Lecture 10: The government

José L. Torres

Universidad de Málaga

Advanced Macroeconomics

José L. Torres (Universidad de Málaga)

Lecture 10: The government

Advanced Macroeconomics 1 / 18

- We introduce a new agent into the economy: The government.
- This agent takes decisions about fiscal policy: Taxes and public spending.
- Models consider the government as an exogenous agent to the economy.

10. The government: Non-distortionary taxation

• Household maximization problem:

$$\max_{\{C_t\}_{t=0}^T} \sum_{t=0}^T \beta^t U(C_t)$$
(1)

Budget constraint:

$$C_t + B_t = (1 - \tau_t^w) W_t + (1 + R_{t-1}) B_{t-1} + G_t$$
(2)

where τ_t^w is the labor income tax rate. We assume that the government returns to households fiscal income as a lump-sum transfer, where G_t is the lump-sum transfer (public spending), which are assumed to be equal to fiscal revenues, $G_t = \tau_t^w W_t$. All these are exogenous variables.

• Alternatively, we can assume that lump-sum transfers are zero $(G_t = 0)$, that is, the government burns the money from fiscal revenues. In this case, the budget constraint is given by:

$$C_t + B_t = (1 - \tau_t^w) W_t + (1 + R_{t-1}) B_{t-1}$$
(3)

Non-distortionary taxation		
Utility function	$U = U(C_t)$	
Budget constraint	$C_t + B_t = (1 + R_{t-1})B_{t-1}$	
	$+(1- au_t^w)W_t+G_t$	
Initial stock of saving	$B_{-1} = 0$	
Final stocl of saving	$B_T = 0$	
Government budget constraint	$G_t = au_t^w W_t$	

• Logarithmic utility function:

$$U(C_t) = \ln C_t \tag{4}$$

• Auxiliary Lagrangian function:

$$\mathcal{L} = \sum_{t=0}^{T} \left[\beta^{t} \ln C_{t} - \lambda_{t} (C_{t} + B_{t} - (1 - \tau_{t}^{w}) W_{t} - (1 + R_{t}) B_{t-1}) - G_{t} \right]$$
(5)

First order conditions:

$$\frac{\partial \mathcal{L}}{\partial C_t} : \frac{\beta^t}{C_t} - \lambda_t = 0$$
(6)
$$\frac{\partial \mathcal{L}}{\partial B_t} : -\lambda_t + \lambda_{t+1}(1+R_t) = 0$$
(7)
$$\frac{\partial \mathcal{L}}{\partial \lambda_t} : C_t + B_t - \beta(1-\tau_t^w)W_t - (1+R_{t-1})B_{t-1} - G_t = 0$$
(8)

7 / 18

• By substituting the Lagrange multiplier from the first first order condition into the second first order condition, we get

$$\beta^{t} \frac{1}{C_{t}} = \beta^{t+1} \frac{1}{C_{t+1}} (1 + R_{t})$$
(9)

and operating results the following optimal consumption path (no sign of the tax):

$$C_{t+1} = \beta(1+R_t)C_t \tag{10}$$

Solution to the household problem with taxes		
Non-distortionary taxes.	Logarithmic utility function	
Optimal consumption tax	$C_{t+1} = \beta(1+R_t)C_t$	
Financial assets dynamics	$B_t = (1+R_{t-1})B_{t-1}$	
	$+(1- au_t^w)W_t+G_t-C_t$	

- We consider the existence of three taxes: Consumption tax, labor income tax, and capital tax (saving tax).
- We consider leisure in a logarithmic utility function. Household maximization problem is defined as:

$$\max_{\{C_t, L_t\}_{t=0}^T} \sum_{t=0}^T \beta^t (\gamma \ln C_t + (1-\gamma) \ln(1-L_t)$$
(11)

• Budget constraint will be:

$$(1 + \tau_t^c)C_t + B_t = (1 - \tau_t^w)W_tL_t + [1 + (1 - \tau_t^r)R_{t-1}]B_{t-1} + G_t$$
(12)

where, τ_t^c is the consumption tax rate, τ_t^w is the labor income tax rate, and τ_t^r is the capital income tax rate.

Household problem: Distortionary taxation	
Utility function	$U = U(C_t, O_t)$
Budget constraint	$(1+\tau_t^c)C_t+B_t=(1-\tau_t^w)W_tL_t$
	$+ \left[1 + (1 - \tau_t')R_{t-1}\right]B_{t-1} + G_t$
Initial stock of assets	$B_{t-1}=0$
Final stock of assets	$B_T=0$
Government budget constraint	$G_t = \tau_t^c C_t + \tau_t^w W_t L_t + \tau_t^r R_{t-1} B_{t-1}$

• Auxiliary Lagrange function:

$$\mathcal{L} = \beta^{t} [\gamma \ln C_{t} + (1 - \gamma) \ln(1 - L_{t})] -\lambda_{t} \begin{bmatrix} (1 + \tau_{t}^{c})C_{t} + B_{t} - (1 - \tau_{t}^{w})W_{t}L_{t} \\ -[1 + (1 - \tau_{t}^{r})R_{t-1}]B_{t-1} - G_{t} \end{bmatrix}$$
(13)

• First order conditions:

$$\frac{\partial \mathcal{L}}{\partial C_t} : \frac{\gamma \beta^t}{C_t} - \lambda_t (1 + \tau_t^c) = 0$$
(14)
$$\frac{\partial \mathcal{L}}{\partial B_t} : -\lambda_t + \lambda_{t+1} (1 - \tau_t^r) R_t = 0$$
(15)
$$\frac{\partial \mathcal{L}}{\partial L_t} : -\frac{\beta^t (1 - \gamma)}{1 - L_t} + \lambda_t (1 - \tau_t^w) W_t = 0$$
(16)
$$\frac{\partial \mathcal{L}}{\partial \lambda_t} : (1 + \tau_t^c) C_t + B_t - (1 - \tau_t^w) W_t L_t -$$
(17)
$$[1 + (1 - \tau_t^r) R_{t-1}] B_{t-1} - G_t = 0$$

10. The government: Distortionary taxation

• By substituting the Lagrange multiplier from the first first order condition (14) into the second first order condition (15) we obtain:

$$\beta^{t} \frac{1}{(1+\tau_{t}^{c})C_{t}} = \beta^{t+1} \frac{[1+(1-\tau_{t}^{c})R_{t}]}{(1+\tau_{t+1}^{c})C_{t+1}}$$
(18)

and operating, the optimal consumption path is given by:

$$(1 + \tau_{t+1}^{c})C_{t+1} = \beta \left[1 + (1 - \tau_{t}^{r})R_{t}\right](1 + \tau_{t}^{c})C_{t}$$
(19)

• Optimal consumption path is affected by the consumption tax and the capital income tax. However, if the consumption tax rate is constant over time (that is $\tau_{t+1}^c = \tau_t^c$), then the optimal consumption path would be:

$$C_{t+1} = \beta \left[1 + (1 - \tau_t^r) R_t \right] C_t$$
(20)

15 / 18

• Labor supply function (equilibrium condition for employment) is derived by:

$$\frac{1-\gamma}{\gamma}(1+\tau_t^c)C_t = (1-\tau_t^w)W_t(1-L_t)$$
(21)

• Labor supply function (equilibrium condition for employment) is derived by:

$$\frac{1-\gamma}{\gamma}(1+\tau_t^c)C_t = (1-\tau_t^w)W_t(1-L_t)$$
(22)

17 / 18

Solution fo the household problem with taxes		
Logarithmic utility function		
Optimal consumption tax	$(1 + au_{t+1}^c)C_{t+1} =$	
	$eta \left[1 + (1 - au_t^r) R_t ight] \left(1 + au_t^c ight) C_t$	
Financial assets dynamics	$B_t = \left[1 + (1 - au_t^r) R_{t-1} ight] B_{t-1}$	
	$+(1- au_t^w)W_t+G_t-(1+ au_t^c)C_t$	
Labor supply	$(1-\gamma)(1+\tau_t^c)C_t = \gamma(1-\tau_t^w)W_t(1-L_t)$	