Lecture 1: Introduction to Dynamic Macroeconomics: Differential equations, difference equations and dynamic systems of equations

José L. Torres
Universidad de Málaga

Advanced Macroeconomics

1. Introduction to Dynamic Macroeconomics

- Microeconomics: Studies the individual behavior of economic agents or individual markets.
- Macroeconomics: Studies the economy at an aggregate level.

Inside Macroeconomics we have two focuses:
Economic growth (long run).
Business cycle fluctuations (short run).

1. Introduction to Dynamic Macroeconomics

- Key concepts: Microfoundation of Macroeconomics. Both "micro" and "macro" are consistent applications of the neoclassical theory.
- General Equilibrium:

Economic agents are rationals, optimizers, given an endowment, preferences and technology.
The economic agents decisions are mutually compatible.

1. Introduction to Dynamic Macroeconomics

Schools of economic thought:
(1) Classical (Ibn-Khaldun, Ricardo,...): No distinction between "micro" and "macro".
(2) Ramsey (1928): Dynamic Optimization.
(3) Keynes (1936): The General Theory of Employment, Interest and Money: Breakdown between microeconomics and macroeconomics.
(9) 1940-1970: Neoclassical synthesis (IS-LM).
(3) 70s: Rational expectations.
(0 1982: Real Business Cycle (RBC) theory (Dynamic Stochastic General Equilibrium, DSGE, model): Return to Ramsey (1928).
(Today: Extensions around the neoclassical DSGE model, introducing New Keynesian elements.

1. Introduction to Dynamic Macroeconomics

- Importance of time (t).
- Relationship among economic variables depends on the timing.
- Not all economic variables move at the same speed. For instance, output moves slowly, whereas other variables, as the exchange rate adjusts instantaneously.
- Continuous time versus discrete time.

1. Introduction to Dynamic Macroeconomics

DEFINITION OF MODEL:

- Concept of model: Street map, ...
- A macroeconomic model can be described as a system of differential equations. Those equations include a number of dynamic relationship among a set of endogenous variables $\mathbf{X}_{t} \in R^{n}$ and a set of exogenous variables $\mathbf{Z}_{t} \in R^{m}$.
- Similar to the model for a physic system, but with an important difference: The behavior of the economic variables depends on expectations about the future derived from human thought.

1. Introduction to Dynamic Macroeconomics

Key concept: Endogenous versus exogenous variables:

- Output.
- Martian attack to the Earth.
- Price level.
- Money.
- Interest rate.
- An earthquake.
- Exchange rate.
- Capital stock.
- Tax rate.

1. Differential equations, difference equations, and dynamic systems of equations

General model economy:

$$
\begin{gathered}
\mathbf{X}_{t}=E_{t}\left[F\left(\mathbf{X}_{t+1}, \mathbf{Z}_{t}, \mathbf{u}_{t}\right)\right] \\
\mathbf{Z}_{t}=G\left(\mathbf{Z}_{t-1}, \mathbf{v}_{t}\right)
\end{gathered}
$$

where \mathbf{X}_{t} is a vector of endogenous variables, \mathbf{Z}_{t} is a vector of exogenous variables, E_{t} is the expectation operator, and \mathbf{u}_{t} and \mathbf{v}_{t} are i.i.d. random shocks.
F : Economic Theory.
G : Economic Policy.

- Solution: A sequence of probability distributions.

1. Differential equations, difference equations, and dynamic systems of equations

Simplifying the general model.

- First step: We eliminate the economic policy rules $(G=0)$:

$$
\mathbf{X}_{t}=E_{t}\left[F\left(\mathbf{X}_{t+1}, \mathbf{Z}_{t}, \mathbf{u}_{t}\right)\right]
$$

- Second step: We eliminate uncertainty $\left(u_{t}=0\right)$:

$$
\mathbf{X}_{t}=\left[F\left(\mathbf{X}_{t+1}, \mathbf{Z}_{t}\right)\right]
$$

1. Differential equations, difference equations, and dynamic systems of equations

Continuous time: The above model can we written as a system of differential equations:

$$
\begin{equation*}
\dot{\mathbf{X}}_{t}=F\left(\mathbf{X}_{t}, \mathbf{Z}_{t}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{\mathbf{X}}_{t}=\frac{d \mathbf{X}_{t}}{d t} \tag{2}
\end{equation*}
$$

1. Differential equations, difference equations, and dynamic systems of equations

It is easier to work with logarithms:

$$
\begin{equation*}
\mathbf{x}_{t}=\ln \mathbf{X}_{t} \tag{3}
\end{equation*}
$$

This way the time derivative is equivalent to the growth rate of the variable:

$$
\begin{equation*}
\dot{x}_{t}=\frac{d \ln X_{t}}{d t}=\frac{\frac{d X_{t}}{d t}}{X_{t}}=\frac{\dot{X}_{t}}{X_{t}} \tag{4}
\end{equation*}
$$

1. Differential equations, difference equations, and dynamic systems of equations

Discrete time: The above model can we written as a system of differential equations:

$$
\begin{equation*}
\Delta \mathbf{X}_{t}=F\left(\mathbf{X}_{t}, \mathbf{Z}_{t}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \mathbf{X}_{t}=\mathbf{X}_{t+1}-\mathbf{X}_{t} \tag{6}
\end{equation*}
$$

1. Differential equations, difference equations, and dynamic systems of equations

It is easier to work with logarithms:

$$
\begin{equation*}
x_{t}=\ln X_{t} \tag{7}
\end{equation*}
$$

This way the time derivative is equivalent to the growth rate of the variable:

$$
\begin{align*}
\Delta x_{t} & =x_{t+1}-x_{t}=\ln X_{t+1}-\ln X_{t}=\ln \left(\frac{X_{t+1}}{X_{t}}\right) \tag{8}\\
& =\ln \left(1+\frac{X_{t+1}-X_{t}}{X_{t}}\right) \simeq \frac{X_{t+1}-X_{t}}{X_{t}} \tag{9}
\end{align*}
$$

1. Differential equations, difference equations, and dynamic systems of equations

Definition of Equilibrium: Steady State:

$$
\begin{equation*}
\overline{\mathbf{x}} \Longrightarrow \dot{\mathbf{x}}_{t}=f\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right)=0 \Longrightarrow f\left(\overline{\mathbf{x}}, \mathbf{z}_{t}\right)=0 \tag{10}
\end{equation*}
$$

Looking for a vector of zeros of dimension n. The differential equations system can we written as:

$$
\begin{equation*}
\dot{\mathbf{x}}_{t}=A \mathbf{x}_{t}+B \mathbf{z}_{t} \tag{11}
\end{equation*}
$$

where A is a matrix $n \times n, B$ is a matrix $n \times m$ and \mathbf{z}_{t} is a vector of endogenous variables $m \times 1$.

1. Differential equations, difference equations, and dynamic systems of equations

In order to do graphical representations, we will work with system of two differential equations. Therefore $n=2$.

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1, t} \\
\dot{x}_{2, t}
\end{array}\right] } & =A\left[\begin{array}{l}
x_{1, t} \\
x_{2, t}
\end{array}\right]+B z_{t} \tag{12}\\
A & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \tag{13}
\end{align*}
$$

1. Differential equations, difference equations, and dynamic systems of equations

Computing the Steady State:

$$
\left[\begin{array}{l}
\dot{x}_{1, t} \tag{14}\\
\dot{x}_{2, t}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow A\left[\begin{array}{l}
\bar{x}_{1, t} \\
\bar{x}_{2, t}
\end{array}\right]=-B z_{t}
$$

Or

$$
\left[\begin{array}{l}
\bar{x}_{1, t} \tag{15}\\
\bar{x}_{2, t}
\end{array}\right]=-A^{-1} B z_{t}
$$

1. Differential equations, difference equations, and dynamic systems of equations

Stability:

$$
\begin{gather*}
\operatorname{Det}[A-\lambda I]=0 \tag{16}\\
\operatorname{Det}\left[\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right]=0 \tag{17}
\end{gather*}
$$

Solution:

$$
\begin{equation*}
\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\left(a_{11} a_{22}-a_{12} a_{21}\right)=0 \tag{18}
\end{equation*}
$$

1. Differential equations, difference equations, and dynamic systems of equations

Eigenvalues:

$$
\begin{equation*}
\lambda_{1,2}=\frac{\left(a_{11}+a_{22}\right) \pm \sqrt{\left(a_{11}+a_{22}\right)^{2}-4\left(a_{11} a_{22}-a_{12} a_{21}\right)}}{2} \tag{19}
\end{equation*}
$$

Three alternative solutions. In continuous time:

Eigenvalues	Case 1	Case 2	Case 3
λ_{1}	<0	<0	>0
λ_{2}	<0	>0	>0

1. Differential equations, difference equations, and dynamic systems of equations

- Case $1\left(\lambda_{1}<0, \lambda_{2}<0\right)$: Global stability. All dynamic paths tend to the Steady State.
- Case $2\left(\lambda_{1}<0, \lambda_{2}>0\right)$: Saddle point. Some dynamic trajectories tend to the Steady State but other trajectories move away from the Steady State.
- Case $3\left(\lambda_{1}>0, \lambda_{2}>0\right)$: Global instability. All trajectories move away from the Steady State.

1. Differential equations, difference equations, and dynamic systems of equations

$$
\text { Case 1: }\left(\lambda_{1}<0, \lambda_{2}<0\right)
$$

1. Differential equations, difference equations, and dynamic systems of equations

$$
\text { Case } 2\left(\lambda_{1}<0, \lambda_{2}>0\right)
$$

1. Differential equations, difference equations, and dynamic systems of equations

$$
\text { Case 3: }\left(\lambda_{1}>0, \lambda_{2}>0\right)
$$

1. Differential equations, difference equations, and dynamic systems of equations

Eigenvalues:

$$
\begin{equation*}
\lambda_{1,2}=\frac{\left(a_{11}+a_{22}\right) \pm \sqrt{\left(a_{11}+a_{22}\right)^{2}-4\left(a_{11} a_{22}-a_{12} a_{21}\right)}}{2} \tag{20}
\end{equation*}
$$

Three alternative solutions. In discrete time:

Eigenvalues (Modulus)	Case 1	Case 2	Case 3
$\lambda_{1}+1$	<1	<1	>1
$\lambda_{2}+1$	<1	>1	>1

