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ABSTRACT

This paper applies a Bayesian technique (the Approximate Bayesian Computation)

to estimate a salvo combat model. Approximate Bayesian Computation is a rel-

atively new free-likelihood Bayesian estimation method, particularly useful when

data is very limited, and that can be applied to the estimation of a large variety of

models. The paper applies this Bayesian technique to estimate a stochastic version

of the salvo combat model in which the variable to be explained in the number of

hits on carriers in the Battle of the Coral Sea and the Battle of Midway during

Second World War. Given the estimation of the parameters, the model is simulated

and compared with the historical observed figures. We show that this estimation

technique can generate reliable estimates of the model parameters which account

for the uncertainty behind observed figures, even when a very limited number of

data observation is available.
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1. Introduction

A widely used mathematical tool, and one of the first models developed in the Oper-

ational Research literature, to study and simulate the outcome of battles or the com-

petition between species is the Lanchester-type dynamic combat model (Lanchester,

1916). Estimation of Lanchester-type combat models have proven to be an impor-

tant analytically tool to study the result of conflicts between two opposing forces and

they have been applied to analyze a larger number of battles (see Braken, Kress and

Rosenthal, 1995). Several extensions of the basic attrition combat models proposed by

Lanchester (1916) have been developed in the literature, including guerrilla warfare

(Deitchman, 1962), stochastic environment (Hausken and Moxnes, 2002), space com-

petition (Shanakan and Sen, 2011), three-way combat (Kress et al., 2018), bottleneck

restrictions (Bongers and Torres, 2019), etc.

A related model is the so-called salvo combat model developed by Hughes (1995)

for modeling modern naval missile warfare. The salvo combat model consists in a two

difference-equations system intended to describe a combat among ships where active

defense is considered. The salvo combat model replicates some characteristics related

to the pulse nature of naval combat with offensive and defensive firepower. Although

the salvo combat model has been developed to describe modern naval warfare using

missiles, it can also be successfully applied to naval battles between aircraft carriers,

such as the ones which occurred in the Pacific theater during World War II (see Hughes

2000).

However, applications of Lanchester’s attrition or salvo combat models to real sce-

narios have encountered the difficulty of estimating the parameters of the model with

very limited data availability, which makes difficult the application of most existing

estimation techniques. The standard strategy followed by the literature has been the

calibration of the parameters of the model to the observed figures. However, recent

developments of likelihood-free estimation techniques allows estimation of complex

models with limited data. This papers applies a Bayesian technique (the Approximate

Bayesian Computation, ABC) to estimate a salvo combat model. ABC method is a rel-

atively new Bayesian free-likelihood estimation approach with a rapid expansion in a
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number of disciplines. The first application has been in genetics by Tavaré et al. (1997),

but these techniques rapidly expanded to other sciences, as biology (Beaumont et al.,

2002), psychology (Turner and Van Zandt, 2012), epidemiology (Toni et al., 2009),

phylogeography (Csilléry et al., 2010), history (MacKay et al., 2016), etc. The main

characteristic of this estimation approach is that it is a likelihood-free method but re-

lays on the simulation of the model, where the numerical evaluation of the likelihood

function is replaced by posterior distributions constructed based on simulations from

the model and their comparision with observed data. ABC approach is particularly

useful when the likelihood function is unknown or computational intractable, or when

only very limited number of data observation is available. Advantages of the ABC

approach and the simplicity of this estimation method has led to its rapid expansion

in a number of different disciplines, and can be a promising estimation method to be

applied to a wide number of Operational Research areas.

Lanchester-type and salvo dynamic models have been applied to the study of differ-

ent battles to carry out counterfactual experiments. Armstrong and Sodergren (2015)

studied several counterfactual scenarios regarding the Pickett’s Charge at the Battle

of Gettysburg during the American Civil War. Armstrong and Powell (2005) used a

stochastic salvo model to conduct a counterfactual analysis of the Battle of the Coral

Sea. They considered several scenarios in order to calculate the effects of the disper-

sion of USN aircraft carriers (CVs), increasing the number of USN CVs, changing the

composition of each air wing between fighter and bombers, and improving air defense.

They find that the result for the USN would have been better if the two CVs had been

dispersed. Armstrong (2014) applied a sequential version of the stochastic salvo model

to the Battle of the Coral Sea to demonstrate that attacking first would have given

the American force a larger advantage than that provided by an extra aircraft carrier.

Connors, Armstrong and Bonnett (2015) used a stochastic salvo model to conduct a

counterfactual analysis of the Charge of the Light Brigade in the Battle of Balaclava

during the Crimean War. Finally, Bongers and Torres (2020) calibrate a salvo com-

bat model and carry out several counterfactual experiments for the Battle of Midway,

finding that the probability of the Japanese winning was very low and actually close

to zero. Even in the most favorable scenario for the Japanese, the Battle of Midway
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remains an American victory.

However, a critical caveat of counterfactual analysis using statistical or mathemat-

ical models is the fact that the model’s parameters are calibrated or estimated using

observed figures from a particular event, without taking into account the probability

of such event to occur. That is, models’ parameters are calibrated or estimated to

match observed figures but the observed outcome could be far away from the average

expected result or even be a very rare and improbable event. Therefore, calibrated

model could not be representative of the event under study and some alternative sim-

ulated outcomes would be either impossible or very unlikely to occur. If the parameters

of the model are calibrated to the observed figures but the observed outcome is far

away from the average expected result, hence, the counterfactual analysis using that

calibrated model is misleading. In practice, the validity of counterfactual analyses is

conditioned to the assumption that the observed outcome was the expected, something

that could not be true due to random events.

In the literature, several statistical and econometric techniques have been used

to estimate combat models, including Bayesian techniques (see, for instance, Pettit,

Wiper and Young, 2003). However, in most of the cases studied data availability is very

limited, and even in a large number of cases data is restricted to only one observation

which make it impractical to use standard estimation procedures and instead the

model is directed calibrated to the observed figures. However, direct calibration of

these models to the observed figures does not take into account the uncertainty of

such an event ocurring . That is, models’ parameters are calibrated to match observed

figures but the observed outcome could be far away from the average expected result or

even be a very rare and improbable event. If the parameters of the model are calibrated

to the observed figures but the observed outcome is far away from the average expected

result, the calibrated model can lead to misleading conclusions. In order to circumvent

this problem, MacKay, Price and Wood (2016) applied a Bayesian method for the

case in which the likelihood function is unknown, the so-called Approximate Bayesian

Computation (ABC) method, to the Battle of the Dogger Bank (a WWI naval battle

between British and German battlecruisers) to study if the historical outcome was

closed or not to the expected one. They show that the ABC method can be useful to
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estimate the likelihood of the result of a particular battle and an adequate method to

estimate the ”true” parameters of the model. In their application to real data, they

conclude that the result in the Battle of the Dogger Bank was an anomalous result.

This paper applies the ABC technique to study the likelihood of the results of the

Battle of the Coral Sea and the Battle of Midway in the Pacific theater of the Second

World War, in order to determine whether the historical outcome from these two

battles was unlikely or even improbable or, by the contrary, the outcome of these two

battles was close to the expected result. The paper focuses on these two battles because

they occurred with a difference in time very short (less than one month of difference),

and no change in tactics, skill, technology, and equipment occurred between the two

engagements. We expect that the ”true” parameters of the model would be the same

for these two events. These two battles are of special importance. The Battle of the

Coral Sea was the first battle between aircraft carriers in history. The Battle of Midway

is widely considered as the turning point in the Pacific theater of World War II and

the most important defeat of the Imperial Japanese Navy.

We estimate a version of the salvo combat model in which the variable to be pre-

dicted is the number of hits suffered by aircraft carriers. Estimation of the parameters

of the model is done using a prior beta distribution with mean and variance calculated

using the observed values for the two battles. The use of beta distributions is justified

given that the parameters of the model can be interpreted as probabilities. Two esti-

mation methods are used: The simple ACB-Rejection method and the ABC-MCMC

method. Both methods yield similar results but computational efficiency of the former

is very low compared to that of the later. Parameters estimation is done conditioned

to the restriction that they must be equal for both battles. Results indicate that in the

Battle of the Coral Sea the number of hits suffered by both American and Japanese

carriers was lower than the expected average figure. By contrast, in the Battle of Mid-

way the Japanese were lucky in sinking the Yorktown. Overall, our results suggest that

Hughes (2000) analysis was correct for these two battles and that the Coral Sea was

an anomalous result but the outcome in Midway was much closer to the ”expected”

result.

The structure of the remainder of the paper is as follows. Section 2 describes briefly
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the main characteristics of the Approximate Bayesian Computation approach. Sec-

tion 3 describes the stochastic version of the salvo combat type model developed to

represent the two battles. Section 4 presents the historical background and data for

the construction of prior distributions. Estimation results and their implications are

discussed in Section 5. Finally, Section 6 presents some conclusions and summarizes

the main findings of the paper.

2. The Approximate Bayesian Computation (ABC) method

Standard Bayesian estimation techniques are based in the combination of prior dis-

tributions with the likelihood function by using the Bayes’ rule. Bayesian estimation

approach works as follows. Let θ be a parameter vector to be estimated. Given a pro-

posed prior distribution π(θ), the goal is to approximate the posterior distribution

p(θ | Xd), where Xd are the observed data. In the standard Bayesian framework, the

estimation of the parameters is done by the combination of the information obtained

from the data, Xd, via the likelihood p(Xd | θ), with some prior information, via the

prior distribution π(θ). The likelihood function describes the density of the observed

data given the model and its parameters. The posterior density p(θ | Xd) is what we

are looking for. All these information are summarized in the posterior distribution,

which it is derived using the Bayes rule:

p(θ | Xd) =
p(Xd | θ)π(θ)∫
p(Xd | θ)π(θ)dθ

(1)

where the term
∫
p(Xd | θ)π(θ)dθ is a normalizing constant.

As in general we have no closed-form solution for the posterior distribution, the

standard procedure uses computer simulation and Monte Carlo techniques to sample

from the posterior distribution. A standard approach is the use of Markov Chain Monte

Carlo (MCMC) methods, applying, for instance, the Metropolis-Hastings algorithm.

Bayesian estimation methods have several advantages for estimating a model with

respect to traditional econometrics. However, standard Bayesian approach is not with-

out problems. Likelihood can peak in regions of the parameter space that are contra-
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dictory with plausible parameters values. Furthermore, computing the likelihood can

be a hard task; for some problems the likelihood can be impossible to compute or

be too expensive computationally. To overcome these problems, the literature has

proposed a variety of so-called likelihood-free estimation methods (see, for instance,

Didelot et al., 2011). One particular interesting likelihood-free estimation method is

the Approximate Bayesian Computation (ABC) technique.

The idea of the ABC approach is very simple. It consists in replacing the likelihood

computation by a simulation of the model. That is, the values for the parameters are

estimated such that the simulated data from the model are close to the observed data.

The main advantage of ABC methods is that they can be used to evaluate posterior

distributions without having to calculate the likelihood previously. The simplest algo-

rithm is the ABC-Rejection, first used by Tavaré et al. (1997). The pseudo algorithm

for the ABC-Rejection method is presented in Table 1.

Table 1. Pseudo-code for ABC-Rejection method.

1. Generate θ′ from π(θ)
2. Simulate Xs from the model M with parameters θ∗

3. Accept θ′ if ρ(Xd, Xs) ≤ ε and return to step 1.

The working of the algorithm is as follows. First, from a priori distribution, a set

of parameters is generated. Second, given the set of parameters the model is then

simulated. Third, simulated data in the previous step are compared with observed

data. If simulate data is equal to observed data, then the proposed set of parameters

is accepted, and the algorithm starts a new iteration. Otherwise, the proposed set of

parameters is rejected. Step 3 is implemented using some measure of distance between

observed and simulated data as the probability of acceptance can be too small, and

then, an approximate method must be used.

In practice, the algorithm compares the simulated dataset, Xs, with the observed

data, Xd, using a distance function, ρ, and a tolerance level, ε ≥ 0. If ρ(Xd, Xs) ≤

ε, then accept the candidate parameter vector θ′. That is, the output of the ABC

algorithm is a sample of parameters from a distribution π(θ′ | ρ(Xd, Xs) ≤ ε). If ε

is small enough (close to zero), then, that is a good approximation for the posterior

distribution π(θ | Xd). This is the key characteristic of ABC methods as by simulation

of the model and the comparison with observed data through a distance function,
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it is possible to evaluate the posterior distribution without having to calculate the

likelihood.

For empirical implementation, two key elements related to the ABC approach are

needed to be chosen: The distance function, and the tolerance level. First, the definition

of the distance function can be problematic depending on the dataset characteristics

and may imply the definition of some summary statistics. Election of the summary

statistics is crucial for the application of ABC. Assuming that a large number of

summary statistics is available, Joyce and Marjoram (2008) propose the sequential

inclusion of those statistics into the ABC algorithm. In our context, the distance is

defined as the difference, in absolute terms, between the observed value (number of

hits suffered by each side) and the simulated value. Second, a tolerance level, ε ≥

0, must be fixed. The tolerance level should be kept as small as possible and it is

related to computational power. A tolerance value of zero implies that simulated values

must be equal to observed values which impose a high computational cost and a low

acceptance rate. Indeed, a disadvantage of the ABC rejection method is that can be

computationally inefficient as the acceptance rate would be very low when the prior

distribution is very different from the posterior distribution. In practice, rather than

choosing explicitly a value for ε, it is chosen a number for the percentage of accepted

simulations (the acceptance rate), see Beaumont et al. (2002).

One disadvantage of the ABC-Rejection sampler is that it is computationally inef-

ficient and thus the acceptance rate is low when the prior distribution is very different

from the posterior distribution. The literature has proposed several modifications of the

ABC-Rejection method to overcome that problem. Marjoram et al. (2003) proposed a

combination of the ABC and the MCMC methods using the Metropolis-Hastings algo-

rithm. Table 2 shows the pseudo algorithm for the ABC-MCMC method. ABC-MCMC

increases computational efficiency of simple Rejection ABC.

Table 2. Pseudo-code for ABC-MCMC method.

1. If now at θ propose to move to θ′ according to transition kernel q(θ → θ′)

2. Simulate Xs from the model M with parameter θ
′

3. If ρ(Xd, Xs) ≤ ε, go to next step, and otherwise stay at θ and return to step 1

4. Calculate h = h(θ, θ′) = min(1,
π(θ′)q(θ′→θ)
π(θ′)q(θ→θ′) )

5. Accept θ′ with probability h and otherwise stay at θ, then return to step 1.
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3. The salvo combat model

Lanchester (1916) developed a variety of dynamic combat models to represent math-

ematically different types of combats. Lanchester’s combat models have been applied

not only to the analysis of warfare, but to study a large variety of topics in social

sciences, from economics and management to biology. Briefly, Lanchester proposed

three alternative specifications: The directed-fire model, the area-fire model and the

ancient war model. The aimed- or directed-fire model is intended to represent a sit-

uation in which the change in one side is a proportion of the size of the other side,

resulting in the so-called Lanchester’s square rule, where the number of combatants is

more important than their quality (fighting effectiveness). The unaimed- or area-fire

model represents a situation in which the fire is unaimed, that is, a battle with area

fire weapons as artillery, resulting in the so-called Lanchester’s linear rule where the

change in one side is a proportion of the products of the number of both sides. A third

version considers the case of ancient battles with swords and shields, modeled as a set

of individual duels. Lanchester-type combat models are usually defined in continuous-

time and they can be applied to land and air battles, as well as to traditional naval

battles with gun fire.

A related model designed for naval warfare is the so-called salvo combat model

developed by Hughes (1995). The salvo combat model replicates some characteristics

related to the pulse nature of naval combat with offensive and defensive firepower, in a

discrete time setting. The salvo model presents a number of characteristics different to

the Lanchester-type combat models. Whereas Lanchester models are designed to repre-

sent gunfire combat where a stream of firepower continuously weakens the enemy force

and no defensive firepower exits, the salvo combat models represent combat involving

missiles or airstrikes in which defensive firepower is an important characteristic.

Battles between aircraft carriers, without visual contact between ships of both fleets,

can be mathematically modeled by the Hughes’ salvo combat model (Hughes, 1995).

Although the salvo combat model has been developed to describe modern naval warfare

using missiles, it can also be applied to naval battles between aircraft carriers, such as

the ones that occurred in the Pacific theater during World War II (see Hughes, 2000),
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as anti-aircraft (AA) fire and fighter defense enable carriers to defend themselves from

some level of enemy attack in proportion to their numbers and independent of attackers

(Hughes, 2000). In aircraft carrier battles during World War II, attacking firepower is

not represented by guns but by dive bombers and torpedo bombers aircraft. Defensive

firepower is represented by the combination of AA guns and CAP (Combat Air Patrol)

fighters.

Briefly, the salvo combat model consists of the following two dynamic equations for

two forces, A and B:

∆A = −αB − βA

γ
(2)

∆B = −δA− θB

η
(3)

where 0 ≤ −∆A ≤ A and 0 ≤ −∆B ≤ B. The two equations are structurally identi-

cal. The parameter A represents the number of carriers (force strength) on side A at

the beginning of the battle. The number of carriers on side B is represented by the

parameter B. Without loss of generality, side A represents the USN and side B the

IJN. Equation (2) indicates the number of firepower kills (losses) suffered by American

aircraft carriers whereas equation (3) does the same for Japanese carriers. Each carrier

on side A has an offensive power rating of δ, defined as the probability of attacking

aircraft arriving to the enemy carriers, pS , times the total number of available attack-

ing aircraft, nS , that is, δ = pUSN
S × nUSN

S , where the superscript ”USN” indicates

the United States Navy. Similarly, offensive power rating of each carrier on side B is

represented by α = pIJNS × nIJN
S , where the superscript ”IJN” indicates the Imperial

Japanese Navy. Each carrier has a defensive power value, denoted by β and θ, respec-

tively, defined as the probability of defending fighters successfully intercepting and

attacking torpedo or dive bomber enemy aircraft before they are able to deliver their

ordnance, pF , times the number of available fighter aircraft for each side, nF , and . Fi-

nally, each carrier also has a staying power value, nF, denoted by γ and η, respectively,

that represents the number of hits (bombs or torpedoes) needed to achieve a firepower
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kill on it, defined as the inverse of the probability of a surviving enemy attacker hitting

a carrier, pH , times the firepower kills per hit suffered by the carrier, aK , that is, and

. For simulation purposes, we treat the parameters representing firepower kills per hit

and probabilities as stochastic components of the model.

Equations (2) and (3) are either zero or negative, showing the dynamics of the

number of aircraft carriers for both sides during a battle. Figure 1 plots the phase

diagram that corresponds to a continuous time representation of the salvo combat

model, where the number of IJN carriers is represented in the vertical axis and the

number of USN carriers in the horizontal axis. The two lines correspond to values for

which equations (1) and (2) are zero. The positive slope for these functions are given

by the following expressions:

The two positive zero-change lines (isoclines) split the space in three areas. There

are two areas in which the losses of aircraft carriers for one side are zero, which

corresponds to a situation in which the defenses are large enough to offset any attack.

This occurs when the number of carriers on one side is large enough compared to the

number of carriers on the other side and/or when the defense capacity of one side

is large enough to completely suppress attacking forces of the other. The area in the

upper left represents a combination of the number of carriers on both sides, given the

values for the parameters, in which equation (1) is negative and equation (2) is zero.

That is, the number of IJN carriers remains constant and the number of USN CVs

decreases. Similarly, the area in the lower right represents an initial number of carriers

such that equation (2) is zero and equation (3) is negative. Under the assumption

that defense parameters are lower than attacking parameters, as indicates by Hughes

(2000), we have the following relationship between the zero-solution slopes:

[Insert here Figure 1]

The area between the two zero solution lines reflects a situation with losses for both

sides. This is the scenario considered by Hughes (2000) for modeling carrier warfare

during WWII.

The basic Hughes’ salvo combat model has been extended in several ways. Arm-

strong (2005) developed a stochastic version of the salvo model in which the number

of accurate missiles fired for each ship and the number of interceptions is assumed to
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be an independent and identically distributed random variable that follows a binomial

distribution. Armstrong (2011) analyzed the properties of the stochastic salvo com-

bat model using Monte Carlo simulation on a large number of scenarios and under

different assumptions about the distribution of the stochastic components. Armstrong

(2013) developed a salvo combat model with area fire in order to study situations in

which the enemy location is only approximately known. Armstrong (2014b) developed

a sequential salvo combat model for modeling battles in which the exchange of fire is

not simultaneous but occurs in different phases.

Salvo combat models, despite their simplicity, have been proven useful in study-

ing different battles, including naval fighting between aircraft carriers, and they have

been used to conduct a number of counterfactual experiments. Armstrong and Powell

(2005) extended the Hughes’ salvo combat model to a stochastic environment and con-

ducted a counterfactual analysis of the Battle of the Coral Sea. They studied several

scenarios in order to calculate the effects of the dispersion of USN aircraft carriers

(CVs), increasing the number of USN CVs, changing the composition of each air wing

between fighter and bombers, and improving air defense. They find that the result

for the USN would have been better if the two CVs had been dispersed. Armstrong

(2014b) extended the stochastic salvo model to a context in which the exchange of

fire is sequential rather than simultaneous. He applied the model to conduct several

counterfactual experiments to the Battle of the Coral Sea to demonstrate that attack-

ing first would have given the American force a larger advantage than that provided

by an extra aircraft carrier. Salvo combat models have also been applied to battles

outside of naval fighting. For example, Armstrong (2014a) used a salvo combat model

to study the Israeli Iron Dome’s performance during the Operation Pillar of Defense.

Finally, Bongers and Torres (2020) uses a stochastic salvo combat model to study the

Battle of Midway and to study four alternative counterfactual scenarios: (i) All of the

launched American attack aircraft reach the Japanese carriers, ii) the Japanese have

one additional carrier, iii) the Japanese do not wait to launch their attack aircraft, and

iv) the American carriers are spotted earlier. Contrary to the common wisdom that

the result of the Battle was an ”incredible” American victory, Monte Carlo simulations

show that the probability of the Japanese winning was very low and actually close to
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zero. Even in the most favourable scenario for the Japanese, the Battle of Midway

remains an American victory.

In this paper we use a version of the Hughes’ salvo combat model in which the

variable to be modeled is the number of hits suffered by ships (aircraft carriers). In

particular, the model to be used to describe the Battles of the Coral Sea and Midway

consists in the following two structural identical equations for the number of hits in a

battle between aircraft-carriers:

HitsUSN = pIJNH

[
pIJNA N IJN

A − pUSN
F NUSN

F

]
(4)

HitsIJN = pUSN
H

[
pUSN
A NUSN

A − pIJNF N IJN
F

]
(5)

Equation (6) indicates the number of hits (we do not distinguish between bombs

and torpedoes) suffered by American aircraft carriers whereas equation (7) does the

same for Japanese carriers. Each carrier fleet has an offensive power rating of pANA,

defined as the probability of attacking aircraft arriving to the enemy carriers, pA,

times the total number of available attacking aircraft, NA. Additionally, each carrier

fleet has a defensive power value of pFNF , defined as the probability of defending

fighters successfully intercepting enemy attacking torpedo or dive bombers aircraft

before they are able to deliver their ordinance, pF , times the total number of available

fighter aircraft, NF . Although defensive firepower also depends on anti-aircraft guns,

the model assumes that it is proportional to the number of fighter aircraft. Finally,

pH is the probability of hitting an enemy carrier by surviving attacker.

In summary, the number of parameters to be estimated is three for each side: Prob-

ability of a surviving enemy attacker hitting a carrier, pH , probability of an attack

aircraft arriving to enemy target, pA, and probability of interception of enemy attack-

ing aircraft, pF . Given the estimation for these parameters, equations (6) and (7) can

be used to obtain the expected number of hits and be compared with observed figures.
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4. Historical Background and Data

We estimate the salvo combat model described in previous section for two aircraft

carriers battles in the Pacific theater of the WWII: The Battle of the Coral Sea and

the Battle of Midway. The Battle of the Coral Sea was the first battle between aircraft

carriers in history. It took place during 4-8 May 1942 in the vicinity of New Guinea,

with the main battle between attacking aircraft-carriers on May 8. USN fleet was

integrated by carriers Yorktown and Lexington. The IJN fleet was composed of another

two carriers: the Shokaku and the Zuikaku. At the end of the day the Lexington was

sunk hit by 2 torpedoes and 2 bombs, and the Yorktown was damage by a bomb.

In the Japanese side, the Shokaku was heavily damaged with 3 bombs, whereas the

Zuikaku finished without damage. The Battle of Midway took place on June 4, 1942

in the vicinity of the Midway island. The Japanese attacking fleet was composed of

four aircraft-carriers: the Kaga, the Akagi, the Hiryu and the Soryu against the USN

fleet of three carriers: the Enterprise, the Hornet, and the urgently repaired Yorktown.

In that day, Japanese lost all four aircraft-carriers to one carrier lost by the American

(the Yorktown). IJN carriers were hit by 13 bombs, whereas the Yorktown was hit by

3 bombs and 2 torpedoes.

All information is taken from two basic sources: Lundstrom (1984) for the Battle

of the Coral Sea, and Parshall and Tully (2005) for the Battle of Midway, completed

by information from Naval Staff History (1952). For the battle of the Coral Sea, we

use data corresponding to May 8, the day of the battle between the fleet carriers.

The number of available USN aircraft in this battle is shown in Table 3. The total

number of (operational) aircraft was 110 (33 fighters, 56 dive bombers and 21 torpedo

bombers), 55 for each carrier. For the Japanese, the total number of available aircraft

(Table 4) was 102 (38 fighters, 35 dive bombers and 29 torpedo bombers).1

In the Battle of Midway, the total number of aircraft for the USN was 346 (231

on board the three carriers and 115 based in Midway air base). However, not all

aircraft are included in our estimations by different reasons. First, some aircraft are

1These figures are lower than the ones reported by Armstrong and Powell (2005) who studied the Battle of

the Coral Sea using data from Lundstrom (1984). The difference is explained by aircraft losses in the days

before (from 4 to 7 May), as our analysis only consider the main battle on May 8.
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Table 3. Battle of the Coral Sea: Number of USN air-
craft operational at May 8, 1942.

USN CVs

Aircraft Yorktown Lexington Total

F4F Wildcat 14 19 33
SBD Dauntless 32 24 56
TBD Devastators 9 12 21

Total 55 55 110

Table 4. Battle of the Coral Sea: Number of
IJN aircraft operational at May 8, 1942.

IJN CVs

Aircraft Shokaku Zuikaku Total

A6M Zero 18 20 38
D3A ”Val” 17 18 35
B5N ”Kate” 14 15 29

Total 49 53 102

level bombers (USAF B-17s) not suited for naval attack, whereas other are patrol

aircraft (USN PBYs), and hence, they are excluded from the analysis. Second, some

attack aircraft did not attack IJN carriers, but other secondary targets, and hence

they are also excluded to avoid miscalculation of model parameters in the estimation

of the number of hits on aircraft carriers.2 The total number of attack aircraft for

the USN was 186 (152 from the three USN CVs and 34 from Midway Air Base, see

Table 5). The total number of aircraft for the Japanese was 248 on-board the four

IJN carriers, excluding all aircraft on-board battleships and cruisers, as they were all

patrol aircraft. Total attack aircraft for the Japanese were 153, as the two D4Y ”Judy”

on-board Soryu were a patrol version, and hence, excluded from the analysis.3 The

total number of fighter for the US was 107 (79 from the three USN CVs and 28 from

the Midway Air Base). For the Japanese, the total fighter was 93 (Table 6).

Three parameters have to be estimated for each side: the probability of an attacking

aircraft arriving to the target; the probability of a successful intercept of attacking en-

emy aircraft; and the probability of hitting the target. As all parameters are interpreted

2This was the case of six SB2Us in the first American attack and 16 SBDs in the American counterattack.
In the fist case, the six SB2Us decided to attack the battleship Haruna as a secondary target given the heavy

protection of the IJN CVs by fighters. In the second case, 16 SBDs from the wave attaking the Hiryu decided

to attack two IJN cruisers as a secondary target as they evaluated that damage to the last IJN carrier inflicted
previously by the other 24 SBDs was fatal.
3Similarly, all scout aircraft on-board IJN battleships and cruisers are also excluded.
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as probabilities, their values fall in the range between 0 and 1. The main difference

between both battles is that in the case of the Coral Sea, the attack over carriers was

simultaneous, whereas in the case of Midway the battle was conducted in a sequential

mode. In order to be comparable both battles, we model the Battle of Midway as a

three sequential (dependent) sub-battles (First American attack, Japanese counterat-

tack, and second American attack), whereas the battle of the Coral Sea is modeled as

two independent simultaneous battles (American attack and Japanese attack).

Table 5. Battle of Midway: Number of USN aircraft.

USN CVs Total Attack Fighter Excluded

Aircraft Yorktown Enterprise Hornet Midway

F4F Wildcat 25 27 27 7 86 - 86 0
SBD Dauntless 37 37 35 18 127 127 - 0
TBD Devastators 14 14 15 43 43 - 0
F2A Buffalo 21 21 - 21 0
TBF Avenger 6 6 6 - 0
SB2U Vindicators 12 12 6 - 6
B-17 Fortress 17 17 0 - 17
PBY Catalina 30 30 - - 30
B-26 Marauder 4 4 4 - 0

Total 76 78 77 115 346 186 107 53

Table 6. Battle of Midway: Number of IJN aircraft.

IJN CVs Total

Aircraft Kaga Akagi Hiryu Soryu

A6M Zero 27 24 21 21 93
D3A ”Val” 20 18 18 16 72
B5N ”Kate” 27 18 18 18 81
D4Y ”Judy” 2 2
Total 74 60 57 57 248

Data for constructing prior distributions is as follows. First, we compute the ob-

served probability of an attacking aircraft arriving to the target. For the USN at Coral

Sea, a total of 60 dive and torpedo bombers escorted by 16 fighters attacked IJN car-

riers. Thus, probability of attacking was 60/77=0.7792. For the Japanese, a total of

51 dive and torpedo bombers escorted by 18 fighters attacked USN carriers, that is,

the probability of attacking was 51/64=0.7969. In the case of the Battle of Midway,

a total of 34 aircraft attacked IJN CVs from Midway Air Base4 and 90 from USN

CVs in the first attack (as all dive bombers from Hornet, a total of 35 aircraft, didn’t

4The Midway aircraft attacks comes in different waves. At 7:10, IJN CVs were attacked by the 4 B-26 armed
with torpedoes and the 6 TBFs. At 7:55 dive bombers attack with 18 SBD2. At 8:14 with 16 B-17, and finally

at 8:20 with 12 SB2Us. Nevertheless, as indicated in the text, B-17s are level bombers not suitable for attacking

ships and therefore they are excluded of the analysis.
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spotted IJN carriers as they followed an incorrect heading), and a total of 24 attack

aircraft from USN CVs in the second attack.5 Therefore, for the USN the probability

of attacking to enemy CVs during the first attack (phase I) was (34+90)/196=0.6327.

Note that total number of launched carrier-based attacking aircraft was 125, but only

90 found and attacked Japanese carriers. In the second American attack (phase III of

the battle), a total of 40 attack aircraft were available, of which 24 aircraft attacked

the only remaining Japanese carrier and the other 16 aircraft attacked two IJN cruis-

ers. Therefore, probability of attacking was 24/(40-16)=1.00. For the Japanese, in the

second phase of the battle, only the Hiryu was afloat with 18 dive bombers and 14

torpedo bombers of which 28 aircraft attacked USN carriers. Therefore, probability of

attacking USN carriers in Midway-II was 28/32=0.8750.

Next, we compute the probability of a successful intercept of attacking enemy air-

craft. This figure must represent the number of attacking aircraft destroyed before they

are able to deliver their ordinance (bomb or torpedo) and can be very different from

the number of attacking aircraft shooting down as this event can occur after their have

launched their ordinance. The probability of a successful intercept is calculated as fol-

lows. In the case of the Battle of the Coral Sea, a total of 2 American attacking aircraft

were shooting down before launching their ordnance by Japanese defense. Therefore,

the probability of successful interception by the Japanese is 2/38=0.0526. Similarly, a

total of 6 Japanese attacking aircraft were shooting down by American defense. Thus,

probability of successful interception by the American is 6/33=0.1818. In the case of

the Battle of Midway, probability of a successful intercept by the Americans is cal-

culated as follows: In the attack to the Yorktown, the first wave was composed of 18

Dive-bombers but only 7 where able to avoid USN fighter defense. Therefore, successful

intercept in this case was of 11 dive-bombers. In the second wave, 10 torpedo-bombers

attacked the Yorktown but 5 were intercepted before they could release their torpedoes

(although only 4 torpedoes were seen by the Yorktown). Therefore, total successful

intercepts were 16, that is, a final probability of 16/79=0.2025. For the Japanese, the

successful intercept is calculated as follows. First, from the 4 B-26 torpedo bombers,

three were able to launch their torpedoes and hence only one was successful inter-

5These 24 aircraft corresponds to VB-6 and VS-6. Another 16 dive bombers (VB-8 and VS-8) decided to

attack cruisers Chikuma and Tone after observing damage of the last Japanese carrier.
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cepted. From the 6 TBF, two of them were shooting down before they could release

their torpedoes. Next, from the 18 SBD2, only 7 were able to release their bombs and

so successful interception of this group was of 11 attacking aircraft. Finally, from the 6

SB2Us, three of them were able to release their bombs to the Kaga. Next, in the attack

from USN CVs, first from the 15 torpedo-bombers from the Hornet, only four where

able to release their torpedoes before being shooting down and therefore successful

interception of this group were 11. From the group of the Enterprise, 6 out of 14 were

shot down before launching their torpedoes and from the group of the Yorktown, 7 out

of 12 were shot down before launching their torpedoes. The Enterprise dive bombers

groups, a total of 32 Dauntless, attacked the Kaga and the Akagi. 12 of them were able

to drop their bombs. The Yorktown dive bomber group, with 17 Dauntless, attacked

the Soryu, with 13 aircraft being able to drop their bombs. Therefore, total successful

interceptions were a total of 65 aircraft, resulting in a probability of successful inter-

ception by the Japanese of 65/93=0.6989 for the first phase of the battle. During the

second American attack, three dive-bombers were shooting down before being able to

drop their bombs. Therefore, probability of successful intercept, given that the Hiryu

had 25 fighters, were 3/25=0.1200.

Table 7. Observed figures for the parameters of the model.

Param. Definition Coral Sea Midway-I Midway-II Midway-III

HitsUSN Number of hits received by USN CVs 5 - 5 -
HitsIJN Number of hits received by IJN CVs 3 9 - 4
pUSN
H Probability of hit per shot on IJN CVs 0.0517 0.1525 - 0.1905

pIJN
H Probability of hit per shot on USN CVs 0.1111 - 0.4167 -

pUSN
A Probability of USN attacking aircraft 0.7792 0.6327 - 1.0000

pIJN
A Probability of IJN attacking aircraft 0.7969 - 0.8750 -

pUSN
F Probability of intercept by USN fighter 0.1818 - 0.2025 -

pIJN
F Probability of intercept by IJN fighter 0.0526 0.6989 - 0.1200

Finally, we calculate the probability of hitting a CV. In the battle of the Coral Sea

the USN carriers received a total of 5 hits against 3 hits received by the IJN carriers.

Excluding intercepted attackers, probability of hitting a Japanese carrier was 3/(60-

2)=0.0517, and the probability of hitting an American carrier was 5/(51-6)=0.1111.

In the case of the Battle of Midway, USN achieved a total of 13 hits (9 hits during

the first attack and other additional four during the second attack), whereas IJN

aircraft achieved a total of 5 hits. Excluding intercepted attackers, the probability
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of hit in Midway-I is 9/(124-65)=0.1525 for the USN, 5/(28-16)=0.4167 for the IJN

in Midway-II, and 4/(24-3)=0.1905 for the USN in Midway-III. A summary of the

observed parameters values for the two battles used to build prior distributions is

presented in Table 7.

5. Estimation results

In this section, we estimate the equations predicting the number of hits on aircraft car-

riers (equations 2 and 3) using the ABC method. The ABC method implies that prior

values of the parameters are updated to obtain posteriors, by comparing the simulated

data from the model for a number of battles simulations with the observed figures.

For each equation three parameters are estimated: Probability of hit per surviving

attacker aircraft, pH , probability of attacking aircraft arriving to enemy carriers, pA,

and probability of successful interception, pF . That is, we want to study the joint pos-

terior p(pH , pA, pF | Xd) for each side. Given that the parameters of the model can be

interpreted as probabilities, we use beta distributions as prior distributions based on

the information obtained from both battles. The parameters of the prior beta distri-

butions (α, β), are calculated using prior information (mean and standard deviation)

taken from observed values at the Battles of the Coral Sea and Midway. Estimation

is done for both battles by assuming that the ”true” parameters must be equal. The

temporal difference between both battles is very short (less than one month: May 8

and June 4, 1942, respectively), and therefore, no changes in tactics, technology, skills,

etc., occurred between the two battles. Differences between estimated posterior distri-

butions and the observed values for each battle are evidence that the observed result

deviates with respect to the likely ”expected” result.

We investigated the effects of varying the tolerance parameter ε, that is, the dif-

ference between the observed and the simulated number of hits suffered by carriers

in each side. This parameter affects both the computational efficiency and the accu-

racy of the inference. With the ABC-Rejection method, the acceptance rate heavily

depends on the tolerance value. Unfortunately, with the Markov chain implementation

of likelihood-free simulation, one can rarely be both efficient and accurate in the same
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analysis. The higher the value of ε, the greater the proportion of Metropolis–Hastings

steps that are accepted and the faster the sampler moves around the parameter space.

However, the fidelity of the posterior distribution to the observed data also becomes

reduced. Conversely, a smaller tolerance implies lower acceptance rates, but improved

data fidelity. We vary the value for the tolerance from 1 to 3, with little consequence

of the estimated posterior distributions.

Gelman, Gilks and Roberts (1995) suggest an acceptance rate of 50% in small

dimensions, and an average acceptance rate of 25% in large dimensions. Sherlock

(2013).

For the Battle of the Coral Sea, theoretical results predict no survivor, that is, all

four carriers (two American and two Japanese) should have been sunk. However, very

pour scouting on both sides resulted in only one USN carrier sunk, although two other

carriers (one Japanese and the second American carrier) were damaged.

Estimation results from the ABC method for the Battles of the Coral Sea and Mid-

way can be compared with the predicted outcome analysis of aircraft carriers battles

by Hughes (2000). Hughes (2000) studied a number of aircraft carrier battles in the

Pacific theater of the WWII, suggesting that at this stage of the war between the U.S.

and Japan ”one carrier air wind could on balance sink or inflict crippling damage of

one carrier”. For the Battle of the Coral Sea, he obtain that theoretical survivors after

the battle is zero for both sides, as all four carriers participating in the battle (two

Americans and two Japanese) should have been sunk. However, in this battle only

one carrier was sunk (the Lexington) and other was heavily damaged (the Shokaku).

Therefore, the result was very different from the expected by Hughes (2000). For the

Battle of Midway, he obtained that, given the initial number of aircraft carriers in

both sides and the sequential characteristic of the combats, after the first U.S. attack

theoretical survivors are all three American carriers and only one Japanese carrier.

After the Japanese counterattack, theoretical survivors are 1 and 2, for the Japanese

and the Americans, respectively. Finally, after the U.S. second attack, theoretical sur-

vivors reduces to 0 for the Japanese and 2 for the American. That is, for the Battle

of Midway the historical result is just the expected result by Hughes (2000). If we

consider that the reasoning by Hughes (2000) is correct, the outcome of the Battle
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Table 8. Posterior estimation of the parameters.

Parameter Definition ABC-Rejection ABC-MCMC

Mean Median Mean Median

pUSN
H Probability of hit per shot on IJN CVs 0.0981 0.0840 0.0810 0.0738

pIJN
H Probability of hit per shot on USN CVs 0.1522 0.1521 0.1490 0.1486

pUSN
A Probability of USN attacking aircraft 0.6838 0.6918 0.6815 0.6888

pIJN
A Probability of IJN attacking aircraft 0.8796 0.8816 0.8753 0.8788

pUSN
F Probability of intercept by USN fighter 0.1802 0.1808 0.1764 0.1765

pIJN
F Probability of intercept by IJN fighter 0.3038 0.1168 0.1904 0.0219

of Midway should have been close to the ”average” expected outcome whereas in the

case of the Battle of the Coral Sea the outcome should have been far away from the

”average” expected result.

Table 8 shows the estimation results of the parameters of the model using both the

ABC-Rejection method and the ABC-MCMC algorithm. Differences between both

estimation methods are very slight and the main difference comes from the computa-

tional efficiency of each method. Figures 1 and 2 plot the estimated posterior distri-

butions for the parameters using both methods, with some important differences in

the shape of the posterior distribution for some parameters.

The comparison between observed and estimated parameters gives some interesting

results. First, we find that the estimated probability of hit per shot on USN CVs is,

in general, larger than the estimated probability of hit per shot on IJN CVs. This

means that accuracy by Japanese pilots is supposed to be higher than that of their

Americans counterpart. Both posterior distributions are skewed to the right, with the

mode close to zero. This is consistent with the observed probability of hit. Posterior

mean and median for the probability of hit per shot on IJN carriers are between 0.0738

and 0.0981. Equivalent values for the probability of hit per shot on USN carriers are

between 0.1486 and 0.1522. As indicated above, both estimation methods (Rejection

and MCMC) yield similar results. The expected probability of hit per shot on USN

carriers is higher than the observed figure in the case of the Coral Sea, but much lower

than the one observed in Midway. Indeed, for the IJN observed probability of hit per

shot was 0.1111 at the Coral Sea and 0.4167 at Midway. For the USN, observed values

are 0.0517 at Coral Sea, 0.1385 in the first attack at Midway, and 0.1905 in the second

attack at Midway. Consequently, accuracy of IJN pilots was lower than expected in the
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Battle of the Coral Sea but surprisingly large at the Battle of Midway, as compared to

the expected value. For the USN, probability of hits was lower than expected in the

Battle of the Coral Sea, but higher at Midway, especially during the second attack.

The resulting higher expected probability of hit per shot of IJN compared to the

USN can be explained by several factors. First, it is argued that at the first stages of

the war and before the Battle of Midway, IJN pilots were better trained than USN

pilots. This skill gap changed to the opposite direction after Midway. Additionally, a

technological factor can also explain such differences, resulting from the poor reliability

of American’s torpedoes compared to the much more efficient Japanese’s torpedoes. All

hits suffered by IJN carriers in both battles were with bombs as no American torpedo

hit any Japanese carrier. By contrast, Japanese torpedoes hit American carriers in

both, Coral Sea and Midway.

Second, estimated posterior distribution for the probability of attacking aircraft

also shows an important difference for each side. Posterior mean and median are very

similar, as the posterior distribution is hump-shaped. Also we find that estimated

probability is significantly higher for the Japanese compare to the Americans. Mean

and median estimates are very similar, around 0.68 for the Americans and around 0.87

for the Japanese. Comparing these estimates with the observed values, we find that

for the USN, probability of attacking aircraft was higher than expected in the Battle

of the Coral Sea but similar to the expected value in the first attack at Midway. For

the IJN, the value of the probability of attacking is very close to the expected value

in the Battle of Midway. However, at Coral Sea, the observed figure is well below the

expected one. In any case, probabilities are large, indicating that the IJN was able

to put into air and arrive to the target most of available attacking aircraft. For the

USN we find that for the first attack at Midway the value is very close to the expected

one, and higher at the Coral Sea. Figure for the second attack at Midway represents

a special case, as all available American attacking aircraft were able to arrive to the

target but only a fraction (60%) attacked the IJN carriers.

These differences can be explained by the better attack coordination for the IJN

compared to that of the USN. In fact, historians agree that American carrier warfare

doctrine was superior to that of the Japanese in many aspects, including carrier devel-
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opment, scouting, positioning of carriers in the battle, etc. The only aspect in which

Japanese were superior to Americans was in the ability to launch a coordinate strike

with both torpedoes and dive bombers from different carriers. Estimated parameters

confirm this advantage for the Japanese.

Finally, estimated probability of intercept differs significantly for both sides. In the

case of the Americans, posterior mean and median is around 0.18. Estimated values

for the Japanese are more imprecise, with a mean of 0.30 for the ABC-Rejection and

0.19 for the ABC-MCMC, and with medians of 0.11 and 0.02, respectively. This is

provoked by the fact that estimated posterior distribution for the Japanese is very

flat with an extremely high variance. Estimated value for the USN is very close to

the observed figures in both battles. Probability of interception was 0.18 at Coral Sea

and 0.20 at Midway, values very close to the estimates ones. The observed probability

of intercept by IJN fighter was extremely high during the first phase of the Battle of

Midway, but very low in the Battle of the Coral Sea, compared to the estimated value.

Probability of intercept by USN fighter was lower than expected in both battles.

In general, one would expect a large probability of intercepting incoming attacking

enemy aircraft by the USN due to technological factors and better AA defence. Amer-

ican carriers had radar, not available in Japanese carriers, and therefore, they could

organize the defence before the arrival of the Japanese attacking aircraft. However,

the poor coordination in American strikes, with each squadron arriving over Japanese

carriers independent of each other (particularly during the first attack in the Battle of

Midway), increased significantly interception by the Japanese. This results in a very

imprecise estimation of this parameter for the Japanese side.

Table 9 shows the estimation of the number of hits on CVs given mean and median

posterior values for the parameters from the estimated posterior distributions. We

found that the observed number of hits on USN carriers in the Battle of the Coral Sea

were below the average expected value, whereas the number of hits on IJN carriers

was also below although in this case they are close to the expected ones. Estimated

number of hits on USN carriers in the Battle of the Coral Sea is in the rank 7 to 9.

Therefore, we conclude that American were lucky in the Battle of the Coral Sea as the

likelihood number of hits on USN carriers is estimated to be a minimum of 7, at least
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two more than the historical results, whereas the estimated expected number of hits

suffered by IJN carriers is in the range 3 to 5 hits was close to the expected one. Hughes

(2000) predicted not survivor for the Battle of the Coral Sea for each side. In reality,

one American carrier, the Lexington, was sunk and the other, the Yorktown, suffered

minor damage. In the Japanese side, the Shokaku suffered heavy damage, although it

was not sunk, whereas the Zuikaku was undamaged. Based on data collected by Beall

(1990) and Humphrey (1992) regarding damage to warships from bombs and torpedo

hits during WWII, one additional hit on the Shokaku would have been deadly. Our

estimations seem to indicate that Americans should have loss the two carriers and the

Japanese one out of two, a closer result to the prediction done by Hughes.

Table 9. Posterior estimation of the number of hits.

ABC-Rejection ABC-MCMC
Number of hits suffered Mean Median Mean Median

IJN CVs Coral Sea 3 4.69 3.12 3.85 3.66
USN CVs Coral Sea 5 8.96 6.96 7.49 7.48
IJN CVs Midway-I 9 13.79 9.03 9.99 9.46
USN CVs Midway-II 5 3.67 2.88 2.37 2.39
IJN CVs Midway-II 4 2.38 1.59 2.09 1.93

In the case of the Battle of Midway, we find that in the first American attack,

the estimated number of hits on IJN carriers were equal to the expected one or even

higher. This result is obtained because although the probability of hit per shot on

IJN CV was higher than expected, also the probability of intercept by IJN fighter was

higher than expected, cancelling the effects each other over the final number of hits.

Expected number of hits in the first American attack is between 9 and 14. This would

imply the loss of three carriers, as occurred in reality. We find that for the Japanese

counterattack, expected number of hits is lower than that observed. Japanese achieved

5 hits on the Yorktown but estimation indicates that the expected number was 2 or

3 hits, evidencing that this counterattack was more effective than expected. Finally,

also the number of hits in the second American attack was higher than the expected

one. However, this has no consequences as more attacking aircraft were available (an

additional 16 dive bombers from VB-8 and VS-8 but they attacked other targets once

they observed that the last Japanese carrier was mortally damaged). In summary, these

results indicate that the expected losses in the Battle of Midway is all four Japanese
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carriers and the possibility of no losses for the Americans with only heavy damage

carrier, an estimated outcome very close to the observed result and to the prediction

by Hughes. Finally, differences in observed figures with respect to estimated expected

values introduce an important difference. The Yorktown should have been sunk at

the Coral Sea. This event would have had important consequences, as this carrier

would not have been available at Midway, reducing dramatically the possibility of an

American victory in that second battle.

6. Conclusions

Likelihood-free estimation methods are gaining popularity in a large number of re-

search fields (Sisson, Fan and Beaumont, 2018), but still are of limited applications

in others. This is the case of Operational Research, where likelihood-free methods can

be a promising avenue for estimating complex models where the likelihood is compu-

tational intractable. A prominent likelihood-free estimation approach which is gaining

a great popularity due to its simplicity is the Approximate Bayesian Computation

(ABC) method.

This paper shows that the ABC method can be a very useful technique to obtain

reliable estimates of a model’s parameters which account for the uncertainty behind

observed figures. This is of particular importance for cases where data is very lim-

ited. Here, we apply the ABC method to estimate a salvo combat model. Lanchester-

type and salvo combat models have been widely used to study battles or competition

between species or firms, and for carry out counterfactual experiments. However, ob-

served figures for a particular event can be far away from the average expected outcome

or even be a very rate and improbable event, resulting is misleading estimated of the

model’s parameters. The ABC method can be of value for improving the accuracy of

estimates in these situations.

One of the main advantages of the ABC method is that models estimation can

be done including when data availability is very limited. This is because the ABC

method, contrary to other estimation techniques, relays on simulations of the model

and their comparison with observed data. We apply the ABC method to a case where
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data is very limited, with only five observations corresponding to two aircraft-carrier

battles to estimate two equations for a total of six parameters. We show that, using

this estimation technique, model estimation can be very different from calibration or

direct estimation using observed figures, where uncertainty is not taken into account.

Therefore, direct estimation or calibration of a model to conduct counterfactual ex-

periments can be a wrong strategy and lead to erroneous conclusions as they do not

account for uncertainty.

Estimation results shows that in the Battle of Coral Sea the number of hits suffered

by American carriers was much lower than expected. This result has important impli-

cations, not only for this particular battle, but also for the late Battle of Midway, as

the expected result indicates the loss of the two carriers, including the Yorktown. This

implies that the availability of aircraft-carriers for Midway would have been reduced

to only two, with dramatic consequences on the result of this battle. The number of

hits suffered by IJN carriers was similar but somewhat below the average expected

value and could have implied the loss of the Shokaku. In the Battle of Midway, we

obtain that the expected result in the first American attack is similar to the observed

result. However, in the Japanese counterattack, we estimate that the expected number

of hits suffered by American carriers is lower than the observed.

Comparing the outcomes of the two battles with Hughes (2000) predictions, we find

that he was right in predicting the Battle of Midway result (four Japanese carrier

sunk against one American carrier sunk), but he fails in predicting the Battle of the

Coral Sea result (only one American carrier sunk and another Japanese carrier heavily

damage). Nevertheless, here we show that the historical result at the Coral Sea was

far from the expected ”likely” result, which it is much closer to Hughes’ prediction.

In sum, Americans was lucky in the Battle of the Coral Sea, as the expected result

implies the loss of the two carriers. On the contrary, the Japanese was lucky in the

Battle of Midway sinking the Yorktown, as in the Japanese counterattack, observed

number of hits on USN carriers as higher than the average expected value.
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Figure 1. Posterior distributions. ABC-Rejection
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