}=\beta^{t}\left\{U\left(C_{t}\right)-\lambda_{t}\left(C_{t}+B_{t}-W_{t}-\left(1+R_{t}\right) B_{t-1}\right)\right\} \tag{10}
\end{equation*}
$$

where λ_{t} is the Lagrange multiplier (the shadow price of consumption). First order conditions for maximization are given by:

$$
\begin{gather*}
\frac{\partial \mathcal{L}}{\partial C_{t}}=U^{\prime}\left(C_{t}\right)-\lambda_{t}=0 \tag{11}\\
\frac{\partial \mathcal{L}}{\partial B_{t}}=-\beta^{t} \lambda_{t}+\beta^{t+1} \lambda_{t+1}\left(1+R_{t+1}\right)=0 \tag{12}\\
\frac{\partial \mathcal{L}}{\partial \lambda_{t}}=C_{t}+B_{t}-Y_{t}-\left(1+R_{t}\right) B_{t-1}=0 \tag{13}
\end{gather*}
$$

8. The consumption-saving decision

When calculating the first order condition with respect to the stock of assets, we have to take into account that the stock of assets appears at time t and at time $t+1$:

$$
\begin{align*}
& \ldots-\lambda_{t}\left[C_{t}+B_{t}-W_{t}-\left(1+R_{t-1}\right) B_{t-1}\right] \\
& -\lambda_{t+1}\left[C_{t+1}+B_{t+1}-W_{t+1}-\left(1+R_{t}\right) B_{t}\right]-\ldots \tag{14}
\end{align*}
$$

8. The consumption-saving decision

- From the first order condition, we obtain the value of the Lagrangian multiplier (the shadow price of consumption):

$$
\begin{equation*}
\lambda_{t}=U^{\prime}\left(C_{t}\right) \tag{15}
\end{equation*}
$$

By substituting in the second first order condition yields:

$$
\begin{equation*}
\beta^{t} U^{\prime}\left(C_{t}\right)=\beta^{t+1} U^{\prime}\left(C_{t+1}\right)\left(1+R_{t+1}\right) \tag{16}
\end{equation*}
$$

and operating we obtain the final solution:

$$
\begin{equation*}
U^{\prime}\left(C_{t}\right)=\beta U^{\prime}\left(C_{t+1}\right)\left(1+R_{t+1}\right) \tag{17}
\end{equation*}
$$

8. The consumption-saving decision

Consumer problem solution

Optimal consumption path $U_{C}\left(C_{t}\right)=\beta\left(1+R_{t}\right) U_{C}\left(C_{t+1}\right)$ Financial assets dynamics $\quad B_{t}=\left(1+R_{t-1}\right) B_{t-1}+W_{t} L_{t}-C_{t}$

8. The consumption-saving decision

- Steady state. Solution in which the level of consumption is constant over time, $C_{t}=C_{t+1}=\bar{C}$. Thus, we have that $U_{C}(\bar{C})=\beta U_{C}(\bar{C})\left(1+R_{t}\right)$, and therefore the steady state implies that:

$$
\begin{equation*}
\bar{R}=\frac{1-\beta}{\beta}=\frac{1-\frac{1}{1+\theta}}{\frac{1}{1+\theta}}=\theta \tag{18}
\end{equation*}
$$

that is, in steady state the real interest rate is equal to the intertemporal preference parameter.

8. The consumption-saving decision

- Example: Logarithmic utility function
- To solve the consumer problem numerically, first we need to assume a particular functional form for the utility function. The more simple function is the logarithmic shape.
- In this case, the consumer problem is given by:

$$
\begin{equation*}
\max _{\left\{C_{t}\right\}_{t=0}^{T}} \sum_{t=0}^{T} \beta^{t} \ln C_{t} \tag{19}
\end{equation*}
$$

subject to the budget constraint and the initial and final conditions.

8. The consumption-saving decision

- Lagrangian auxiliary function:

$$
\begin{equation*}
\mathcal{L}=\sum_{t=0}^{T}\left[\beta^{t} \ln C_{t}-\lambda_{t}\left(C_{t}+B_{t}-W_{t}-\left(1+R_{t-1}\right) B_{t-1}\right)\right] \tag{20}
\end{equation*}
$$

First order conditions:

$$
\begin{array}{ll}
\frac{\partial \mathcal{L}}{\partial C_{t}} & : \beta^{t} \frac{1}{C_{t}}-\lambda_{t}=0 \\
\frac{\partial \mathcal{L}}{\partial B_{t}} & : \\
\frac{\partial \mathcal{L}}{\partial \lambda_{t}} & : \lambda_{t}+\lambda_{t+1}\left(1+R_{t}\right)=0 \tag{23}\\
t+B_{t}-W_{t}-\left(1+R_{t-1}\right) B_{t-1}=0
\end{array}
$$

8. The consumption-saving decision

- Solving for the Lagrange multiplier in the first first order condition and subtituting in the second order condition, we have:

$$
\begin{equation*}
\beta^{t} \frac{1}{C_{t}}=\beta^{t+1} \frac{1}{C_{t+1}}\left(1+R_{t}\right) \tag{24}
\end{equation*}
$$

and operating:

$$
\begin{equation*}
C_{t+1}=\beta\left(1+R_{t}\right) C_{t} \tag{25}
\end{equation*}
$$

indicating that the relationship between the level of consumption at time $t+1$ with the level of consumption at time t, is driven by the preference discount factor β, and the real interest rate.

8. The consumption-saving decision

Consumer problem solution Logarithmic utility funciton

Optimal consumption path $\quad C_{t+1}=\beta\left(1+R_{t}\right) C_{t}$
Financial assets dynamics $\quad B_{t}=\left(1+R_{t-1}\right) B_{t-1}+W_{t} L_{t}-C_{t}$

