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Abstract

This thesis focuses on the performance analysis of multiple-input multiple-output (MIMO)
systems under certain non-ideal (practical) conditions. Realistic limitations such as spa-
tial correlation, the presence of co-channel interferences, the use of non-orthogonal sig-
naling, and the limited-rate feedback channel, have been considered. Under these con-
siderations, outage and bit error probabilities have been analyzed for different systems
which employ beamforming techniques at the transmitter and/or different receive diver-
sity techniques.

The main goal of this thesis is to obtain different analytic closed-form expressions for
the most common performance metrics of MIMO systems in fading channels under the
mentioned non-ideal conditions. The existing mathematical tools are in some cases not
enough to accomplish such analysis. In other cases, the available tools and mathematical
framework only allow for either a restricted analysis or intractable results, which may
not give further insight on the system performance or may be numerically awkward.
Therefore, the motivation of this thesis is twofold: on the one hand, to find and/or
develop new mathematical tools that allow (or simplify) the analysis of such systems;
on the other hand, to analyze the performance of these systems in terms of the most
common measures, the outage probability (OP) and bit error probability (BEP), trying
to arrive at closed-form expressions whenever possible.

The main contributions of this thesis are as follows. First, simplified expressions have
been found for a type of incomplete cylindrical integrals, referred to as Lipschitz-Hankel
integrals. Based on these expressions, new statistical functions for the characterization of
different fading channel models have been obtained in closed-form. Second, new statis-
tical results have been obtained for the distribution of the diagonal elements of complex
Wishart matrices. These mathematical results have been applied to the OP and BEP
analysis of different MIMO systems under different practical conditions, resulting in sev-

eral contributions to the literature.

xi
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Resumen

Esta tesis se centra en el analisis de prestaciones de sistemas MIMO (multiple-input
multiple-output) bajo ciertas condiciones no ideales. Se han considerado limitaciones
realistas como son la correlacion espacial, la presencia de interferencias co-canal, el uso
de senalizacion no-ortogonal, y el canal de retorno de capacidad limitada. Bajo estas
condiciones, se han analizado las probabilidades de error y de outage para sistemas MIMO
que incluyen técnicas de conformacion de haz en el transmisor y/o distintas técnicas de
diversidad espacial en el receptor.

Se ha planteado como objetivo la obtencion de diferentes expresiones cerradas y ex-
actas para las probabilidades mencionadas. Dada la insuficiencia de las herramientas
matematicas disponibles en la bibliografia, ha sido necesario el desarrollo de nuevos méto-
dos o herramientas de anélisis. Por tanto, la motivacion de la tesis es doble: por un lado,
el desarrollo de estas herramientas que posibiliten o faciliten el anélisis de prestaciones
de los sistemas MIMO, y por otro lado, la aplicacion de estas herramientas a la obtencion
de expresiones cerradas que permitan analizar el rendimiento de los mismos.

Las contribuciones mas relevantes de esta tesis son las siguientes. En primer lu-
gar, se han obtenido expresiones simplificadas para cierto tipo de integrales incompletas,
conocidas como integrales de Lipschitz-Hankel. Estas expresiones han permitido obtener
ciertas funciones estadisticas para la caracterizacion de diferentes modelos de canal con
desvanecimientos. FEn segundo lugar, se han obtenido nuevos resultados estadisticos para
la distribucion de los elementos de la diagonal de matrices Wishart complejas. Todos
estos resultados matematicos han sido aplicados al andlisis de prestaciones de distintos
sistemas MIMO bajo diferentes condiciones précticas, lo cual ha dado lugar a varias

publicaciones.

xiil
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CHAPTER 1

Introduction

In this chapter, the context and main motivations of this thesis are introduced. Besides,
the results of this work have led to several contributions to the literature, which will be

summarized. Finally, the structure and organization of this thesis will be stated.

1.1 Scope and Overview

Multiple antenna systems have been used for a long time to mitigate the effects of fading
in wireless communications. Diversity reception techniques are applied in systems with
a single transmit antenna and multiple receive antennas, also referred to as single-input
multiple-output (SIMO) systems. They perform a certain combining of the individual
received signals, in order to provide diversity gain. In the case of frequency-flat fading,
the optimum combining strategy in terms of maximizing the output signal-to-noise power
ratio (SNR) is maximum ratio combining (MRC), which requires perfect channel knowl-
edge at the receiver. Several suboptimal combining strategies, which lead to less complex
receivers, are: equal gain combining (EGC), where the received signals are added up,
and selection combining (SC), where the received signal with the maximum instanta-
neous SNR is selected. Moreover, switched diversity strategies, such as switch-and-stay
combining (SSC) or switch-and-examine combining (SEC) are simpler to implement than
MRC, EGC, or SC, and thus, they are very often used in practical receivers with limited
complexity. A comprehensive description of such systems can be found in [1, ch. 9] and

the references therein.
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However, the performance of SIMO systems is often degraded due to certain limita-
tions or non-idealities such as the presence of co-channel interference (CCI) signals or the
use of non-orthogonal signaling. Therefore, including these limitations in the performance
analysis is of special interest when it comes to the design of practical (real) systems. On
the one hand, it is well-known that, for a communication link without CCI, MRC is the
optimal combining technique in terms of maximizing the SNR at the combiner output.
However, optimal combining in the presence of CCI is much more complex than MRC
and requires information about the CCI that may not be available [2]. Thus, in practice
many wireless systems will use MRC even in the presence of CCI and it is of essential
importance to analyze the performance of such systems under this condition. On the
other hand, binary frequency-shift keying (FSK) signaling with noncoherent, detection is
frequently adopted in practical switched diversity systems (e.g. SEC or SSC) as a simple
(low-complexity) modulation scheme. In such cases, signals can be chosen non-orthogonal
at the transmitter to reduce bandwidth utilization, at the expense of certain performance
degradation [3, ch. 5]. The use of non-orthogonal signaling to reduce bandwidth utiliza-
tion can be seen as a practical limitation to be addressed and, therefore, the performance

analysis under this condition is particularly interesting.

Applications in more recent years have become increasingly sophisticated, thereby
relying on the more general multiple-input multiple-output (MIMO) systems, which have
played an important role to satisfy the demand for higher capacity and coverage [4-6].
Such systems may combine the use of space-time block codes (STBC) at the transmitter
|7] and receive diversity techniques such as SC, also known as receive antenna selection
[8], or MRC [9]. When channel state information (CSI) is available at the transmitter,
more sophisticated schemes can be employed to enhance the performance. The MIMO
beamforming system, also referred to as MIMO MRC, relies on the joint MRC weights
at both the transmitter and the receiver sides [10-12]. However, the performance of such
systems is very often constrained by practical limitations as the antenna correlation,
which reduces spatial diversity [13], or the limited-rate feedback, which has been dealt
with codebook-based beamforming approaches [14-17].
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The main goal of this thesis is to address the performance analysis of different SIMO
and MIMO systems in fading channels under the mentioned non-ideal (practical) condi-
tions. The existing mathematical tools are in some cases not enough to accomplish such
analysis. In other cases, the available tools and mathematical framework only allow for
either a restricted analysis or intractable results, which may not give further insight on
the system performance or may even be numerically awkward. Therefore, the motivation
of this thesis is twofold: on the one hand, to find and/or develop new mathematical tools
that allow (or simplify) the analysis of such systems; on the other hand, to analyze the
performance of these systems in terms of the most common measures, the outage prob-
ability (OP) and bit error probability (BEP), trying to arrive at closed-form expressions

for these measures whenever possible.

Analysis of SIMO systems based on incomplete cylindrical integrals

In the context of SIMO systems, the analysis under the mentioned practical limitations
leads to certain incomplete integrals involving Marcum Q and Bessel functions. These
integrals, referred to as incomplete Lipschitz-Hankel integrals (ILHIs) and incomplete
integrals of Marcum @ functions (IIMQs), can be studied within the theory of the in-
complete cylindrical functions developed by Agrest and Maksimov [18]. ILHIs and IIMQs
traditionally appear in analytical solutions within the electromagnetics context [19]. How-
ever, in general, the applications of ILHIs and IIMQs seem to have escaped the notice of
most communication theorists. Besides, closed-form expressions for the solutions of these
integrals have been unavailable in the literature until recent results have been provided

in [20].

In particular, this type of integrals appear in the BEP analysis of switched diversity
systems, such as SSC and SEC, with noncoherent or differentially coherent detection of
non-orthogonal signals. However, results in the literature are not available in closed-form
due to the lack of tractable solutions for these integrals. Specifically, BEP results in [21]
and [22] for SSC and SEC with noncoherent detection are in the form of single finite
integrals. Besides, the OP analysis of MRC systems under CCI leads to the same type of
integrals when the Nakagami-¢ (Hoyt) fading model is assumed. Although considerable
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attention has been paid to the OP analysis under Rayleigh or Nakagami-m fading 23|, few
published results are found for Hoyt channels, which model more severe fading conditions.
Motivated on recent results in [20] concerning ILHIs and IIMQs, we have focused on
the development of simplified expressions for this particular family of integrals. Also,
the explicit solutions for these integrals allow obtaining new statistical functions for the
characterization of some fading channels. These mathematical expressions are key results

for the performance analysis of the mentioned SIMO systems.

Analysis of MIMO systems based on complex Wishart matrices

The statistical properties of Wishart matrices have been widely used to analyze the per-
formance of MIMO systems [24-27|. Particularly, the diagonal entries of complex Wishart
matrices are employed for characterizing the signal-to-noise ratio (SNR) statistics at the
output of certain MIMO systems under practical limitations. The distribution of the
maximum of the diagonal elements can be used to characterize the output SNR of MIMO
systems with selection combining (MIMO SC) under spatially correlated fading (see, e.g.,
[8, 28, 29]). Also, the use of the diagonal distribution of complex Wishart matrices has
been pointed out in [30] as an approach to the performance analysis of beamforming
systems with limited feedback (codebook-based). The derivation of tractable analytical
expressions for the SNR statistics of such systems is very important in order to evaluate
performance measures such as the OP, BEP, or system capacity. The reasons above mo-
tivate us to focus on the diagonal distribution of a complex Wishart matrix, which is a

particular multivariate chi-square distribution derived from complex Gaussian variables.

In the area of multivariate analysis, there is a rich body of works considering the joint
distribution of the diagonal elements of real Wishart matrices; equivalently, multivariate
chi-square distributions derived from real Gaussians [31-35]. Whereas the characteristic
function (CF) is well known [33], the joint probability density function (PDF) is rather
more complicated. Different approaches to the joint PDF have been proposed in the lit-
erature. An infinite series expansion for the density in terms of Laguerre polynomials was
first given in [33]. Following the same approach, later work by Royen [34] provided new

Laguerre expansions with improved convergence. In [35]|, Miller et al. derived expansions
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for the PDF in terms of Bessel functions for the bivariate and trivariate cases. How-
ever, the case of underlying complex Gaussian random variables, i.e., complex Wishart
matrices, has not been sufficiently investigated. Only very recently, Hagedorn et al. [36|
have derived corresponding expansions for the trivariate case. To the best of the author’s
knowledge, the case of k-variate chi-square (k > 3) from a complex Wishart matrix with
arbitrary correlation is not available in the literature. Moreover, the expansions in [36]
for £ = 3 are in the form of Bessel functions, which make further performance analysis

(e.g., BEP) complicated.

In the communications theory context, the available statistical results on the multi-
variate chi-square distribution have been applied to the performance analysis of MIMO
systems [8, 28-30]. However, the analysis is often limited due to the lack of results on
the diagonal distribution of complex Wishart matrices. Moreover, analytical closed-form
expressions (e.g., BEP) are rarely provided due to the intractable form of the joint PDF.
In [29], the derived BEP expressions for multi-branch SC over spatially correlated fading
are in the form of a multiple integral involving the joint CF. Also, BEP results in [30]
for codebook-based transmit beamforming are again given in a multiple integral form. In
some other works, the analysis is carried out under certain assumptions such as a real cor-
relation matrix, equivalently considering a real Wishart matrix. In [28], closed-form BEP
results are provided for dual-branch selection diversity assuming real correlation among
branches. Also, the real exponential correlation model is assumed in [§] to analyze the
performance of MIMO SC systems, i.e. MIMO systems where selection combining is

applied at the receiver.

1.2 Contributions of this Thesis

In this thesis, we have addressed the performance analysis of different SIMO and MIMO
systems in fading channels under certain practical conditions. We have aimed to obtain
closed-form expressions for the two most commonly extended performance measures,
outage and bit error probabilities, leading to several contributions to the literature. As

stated above, in some cases the existing mathematical tools have not been enough to
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accomplish such analysis and, thus, the development of new tools and statistical functions

has been an essential part of this work.

The main contributions of this thesis can be split into two categories: the ones derived
from the analysis of SIMO, and the ones corresponding to the analysis of MIMO systems.
In both cases, the analysis has raised the need for the development of new mathematical

expressions and statistical functions.

In the context of SIMO systems, simplified solutions have been obtained for the class
of incomplete integrals ILHI based on previous results in [20]. The explicit solutions of
ILHI have been used to derive new closed-form expressions for several statistical functions

which help characterizing different fading channel models (see Chapter 3), specifically:

e The incomplete generalized moment generating function (IG-MGF) of the Hoyt
fading distribution has been expressed by a finite number of Bessel and Marcum Q
functions. Besides, an original expression for the IG-MGF of the sum of independent
and identically distributed (i.i.d.) Hoyt variables have been obtained in terms of

the confluent Lauricella function.

e The cumulative distribution function (CDF) of the n-u fading distribution® has
been obtained in terms of Bessel, Marcum @, and elementary functions. These
results for the CDF have been directly applied to the OP analysis of MRC systems

over i.i.d. n-p fading channels in [37].

The explicit solutions for the incomplete integrals ILHI and IIM(Q [20], and the new
derived expressions for the statistics of Hoyt fading channels have been applied to the
performance analysis of SIMO systems under different conditions, leading to the following

contributions:

e Exact and closed-form expressions have been derived for the average BEP of non-

coherent and differentially coherent detection in multibranch switched diversity

!The n-p fading distribution, introduced in Section 3.3, is a new general distribution [38] which
includes, as particular cases, the classic non line-of-sight (NLOS) fading models (e.g. Nakagami-m,
Hoyt, and Rayleigh).
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systems under Nakagami-m fading. The derived expressions have led to easily com-
putable results which are useful for the analysis and design of switched diversity
based systems. In this kind of systems, signals may be chosen non-orthogonal
(correlated) at the transmitter in order to reduce the bandwidth use. As a par-
ticular case, results for a dual-branch SSC system with noncoherent detection of

non-orthogonal binary FSK under Rayleigh fading have been published in [39].

e Exact closed-form expressions have been obtained for the OP of MRC systems
in Nakagami-¢ (Hoyt) fading channels under independent co-channel interferers
with arbitrary powers. These results are obtained from the application of the new
derived expressions for the IG-MGF of the Hoyt fading distribution. Besides, some
simplifications and approximations for the OP in the high SNR regime have been

obtained and published in [40| for the particular case of a single antenna receiver.

In the context of MIMO systems, it has been observed that the SNR output charac-
terization of several well-known systems depends on the diagonal distribution of complex
Wishart matrices. Therefore, the statistics of the diagonal of such matrices have been

addressed resulting in the following contributions:

e Infinite series representations in terms of the Laguerre polynomials are given for
the joint PDF and CDF of the diagonal elements of a complex Wishart matrix.
The diagonal elements of such matrices follow a particular multivariate chi-square
distribution. The expansions for the joint PDF and CDF are straightforward for
numerical work and converge rapidly. Further performance analysis of MIMO sys-
tems such as exact BEP analysis is made possible due to the form of the series

expansions.

e The derived expression for the joint CDF is used to obtain a new series expansion
for the distribution of the maximum of &k arbitrarily correlated chi-square random

variables.

e Although seemingly complex, the computation of the series is mathematically tractable.
An efficient MATHEMATICA™ algorithm has been developed for rapid computa-

tion of the coefficients.



8 Introduction

The statistical results on the diagonal of complex Wishart matrices have been applied
to the analysis of MIMO systems. Specifically, the distribution of the maximum of the
diagonal (i.e., the maximum of k arbitrarily correlated chi-square variables) has been

used to analyze the OP of two MIMO systems under different practical conditions:

e First, our statistical results have been applied to the OP analysis of MIMO SC
systems in arbitrarily correlated Rayleigh fading channels. This analysis extends
the results in [8] to any number of receive antennas with arbitrary correlation. Also,
our results are in the form of a single series expansion in terms of the Laguerre poly-
nomials, which facilitates the computation and makes further closed-form analysis

(e.g. BEP analysis) possible.

e Then, the same analytical approach has been applied to obtain the OP of MIMO
beamforming systems under limited-rate feedback, i.e., systems with codebook-based

transmit beamforming and MRC at the receiver side.

The obtained expressions for the OP are given as an infinite series representation
in terms of the well-known Laguerre polynomials, and have been shown to be easily
computable. At the best of the author’s knowledge, the derived expressions and results

from both MIMO systems are novel and thus represent key contributions of this thesis.

Publications

A number of publications has been produced as a result of this work. The main publica-

tions which gather the mentioned contributions are:

e D. Morales-Jiménez, J. F. Paris, J. T. Entrambasaguas, and Kai-Kit Wong, “On the
diagonal distribution of a complex Wishart matrix and its application to the analysis
of MIMO systems,” under review (2nd round of reviews) for possible publication in

IEEE Transactions on Communications.

e D. Morales-Jiménez, J. F. Paris, and Kai-Kit Wong, “Closed-form analysis of multi-

branch switched diversity with noncoherent and differentially coherent detection,”
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under review (2nd round of reviews) for possible publication in International Jour-

nal of Communication Systems.

e |37] D. Morales-Jiménez and J. F. Paris, “Outage probability analysis for n — p
fading channels,” IEEE Communications Letters, vol. 14, no. 6, pp. 521-523, June
2010.

e [39] D. Morales-Jiménez and J. F. Paris, “Closed-form analysis of dual-branch
switched diversity with binary nonorthogonal signaling,” Electronics Letters, vol.

45, no. 23, pp. 1179-1180, November 2009.

e [40] J. F. Paris and D. Morales-Jiménez, “Outage probability analysis for Nakagami-q
(Hoyt) fading channels under Rayleigh interference,” IEEE Transactions on Wire-
less Communications, vol. 9, no. 4, pp. 1272-1276, April 2010.

Other publications by the author which have been produced in the context of the
analysis of MIMO systems are:

o G. Gomez, D. Morales-Jiménez, J. J. Sdnchez, and J. T. Entrambasaguas, “A next
generation wireless simulator based on MIMO-OFDM: LTE case study,” EURASIP
Journal on Wireless Communications and Networking, vol. 2010, Article ID 161642,
14 pages, 2010.

e D. Morales-Jiménez, J. F. Paris, and J. T. Entrambasaguas, “Performance trade-
offs among low-complexity detection algorithms for MIMO-LTE receivers,” Inter-
national Journal of Communication Systems, vol. 22, no. 7, Wiley, July 2009, pp.
885-897.

e D. Morales-Jiménez, G. Gomez, J. F. Paris, and J. T. Entrambasaguas, “Joint
Adaptive Modulation and MIMO Transmission for Non-Ideal OFDMA Cellular
Systems,” in Proc. IEEE GLOBECOM 2009 Workshops, Hawaii (USA), pp. 1-5,
Nov 2009.
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1.3 Organization

The rest of this thesis is organized as follows. The mathematical derivations and tools
which have been used in the performance analysis are presented in Chapter 2. Then,
the statistical fading channel models assumed in the different analyses of this thesis
are introduced in Chapter 3. The main body of the performance analysis is divided
in chapters 4 and 5, corresponding to SIMO and MIMO systems respectively. On the
one hand, Chapter 4 includes the analysis of different receive diversity systems under
different practical limitations: switching combining under non-orthogonal signaling and
MRC systems under the presence of co-channel interference signals. On the other hand,
MIMO systems are analyzed in Chapter 5 under different conditions, specifically: MIMO
systems with receive antenna selection (MIMO SC) under spatial correlation and MIMO
beamforming systems under limited-rate feedback. Finally, the main conclusions of this

thesis are gathered in Chapter 6.



CHAPTER 2

Mathematical Tools for Performance
Analysis

The purpose of this chapter is to present the mathematical tools and derivations which
have been used in this thesis for the performance analysis of single-input multiple-output
(SIMO) and multiple-input multple-output (MIMO) systems. In this context, we have
aimed to obtain closed-form expressions for the most common performance measures in

the analysis of such systems.

In some cases, the existing mathematical tools are not enough to accomplish such
analysis. In other cases, the available mathematical framework only allow for a restricted
analysis, leading to awkward expressions which may not give further insight on the system
performance and whose numerical evaluation is tough. In order to allow or simplify the
analysis of such systems, new mathematical tools and statistical functions have been

developed thus representing an essential part of this work.

In this chapter, we first present the notation that will be used throughout the thesis,
followed by the performance metrics which will be analyzed. Then, the special functions
and integrals involved in the derivations of these metrics are introduced. In particular,
special attention will be paid to a certain kind of incomplete integrals, which are of
particular importance in the analysis of SIMO systems under certain practical issues.
Finally, the statistics of the diagonal elements of a complex Wishart matrix are addressed.

This will be of particular importance when it comes to the analysis of MIMO systems.

11
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2.1 Notation

Throughout this thesis, the following vector and matrix notations are used: bold lowercase
for vectors, bold uppercase for matrices, superscripts 7" and H for the transpose and the
Hermitian transpose, respectively. Regarding vector and matrix norms, we use ||-|| for the
Euclidean vector norm, |-| for the matrix determinant, and ||A ||, for the spectral norm of
matrix A, i.e., the square root of the maximum eigenvalue of A#A. Also, we use diag(-)
for the diagonal elements of a matrix, and Diag (ay, ..., ax) for the diagonal matrix with

diagonal elements (ay,...,ay).

Besides, for complex values we use R {-} and |-| for the real part and the modulus
operators, respectively, and the superscript * for the complex-conjugate. In general, E [
is used to denote the expectation operator, and Pr {-} denotes the probability of a certain
event specified in braces. Also, L[f (p);p,s] denotes the Laplace transform of a certain

function f (p).

Finally, (a),, = a(a+1)...(a+m —1) is the pochhammer symbol, whereas the
a
binomial coefficient is denoted and given by ( ; ) = b,(a"—lb),, with ! denoting the factorial

operator and 0 < b < a.

2.2 Performance Metrics

2.2.1 Outage Probability

A standard performance criterion, characteristic of diversity systems operating over fad-
ing channels, is the so-called outage probability (OP) denoted by P,,; and defined as the
probability that the instantaneous error probability exceeds a specified value. Equiva-
lently, P,,; is the probability that the output signal-to-noise power ratio (SNR), ~, falls

below a certain specified threshold, v,. Mathematically speaking, we have

Pot 2Pr{y <70} = F, (7,) = / " £ (), (2.2.1)
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which is the cumulative distribution function (CDF) of v, namely F, (), evaluated at
Y = 7, whereas f, (7) denotes the probability density function (PDF) of ~.

The main difficulties when calculating the OP lie on the fact that the output SNR
statistics, specifically the PDF, is sometimes not known. In some other cases, the PDF
cannot be integrated in closed-form, i.e. there are no available closed-form results for
the CDF, and thus, the OP needs to be calculated via numerical integration. When this
occurs, the system analysis is restricted to the numerical evaluation of the OP and thus,
obtaining further insight on the performance behavior such as asymptotic approximations

or bounds is either not possible or tricky.

2.2.2 Error Probabilities

Another performance criterion and undoubtedly the most difficult to compute is the
average bit error probability (BEP). It is the one that is most revealing about the nature
of the system behavior and the one most often illustrated in performance evaluations;
thus, it is of primary interest to have a method for its evaluation that reduces the degree

of difficulty as much as possible.

Given the conditional BEP P, (x) 2 pr {bit error |y = =} and the PDF of the SNR
f+, the average BEP (ABEP) is calculated by

Py, = /000 P, (z) fy (x) de. (2.2.2)

The primary reason for the difficulty in evaluating the ABEP lies in the fact that the
conditional (on the fading) BEP depends on the modulation/detection scheme employed
by the system. As the nature of the modulation/detection schemes is nonlinear, the

conditional BEP is, in general, a nonlinear function of the instantaneous SNR.

Another commonly used metric is the symbol error probability (SEP), which also
depends on the modulation/detection scheme and can be directly related to the BEP.
Given the conditional SEP P; () 2 pr {symbol error |y = z }, the average SEP (ASEP)

is calculated as

P, = /000 P (z) £ (z) du. (2.2.3)
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The same difficulties for the evaluation of ABEP also apply to the ASEP, as the condi-
tional SEP has also a nonlinear dependence with the fading statistics and the ASEP is

calculated by averaging the conditional SEP over these statistics.

2.3 Special Functions and Integrals

2.3.1 Classical Special Functions

Legendre polynomials

Legendre polynomials are a class of orthogonal polynomials which frequently appear in
the context of OP and error probabilities analysis of MIMO communication systems. The

Legendre polynomials of degree n are of the form

1 dr n
P, (2) = T (z-1)". (2.3.1)

Several expanded forms are available for (2.3.1) in [41, (8.911)]. One of the most com-

monly used is given by

" (=) (n+ k)

o (e (1) TR (23.2)

Pn<Z):

k=0

Jacobi polynomials

Jacobi polynomials are a different class of orthogonal polynomials which will appear
throughout the derivations of this thesis. The Jacobi polynomial of degree n and param-

eters a and (3 is given by

o 1 G nta n+f ek k
P! ﬁ>(z)_2—nk:0< . )(n_k>(z—1) (z+1)" (2.3.3)

More detailed information on the Jacobi polynomials, as functional relations and connec-

tions with other functions can be found in [41, (8.96)].
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Laguerre polynomials

Another class of orthogonal polynomials which are of interest in the context of this thesis
are the so-called Laguerre polynomials. The generalized Laguerre polynomials are usually
defined according to the Rodrigues’ formula [41, eq. 8.970-1] as

1 o ar

Ln (Z) = me z @

(e7"z"e). (2.3.4)
The expanded form can be directly obtained from the definition (2.3.4), thus leading to the
following expression for the generalized Laguerre polynomial of degree n and parameter

a,

" n+a \zm

Ly (z) =) (-1)" . (2.3.5)
m=0 n—m m

Further information on the Laguerre polynomials, such as alternative representations,

functional relations, and asymptotic or limiting behavior, can be found in [41, (8.97)].

Gamma function

The Euler’s integral of the second kind, also referred to as the gamma function, is defined

as
o0
[(z) = / et dt, (2.3.6)
0
with ®{z} > 0. Alternative representations, special cases, and functional relations can

be found in [41, (8.3)]. The following relation is of particular importance,
F(z4+1)=2I(z). (2.3.7)

Also, the gamma function is directly related to the factorial when the argument is a

natural number, i.e.,

'(n)=(m-1)! ,n € N. (2.3.8)
Incomplete gamma function

The incomplete version of (2.3.6) is known as the incomplete gamma function, defined as

’y(a,:):):/ et e, (2.3.9)
0
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with R{a} > 0. A commonly used series representation for the incomplete gamma

function is given by

ACEIEDY (i (2.3.10)

n(a+n)’
n=0 ( + )
For alternative representations, special cases, and functional relations the reader is re-

ferred to [41, (8.3)].
Modified Bessel functions of the first kind (7,)
Bessel functions Z,(z) are solutions of the differential equation

&z, 1dzZ v?
e 1-= )4, = 2.3.11
d22+zdz+( 22> 0 (2:3.11)

Special types of Bessel functions are what are called Bessel functions of the first kind .J,(2),
Bessel functions of the second kind (also called Neumann functions), and Bessel functions
of the third kind (also called Hankel’s functions). We will focus on a modification of .J,(2),
the so-called modified Bessel functions of the first kind 7, (z), which will appear frequently
throughout this thesis.

The Bessel functions of the first kind, which fulfill equation (2.3.11), are defined as

v X 2k

z k z
L (2) = =3 (~1 , , 2.3.12
J, (2) o ko( ) PR (0 T kT 1) larg z| < 7 (2.3.12)

and the modified Bessel functions of the first kind are given by

I, (2) = e" 2], (egiz) , —m<argz < g (2.3.13)
I, (2) = e%””iJl, (e_%mz) , g <argz < (2.3.14)

Finally, the particularization of I,(z) for an integer order v = n is given by
I, (2) =1i"J, (iz) (2.3.15)

Marcum Q functions

The first order Marcum Q function is defined in its more common form as

2

Q(a,B) = /ﬁ A (at) dt, (2.3.16)
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which can be seen as the complement (with respect to unity) of the CDF corresponding
to a normalized noncentral chi-square variable. It has been shown in [1, ch. 4] that the

first order Marcum Q function has the following series form

2,2 X k 5 00
Qla,f) =7 Y (%) I (af) = e T 1) 3 chry (8%¢), (2.3.17)
k=0 k=0

where ( 2 % The reason for introducing the parameter ( is to represent the ratio of the
arguments of the Marcum Q function. This parameter is used to obtain more insight in
the communications theory context, specifically more information about its dependence

on the modulation/detection scheme can be found in [1, ch. 5.

Analogously, the generalized m-th order Marcum Q function is defined by

7£2+ce2

Qm (a, ) = ! /Ootme_ 2 Ly (at)dt. (2.3.18)
B

a/m—l

The series form for the generalized m-th order case is given by
o] k o]
_a?4p? o B2 2
Qm(,8)=e "2 Y (—) (@B = e =) 5™ chp (5%),  (23.19)
k=1-m ﬂ k=1-m
which holds for integer values of m. In this case, the values of the summation index & are
also integer, and then I_j (2) = I} (2). A valid series form for the case of a non-integer
m is

Qm (a,ﬁ) = @_§<1+C2) Z Ck],k (524) (2.3.20)

k=1-m
2.3.2 Lauricella or Humbert Functions

Lauricella functions are generalizations of the Gauss hypergeometric functions to multiple
variables. Among the important confluent forms of Lauricella functions, we are interested
in the confluent series CD%"), which will appear in some derivations of this thesis, and is

defined by [42, eq. 5.71.21] [43]

> b .o (by m mp
(I)gn) (bla"'vbn;c; xla"‘axn) = Z ( 1)m1 ( >mn xl xn y (2321)
0 (c)mlJr m mq! my,!
TR n

where (a),, =a(a+1)...(a+m — 1) is the pochhammer symbol. The series ®{" is also
referred to as the Humbert’s confluent hypergeometric series in n variables, and the case

of two variables is often denoted by ®, = CDgQ) .
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An important result on the Laplace transform of <I>§”), which have been used in some
derivations in chapters 3 and 4, is as follows [44, eq. 3.43.1.4]

I —b n —bn
[0l (o bcsant . ant) s8] = ﬁ(l )T (=) s

s¢ S S

with £ {c} > 0.

2.3.3 Incomplete Lipschitz-Hankel Integrals

Incomplete Lipschitz-Hankel integrals (ILHIs) are a class of incomplete cylindrical func-
tions |18| that traditionally appear in the analytical solutions of numerous problems in
electromagnetics [19]. Within the communication theory context, Pawula reported on
the connection between the Rice I.-function [45], which is a special type of ILHI, and the
Marcum Q function [46—48|, pointing out some advantages to be gained for performance

analysis with a representation whose genesis lies in the ILHIs.

As it will be shown later in Chapter 4 within the context of performance analysis
of SIMO systems, we have encountered certain ILHIs for which an explicit solution is
aimed. Specifically, we are interested on exact and closed-form expressions for ILHIs of
modified Bessel functions and certain type of incomplete integrals involving the general-
ized Marcum Q function, known as incomplete integrals of Marcum Q functions (ITMQs).
Closed-form expressions for the solution of these integrals are not available in the classical
references for this kind of functions, e.g. [41, 49-51|. However, Paris et al. have recently
presented in [20] new explicit expressions for ILHIs and IIMQs which have been applied
to the analysis of SIMO systems in this thesis.

In order to provide the reader with the complete mathematical framework used in
the performance analysis of this thesis, this section gathers the main results on ILHIs
and [IMQs obtained in |20]. First, it will be shown that the incomplete integrals IIMQs,
involving the generalized Marcum () function, are represented by a finite number of
elementary functions, Marcum Q functions and ILHIs. Then, the explicit solution for
ILHIs will be presented, showing that these integrals can be expressed in terms of Bessel

and Marcum () functions.
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Definitions

The general family of incomplete Lipschitz-Hankel integrals of first-kind modified Bessel

functions are defined as [52]
L, (z0)% / the='L, (t) dt, (2.3.23)
0

where [, is the modified Bessel function of the first kind defined in (2.3.13)-(2.3.14), and

a, z,v, i € C, whereas, to assure convergence, {1 + pu + v} > 0.

In particular, we are interested in the following specialization of (2.3.23).

Definition 1 (ILHI of modified Bessel functions).

I

€m,n

(x;a) &L, ., (2 =10) = / t"e L, (t) dt, (2.3.24)
0

where a« € R, myn € N; a > 1 and = € [0,00).

For simplicity, the function I,  (z;«a) will be referred to as the ILHI of m-th degree,

€m,n

n-th order and parameter a.

We are also interested in the following family of incomplete integrals involving Marcum
Q functions, referred to as [IMQs. This type of integrals are formally equivalent to those
solved in |53, 54| whose integrands involve powers, exponentials and the Marcum Q
function with two linear arguments. However, the IIMQs have finite integration limits
and, thus, the solutions given in [53, 54| for the complete integrals are not valid in this

case.

Definition 2 (Incomplete Integrals of Marcum Q functions (IIMQ)).
Qe (%36, 0,0) é/ tme=tQ, (a\/%, b\/i) dt, (2.3.25)
0

where @y, is the generalized n-th order Marcum Q function, defined in (2.5.18), 5,a,b € R,
m,n € N; B,a,b>0,n>1 and x € [0, 00).

Again for simplicity, the function Q. (z;3,a,b) will be referred to as the IIMQ
function of m-th degree, n-th order and parameters 3, a, b. Note that Definition 2 includes

the complete integrals solved in [53, 54| when z — 0.
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Connection between the IIMQ functions and ILHIs

Recent results in [20] show that the IIMQ function can be represented by an expression
involving a finite number of generalized Marcum @ functions and ILHIs. This connection

between IIMQ and ILHI is stated by the following Lemma, reproduced from [20].

Lemma 1. The IIM(Q function can be represented as

! m_or
Qep.p (3 6,a,b) = 57:+1{1_€ﬂ$Qn (a T, b\/E) Z_;%xr
1 . grpn—r-1 ‘ ‘
+3 Z g (al,, (abz;a) = bl (abs;a))y
r=0

(2.3.26)

240242
wherea:%>l.

Proof. See |20, Appendix I|. This proof has been included in Appendix A.1 for complete-
ness. 0

Connection between the ILHI and the Marcum Q functions

As stated above, closed-form expressions for the solution of ILHIs have been obtained in
|20], showing that the ILHI can be represented in terms of Bessel and Marcum Q func-
tions. In the subsequent, Lemma 2 and Proposition 1 gather the closed-form expressions

for the ILHI, which will be applied to the analysis of SIMO systems in Chapter 4.

Lemma 2. The ILHIs for low degrees and low orders are given by [20]

(i) Loy, (z50) = @ — 2@@1(% — v/ a+va2—l> + ae” " Iy(x)

(i) Lo, , (z;0) = ad® — 2(1043@1(\/%, ﬁ\/a+\/a21) + ad’e *Iy(x) — aa’e “xly(x)
—ate "zl (x)

(ZZZ) 160,1 (ZL‘, oz) =aa—1-— 2(%6{@1 (\/ﬁ, ﬁ\/a+\/a21> + (]_ + O[@) @_Oéatjo(x)

(iv) L., , (z;a) = &® — 2(13@1(\/ﬁ, ﬁ\/a+\/a21> +ate ™ Iy(z) — a’e *wly(x)

—aa’e "zl ()
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Proof. The proof, which can be found in |20, Appendix II], is included for completeness
in Appendix A.2. O

Proposition 1. The m-th degree and n-th order ILHI is represented by an expression
inwvolving a first-order Marcum @ function and a finite number of Bessel functions, specif-

ically [20]

m n+1

L0 = A8 f) + Al ()@ o ) 40707 S S B e o),

i=0 j=0
(2.3.27)

where the set of coefficients AL, , (), Bi (@) can be obtained recursively in a finite num-
ber of steps by the algorithm given in Appendiz A.3.

Proof. See [20, Appendix III|. Also, for completeness sake, this proof has been included
in Appendix A.3. O]

Finally, the closed-form representation for the IIMQ function follows from Lemma 1

and Proposition 1.

Corollary 1. The m-th degree and n-th order IIMQ) is represented by the following ez-
pression involving a finite number of Marcum @ and Bessel functions [20]:

bn r—1

! =B ! v
Qe (13 0,0,b) = BZLH N e Qn a\/_ b\/_ Zﬁ_ 1 57:4;1 Z ’
r=0

e
x{aAS,n< )= bA, (@) + (adL(0) — bAL, (@) ) @ (% \/Th)

an+r

r

+6_a“b12al§iﬁ+l( )(abx) I, 41 (abz) + Z (aBii(a) — bBY, i (a)) (ab:z:)i]j(abx)}
i=0 J=0
(2.3.28)
a2+b2+25'

where o = 5D

The finite recursive algorithm to obtain the coefficients A!, (), Bi/, (a) of Propo-
sition 1 and Corollary 1 can be found in Appendix A.3. Besides, a MATHEMATICA™
program is provided in Appendix A.4 to compute the set of coefficients { AL (a), Bﬁﬁ(a)}

either numerically or symbolically.
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2.4 The Diagonal Distribution of Complex Wishart Ma-
trices

The statistical properties of Wishart matrices have been extensively used to analyze the
performance of MIMO systems. As it will be shown later in Chapter 5, the SNR output
statistics of several MIMO systems depends on the diagonal distribution of a complex
Wishart matrix. Specifically, we are interested on the distribution of the maximum of
the diagonal of a complex Wishart matrix. In order to arrive at the distribution of the
maximum, the joint cumulative distribution function (CDF) of the diagonal elements,

which follow a particular multivariate chi-square distribution, is needed.

There is a rich body of works considering the joint distribution of the diagonal elements
of real Wishart matrices; equivalently, multivariate chi-square distributions derived from
real Gaussian random variables [31-35]. Whereas the characteristic function (CF) is
well known [33], the joint CDF and probability density function (PDF) are rather more
complicated. Different approaches to the joint CDF and PDF have been proposed in the
literature for the real case. An infinite series expansion in terms of Laguerre polynomials
was first given in [33]. Later work by Royen [34] provided new Laguerre expansions
with improved convergence. In [35], Miller et al. derived expansions for the PDF in
terms of Bessel functions for the bivariate and trivariate cases. However, the case of
underlying complex Gaussian random variables, i.e., complex Wishart matrices, has not
been sufficiently investigated. Only very recently, Hagedorn et al. [36] have derived
corresponding expansions for the trivariate case. To the best of the author’s knowledge,
the case of k-variate chi-square (k > 3) from a complex Wishart matrix with arbitrary
correlation is not available in the literature. Moreover, the expansions in [36] for k = 3
are in the form of Bessel functions and are not suitable for further performance analysis

(e.g., closed-form ABEP analysis).

In this section, we provide novel series expansions for the joint PDF and joint CDF
of the diagonal elements of complex Wishart matrices, i.e., for the general k-variate
chi-square (k > 3) with arbitrary correlation. Then, we focus on the statistics of the

maximum of the diagonal elements, presenting new series expansions for the PDF and

CDF.
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2.4.1 Preliminaries

Let X; = [X1,, Xaj, - - ,X;w-]T be the j-th sample of a k-dimensional zero-mean complex
Gaussian process (j = 1,2,...,p), where {X;} are mutually independent and identically
distributed (i.i.d.). The covariance (or correlation) matrix for each Gaussian random
vector is R = E[X;X], ie., X; ~ CN(0,R). Then, the matrix S = i X; X! has
a complex Wishart distribution denoted by CWy(p, R), and the diagonal elements of S,
defined by

p p p
diag(S) = (V1,Ya,...,Yi) = (Z X2 XY |Xk,j|2) : (2.4.1)
j=1 j=1 j=1

are chi-square distributed with 2p degrees of freedom, i.e., Y; ~ x%(0,2p) having PDF

1 1

Fl0) = gy e =12 h) (2.4.2)

where I'(-) is the gamma function, defined in (2.3.6). Note that this is just a scaled
version of the gamma distribution, fy,(y) = %gp (Y5), with the gamma density defined as

xaflefx

T (2.4.3)

ga<x) =

The joint distribution of (Y7,Y5,...,Y%), i.e., the diagonal distribution of the complex
Wishart matrix S, is a k-variate central chi-square distribution with correlation structure
induced by R. The rest of this section is devoted to the statistical analysis of this
distribution. Specifically, exact infinite series expansions are provided for both the joint
CDF and joint PDF denoted by Fy, v, . v (Y1,%2,---, k) and fyive,.vi (U1, Y2, - -+, Yk),

respectively.

2.4.2 Joint Cumulative Distribution Function

Our objective is to find a tractable and easily computable expansion for the CDF by
following a similar approach to that in [34], where results are provided for the real case. In
the complex case, the correlation structure of the underlying Gaussian random variables
is different, leading to a slightly different CF with a complex correlation matrix. In the

extension to the complex case, we basically apply the approach in [34| to the CF, and
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then the binomial expansion and Fourier inversion are used to obtain the series. As a
different CF with a complex correlation matrix is involved, the validity of the derivations
in [34] has been revised and carefully checked. Then, our analysis diverges from that in
|34| by using a more convenient representation and rearranging the series when it comes

to the distribution of the maximum of the diagonal elements (see Section 2.4.4).

The starting point is the CF for the diagonal distribution of a real Wishart matrix,
which is well known [33, 34|. After an extension to the complex case, it is possible to

write the CF of the diagonal elements of a complex Wishart as
® (ty,...,t) = E [T W] = T —RT| 77, (2.4.4)

where I is the k-dimensional identity matrix, R = E [XjXﬂ is the covariance or also

referred to as correlation matrix, and T = Diag (¢4, .., ).

Using the approach in [34] to (2.4.4), we arrive at the following representation of the
CF:

k
O (ty,....ty) =T—(T-WRW)U[ P[] (1 —w), (2.4.5)
j=1
where W = Diag (wy, ..., wy), with w; any scale factors, and U = Diag (us, ..., ux), with
i\
wj=1- <1 - zw—g) . (2.4.6)
j

(w - y;), where g(i)n () denotes the n-th

Note that the Fourier transform of w - g\ N

ptn

derivative of the gamma density g, (), is given by

uyl—wy,ﬁmmﬂ1—wﬁ}>a (2.4.7)

For convenience, we define 91(071) (x) as the gamma CDF, i.e.,

@G =T =1 T (2.48)

where (-, -) is the incomplete gamma function, defined in (2.3.9).

The CF in (2.4.5) can be expressed as an infinite series by replacing [I — (I - WRW) U|™”

with its binomial expansion and, then, the joint CDF is obtained by the Fourier inversion
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of the series. Thus, after considering (2.4.7) as well as previous definition in (2.4.8), the

following expansion for the joint CDF is obtained:

By, vy v (W15 Y2y -5 Uk) Z Z c(ni,...,n ng—f—n] wy y] (2.4.9)

n=0 (n=n1+--+ng)

where Z(n:m et denotes the summation over all possible integer partitions satisfying
n = ny+---+ng, and the coefficients ¢ (ny, ..., n;) depend on p, the scale factors wj, and
the complex correlation matrix R. The scale factors are chosen to assure the convergence

of (2.4.9), which is guaranteed under the condition *
IT- WRW|, < 1, (2.4.10)

where ||A||, denotes the spectral norm of A, i.e. the square root of the maximum eigen-

value of ATA.

Now, using the Rodrigues’ formula [51, eq. 22.11.6], we can write
(n—1)!
(p+n—1)!
where L¢ (z) is the n-th order generalized Laguerre polynomial, defined in (2.3.5). Thus,

(n—1)

Ip+n ( ) = e_xivpol_l (I), (2.4.11)

the joint CDF can be rewritten in terms of the Laguerre polynomials as

k
By v, vi (Y192, Uk) Z Z c(ni, ..., ng) H Aﬁj (w?yj) , (2.4.12)
j=1

n=0 (n=ni+--+ng)

with
p—1 .
Gy(x)=1—e7> &, for n = 0,
AP (z) 2 v =07 (2.4.13)
gl(,:ﬁnl) (x) = (p(:;i)ll)!e*xxpLﬁ_l (x) formn > 0.

What remains to complete the expansion of the joint CDF in (2.4.12) is to find an
easily computable expression for the coefficients ¢ (n,...,ng), which is addressed by the

following proposition.

Proposition 2. The coefficients ¢ (nq, ... ,ng) for the series expansion in (2.4.12) can
be obtained as the coefficients of the n-order homogeneous polynomial 6,, as

n
On (ug, ug, ..., ug) = E c(ny,...,n Huj

(n=ni+-+ng)

_ C(p4ly+--+0) k (—D,)"
. 2 ' (p) 11 oG

(n=L14202+-+kLy) Jj=1

!The sufficient condition for convergence of the series follows from the binomial expansion of (2.4.5),
and a proof can be obtained from [34, Theorem 2.1].
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where D; denotes the polynomial generated from the determinants of the submatrices of

A=1—-WRW as ‘
D= (=1 > |As| ] um: (2.4.15)
size(S)=j meS
with As representing the submatriz of A with the rows and columns specified by the
non-empty subset S C {1,2,....k}, and 3, 5=, denoting the summation computed
over all possible subsets S whose size is j.

Proof. See Appendix B.1. m

It should be noted that all the coefficients in the series for a given value of n are
obtained from the polynomial 6,, which makes the computation very efficient. Also,
it is likely to find a great number of null coefficients, especially for a large number of
variables (k). As a consequence, the terms in the series to be computed are reduced
to those appearing in the polynomial 6,,, which significantly decreases the computation
cost. Appendix B.2 includes a MATHEMATICA™ program with an efficient algorithm to
compute the polynomial 6,,, where the coefficients ¢ (nq,...,ny) can be easily extracted

from.

2.4.3 Joint Density Function

The joint PDF of the diagonal elements of a complex Wishart matrix fy, v, v, (Y1, %2, - - -, Uk)
can be obtained by differentiation of the CDF in (2.4.12), which allows us to write

b d[Aﬁj (wfya)}
1 Yorovi (U1, Y2s - Yk) = Z S el ]] ™ . (24.16)
j=1

n=0 (n=n1+--4ny) J
The derivative of the delta function, defined in (2.4.13), is given by
dAL () ) n!
Then, by substituting (2.4.17) into (2.4.16), the expansion for the joint PDF is expressed

e TP P (7). (2.4.17)

as

le,Yz,...,Yk (yh Ya, ... ayk Z Z (& (nla o n Hw gp+n] w; y]) (2418)

n=0 (n=n1+--4ny)

Note that the joint PDF is given in terms of the n-th derivative of the gamma density,
which in turn is directly related to the generalized Laguerre polynomials, as shown in

(2.4.17).
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2.4.4 Statistics for the Maximum of the Diagonal Elements

The diagonal of a complex Wishart matrix is a type of multivariate central chi-square
distribution with a certain underlying complex correlation matrix. The distribution of
the maximum of these correlated variables is of special interest within the performance
analysis of many communication systems |8, 28-30, 55]. This section presents expressions
for the CDF and PDF of this distribution. In particular, the CDF of the maximum will
be applied to the OP analysis of MIMO systems in Chapter 5. For a better representa-
tion and an efficient computation of the CDF, an important series rearrangement is also
provided in this section. Besides, expressions for the special bivariate case and an approx-
imation for small values of the argument of the CDF are addressed. This approximation

finds applicability in the OP analysis when the high SNR regime is considered.

CDF and PDF

Let us consider Z to be the maximum of the k correlated central chi-square random
variables, i.e., Z = max{Y},Ys,...,Y;}. On the one hand, the CDF of Z is given by
Fz(2)=Pr{Z <z}
=Pr{V1<z,Y2<z...,Y, <z} (2.4.19)
=Py v (2,2,...,2).

That is, the CDF of the maximum is obtained by setting the argument of the joint CDF
in (2.4.12) to (2, z,...,2), which yields

00 k
Fy(2) = Z Z c(ny,...,ng) H A7 (w3z), (2.4.20)
n=0 (n=n1+--+ny) Jj=1
where AP (z) are as previously defined in (2.4.13), and ¢ (n4,...,ny) are obtained as in

Proposition 2. On the other hand, the PDF of Z can be obtained by differentiation of
(2.4.20), thus yielding

o0 K
fz(2) = Z Z c(ny,...,ng) Zw?ggfgj (w?2) H AP (wiz), (2.4.21)
n=0 (n=n1+--+ng) j=1

with g(n)

vin (7) as previously defined in (2.4.17).
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Series rearrangement

The derived series expansions for both the CDF and PDF of Z can be rearranged un-
der the assumption of having a single scale factor w = wy = wy = .-+ = wy. Let
P = {Pi(")}, for ¢« = 1,...,s,, be the set of all integer partitions of n into k ele-
ments and s, its size. Note that the sequence (ng,...,nx) is just some permutation of
P = {p;"l), . ,p;’;{)}. Also, note that there is one term (coefficient) in the series for

each ordered sequence (nq,...,ny) that satisfies n = nj + - - - + ng, i.e., one term for each

permutation of Pi("). Under the single scale factor assumption, the CDF series becomes

Fy(2) = Z Z c(ny,...,ng) H A7 (w?z), (2.4.22)

n=0 (n=n1+--+ny)

where the dependence of the product with the ordered sequence (ni,...,n;) vanishes
since all the delta functions have the same argument. Now, the product in (2.4.22)
depends only on the scale factor w and on the integer partition Pi("). Then, all the terms
corresponding to permutations of the same integer partition can be grouped under a new

term with coefficient ¢ (Pi(")>, thus yielding the rearranged series

00 Sp k
Fr()=3 3¢ (pgj?, L pgj}j> 1%, (), (2.4.23)
=1

n=0 =1

where ¢ <p§?, . ,pE’")> = > ¢(ny,...,ny) with PZ-(")* being the set of all pos-
(nl,...,nk)GPi(n)*

sible permutations of Pi("). It is emphasized that, with this rearrangement, the number
of terms in the series for a given n is reduced by the total number of permutations of the
integer partitions of n, which allows for an easy and rapid computation. In Appendix
B.2, a MATHEMATICA™ program is provided to efficiently compute ¢ (pgﬁ), . ,pEj?)
fort=1,...,8, and n =0,..., Nyaz, where N4, is the truncation limit. The distribu-
tion of the maximum, given by the rearranged series in (2.4.23), has been applied to the
OP analysis of MIMO systems in Chapter 5. As it will be shown later in Chapter 5, the
time to compute all the coefficients for a typical truncation limit N,,,. = 8, which gives

an accurate CDF representation (4-figure accuracy), is less than one second.
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The bivariate case (k = 2)

The joint CDF in this case is given by

Fy, v, (y1,2) Z > c(na,n) AL (wiy) AL, (whys) (2.4.24)

n=0 (n=n1+n2)

with AP (x) as previously defined.

Under the single scale factor assumption w; = wy = 1, the polynomial in (2.4.14) to
obtain the coefficients ¢ (ny, ns) reduces to

0, dd,
On (w1, uz) = { "o (2.4.25)

((5 11Jvr(2//2m| " (uue)™*, n even,

1

*

" . Thus, there
r* 1

where 7 is the complex value from the correlation matrix R = (

is only one non-null coefficient for each even value of n given by

(p—14+n/2)! .,
-1l "

and the series for the joint CDF in the bivariate case can be rewritten as

c(n/2,n/2) = , (2.4.26)

e Ve ylys o~ (n—1)! 0
Fyiy, (11,42) = Gy (1) Gy (y2) + (p— 1)} : Z n(p+n—1) |T‘2 Ly (y1) Ly (32)

n=1

(2.4.27)
where G, (z) is the gamma CDF, defined in (2.4.8). Finally, the distribution of the
maximum is obtained by setting y; = y» = z in (2.4.27), which yields

e 2 SN (n—1)!

p—D=np+n-1)

Ir[P"LP | (2)?. (2.4.28)

Approximation for z — 0

In order to obtain an approximation of F (z) for small values of z, we first study the
behavior of the delta functions AP (z) in the limit x — 0. After substituting the expo-
nential function by its Taylor expansion in (2.4.13) and some straightforward algebra, we

arrive at
2P

lim AP (z) =

lim o (2.4.29)
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Then, (2.4.29) is used in (2.4.20) to obtain the following approximation which holds for

z—0
1 k k
Fz(2) =« (—') ST w? (2.4.30)

where « is the sum of all the coefficients, namely

a= Z Z c(ny, ..., ng). (2.4.31)

n=0 (n:nl—i-...-i-nk)

Also, it is possible to see from (B.1.1) in Appendix B that the sum of coefficients can be

obtained as

a=I—(I—- WRW)|? = [WRW|”. (2.4.32)

Then, the approximation for the CDF of the maximum is rewritten as

1 k k
Fy (z) ~ |WRW| 7 (H) P w? (2.4.33)
! “

which, under the single scale factor assumption, simplifies to

1 k
Fz(2)~ |R|™” (F) 2P*, (2.4.34)

2.5 Summary

In this chapter, we have presented the mathematical tools used in the performance anal-
ysis of SIMO and MIMO systems. First, the notation and main performance metrics
which are aimed to be analyzed have been introduced. Then, some special functions and
statistical distributions which will appear throughout this thesis have been addressed, by
paying special attention to some special incomplete integrals, specifically ILHI and IIMQ),
and the diagonal distribution of complex wishart matrices. Both these special integrals
and the diagonal distribution of Wishart matrices are key tools to the performance anal-
yses in this thesis. Of special importance are the derivations and expressions provided in
the context of the diagonal distribution of complex Wishart matrices, which represent a

significant contribution to the literature.
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Regarding the incomplete integrals ILHI and IIMQ), important results for their so-
lutions recently given in [20] have been presented for a better comprehension and com-
pleteness of the derivations in Chapter 4. Basically, these results show that the IIMQs
are represented by a finite number of elementary functions, Marcum Q functions and
ILHIs. Then, the ILHI is reduced to a closed-form expression involving a finite number

of modified Bessel and Marcum Q functions.

In the context of complex Wishart matrices, we have derived the joint PDF and CDF
of the diagonal elements, which follow a particular multivariate chi-square distribution.
The CDF expression is in the form of an infinite series representation in terms of the
well-known Laguerre polynomials, which has been shown to be easily computable. This
expression has been used to obtain the distribution of the maximum of the diagonal
elements, which allows analyzing the performance of two different MIMO systems under

practical conditions as it will be shown in Chapter 5.
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CHAPTER 3

Fading Channel Models

Radiowave propagation through wireless channels is a complicated phenomenon char-
acterized by various effects such as multipath and shadowing. A precise mathematical
description of this phenomenon is either unknown or too complex for tractable communi-
cation systems analyses. However, considerable efforts have been made for the statistical
characterization of these effects. As a result, there is a big body of statistical models for
fading channels that depend on the particular propagation environment and the under-
lying communication scenario. In particular, we are interested on the non line-of-sight
(NLOS) propagation scenario, where there is no visual line between the transmitter and
receiver antennas and, thus, the communication relies on the multiple reflections of the

radio signal.

The primary purpose of this chapter is to briefly review the principal characteristics
and models for fading channels. A more detailed explanation of this subject can be found
in standard textbooks |56-58|. This chapter also introduces the terminology and notation

regarding the NLOS fading models that will be used throughout the thesis.

This chapter is organized as follows. A brief description of the main characteristics
of fading channels is presented in the next section. The classical NLOS fading distribu-
tions, usually adopted as models for frequency-flat fading channels, i.e. corresponding to
narrowband transmission, without line-of-sight are described in Section 3.2. Finally, the
n — u fading distribution, which has been recently proposed in [38] is analyzed in detail

in Section 3.3.

33



34 Fading Channel Models

3.1 General Overview

When fading affects narrowband systems, the received carrier amplitude is modulated
by the fading amplitude a, where « is a random variable (RV) with mean-square value
Q = E[a?] and probability density function (PDF) f, (o), which is dependent on the
nature of the radio propagation environment. After passing through the fading channel,
the signal is perturbed at the receiver by additive white Gaussian noise (AWGN), which
is typically assumed to be statistically independent of the fading amplitude «, and which
is characterized by a Gaussian RV with zero mean and variance o%. Equivalently, the re-
ceived instantaneous signal power is modulated by o. Thus, we define the instantaneous
signal-to-noise power ratio (SNR) per symbol by v = o?E,/o? and the average SNR. per
symbol by ¥ = QF, /0%, where E, is the energy per symbol. In addition, the PDF of

v is obtained by introducing a change of variables in the expression for the fading PDF

W5 (ﬁ) (3.1.1)

2\ %

fo (@), yielding

Iy (7)

Another statistical function to characterize fading channels is the cumulative distribution
function (CDF) of v, F, (x), which gives the probability of v being less than or equal
to a certain value . The CDF of v can be related to the outage probability of certain

communication systems over fading channels, and is defined as

F@2 [ foa (3.1.2)

Besides, the moment generating function (MGF) M, (s) associated with the fading
PDF f, (), and defined by

M= [ e e, (3.1.3)

provides an alternative route to analytical results compared with working directly with
the PDF or CDF. The i-th moment of v can be obtained as E[y/] = My(i) (0), i.e., by
evaluating the i-th derivative of M, (s) at s = 0. A generalization of the MGF of the
instantaneous SNR, namely the generalized MGF (G-MGF) of ~, is found to be useful in
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the analysis of communication systems subject to fading. The G-MGF of 7 is defined by

M, (n,s) = /000 Y fy () €7dry. (3.1.4)

Finally, the incomplete G-MGF (IG-MGF), which includes (3.1.4) as a particular case is
defined by

Gy(n,s;¢) = /COO z" e [y (v) dz, (3.1.5)

where! s € C, n is a nonnegative integer and ¢ € R with ¢ > 0. Note that (3.1.5) includes,
as particular cases, several important statistical functions associated to v: G,(0,0;() is
the complementary CDF; G,(0,s;0) is the MGF; G, (0, s;¢) is the marginal MGF and
G,(n, s;0) is the generalized MGF. The IG-MGF of vy has been found of special importance
in the context of the outage probability analysis of certain communication systems under

co-channel interference, and will appear throughout the derivations of Chapter 4.

3.2 Classical Fading Distributions

Multipath fading is due to the constructive and destructive combination of randomly
delayed, reflected, scattered, and diffracted signal components. This type of fading is rel-
atively fast and is therefore responsible for the short-term signal variations. Depending
on the nature of the radio propagation environment, there are different models describing
the statistical behavior of the multipath fading envelope. In particular, the analyses car-
ried out in this thesis correspond to the non line-of-sight (NLOS) propagation condition,
where there is no visual line between the transmitter and receiver antennas. We now
present the different fading distributions that have been used in this thesis to model the
multipath envelope in NLOS fading channels, their corresponding PDF, CDF, and MGF,

and their relation to physical channels.

!The variable s is only evaluated along the real line, however the complex domain is assumed here,
in accordance with the usual definition of the MGF in the context of communications theory [1].
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3.2.1 Rayleigh Distribution

The Rayleigh distribution is one of the most frequently used to model multipath fading
when no line-of-sight (LOS) path exists between the transmitter and receiver antennas,
i.e. under a NLOS propagation scenario. The Rayleigh fading model typically agrees
very well with experimental data for mobile systems in a general NLOS scenario [58]. Tt
also applies to the propagation of reflected and refracted paths through the troposphere
and ionosphere, and to ship-to-ship radio links [59-61].

In this case, the channel fading amplitude « is distributed according to

200 —o?

fala) = ge, a>0, (3.2.1)

and hence, following (3.1.1), the instantaneous SNR per symbol of the channel 7 is

distributed according to an exponential distribution with PDF

e
fy(v) = 77 (3.2.2)

and corresponding CDF' given by
Fy(z)=1—¢. (3.2.3)
Finally, the MGF of ~y for the Rayleigh fading model is given by

M, (s)=(1-s7)"". (3.2.4)

3.2.2 Nakagami-q (Hoyt) Distribution

The Nakagami-q distribution, also referred to as the Hoyt distribution [62], is commonly
used to describe the short-term signal variation of certain wireless communication systems
subject to fading [1, 62, 63]. It is typically observed on satellite links subject to strong
ionospheric scintillation [64, 65] and, thus, the Hoyt fading distribution has been used in
satellite-based communications to characterize more severe fading conditions than those

modeled by Rayleigh [63, 66].

The PDF of the Nakagami-g distribution is given by [62]

1+¢)a ()’ (1—q*) a?
= — 4¢2Q ~ 7 >
fa (@) o ¢ I %0 ,a >0, (3.2.5)
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where [ is the zero-th order modified Bessel function of the first kind and ¢ is the
Nakagami-q fading parameter, which ranges from 0 to 1. With different values of the
fading parameter, the Hoyt distribution spans the range from one-sided Gaussian fading

(¢ = 0) to Rayleigh fading (¢ = 1).

Using (3.1.1) and (3.2.5), it is shown that the SNR per symbol of the channel () is
distributed according to [1, eq. 2.11]

1+ 2 _(1+q2>2'y 1 — 4
[y (v) = ( 2q3 )~ Iy (%) 7 > 0. (3.2.6)

The CDF of v for the Nakagami-g fading model has been recently obtained in closed-form

where u 2 1 vicd [itq A Vid! 1+q’ and @ (-, -) is the first order Marcum Q function,

1— q’
defined in (2. 3 16).

in [67] and is given by

Finally, the corresponding MGF of v is in this case given by

) ~1/2
_ (195 0 257) ¢
M, (s) = (1 259 + e q2)2> . (3.2.8)

The generalized MGF of 7y is of special importance in the context of the outage probability
analysis of certain communication systems under Hoyt fading channels. Specifically, its
incomplete version, the IG-MGF of v G,(n,s;(), has been applied to the analysis of
maximum ratio combining (MRC) systems under Hoyt fading and co-channel interference
in Chapter 4. A closed-form expression for G, (n, s; (), which includes as a particular case

the G-MGF, has been recently provided in [40] and can be found in Appendix D.

3.2.3 Nakagami-m Distribution

The Nakagami-m distribution [68] is used to model the multipath scattering with rela-
tively large delay-time spreads. Its PDF is in essence a central chi-square distribution

given by
2mma?m Tt a2
" == ¢ o a>0, 2.
fulo) = gy o (3:2.9)
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where I'(+) is the Gamma function, defined in (2.3.6), and m is the Nakagami-m fading

parameter, which ranges from 1/2 to oc.

The Nakagami-m distribution spans via the m parameter a wide range of multipath
distributions. For instance, it includes the one-sided Gaussian distribution (m = 1/2)
and the Rayleigh distribution (m = 1) as special cases. In the limit as m — oo, the
Nakagami-m fading channel converges to a nonfading AWGN channel. Furthermore,
when m < 1, it is possible to obtain a one-to-one mapping between the m parameter
and the ¢ parameter allowing the Nakagami-m distribution to closely approximate the
Nakagami-g (Hoyt) distribution, and this mapping is given by

(14 4%

EECEE D! 2.1
Mgy (3210

Applying (3.1.1) to (3.2.9) shows that the SNR per symbol v is distributed according
to a gamma distribution with PDF given by

() =

mm,ym—l ey

—e 7 ,7=0, 3.2.11
37T () G210
and corresponding CDF' given by

v (m, %x
(@) = —<P - )

where 7 (-, ) is the incomplete gamma function, defined in (2.3.9). Finally, the MGF of

F

, (3.2.12)

v for the Nakagami-m fading model is given by

M, (s) = (1 - g) " (3.2.13)

3.3 The n-u Fading Distribution

The n-p distribution is a general fading distribution recently proposed in [38] to better
represent the small-scale variation of the fading signal in a NLOS condition. By setting
two shape parameters n and p, this model includes as particular cases all the classical
NLOS fading distributions presented in the previous section, i.e., Rayleigh, Nakagami-q
(Hoyt), and Nakagami-m. It has been shown that the fit of the n-u distribution to
experimental data is better than the classical NLOS distributions previously mentioned.

A detailed description of the n-u fading model can be found in [38] and references therein.
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3.3.1 Physical Channel Model for the n-u Distribution

The general fading model for the n-u distribution considers a signal composed of clusters
of multipath waves propagating in a non-homogeneous environment. Within any cluster,
the phases of the scattered waves are random, and they have similar delay times with the

delay-time spreads of different clusters being relatively large.

The n-p distribution may appear in two different formats, for which two correspond-
ing physical models have been defined [38|. In Format 1, the in-phase and quadrature
components of the fading signal within each cluster are assumed to be independent from
each other and to have different powers. In Format 2, the in-phase and quadrature com-
ponents of the fading signal within each cluster are assumed to have identical powers and

to be correlated with each other.

The two shape parameters of the distribution, n and p, have a physical meaning within
the defined physical models. On the one hand, ;> 0 represents the real extension of
N/2, where N is the number of clusters of multipath. Note that the physical parameter
is of a continuous nature, while the number of clusters /V is defined as an integer for the
physical model. Values of p© may be obtained from physical field measurements and, thus,
may be different from multiples of 1/2, corresponding to non-integer values of the number
of clusters 2. On the other hand, n has different meanings and ranges for the two different
formats. In Format 1, 0 < n < oo is the scattered-wave power ratio between the in-phase
and quadrature components of each cluster of multipath. In Format 2, —1 < n < 1 is the
correlation coefficient between the scattered-wave in-phase and quadrature components

of each cluster of multipath.

3.3.2 Statistical Functions for the 7-u Distribution

As for the classical fading distributions, we next present the main statistical functions

for the distribution of the SNR per symbol « in the n-p fading model.

2Non-integer values of clusters have been found in practice, and are extensively reported in the
literature (See [69] and references therein).
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As stated above, there are two different formats for the n-p distribution with different
meanings and values of 7. We will use the same notation as in [38], where two other
parameters, h and H which are functions of 7, are defined. The convenience of using

these two parameters is to have a unified representation for both formats.

The PDF of v for the n-u fading model is given by [38]
2 ptg e pe3y
() = M (1) exp <—2uh':y> I, 1 (2#]‘[@) , (3.3.1)
() H*=2y \7 . !
where I'(+) is the gamma function, I, is the v-th order modified Bessel function, > 0 is
the parameter representing half of the number of clusters of multipath, and h and H are

defined for the two different formats as

hzw, Hz”j—”ﬁ 0 <n<oo forFormat 1, (33.2)
h:$, H= 1—77772; —1<n<1 for Format 2. o
One format can be obtained from the other by the relation
11— Tm
Nformat 2 = M (333)

1 + Nformat 1 .

The CDF of the instantaneous SNR per symbol for the n-p fading model can be

F (y)=1-Y, (% , /@) , (3.3.4)

where Y, (z,y) is the Yacoub’s integral, defined in [38] and given by

3_ 00
V(ay) & VT2 A= [ e
o D=z, "

written as [38]

(£x) dt, (3.3.5)

=

with —1 <z <1 and y > 0.

As introduced earlier in Section 2.2.1, the outage probability (OP) can be directly
obtained from the CDF. Given the recent relevancy of 7-u fading channels, obtaining
analytical expressions for the OP is particularly interesting. Therefore, we have aimed to
obtain a closed-form expression for the CDF of the n-u fading distribution. Section 3.3.3
presents the derived expressions for the Yacoub’s integral Y, (x, y), which in turn allows to
express the CDF in terms of Bessel, Marcum Q, and elementary functions. These results

for the CDF and its application to the OP analysis of MRC systems over independent
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and identically distributed (i.i.d.) 7-p fading channels have been recently presented in
[37].
Finally, the MGF of « for the n-u fading model is given by [70]

B 41%h g
M, (s) = <(2(h_H)u+57)(2(h—|—H)M+87)> '

(3.3.6)

Relations with other NLOS fading models

As mentioned above, the n-u fading distribution includes, as particular cases, the classical

NLOS fading models which have been presented in Section 3.2.

The Rayleigh distribution is obtained from the n-p distribution by setting p = 0.5
and n = 1 for Format 1. In the subsequent, we will only specify the values of n for Format
1, since the corresponding ones for Format 2 can be readily obtained from the relation
(3.3.3). The Nakagami-g (Hoyt) distribution is exactly obtained from the 7-x distribution
by setting ;1 = 0.5 and, then, the Hoyt parameter is given by the relation ¢> = 1. Finally,
the Nakagami-m distribution is obtained in an exact manner with g = m and n = 0, or

equivalently, with = m/2 and n = 1.

Besides, the distribution of a squared 7-y variable (e.g. the SNR per symbol 7 for the
n-p fading model) has the reproductive property. That is, the sum of L i.i.d. squared n-u
variates is also n-p distributed, but with parameters 7 and Lu. Therefore, the statistical
functions (e.g, PDF or CDF) for the sum of L i.i.d. variates following any of the classical
NLOS fading models (Rayleigh, Hoyt, or Nakagami-m) can be readily obtained from the
given expressions for the n-u distribution by first setting 4 = Ly and then setting 7 and
1 according to the desired fading model.

3.3.3 Closed-form Expressions for Yacoub’s Integral

In this section, we derive closed-form expressions for Yacoub’s integral Y, (x,y) which
allow us to obtain new closed-form expressions for the CDF of the -1 fading distribution.

Two types of analytical results are obtained for either arbitrary fading or physical fading
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models. First, we obtain a general expression in terms of the confluent Lauricella function
o [42, eq. 5.71.21][43] for arbitrary n-p fading channels. Next we consider physical
fading models, i.e. those with an integer number of multipath clusters N = 2, and show

that Y, can be integrated in terms of the classical Marcum Q and Bessel functions.
Arbitrary n-u distribution

The n-p fading distribution is fully characterized in terms of measurable physical param-
eters. Therefore, it is possible to fit experimental data by adequately setting the two
shape parameters n and p. In the following proposition we derive a general expression
for (3.3.5), which is valid for an arbitrary value of the u parameter, i.e. for a real positive
LL.

Proposition 3. Yacoub’s integral Y,, defined in (3.3.5) can be expressed as

(1— xQ)H y4“

— ]/ 7
p(2.9) T (1+2p) (3.3.7)
Xy (1, 3 1+ 20 —(1 4+ 2)y?, — (1 — 2)y°)

where ®y = q>§2> is the confluent Lauricella function, defined by (2.3.21).

Proof. See Appendix C.1. O
Physical n-u distribution

Now we restrict the analysis to the case of physical channel models, which assume an
integer number of multipath clusters. In this case, only a multiple of 1/2 is allowed for
the p parameter, being N = 21 the number of clusters. In the subsequent, it is shown
that Y, with an integer value of 2u can be expressed in terms of classical functions within

the communications theory context.

For convenience in the derivation of this expression, we consider two different cases
for either an odd or an even number of multipath clusters N, i.e. for either half-integer
or integer values of . On the one hand, if p is a half-integer, the integral Y, can be
rewritten in terms of the ILHI, introduced in Definition 1 of Section 2.3.3. The explicit
solution for the ILHI, given in Proposition 1 of Section 2.3.3, may be applied to obtain Y,
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in closed-form. On the other hand, for integer values of 1 the final Y, expression is given
by a linear combination of elementary functions involving polynomials and exponentials.
These exact and closed-form results for the Yacoub’s integral are gathered in the next

Proposition.

Proposition 4. For integer values of 2y, the Yacoub’s integral Y,, defined in (3.3.5) can
be expressed by one of the two following formulas. If 2u is odd, i.e. p s a half-integer,
Y, is expressed as

Y, (w,y) = 1— 25_“ﬁ(1 — q;Q)“Ie (lIIJ| y2; i) ’ (3.3.8)

[[* T (u) Hob |z]

N

where 1 is the ILHI, given in closed-form by (2.5.27).

€m,n

Otherwise, when 2 is even, the Yacoub’s integral is calculated as

Y, (z,y) =1- (1_x2)u{(1+a:)“1(1—x)“+

-1 — kEo—p—
\ (=1)* ! —x) 27" F —u—k, 2u—2—2k

(1
= T—k @+

b 1
x ¢~ (e) pl=1=hmpnh) (35” )+ (3.3.9)

r—1
—1 ko—y—
MZ (_1)k+1 (1 + Qf) 27 kx—p,—k 2u—2—2k
I'(

S Tu—k—a
2 (1—zx T A 3z —1

Xey(l )Pk(lkvlik)( )} ,
z+1

where P are the Jacobi polynomials, defined in (2.5.3).

Proof. See Appendix C.2. O]

The closed-form expressions for the CDF of the n-p fading distribution, given in
(3.3.4), are obtained by replacing Y, with the derived expressions (3.3.7), (3.3.8), or

(3.3.9), respectively for an arbitrary, half-integer, or integer values of p.
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3.4 Summary

In this chapter, a brief overview of the fading channel models employed throughout
this thesis has been provided. We have presented the classical NLOS fading distribu-
tions, commonly used to characterize the small-scale variation of the signal when a direct
line-of-sight link is not available. Also, the terminology and notation regarding the sta-

tistical functions for the characterization of these fading models have been introduced.

Besides, the n-p fading distribution [38], a new and more general NLOS fading dis-
tribution which includes the classical NLOS distributions as particular cases, has been
introduced. Moreover, new exact closed-form expressions for the CDF of the n-u fading
distribution have been derived. These expressions are of particular interest given the
recent relevancy of the n-u fading distribution. First, a general expression in terms of the
confluent Lauricella function has been provided for arbitrary values of . Next, we have
addressed physical n-p channel models, i.e. those with integer values of 2u, and exact
closed-form expressions have been obtained for the CDF in terms of Marcum Q, Bessel
and elementary functions. These results have been applied to the OP analysis of MRC
over i.i.d. -y fading channels in [37].



CHAPTER 4

Performance Analysis of Non-Ideal
SIMO Systems

As mentioned before, we have aimed to analyze the performance of systems with multiple
antennas only at the receiver side, also referred to as single-input multiple-output (SIMO)
systems, under certain practical limitations. Specifically, we have focused on the deriva-
tion of new closed-form expressions for the bit error and outage probabilities of switched
diversity systems under non-orthogonal signaling and maximum ratio combining (MRC)
systems under the presence of co-channel interferences. In such analyses, a certain family
of incomplete integrals involving the classical Marcum Q and modified Bessel functions
have been encountered. These types of integrals, namely ILHI and 1TMQ, have been
introduced in Chapter 2, where explicit expressions for their solutions can be found (see

Section 2.3.3).

In this chapter, the closed-form expressions for the family of incomplete integrals
ILHI and IIMQ [20] have been applied to the performance analysis of two different SIMO
systems under practical conditions. First, we present a closed-form analysis for the bit
error probability (BEP) of switched diversity systems under non-orthogonal signaling
when noncoherent or differentially coherent detection is employed in Nakagami-m fading
channels. Then, MRC systems under the presence of co-channel interferences are analyzed

in terms of the outage probability (OP) in Nakagami-¢ (Hoyt) fading channels.
45
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4.1 Switched Diversity Systems under Non-Orthogonal
Signaling

Switched diversity has been thoroughly studied by communication theorists and engineers
as an attempt for exploiting space diversity by simple practical systems. From the signal
processing point of view, switched diversity is simpler to implement than MRC, equal gain
combining (EGC) or selection combining (SC). The simplest and best studied switched di-
versity systems are switch-and-stay combining (SSC) and switch-and-examine combining
(SEC) over independent and identically distributed (i.i.d.) channels. A comprehensive

description of such systems can be found in [1, ch. 9] and the references therein.

Besides, binary frequency-shift keying (FSK) signaling with noncoherent symbol de-
tection is often adopted in practical SSC and SEC systems as a simple (low-complexity)
modulation scheme. In such cases, signals can be chosen non-orthogonal at the transmit-
ter to reduce bandwidth utilization, at the expense of certain performance degradation
[3, ch. 5]. Moreover, the performance of these systems can be improved with slightly
higher complexity modulation schemes such as phase shift keying (PSK) with differen-
tially coherent detection. As simple modulation schemes, noncoherent and differentially
coherent detection are of particular interest in low-complexity SEC receivers, which could

be part of a multi-hop or relay network.

This section focuses on the performance analysis of SSC and SEC over i.i.d. Nakagami-m
fading channels. In [21] and [22] an analytical framework was presented for the per-
formance of coherent, noncoherent and differentially coherent detection. Adopting the
moment generating function (MGF) approach, results in [21] and [22] for the aver-
age BEP (ABEP) were in the form of single finite integrals. In [71], a new analysis
was performed to calculate these integrals in exact closed-form for coherent detection
(PSK, PAM and QAM) in Nakagami-m fading channels with integer parameter m. How-
ever, exact closed-form expressions for noncoherent and differentially coherent detection
have not been found in the literature. Only very recently, new results have appeared in
[39] for the particular case of a dual-branch SSC system with noncoherent detection of

non-orthogonal binary FSK under Rayleigh fading.
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Figure 4.1: Switched diversity system model.

In this section, a unifying closed-form BEP analysis is presented for noncoherent
and differentially coherent detection in multibranch switched diversity systems over i.i.d.
Nakagami-m fading channels. The analysis in this section extends previous results ob-
tained in [39], providing a three-fold generalization: first, the number of branches is
extended to an L-branch diversity system; second, the analysis is extended to the more
general Nakagami-m fading model; and third, the BEP analysis includes other modula-
tion schemes such as the differential quadrature PSK (DQPSK)!. Recent results obtained
in |20] for the class of incomplete integrals ILHI and IIMQ are applied to the unified anal-
ysis in this section. The general BEP expression derived here is in the form of a finite
combination of Marcum Q, Bessel, and elementary functions, thus avoiding the need for

numerical integration.

The remainder of this section is structured as follows. Section 4.1.1 is devoted to
characterize the statistics of the analyzed switched diversity systems. Then, exact and
approximated closed-form expressions for the average BEP are derived in Section 4.1.2

and some numerical results are provided in Section 4.1.3.

4.1.1 System Model

Let us assume a switched diversity system with L i.i.d. Nakagami-m branches as the one
depicted in Figure 4.1. It is known that the output statistics of SSC does not depend on
the number of diversity branches and SEC has the same output statistics as SSC when
L =2 |[22]. As noted in [71], the average BEP in SSC is obtained by setting L = 2 in
SEC. Therefore, we restrict the analysis to the general L-branch SEC.

1Our analytical results are applicable to any modulation format whose conditional BEP fits into the
general expression (4.1.5).
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An L-branch SEC receiver will switch to a different path (branch) if the current path
is not of acceptable quality, i.e. if the instantaneous signal-to-noise ratio (SNR) falls
below a certain predefined switching threshold. If this occurs, the combiner switches
and examines the quality of the next available path. This switching-examining process
is repeated until either an acceptable path is found or all available diversity paths have

been examined.

For SEC, the probability density function (PDF) of the SNR per symbol g at the
output of the combiner is |1, eq. 9.341]

[F, (VT)]L_l fy (@), 0< o <9r

frs (@) = § &2 : (4.1.1)
YE G (@), w2

=0

where f, and F, are the PDF and the cumulative distribution function (CDF) of the in-
stantaneous SNR per symbol «y on each diversity branch, whereas vy denotes the switching
threshold. The Nakagami-m distribution with integer m is considered for ~, which covers
many cases of interest in practice, in particular, Rayleigh fading when m = 1. For an
integer Nakagami m parameter, it is well known that F, (yr) and f, (x) in (4.1.1) are
given by [1, table 9.5] [41, eq. 8.352-2]

m-1 ¢

Fy(yr)=1—e 27" % (@) (4.1.2)
(=0 "\

and

fr (@) = <%)m<mL__ll),em : (4.1.3)

where 7 is the average SNR per symbol on each diversity branch.

4.1.2 Error Probabilities Analysis

General and exact ABEP analysis

Given the conditional BEP P, (x) 2 pr {bit error |ys = = } and the PDF at the output of

the combiner f.., the average BEP for multibranch SEC is calculated by

P, = /000 Py (z) fye (z) du. (4.1.4)
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Table 4.1: Parameters for several noncoherent and differentially coherent modulation
formats.

Orthogonal ~ Non-orthogonal
Binary Signals Binary Signals* DPSK DQPSK

172 12
a 0 (1‘;‘”2) o | (1-%)
1/2 1/2
b 1 (”;ﬂ) V2| (1+ %)
1 1 1 1

* where 0 < p < 1 is the magnitude of the cross-correlation

coefficient between the two signals.

A generic expression for the conditional BEP of noncoherent and differentially coher-

ent modulations is given by [56, eq. 4B.21], [1, ch. §]

Py () = Q1 (av/a,bv/z) — - Z ne_GQ;bQ”IO (abz), (4.1.5)

where @) is the first-order Marcum Q function, defined in (2.3.16), Iy is the zero-th
order modified Bessel function, and a, b and n are modulation-dependent parameters. A

number of special cases are of particular importance and their parameters? are specified

in Table 4.1.

In some special cases, the conditional BEP takes a simple form. When a = 0, e.g. see
orthogonal binary signaling and differential PSK (DPSK) in Table 4.1, expression (4.1.5)
reduces to [1, eq. 4.45]

Py(z) = ——e 2% (4.1.6)
Thus, the general approach what follows can be easily circumvented and the average BEP

calculations are relatively simple. A similar simplification occurs when b = 0. This fact

justifies the assumption ab # 0 adopted in the subsequent analysis?.

2Note that (4.1.5) is defined in terms of the instantaneous SNR. per symbol vs; thus, DQPSK param-
eters slightly differ from those given in [56] or [1].

3Nevertheless our expressions are also valid for a = 0 or b = 0 if these cases are properly interpreted
ag limits.
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One approach to compute the average BEP in (4.1.4) is to express (4.1.5) by its
alternative form as a single finite integral, and then the integration over g can be obtained
from its MGF which leads to a single finite integral expression [21, eq. (39)]. Here the
average BEP is derived by following a different approach in order to arrive at an exact

closed-form expression.

Substituting (4.1.5) and (4.1.1) into (4.1.4) and after some simple algebraic manipu-

lations the following generic expression for the average BEP is obtained

7 IQ (CL, b7 77 m):|

[b — aL,m (’7T7 ’_V) |::Zl (au bv f_y’ m)
4.1.7

141

where ar, ., (yr;7) are known coefficients defined as

(3) [1-m <7T>1L] | 418

_aL—l,m (’YT; f?) |:u71 (’YT; a, b7 5/7 m) jQ (/VTv a, b7 5/7 m)} 9

apm (yr;7) £ (m—-1!| 1-F (y)

with F, (yr) given in (4.1.2) and where 7, Z,, Ji, J» are integrals defined as
T, (a,b,5,m) = / 2" e, (av/z,by/z) dz
0

m a2+b2

7, (a,b,ﬁ,m)é/ :z:m_lef[?Jr 2 ]xfo (abzx) dz
0

4.1.9)

. (

Ji (yria,b,5,m) £ / e 5Q, (ay/z, /) da
0

m a2+b2

T
j2 (fYTa a, b7 ’77 m) = / xm—le*[;Jr 2 ]x.[(] (abx) dz
0

\

What remains to achieve the goal of this analysis is to show that Z;, Z,, J; and J; can be
given in exact closed-form by a finite combination of Marcum Q, Bessel and elementary

functions.

The complete integrals Z; and Z, are crucial for performance analysis of differentially
coherent and noncoherent modulations in fading channels and were studied in [53, 54].
In [53], an exact closed-form expression for Z; was derived in terms of the Gauss hyper-

geometric function

@ (2 2 1 e 1 (41 041 1 4’
2 2 T2
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where ¢; £ a® + b* + 22 Applying [51, eq. 15.4.10] and the recurrence relations
|41, eq. 8.731-4] and [41, eq. 8.914-1]| the following identities are obtained

£
(+2 042 1 2c,71 (1 — cy) "2
2F1(Li 9 2): e (1-c)

5 o Ty 20+ 1 {P”l(ﬂ;—*cz)_&‘l(ﬂl—*cz)}’
» (4.1.11)

(S b = 28 v () s (75))
(4.1.12)

A 4a2b?

where ¢, and P,(-) are the Legendre polynomials, given by (2.3.2). Substitut-

ing (4.1.11) and (4.1.12) into (4.1.10) and after some algebra, we obtain the following

expression for Z; in terms of elementary functions

T (a,b,7,m) = (m — 1)! (%)m
¢
14 () (=)

=0 (2b2 - 1) 1

X <1+

s (atz) - (1 B2 s )|

(4.1.13)

2
&1

After a simple rescaling, a generalization of Z, is directly found in the table of integrals
[41, eq. 6.624-5] in terms of the associate Legendre function. As in the case of Z;, 7,

reduces to a simple expression in terms of Legendre polynomials:

T, (a,b, 5, m) — (”(%ab—)i)’ (1 f@)?pm_l (ﬂl—*@) , (4.1.14)

Integrals [J; and J> belong, respectively, to the family of incomplete integrals IIM(Q

and ILHI, which have been addressed in Chapter 2. Recent work in [20] has provided
explicit solutions for these types of integrals, which have been included in Section 2.3.3.
In the subsequent, we exploit these results to obtain closed-form expressions for [J; and
Jo. On the one hand, after a simple rescaling and further simplifications, Lemma 1 in

Section 2.3.3 is exploited to obtain the following expression for J;

¢
— < m m—1 [ I
T (vr;a,0,7,m) = (m —1)! (l) 1— e 57Q; (a7, by/Ar) (71> r

m

#m,l (g)f . ([ (ab%_i)_b (abw 1 ))
2 0 @) U\ ) e e TR ) )

(4.1.15)
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where I, is the ILHI, as defined in Definition 1 of Section 2.3.3. On the other hand, a

simple rescaling allows us to express J> as

1 1
Jo (yr;a,b,7,m) = WIGWLO (abVﬂ ﬁ) : (4.1.16)

Note that both J; and J, are now expressed in terms of the ILHI Ier’k, which is given in
closed-form by (2.3.27).

The final average BEP is obtained by substituting the derived expressions (4.1.13),
(4.1.14), (4.1.15), and (4.1.16) for Z;, I, J1, and Ja, respectively, into (4.1.7), which
yields

Py = apm (757) [(m — U <%>m {1 (1 - _> : (22111) (fyclj?ln——@)e
(=) artn) o (s )

_1Zn(7a;>"11)! (1?@)%”“ <¢11fc2>]

m—

1 ¢
m

—ap—1m (93 7) [(m—l)!(%)m{l e—a,WTQl (ax/A7, b\/77) 7 (_>
ey

(o) (e 1)

1+ n (ab>m em—1,0 aoyr; \/6 )

where the ILHI I, , is represented in closed-form by (2.3.27) and the coefficients oy,

(4.1.17)

c1 and ¢y are as previously defined. Note that (4.1.17) is an exact closed-form expression
for the average BEP in terms of Bessel, Marcum @), and elementary functions, which is

general and valid for any modulation format whose conditional BEP can be expressed by

(4.1.5).

Modulation schemes with n =1

An interesting special case occurs when n = 1 which includes noncoherent detection of

correlated binary signaling and DQPSK (see Table 4.1). As noted in [1, ch. 9], comparing
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equations (40) and (42) of [72], the following compact expression for the conditional BEP

is obtained in this case (n = 1)

Py (z) = % [1—Q1 (W, avx) + Q1 (av/z,b/x)] . (4.1.18)

Then, after considering (4.1.18) and n = 1, the average BEP in (4.1.7) can be rewritten

in terms of Z; and J; as

_ 1
Py= S (s ) [ =T (b, a,3,m) + T (a,b,7,m)]
1 (4.1.19)

_§aL71,m (FVT; :}/) [1 - jl (b: a, 7},’ m) + ‘71 (a> b? ’_}/7 m)] ;
where Z; and J; are given in (4.1.13) and (4.1.15), respectively. In this case, the average

BEP is given in terms of two differences of Z; and J; with symmetric arguments.

Asymptotic analysis in the high SNR regime

The derived average BEP expressions are given in terms of Bessel, Marcum Q, and
elementary functions. Given that the analytical properties of these special functions
are well-studied, obtaining further insight from these expressions is straightforward, e.g.

upper and lower bounds or asymptotic approximations [1, ch. 4].

Moreover, the derived closed-form expressions for integrals Z; and Z, allow us to
obtain an approximation of the average BEP in the high SNR regime. Let us consider
~ — oo and, as a consequence, vy — oo . Thus, as the switching threshold increases, the
involved incomplete integrals tend to their corresponding complete version, i.e. J; — 7
and Jo — Z,. Taking this into account, the generic average BEP in (4.1.7) can be
approximated by

m L1
where I, is the CDF of the instantaneous SNR per diversity branch, as previously defined.
Then, Z; and Z; are replaced with (4.1.13) and (4.1.14) into (4.1.20) and further algebraic

n _
T b 4.1.20
1 +77 2 (CL, 777m):| 9 ( )

manipulations are performed to obtain the following approximation:
1 P\= [ +1) (2me)’
(G ) ()
2 — 20+ 1 1y

<[ o= () e o) - (5) o]
(4.1.21)

Py~ [F, (yr)]"
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Figure 4.2: Average BEP versus average SNR per branch for DQPSK using optimum
thresholds.

. A . .
where, for convenience, we define c3 = ﬁ, and cy is as previously defined. Note that

the previous expression, which is given in terms of elementary functions, provides a good
approximation of the average BEP in the high SNR regime, being asymptotically exact

as 7y — o0.

4.1.3 Numerical Results

In this section, we show the usefulness of the obtained results in the analysis and de-
sign of multibranch switched diversity systems with differentially coherent detection over
Nakagami-m fading channels. Some numerical results are provided from the evaluation
of the derived average BEP expressions. Besides, Monte-Carlo simulations are presented

in order to validate our analytical derivations.

Figure 4.2 depicts the average BEP as a function of the average SNR per branch # for
DQPSK (see Table 4.1) considering different values of the Nakagami parameter m and
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Figure 4.3: Average BEP for DPSK and non-orthogonal FSK (p = 0.5) modulation
schemes with L = 4 diversity branches.

number of branches L. The optimum switching threshold +7 which minimizes the average
BEP is adopted for every 4. The optimum value v} has been obtained by applying
standard numerical minimization methods to the expression (4.1.17). The plotted curves
show that the system performance within the 107 — 1072 range is essentially determined
by the product of m and L, which can be interpreted as a global diversity order measure.
Simulation results are also superimposed to the analytical curves, confirming the validity

of the derived expressions.

To illustrate the generality of the derived analytical results for different signaling for-
mats (see Table 4.1), Figure 4.3 shows the average BEP for non-orthogonal FSK (p = 0.5),
compared with the corresponding results for DPSK. As in Figure 4.2, optimum switching
threshold are assumed. Figure 4.4 shows the trade off between the correlation (frequency
separation) in non-orthogonal FSK and the number of diversity branches for different
values of the Nakagami-m parameter. It is observed that the performance loss associated

to a larger cross-correlation is higher as m increases.
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Figure 4.4: Average BEP versus number of diversity branches (L) with non-orthogonal
binary FSK signaling for different values of the cross-correlation (p) and the Nakagami-m
parameter.

Figure 4.5 shows the sensitivity of the average BEP to the selection of the switching
threshold v7. Let us define the relative error € £ 47/7%. When ¢ = 1 the optimum
threshold is always chosen, while € # 1 represents a certain relative deviation from the
optimum value. The plotted curves show that multibranch switched diversity exhibits
high sensitivity to a wrong switching threshold when the channel presents high values of
m, e.g. when the radio channel has a strong line-of-sight (LOS) component. Also, it is
shown that the average BEP degradation due to the threshold deviation is greater as the
average SNR increases. For an average SNR of 15 dB and m = 4 the average BEP is
degraded by one order of magnitude when € =2 (3 dB).

In Figure 4.6 the asymptotic approximation of the average BEP in (4.1.21) is compared
with the exact closed-form expression in (4.1.17). Both expressions have been numerically
evaluated in the high SNR regime for several values of the number of branches L and
the Nakagami parameter. It is shown that (4.1.21) fits reasonably well with the exact
average BEP in (4.1.17) for average SNR values higher than 20 dB. Also, it can be seen

that the approximation is asymptotically tighter as the average SNR increases.
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Figure 4.5: Average BEP versus the optimum threshold deviation for DQPSK with L = 4.
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Figure 4.6: Exact average BEP and high SNR approximation for DQPSK with opti-
mum switching thresholds and several values of the number of branches L and Nakagami

parameter m.
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4.2 Maximal Ratio Combining under Co-channel In-
terference

Diversity combining is a well-known strategy to mitigate the performance degradation
of multipath fading and co-channel interference (CCI) in wireless systems. During the
last decades, extensive efforts have been given to the analysis of transmitter or receiver
diversity to characterize the performance of different combining methods for different
numbers of antennas and fading distributions |73, 74]. For a communication link without
CClI, it is well-known that maximal ratio combining (MRC) is the optimal combining
technique in terms of maximizing the SNR at the output of the combiner. However,
optimal combining in the presence of CCI is much more complex than MRC and typically
requires information about the CCI that may not be available. Therefore, in practice

many wireless systems will use MRC even in the presence of CCI.

Outage probability (OP) is a key performance metric of wireless communication sys-
tems under CCI. An excellent explanation of this topic can be found in [1, ch. 10] and
references therein. Although considerable attention has been paid to the OP analysis in
general, few published results are found in the literature for Hoyt fading channels, which
have been considered in satellite-based cellular communications to characterize more se-
vere fading conditions than those modeled by Rayleigh [63, 66]. The main reason for the
lack of results for Hoyt fading is the mathematical tractability of the OP analysis. In
particular, the general approach adopted in [1, ch. 10] is not applicable since the Gauss-
ian characterization of the Hoyt distribution is not circularly symmetric. Only recently,
exact closed-form results for the OP of a single antenna receiver in interference-free Hoyt
fading channels have been published in [67]. Moreover, only a few works in the literature
include background noise in the OP analysis. The analysis in [23| includes background
noise and assumes Nakagami-n (Rician) or Nakagami-m fading for the desired signal and
Rayleigh faded interferers. Recently, closed-form expressions were provided in 66| for the

outage probability of Rayleigh fading under mixed Rayleigh and Hoyt interference.

In this section, closed-form expressions are derived for the outage probability of MRC

systems in Hoyt fading channels under co-channel interference. This analysis extends the
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Figure 4.7: Maximal ratio combining under co-channel interference system model.

results in [67] to MRC systems and generalizes the OP analysis for Hoyt fading channels
by assuming the joint presence of background noise and independent Rayleigh interferers
with arbitrary powers. These results are obtained through an appropriate generalization

of the moment-generating function (MGF) of the Hoyt fading distribution.

The remainder of this section is organized as follows. The system model is presented
in Section 4.2.1. The outage probability analysis is presented in Section 4.2.2, while the
generalization of the MGF employed in such analysis is provided in Appendix D. Finally,

some numerical results are given in Section 4.2.3.

4.2.1 System Model

Let us consider a wireless communication system with L uncorrelated receive antennas
where MRC is applied at the receiver. The received signal from the desired user at every
antenna is assumed to be corrupted by M interference signals, as shown in Figure 4.7.
In addition, the desired signal at each antenna is corrupted by additive white Gaussian
noise (AWGN) with zero mean and o2 variance. The desired and interference signals,
with arbitrary powers, experience flat fading and a coherent receiver is employed which
is assumed to have perfect knowledge of the instantaneous channel state. The signals at
every receive antenna from the desired user are affected by Hoyt fading, while co-channel

interference signals are assumed to experience independent Rayleigh fading.

Let hy = [hg, .. .,hsL]T and h; = [h;, .. .,hiL]T denote, respectively, the channel

gain vectors of the desired and the ¢-th interfering user at the antenna array. Then, the
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received baseband signal vector y can be written as

M
y = hbs + Z Vv Wihib; + n, (4.2.1)
i=1

where W; is the mean power of the i-th interferer at each antenna, n is the L-dimensional
received noise vector, and by and b; are, respectively the transmitted symbols from

the desired and ¢-th interfering user, which are assumed to be normalized such that

lbs| = |b;] = 1.

In an MRC receiver, the antenna array elements are weighted by the channel gains

associated with the desired user, yielding the output signal

M
rare = by = [[h)? b, + ) /Wb hib; + hin. (4.2.2)

i=1
It is shown in |23] that, under the considered model, the instantaneous signal-to-interference-
plus-noise ratio (SINR) can be written as

X

= 4.2.3
Z 4+ 0?2’ ( )

v

where X = ||h,||* = i |hen|? is the effective power of the desired signal at the output
of the combiner, WithanlLsn| being the Hoyt distributed envelope of the channel gain for
the n-th branch, and Z is the total instantaneous power of the interfering signals. It
follows that X is distributed as the sum of L i.i.d. squared Hoyt variables and the mean

of X, denoted by Wj is given by W, = E[X]| = L), where Q is the mean of the squared

envelope of the channel gain at each receiver branch, i.e., 2 =E Uhsnﬂ, n=1,..,L.

As stated above, the effective power of the desired signal after combining is distributed
as the sum of L i.i.d. Hoyt random variables. Therefore, its PDF, fx, can be readily
obtained from the PDF of the n — u distribution (see Section 3.3). Recall that the n — u
distribution includes as a particular case the Hoyt (Nakagami-q) distribution by setting

the parameters p = % and 1 = ¢*. After taking into account the reproductive property

of the n — p distribution? and some straightforward algebraic manipulations, the PDF of

X is obtained from (3.3.1) as

VT <L(12+q2))%“ ( x )

212 4
exp (—Ll 2 1, (U2,
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where [, is the v-th order modified Bessel function of the first kind.

Under all the assumptions and considerations mentioned above, we next present the
outage probability analysis for a general L-branch system with co-channel interference

signals.

4.2.2 Outage Probability Analysis

Let us divide the total number of interferers M into J groups, where every interferer
in a group has the same mean power ;. Consider n; interferers in a given group with
mean power W;. It is shown in [23]| that the outage probability in this scenario can be

computed as

'700'2
Prut = Pr{ 2, <)} = / fx (2) dz +
P (4.2.5)

ni i a/W o2k
[ _ll

ZZZZ ’]l Wk + /U xle_#‘”z‘fx (z)dx,

i=1 j=1 k=0 [=0
where Z is the total power of the interfering signals, 7, is a predefined threshold, o2 is

the background noise power, E; ; are certain constants defined in |23, eq. 6|, and fx is

the PDF of the power of the desired signal at the output of the combiner.

The OP in (4.2.5) is expressed in terms of two incomplete integrals. Thus, in order to
obtain a closed-form expression for the OP, we proceed by working these integrals out.
The first one represents the OP in the interference-free case and is given by the CDF of
X. Recently, a closed-form expression for this CDF has been provided in [37]. By making
use of |37, eq. 7|, the first term in (4.2.5) can be expressed as

7002 1_ 2 2 2
q (1—i—q) Lv,0
=1-Y. 2.
/0 fx (z)dx L<1 2 % 1/ ar | (4.2.6)

g

pP*

out

where Y), represents the Yacoub’s integral, which has been defined by (3.3.5) in Section 3.3.

Closed-form expressions for Y, were provided in [37] and can also be found in (3.3.8) and

4As shown in Section 3.3.2, the PDF of the sum of L ii.d. squared Hoyt variables can be obtained
from the PDF of the n — u distribution by setting 4 = £ and n = ¢°.
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(3.3.9) for an odd and an even value of L, respectively. It is highlighted that, for an
even number of diversity branches L, which is very likely in practical receivers with pairs
of orthogonally polarized antennas, Y), is expressed in terms of the Jacobi polynomials

defined in (2.3.3).

The second term in (4.2.5) represents the impact of the interference on the outage
probability. This term consists of a linear combination of the incomplete generalized
MGF (IG-MGF) of X, Gx(-,-;-), defined in (3.1.5). Specifically, the integrals in the
second term of (4.2.5) can be easily identified with the IG-MGF as

l 2
x'e Wi fy(z)dr =Gy (l, — Y0 ) ) 4.2.7
/ (@) 7 (127

00'2

Several derivations have been done in order to arrive at a closed-form expression for
Gx (-, ), i.e., the IG-MGF of X. Appendix D includes the derivations and closed-form
expressions for some statistical functions related to the Hoyt fading distribution, including
the IG-MGF of the sum of L ii.d. squared Hoyt variates in Section D.3. Recall that,
in the considered MRC system, the effective power of the desired signal at the combiner

output X is distributed as the sum of L i.i.d. squared Hoyt variates.

Then, the final outage probability expression for MRC systems in Hoyt fading chan-
nels under the presence of Rayleigh-faded interference signals is obtained by substituting

(4.2.6) and (4.2.7) into (4.2.5), which yields

1= (1+¢) [T7.0°
Poi=1-Y, qj( +4q7) Lo

1+¢>  2q QL

J ng ni—j k /W k—l
e’ ) -1

EZ Y 3 ] Y

> 12; Tk —l'W’“%gX( AR )

i=1 j=1 k=0
where the coefficients E; ; are given in |23, eq. 6], Y}, is given by (3.3.8) and (3.3.9) for an

(4.2.8)

odd and an even value of L, respectively, and Gx (-, -, ) is the IG-MGF of the sum of L
i.i.d. squared Hoyt variates, which is directly obtained from Corollary 3 in Appendix D.3.
It can be seen that the outage probability in (4.2.8) is, in essence, expressed in terms of

the confluent Lauricella function, defined in (2.3.21), and the Jacobi polynomials.

Although the obtained expression is given in closed-form and is easy to compute, the

confluent Lauricella function may not be considered as a classical function within the
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communication theory context. As an attempt to give an OP expression in terms of
classical functions, some derivations for the particular case of a single antenna receiver

have been done. In the subsequent, the analysis for this particular case is presented.
Single antenna receiver (L = 1)

In this case, the power of the desired signal X is a squared Hoyt variable with mean W

and parameter ¢. The PDF of X is given by (3.2.6) as

(1+¢*) 22 oy
fx (z) = a0 P (‘%ﬁ) Iy <(14qg )ﬁ) ; (4.2.9)

where [ is the zeroth order modified Bessel function of the first kind, the parameter

2 = Wy is the mean of X, and ¢ is the Hoyt fading parameter.

As stated above, the general expression for the OP in (4.2.5) is expressed in terms of
two incomplete integrals. Following the same approach as in the MRC case, we proceed
by working these integrals out in order to arrive at a closed form expression for the OP of
a single antenna receiver. Recently, an elegant and compact expression has been obtained
in [67] for the OP in the interference-free case in the particular case of having a single
receive antenna (L = 1), i.e., when X is a squared Hoyt variable. In this case, this term

is expressed as®

02 002 00'2 00'2
Py =@ (“\/%WSW\/”VS) - Q (“\/sz ,u\/”ﬁ) : (4.2.10)
where u = —V;qﬂﬁq /%, v = —”;;(#, / }%Z and @) is the Marcum Q function.

As in the MRC general case, the second term of (4.2.5) is a linear combination of
the IG-MGF of X, Gx(-,-;-), noting that X is, in this case, a single squared Hoyt vari-
able. Therefore, the identification in (4.2.7) holds after considering that Gx(-,-;-) is the
IG-MGF of a single Hoyt variable. Appendix D.2 provides the derivations and expressions

for Gx (-, +; ), which allow us to obtain the OP in closed-form.

Then, the final outage probability expression for a single antenna receiver in Hoyt

fading channels under the presence of Rayleigh-faded interference signals is obtained by

A minor error in [67, eq. 9] is corrected here.
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substituting (4.2.10) and (4.2.7) into (4.2.5), which yields
k 02/Wi(_ 2yl 1
e o o,
T Z Z Z Z El’] ll(k. _ l)lmk,yé gX (l7 %mv%a ) ’

where the coefficients E; ; are given in |23, eq. 6], and Gx (-, -,-) is the IG-MGF of a

(4.2.11)

squared Hoyt variable, which is directly obtained from Corollary 2 in Appendix D.2.
Note that the outage probability in this case is expressed in terms of a finite combination

of first order Marcum (@), Bessel, and elementary functions.

Single antenna receiver and one dominant interferer

This particular scenario assumes a single antenna receiver under the presence of one
dominant interferer with mean power Wi, either neglecting the remainder M — 1 of the
interferers or including them in the analysis as background Gaussian noise. In this case,
the outage probability expression can be significantly simplified. By setting J =n; =1
n (4.2.5) and considering the expression for Gx (O, _%;W1;7002)= which follows from
Corollary 2 (see Appendix D), the outage probability is obtained as

9 602/W1 - B
Pout P(:ut + C{_—QQ {—Oé (81) e (s1)¢o Io(C())
(4.2.12)
o 4 S (s
+2 (31> Q ( /—a(81)+a ™ 17\ﬁ\/ 1)+a(s1) ) }
where P7, is given by (4.2.10), s _%W1 i G = V[ZZ, and «(s) = % — s,

a(s) = !

oa(s)2—1"

In order to obtain further insight from the OP expression in (4.2.12), the following

well-known metrics are defined:

SNR = V2 SINR = —*
YoO VoW1 + '700'2 491
o e , (4.2.13)
SIR = INR = 22
70W1 '7002

where SNR and SIR are the signal-to-noise and signal-to-interference ratios, while SINR
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and INR are the signal-to-interference-plus-noise and interference-to-noise ratios, respec-
tively. Note that these metrics are defined as normalized and averaged magnitudes. The

first pair of metrics can be expressed as a function of the second pair as

SNR = (1 + INR) SINR
(4.2.14)

SIR = (1 +INR™) SINR

Then, after substituting (4.2.10) into (4.2.12) and considering [1, eq. 9.107| as well
as previous definitions, the OP for a single antenna receiver (L = 1) with one dominant

interferer can be written in closed-form as

PoutzQ(\/sTa\/;T>‘Q<¢svﬁa’\/;\I_R)

SIR \ (u® — v’ —SIR
Y 4.2.15
L (SNR) ( 2uv ) “Vw ) ( )

- (s vow) @ (s vam) )

S
-1
SIR —SIR
W ca ()

uv

=

where

9

f(SIR) =

h(SIR)
and «(-), a(-), v and v are as previously defined. Note that (4.2.15) is expressed in

terms of the well-known SIR and SNR metrics. Besides, this expression involves only
elementary and Marcum Q functions. Given that the analytical properties of the Marcum
Q function are well-studied, obtaining further insight from (4.2.15) is straightforward, e.g.
upper bounds or asymptotic approximations |1, ch. 4]. As an example, the derivative of
the Marcum Q function in [53, eq. 2| is exploited here to obtain a second order Taylor
approximation of Q as follows

Q (avi,bvi) ~1-1- %+t2 2( zb2+b£). (4.2.16)

Hence, after considering (4.2.16) with ¢ = 1/SNR and ¢ — 0 , the following approximation
p u2—02+v4—u4+ 1 u? — v?
out ~ exX
"2 SNR T 8-SNR? P AINR )\ 2w

—SIR fP=n* = f
3 1 .
O‘( u ){ "o SNR T3 sNR2

can be found

(4.2.17)
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Note that the previous expression provides a good approximation of the outage prob-
ability in the high SNR regime, being asymptotically tight as SNR — co. For a given
value of SINR, the tradeoff between interference and noise is represented by INR. When
interference dominates over noise, i.e. INR — 0o, then SNR — oo. Therefore, for a given
SINR, the approximation in (4.2.17) fits well with the exact outage probability in the
high INR regime.

On the other hand, when noise dominates over interference, i.e., INR — 0, then
SNR — SINR and SIR — oco. In this case the outage probability can be approximated

by (4.2.10), which corresponds to the interference-free case.

4.2.3 Numerical Results

As a result of the OP analysis, a closed-form expression have been derived for a general
L-branch MRC receiver in a Hoyt-faded channel under the presence of co-channel inter-
ference signals. Besides, some simplified expressions have been obtained for the particular
case of a single antenna receiver (L = 1). This section presents some results from the
numerical evaluation of these expressions. Moreover, several Monte-Carlo simulations

have been carried out in order to validate our results.

Figure 4.8 and Figure 4.9 show some results for the OP of an L-branch MRC re-
ceiver from the numerical evaluation of the general expression (4.2.8). On the one hand,
Figure 4.8 represents the OP related to the normalized average SINR expressed in decibels

as

0%
1010 2 ,
810 (% SSW;+ %02>

for several values of the number of diversity branches L and Hoyt parameter ¢ = 1/16.
In this particular example, three interferers are considered with mean powers W; = 1/4
and W, = W3 = 1/8, while the background noise power is 2 = 1/10. Simulation results
have been superimposed onto the analytical results from (4.2.8) showing that they are in

perfect agreement.
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Figure 4.8: Outage probability versus normalized average SINR for an MRC receiver
with L diversity branches, Hoyt fading parameter ¢ = 1/16, background noise power
0% =1/10, and 3 interferers with W, = 1/4, Wy = W3 = 1/8.
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Figure 4.9: Outage probability versus number of interferers for an L-branch MRC receiver
with Hoyt parameter ¢ = 1/16, normalized power of the desired signal W/, = 1/4,
background noise power 0% = 1/200, and same power W; = 1/100 for all the interferers.
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On the other hand, Figure 4.9 depicts the outage probability versus the number of
interferers for the considered MRC receiver with different values of L and Hoyt parameter
g = 1/16. In this case, the considered CCI scenario is as follows: normalized mean power
of the desired signal W, /v, = 100, background noise mean power o2 = 1/200, and the
same mean power W; = 1/100 for all the interferers. First, it can be seen that the
performance in terms of OP degrades significantly as the number of interferers increases.
Also, it is observed from Figure 4.9 that the performance degradation associated to the
presence of interference signals is significantly higher for greater values of L. Besides, the
validity of the derived OP expression (4.2.8) is checked once more against the Monte-Carlo

simulation results.

Figures 4.10 and 4.11 show some OP results for the single antenna receiver from the
numerical evaluation of (4.2.11). On the one hand, Figure 4.10 represents the outage
probability related to the normalized average SINR for several values of the Hoyt pa-
rameter ¢q. The 3-interferers CCI scenario previously described is considered, i.e., back-
ground noise mean power o> = 1/10 and 3 interferers with mean powers W; = 1/4 and
Wy = W3 = 1/8. As expected, it can be seen that the OP degrades as the Hoyt parameter

ncreases.

On the other hand, Figure 4.11 depicts the outage probability versus the number
of interferers for the same CCI scenario considered in Figure 4.9, i.e., W/, = 100,
o? = 1/200, and same power W; = 1/100 for all the interferers. Simulation results have
been superimposed in both Figure 4.10 and Figure 4.11 onto the analytical results from

(4.2.11), confirming the validity of this expression.
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Figure 4.10: Outage probability vs average SINR for a single antenna receiver
(L = 1) with background noise power o? = 1/10, and 3 interferers with W; = 1/4,
W2 == W3 == 1/8
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Figure 4.11: Outage probability versus number of interferers for a single antenna receiver
with W, /v, = 100, 6% = 1/200, and same power W; = 1/100 for all the interferers.
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Figure 4.12: Outage probability versus normalized average SINR for a single antenna
receiver and one dominant interferer with ¢ = 1/2.

Finally, Figure 4.12 shows some numerical results for the single antenna receiver when
one dominant interferer is considered. The outage probability in (4.2.15) is represented
as a function of SINR for different values of INR and Hoyt parameter ¢ = 1/2. Also, the
approximated values from expression (4.2.17) are superimposed in the same figure for the
medium and high INR values (i.e. 5 and 15 dB), whereas the interference-free expression
in (4.2.10) is represented as an approximation for the low INR regime (i.e., -5 dB). On the
one hand, this figure shows that (4.2.17) fits well with the exact expression (4.2.15) in the
medium-high INR regime. Besides, it is observed that the approximation is tighter as the
INR increases. On the other hand, it is shown that the interference-free approximation is
reasonably tight for low INR values. Hence, the exact OP expression for the single antenna
receiver with one dominant interferer can be approximated by (4.2.10) and (4.2.17) for
the low and medium-high INR regime, respectively. Finally, Figure 4.12 shows that noise
has a slightly greater impact on outage probability than interference for the low SINR

regime.
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4.3 Summary

In this chapter, we have analyzed the performance of two different SIMO systems under
the presence of practical limitations such as non-orthogonal signaling at the transmitter
or co-channel interferences. Specifically, SIMO systems employing switching combining
have been analyzed in terms of bit error probabilities when correlated signals are in-
tentionally employed at the transmitter side. Then, systems employing MRC at the
multiple-antenna receiver have been analyzed in terms of the OP under the presence of

co-channel interference signals.

On the one hand, we have derived exact closed-form expressions for the average BEP of
multibranch switched diversity systems over i.i.d. Nakagami-m fading channels. Practical
schemes which use noncoherent or differentially coherent symbol detection have been
considered. In this kind of systems, signals may be chosen non-orthogonal (correlated)
at the transmitter in order to reduce the bandwidth use. The general BEP expression
includes as particular cases the following signaling formats: correlated binary signaling,
DPSK, and DQPSK. The derived expressions have led to easily computable results which
are useful for the analysis and design of switched diversity based systems. In particular,
our analytical results have been applied to study the impact of the switching threshold

selection on the system performance.

On the other hand, exact closed-form expressions have been obtained for the OP
of MRC systems in Nakagami-g (Hoyt) fading channels under independent co-channel
interferers with arbitrary powers. The considered scenario assumes the joint presence
of background white Gaussian noise and independent Rayleigh interferers with arbitrary
powers. These results are obtained through an appropriate generalization of the MGF
of the Hoyt fading distribution. Specifically, the incomplete generalized MGF (IG-MGF)
has been obtained in closed-form for the sum of squared Hoyt variables and applied to

the OP analysis of MRC systems.
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CHAPTER 5

Performance Analysis of Non-Ideal
MIMO Systems

As stated before, the statistical properties of Wishart matrices have been extensively
used to analyze the performance of multiple-input multiple-output (MIMO) systems. In
particular, the signal-to-noise ratio (SNR) output statistics of several MIMO systems
depends on the diagonal distribution of a complex Wishart matrix. Concretely, this
distribution appears when the analysis is carried out under practical conditions such as
the spatial correlation or the limited-rate feedback. Therefore, we have focused on the
diagonal distribution of complex Wishart matrices, whose statistics have been addressed

in Section 2.4.

In this chapter, the derived expressions for the cumulative distribution function (CDF)
of the maximum of the diagonal elements of a complex Wishart matrix are applied to the
performance analysis of two different MIMO systems under practical conditions. First,
the outage probability (OP) is analyzed for MIMO selection combining (MIMO SC)
systems under arbitrarily correlated Rayleigh fading. Then, the same analytical approach
is applied to MIMO beamforming systems under limited-rate feedback, i.e., systems which
employ codebook-based transmit beamforming and maximum ratio combining (MRC) at

the receiver side.
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5.1 MIMO SC Systems under Spatial Correlation

It is well known that the MIMO channel capacity increases with the minimum number
of transmit and receive antennas when fading channels are independent and identically
distributed (i.i.d.) [5]. However, in a real environment, signals received by the different
antennas are found to be spatially correlated. The main reasons behind are related to
the insufficient physical separation between the antennas and/or the geometry of the
propagation environment. An important performance degradation of MIMO systems due

to the presence of such correlation has been accordingly shown in [13].

To provide capacity gains, MIMO systems rely on the use of as many radio-frequency
(RF) chains as antennas, thus increasing the cost and complexity. Receive antenna se-
lection systems, also referred to as selection combining (SC), were proposed as a tradeoff
between system performance and complexity (cost) by keeping the same number of an-
tennas and reducing the number of RF chains. With this scheme, only the signal on the
antenna which is experiencing the maximum SNR is processed and, thus, only one RF
chain is needed at the receiver. Further discussion about antenna selection systems can

be found in [75].

Several works in the literature have already addressed the performance analysis of
MIMO systems with SC, referred to as MIMO SC, under spatially correlated fading
channels [8, 28, 29|. However, these analyses are often limited due to the lack of results on
the diagonal distribution of complex Wishart matrices. Moreover, analytical closed-form
expressions are rarely provided due to the intractable form of the joint probability density
function (PDF). In [29], the derived bit error probability (BEP) and OP expressions for
multi-branch SC over spatially correlated fading are in the form of a multiple integral
involving the joint characteristic function (CF). In some other works, the analysis is
carried out under certain assumptions such as a real correlation matrix, equivalently
considering a real Wishart matrix. In [28], closed-form BER results are provided for
dual-branch selection diversity assuming real correlation among branches. Also, the real
exponential correlation model is assumed in [8] to analyze the performance of MIMO SC

systems.
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In this section, we address the outage probability analysis of MIMO SC systems in
arbitrarily correlated Rayleigh fading channels. This analysis relies on our previous results
on the diagonal distribution of complex Wishart matrices (see Section 2.4). The analysis
presented in this section extends the results in |8] to any number of receive antennas with
arbitrary correlation. Also, our results are in the form of a single series expansion in
terms of the Laguerre polynomials, which facilitates the computation and makes further

closed-form analysis (e.g. BEP analysis) possible.

5.1.1 System Model

Consider a MIMO communication system with Np transmit and Ng receive antennas,
where all the antennas are used for transmission and only a single receive antenna, which
maximizes the instantaneous SNR, is selected. The MIMO fading channel is modeled by
the N x Np random matrix H, defined according to the well-known Kronecker spatial

correlation model [76]

H = [h,h,...,hy,] = RIGR., (5.1.1)

where R and Ry are the transmit and receive correlation matrices, respectively, whereas
the entries of G are i.i.d. complex Gaussian random variables with zero mean and unit
variance. Transmit antennas are assumed to be spaced far enough so that the trans-
mitter side correlation is negligible, or Ry = I, and thus, spatial correlation only ap-
pears at the receiver side. In this case, the column vectors of the channel matrix
h;, = [hlj,hgj,...,hNRj]T, for 7 = 1,..., Np, are zero-mean i.i.d. complex Gaussian
processes with covariance matrix Rp, i.e., h; ~ CN(0,Rg). Also, note that the ma-
trix S, = Zj\fl h;h!" has the complex Wishart distribution CWy,,(Nr, Rg) and its Ng

diagonal elements are the square norms of the row vectors of H.

The baseband complex envelope of the received signal after the matched filter is
expressed as y = Hx + n, where n is the Ng-dimensional white noise vector whose
elements are complex Gaussian random variables with zero mean and variance o2. The
transmitted signal is denoted by the column vector x and the total average transmit power
is normalized to one, i.e., E [XHX] = 1, and evenly distributed among all the antennas.

Under these assumptions, the average SNR at each receiver branch is given by 7 = U%
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Figure 5.1: MIMO SC system model.

The receive antenna selection technique, also referred to as SC, selects the antenna
which maximizes the instantaneous SNR [8]. In the considered MIMO system with SC,
we also assume that channel state information (CSI) is perfectly known at the receiver
but not available at the transmitter, where some diversity technique is applied (e.g.,

orthogonal space-time block codes).

5.1.2 Outage Probability Analysis

Under the considerations above, the instantaneous SNR at the output of the combiner is

given by
r_y
=—7 1.2
where
Nt
Z = @%Z} |his] (5.1.3)
j:

is the maximum of the squared norms of the row vectors of the channel matrix, which
are the diagonal elements of the complex Wishart matrix S;. The statistics of complex
Wishart matrices has been addressed before in Chapter 2, including a series expansion
for the distribution of the maximum of the diagonal elements. Therefore, the CDF of Z

can be obtained from the derived series expansion in (2.4.23) as

0o sn Ng
Fr(z)=3 5 ¢ (pl(j?, . ,pgj}@R) 1% (w*2), (5.1.4)
n=0 i=1 j=1 "’

where A% (-) are the so-called delta functions, defined in (2.4.13), s, is the number of

possible integer partitions of n into Ny elements, P™ = {pgﬁ), . ,pERR} is the i-th

(]
integer partition of n, ¢ = 1,...;s,, and the coefficients ¢ (pgﬁ), e ,pgz\),R) are the ones
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defined below (2.4.23). These coefficients depend on N and on the correlation matrix R,
and can be easily computed with the algorithm provided in Appendix B.2. Recall that
the delta functions, as defined in (2.4.13), are basically a scaled version of the generalized

Laguerre polynomials multiplied by the exponential function.

As a result, the outage probability for the MIMO system with SC under spatially

correlated fading is given by

. o o . . Ng v ((w2Ng (5.1.5)
= FZ NT; = Z Z C (le PN 7pi,NR> H Apgn-) —,1,’ 5
n=0 i=1 j=1 "

where v, is the outage threshold and =z = % is the normalized average SNR. To the best
of the author’s knowledge, this expression for the outage probability is original. Also, it
is emphasized that (5.1.5) is a general expression valid for an arbitrary correlation matrix
and any number of receive antennas. Recently in [8], the same system was analyzed but
only under the assumption of a real exponential correlation matrix for N > 3 due to
the lack of results for the diagonal distribution of a complex Wishart matrix. This was
however a valid correlation model only when the antennas are placed in a uniform linear
array [77] and therefore, our analysis extends the results in [8] to the general arbitrary

correlation case.

The statistical results in Section 2.4.4 for the maximum of the diagonal elements of
a complex Wishart matrix have been used to obtain a general OP expression. Also,
some particular cases and approximations for the distribution of the maximum were
provided in Section 2.4.4. In the subsequent, these simplified expressions are applied to
the asymptotic analysis of the OP in the high SNR regime. Besides, a simplified formula

for the OP in the particular case of a dual-branch receiver (Nr = 2) is provided.
Diversity order

After taking (2.4.34) into account, the outage probability in the high SNR regime can be
approximated by
(5.1.6)

1 >NR NpTNe

Po ) = Ral ™ (57) S
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which suggests that a diversity order of NpNp is achieved. The same result has been

obtained in [8], thus confirming the validity of our derivations.

Dual branch case (N = 2)

For a dual branch receiver, the simplified expression for the bivariate case in (2.4.28) can

be used to arrive at the outage probability, which is given by

Ne\? et NRTO 2 (n— 1) , Ny 2
Pou (2) = G, | —L E npNe (21
: (@) NT(x) +x2NT (Np —1)! NT+n—1) I ”_l(a:>

(5.1.7)
where 7 is the out-diagonal element of the correlation matrix Rr. As shown by the
simplified expression, the outage probability increases with |r|, which can be dealt by

increasing the number of transmit antennas Nrp.

5.1.3 Numerical Results

The derived expressions have been numerically evaluated in order to analyze the per-
formance of MIMO SC systems under spatially correlated fading. To check the validity
of the derived expressions, we also provide some Monte-Carlo simulation results for the

CDF of the SNR at the output of the combiner.

On the one hand, Figure 5.2 shows the CDF of Z, which is a scaled version of the SNR
at the output of the combiner. The analytical expression in (5.1.4) has been evaluated for
two different arbitrary correlation matrices, R; and Ry (see Table 5.1), corresponding to
Ngi =4 and Nk = 6 receive antennas respectively, w = 1, and several values of Np. The
truncation limit of the series in (5.1.4) has been set to Ny.. = 8, which yields a total of
25 terms for Ng = 4 and 36 terms for Ny = 6. It is emphasized that the computation of
the corresponding coefficients by the algorithm provided in Appendix B.2 takes less than
one second in a common PC. The simulation values of the CDF are also superimposed
to the analytical curves in Figure 5.2 showing that, with just a few terms of the series,
they are nearly in perfect agreement. The rapid convergence of the series is illustrated
in Table 5.2, which presents the truncation limit and number of terms needed to achieve

2, 3, and 4 significant figure accuracy.
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Figure 5.2: CDF of Z, the maximum of the square norms of the row vectors of the channel
matrix H.

Table 5.1: Correlation matrices considered in the performance analysis of the SC system.

1 0.50 0.25 4 0.33j —0.10 4 0.33;j
R 0.50 1 0.17 — 0.33; —0.17
! 0.25—0.335 0.17+0.33j 1 0.33 — 0.25]
—0.10 — 0.33j —0.17  0.33+0.255 1
1 0.50 0.25 4 0.33j —0.10 + 0.33j 0.125 0.11 4 0.17j
0.50 1 0.17 — 0.33; —0.17 0.17 — 0.17j —0.17
R 0.25—0.335 0.17 +0.33j 1 0.33 — 0.25; —0.33  0.33-0.17j
2 —0.10 — 0.33 —0.17  0.33+0.255 1 0.33 —0.115 0.12
—0.12§ 0.17 + 0.17j —0.33 0.33 4 0.115 1 —0.20
0.11 —0.17§ —0.17  0.33+0.17j 0.12 —0.20 1
1 0.77j 0.67 —0.225 0.17 + 0.52j
R —0.77j 1 —0.17 - 0.52] 0.67 — 0.22
3 0.67 +0.22j —0.17 + 0.525 1 0.77j
0.17—0.525  0.67 + 0.22j —0.77j 1
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Figure 5.3: Outage probability versus average normalized SNR for a SC system with
different antenna configurations and arbitrary correlation matrices.

On the other hand, the outage probability of the SC system with Ny = 4 is plotted
in Figure 5.3 for different values of Ny and two correlation matrices. In this case, the
high-correlation matrix proposed in [78| for a typical microcell scenario (R3), is compared
to the low-medium correlation scenario defined by the arbitrary matrix R;. The scale
factor has been set to w = 0.93 for R3 to assure the convergence of the series. It is
observed that the high-correlation scenario determined by Rj3 degrades significantly the
performance with respect to the arbitrary R;. However, it is shown that the performance
loss associated to the high-correlation scenario can be reduced by increasing the number

of transmit antennas.
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Table 5.2: Truncation limit (N,.;) and number of terms needed in (5.1.4) (Np = 4) to
achieve 2, 3, and 4 significant figure accuracy.

Ngr =4 (Ry) Ng =6 (Ry)
Z=5|2Z2=75|Z=10Z=5]|2Z=75]2Z=10
2 Figure | Nmar |2 2 2 2 2 2
Terms | 2 2 2 2 2 2
3 Figure | Smer | 4 4 2 4 2 2
Terms 6 6 2 6 2 2
4 Figre | Nmes | 8 6 4 8 6 4
Terms | 25 13 6 36 16 6

5.2 MIMO Beamforming under Limited Feedback

The capacity of MIMO systems can be significantly enhanced when CSI is available at
the transmitter side [5]. The MIMO beamforming system, also referred to as MIMO
MRC, relies on the joint MRC weights at both the transmitter and the receiver sides
[10-12]. However, full CSI knowledge at the transmitter is often unrealistic, especially in
systems where the forward and reverse links fade independently (e.g., frequency division
duplexing systems). In practical systems, a limited-rate feedback channel is considered
to report partial channel information from the receiver back to the transmitter. One
way to deal with the limited-rate feedback limitation is to design a beamforming vector
codebook and make this codebook available to both the transmitter and the receiver.
During operation, the receiver reports back the index of the optimal beamforming vector

to be used in subsequent transmissions.

Limited feedback beamforming systems have been extensively investigated [14-17].
However, exact performance analysis for an arbitrary beamformer codebook does not

exist in the current literature.

In this section, the performance of MIMO beamforming systems under limited-rate
feedback is analyzed in terms of the outage probability. An exact expression for the OP
is provided based on our previous results on the diagonal distribution of complex Wishart

matrices (see Section 2.4)
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Figure 5.4: MIMO beamforming system model.

5.2.1 System Model

Here, we consider a MIMO beamforming system with N transmit and Ny receive anten-
nas, where codebook-based transmit beamforming is applied together with MRC at the
receiver (see Figure 5.4). The MIMO channel is modeled by the Ni x Ny random matrix
H, whose entries are i.i.d. complex Gaussian random variables with zero mean and unit
variance. The beamformer codebook matrix B = [by, by, ..., by] consists of L different
Nr x 1 column vectors b;, for ¢ = 1,..., L. For each channel realization, the receiver
selects a beamformer vector which maximizes the instantaneous SNR and reports it back
to the transmitter over a finite-rate feedback channel using log, (L) bits. In this case,
the complex envelope of the received signal after the matched filter (before the MRC
processing) is expressed as y = Hbz + n, where x is the transmitted symbol, b is the

selected beamformer vector that satisfies
c 2
b = arg max |Hb||", (5.2.1)

and n is the Ng-dimensional white noise vector whose elements are complex Gaussian
random variables with zero mean and variance o2. The total average transmit power is
normalized to one, and consequently, E[|z|?] = 1 and ||b;||> = 1, for i = 1,..., L. Thus,

the average SNR at each receive antenna is given by 7 = Uiz



Performance Analysis of Non-Ideal MIMO Systems 83

5.2.2 Outage Probability Analysis

Assuming the channel matrix H perfectly known at the receiver, the instantaneous SNR
after the MRC processing is expressed as v = 77 with
R

Z = max |Hb;|* = lxg%xLZ |h;b;|*, (5.2.2)

where {h;} are the row vectors of H. It is observed that Z is the maximum of the squared

norms v; = ||[Hb,||?, for i = 1, ..., L, which can be identified as the diagonal elements of a

certain complex Wishart matrix. Specifically, v; are the diagonal elements of the matrix

Spr = ZNR k;k, with k; = B"h}’, which follows the complex Wishart distribution

CW_.(Ngr,BEB). Equivalently, Z is the maximum of L correlated central chi-square

variables with 2Ny degrees of freedom and underlying correlation matrix R,y = BB,

i.e., with correlation determined by the codebook matrix. Hence, the CDF of Z can be

expressed by the series expansion in (2.4.23) as

L

-3 () T (079, (523)

n=0 =1 7j=1 Pij

where A% () are the delta functions defined in (2.4.13), s, is the number of possible
integer partitions of n into L elements, Pi(n) = { pgﬁ), o pE"L)} is the i-th integer partition
ofn,i=1,...,s,, and the coefficients ¢ (pgﬁ), - ,p%) are the ones defined below (2.4.23).
These coefficients depend on Ni and the correlation matrix Ry, and are easily computed
with the algorithm in Appendix B.2. Then, the previous result allows obtaining the
outage probability of the codebook-based transmit beamforming system, which is given

by

Py () 2 Pr{y <y} = Pr{Z < ?}

—r (D) =30 (i ,pz,L)HA% (“).

n=0 =1 j=1

(5.2.4)

where v, is the outage threshold and z £ % is the normalized average SNR. The OP
is now expressed as an infinite series in terms of the delta functions, defined in (2.4.13),
which are basically a scaled version of the generalized Laguerre polynomials multiplied

by the exponential function.
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Figure 5.5: CDF of Z, the effective SNR at the output of the MRC processing when the
optimal beamforming codeword is employed.

5.2.3 Numerical Results

Figures 5.5 and 5.6 depict the performance results for the codebook-based transmit beam-
forming system with MRC at the receiver. The system performance has been evaluated
for three different values of the receive antennas, Nr = 2,4, 6, and two transmit antenna
configurations Ny = 2,4 with 2-bit and 3-bit codebooks (Bo_rrr and Bs_rrg) respec-
tively. These codebooks have been chosen according to the Long Term Evolution (LTE)
cellular technology specification [79], and can be found in Table 5.3.

Figure 5.5 shows the numerical evaluation of the CDF of Z, given in (5.2.3), for the
mentioned cases. The simulated CDF has also been superimposed to the analytical curves
in order to check the validity of the derived expression. In this case, the truncation limit
has been set to N, = 10 yielding a total of 20 and 37 terms for the 2-bit and the 3-bit
codebooks, respectively. Again, it is observed that the simulated values fit reasonably well
with the analytical ones for the considered series truncation limit. The outage probability
of the codebook-based MIMO beamforming system is shown in Figure 5.6 for the same

antenna configurations and codebooks.
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Figure 5.6: Outage probability versus average normalized SNR for a MIMO beamforming
system with different antenna configurations and LTE-based codebooks.

Table 5.3: LTE-based codebook matrices considered in the performance analysis of the
MIMO beamforming system.

Bao_171E

<1/ﬂ 1/vV2 1/V2 1/\/§>
1/V2 V2 —1/V2 —j/V2

1/2 1/2 1/2 1/2 12 1/2 1/2 1/2
B /2 j/2 —1/2 —j/2 1/2 /2 —1/2 —j/2
3-LTE 1/2 —1/2 1/2 —1/2 —1/2 1/2 —-1/2 1/2
/2 —j/2 -1/2 j/2 -1/2 j/2 1/2 —j/2
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5.3 Summary

The diagonal distribution of complex Wishart matrices has been addressed earlier in
Chapter 2, where the joint PDF and CDF, as well as the distribution of the maximum
of the diagonal elements were derived. In this chapter, these statistical results have
been applied to the performance analysis of two different MIMO systems under practical
conditions. First, our statistical results have been applied to the OP analysis of MIMO
SC systems in arbitrarily correlated Rayleigh fading. Then, the same analytical approach
for the OP has been applied to codebook-based transmit beamforming systems with MRC
at the receiver. The obtained expressions for the OP are in the form of an infinite series
representation in terms of the well-known Laguerre polynomials, and have been shown
to be easily computable. At the best of the author’s knowledge, the derived expressions
and results from both analyses are novel and represent remarkable contributions of this

thesis.



CHAPTER 6

Conclusions and Future Work

In this final chapter, the main conclusions which arise from the contributions of this work
are outlined. Besides, some future lines and possible applications regarding the work

developed in this thesis are suggested.

6.1 Conclusions

In this thesis, we have addressed the performance analysis of different SIMO and MIMO
systems in fading channels under certain non-ideal (practical) conditions. We have aimed
to obtain closed-form expressions for the two most commonly extended performance
measures, the outage probability (OP) and the bit error probability (BEP). However,
the existing mathematical tools in some cases have not been enough to accomplish such
analysis. Therefore, the development of new mathematical tools and statistical functions
has been an essential part of this work in order to analyze the performance of SIMO and

MIMO systems.

In the context of SIMO systems, recent results for the explicit solutions of the incom-
plete integrals ILHI and TIMQ [20] have been applied to the BEP and OP analysis for

the following receive diversity schemes and practical conditions:
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e Switch-and-examine combining (SEC) under non-orthogonal signaling has been an-
alyzed in terms of BEP for different non-coherent and differentially coherent modu-
lation formats in Nakagami-m fading channels for a general L-branch receiver. The
derived expressions have led to easily computable results which are useful for the

analysis and design of switched diversity based systems.

e Maximum ratio combining (MRC) systems under the presence of co-channel in-
terferences have been analyzed in terms of the outage probability in Nakagami-q
(Hoyt) fading channels for a general L-branch receiver. This analysis has motivated
the derivation of new statistical functions related to the Hoyt fading distribution.
Specifically, the incomplete generalized MGF (IG-MGF) of the Hoyt distribution
has been obtained in closed-form and applied to the OP analysis. Besides, some
simplified expressions and approximations in the high SINR regime have been ob-

tained for the case of a single antenna receiver.

In the context of MIMO, it has been observed that the SNR output statistics of several
systems depends on the diagonal distribution of a complex Wishart matrix. Due to the
lack of results for this distribution in the literature, we have focused on it as a previous and
fundamental step towards further performance analysis of MIMO systems. Specifically,
we have derived the joint density of the diagonal elements of a complex Wishart matrix,
which follow a particular multivariate chi-square distribution. The density expression
is in the form of an infinite series representation which converges rapidly and is easy to
compute. This expression has been used to obtain the distribution of the maximum of the
diagonal elements, which has been applied to the performance analysis of two different

MIMO systems under practical conditions:

e First, our statistical results have been applied to the OP analysis of MIMO se-
lection combining (MIMO SC) systems in arbitrarily correlated Rayleigh fading.
The analytical expressions are general and valid for any number of receive antennas
with arbitrary correlation. Also, our results are in the form of a single series ex-
pansion in terms of the Laguerre polynomials, which facilitates further closed-form

performance analysis (e.g. BEP analysis).
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e Then, the same analytical approach has been applied to the OP analysis of MIMO
beamforming systems under limited-rate feedback, i.e., systems with codebook-based

transmit beamforming and MRC at the receiver side.

6.2 Future Work

As stated above, the performance analysis of MIMO systems under non-ideal conditions
has motivated the development of new mathematical tools, which may be applied else-
where. As such, an interesting future line of work can be the application of these tools to
extend the analysis of current systems or to investigate upcoming systems. Specifically,
the statistical results on the diagonal distribution of complex Wishart matrices could be
used in the BEP analysis of MIMO SC or MIMO beamforming systems with adaptive

modulation.

Moreover, different scenarios may be considered in the performance analysis, implying
different fading conditions or practical limitations. Given the recent relevancy of 7-u
fading channels, it could be interesting to consider this fading model in future works.
Also, an important practical limitation in systems relying on a feedback channel is the user
mobility, which may significantly degrade the performance of beamforming or adaptive

modulation strategies.

Finally, the obtained expressions for the outage and bit error probabilities of SIMO and
MIMO systems could be applied to the design of these systems under realistic conditions.
In this context, other practical limitations such as errors in the channel estimation process

could be considered.
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APPENDIX A

Incomplete Lipschitz-Hankel Integrals

A.1 Proof of Lemma 1

As in [53], integration by parts is performed in (2.3.25) with

' u=Q, <a\/f, b\/g> ,

b /b ”_1a2 2
du =3 <_> e 2! (aly(abt) = bI,(abt)) dt,
a

v={[41, eq. 2.231-2]} = —e ™ (6:31 3 (ﬁ:!)’") ’

r=0

dv = tme Pt
\

Then, after some algebra, (2.3.26) is obtained.

A.2 Proof of Lemma 2

As a previous step to the proof of Lemma 2, we need to introduce the following identity,

referred to as the modified Sonine identity [20]:

[ {_d SO _wr1dO f<t>} 1, (t)dt = 177 {—%ﬁ”w " f(t)fy+1(t)} ,
(A2.1)

where [,(t) is the v-th order modified Bessel function of the first kind and f(¢) is any

twice-differentiable function.
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Note that I, ,(z; @) = 21.(Z, ax), where I, is the Rice I.-function. Then, we obtain (i)
by using the connection between the Rice I.-function and the Marcum Q function [45] and
after some algebra. To show (ii) we first apply (A.2.1) with v = 0 and f(t) = exp(—at),
followed by the substitution of I, by (i). Expression (iii) is obtained using integration
by parts with © = exp(—at), du = —aexp(—at)dt, v = Iy(t), dv = I(t)dt and applying
(i). Finally, integrating by parts I.,, with v = texp(—at),du = (—at exp(—at) +
exp(—at))dt, v = Iy(t),dv = I(t)dt yields

Lo, (x;a) = xe™ () — Loy, (25 0) + ale, o (x5 a). (A.2.2)

Substituting (i) and (ii) in (A.2.2) the expression (iv) holds and the proof is complete.

A.3 Proof of Proposition 1

Let us consider the following recursive Luke’s formulas for the ILHI of Bessel type

[50, pp. 120]

(& =1L, (v;0) = —e 2™ L, 1 () + (m —n — 1)e 2™ ' I,(z) — ae” 2" I,(z)
+a(2m - ]')Iemfl,n (x’ Oé) + (n2 - (m - ]‘)2)16771,72,71 (I’ O{)
(A.3.1)
—(n—1I,, ., (r;a) = =2ne”zl,(z) — 2nal,, , (x;0) + (n+ 1)1, (z;0) (A.3.2)
e i (T3 0) = —2ne” I, (z) — 2nale,, (z;a) + (n+ 1)1, (z; ) (A.3.3)

First, we show that I, (;«) is represented by (2.3.27). Such statement for n = 0
and n = 1 is obviously true by direct inspection of Lemma 2, where the corresponding
coefficients are explicitly given. Let us set m = 0 and perform strong induction over
n for n > 2. Applying Lemma 2 to (A.3.3) and identifying with (2.3.27), the following

coefficients are obtained for I, ,(z; o)

./45)72(04) = 20‘-’46,1(04) - Af),o(oz), [=0,1
208;7 (o) — Byp(c) (A.3.4)

By (@)

Bys(a) =2
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where unspecified coefficients are assumed to be zero. For n > 2, application of the
induction hypothesis to (A.3.3) and identification with (2.3.27) lead to the following
coefficients for 1., , (z; a)
Af),n(a) *204“4071 (@) = AOn o(a), 1=0,1
Bgzi(a) = 204887’7]1_1(04) — 80331_2(04), 0<j<n—-2 (A.3.5)
By a) = 208y 1 (a) + 2
Therefore, I, (x;a) is represented by (2.3.27) for n > 0 and the corresponding coeffi-

cients are obtained recursively using Lemma 2, (A.3.4) and (A.3.5).

Second, we prove that I, (x;«) is represented by (2.3.27). Again, such statement
for n = 0 and n = 1 is obviously true by direct inspection of Lemma 2. Applying

[41, eq. 8.486-1] to the definition of I, ,(z;a) we obtain
161,2 (l‘; a) = Iel,o (x; a) - 2Ieo,1 ("L‘; a) )

then, using again Lemma 2, the non-zero coefficients for m = 1 and n = 2 are

(

1o(@) = Al g(a) = 245 1 (a), 1 = 0,1
812(0z) :B 0_230 () (A.3.6)
BiA() = Bli(e)

Bys(@) = Bry(a)

Let us set m = 1 and perform strong induction over n for n > 3. Application of
the induction hypothesis to (A.3.2) and identification with (2.3.27) lead to the following

non-zero coefficients for I,  (z; o)

( noo
Al () = A1 n-1(a) = mAl,n—Q(a)7 =01
. N i=0,1
B (a) = 20" 2B y(0) — B (o)
B " 0<j<n—2 (A.3.7)
n— o Lo
BY o) = 20" BY L (a)
1,n—1 o n— 1,n—1 n—1
{ By, (o) = 2an _ 281,n—1<04) + 2n )

Therefore, I, (x;a) is represented by (2.3.27) for n > 0 and the corresponding coeffi-

cients are obtained recursively using Lemma 2, (A.3.6) and (A.3.7).
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Finally, we are in position to show that I, , (x; «) is represented by (2.3.27), by fixing
n and performing strong induction over m for m > 2. We have proven that such statement

is true for I

€0,n

(z;a) and I, (x; ). For m > 2, using [41, eq. 8.486-1] equation (A.3.1)

can be rearranged as follows

1 -1
Iem,n (x; a) = _ag — 16_wl‘m n—1($) + %G_axxm_lfn(x) — S 16_a$xmln(x)
a(2m —1) n? — (m — 1)
ﬁlem—l,n (x7 a) _I_ Tjem—Q,n (ZI’" a)
(A.3.8)
For I, ,(w; ), expression (A.3.8) allows to obtain the representation (2.3.27) with coef-
ficients
( 3 n?—1
Ay (0) = Al (@) + 5— A (@), 1=0,1
B9 () = 2% B9 (o) + - L% (a), 0< i<t
2,na_a2_1 l,na a2 —1 07na7 XIxN
; 3o , n-+1 . )
Byy () = ——Bin(e)+ 50l —n], 0<j<n+1 (A.3.9)
1
=0= — Jj] — d[j—1],0<j< 1
2,j _ " a?—1 ] a2 —1 =1 Jsm
BQ,n (CY) - a . 1 . .
\ n>0:>—a2_15[j—n]—a2_15[j—(n—1)]7Ogjgn

where §]-] is the Kronecker’s delta. For m > 2, application of the induction hypothesis
to (A.3.8) and identification with (2.3.27) lead to the following coefficients for I, . (z; a)

(
a(2m —1) n? — (m — 1)
A{m,n(a):ﬁAlm—l,n(&)—l—TAfn—Zn(a)’l:071
g om—1) . . 2 _ 02 0<i<m—2
B (o) = 220Dy | (o) + =D gy, (), for
’ a?—1 : a?—1 ’ 0<j<n+l
— a2m—1) . m4+n—1 ,
B o) = “E = Dt o)+ P L) o< <t
| n=0= =5[] - —5—=6[j—1], 0<j<n+1
By (a) = N . “- 1
n>0= ———=0j—n] - —=0[j-(n-1], 0<j<n
\

(A.3.10)
Therefore, I, ,
sponding coefficients are obtained using Lemma 2, (A.3.4)-(A.3.7) and (A.3.9)-(A.3.10).

(x; @) is represented by (2.3.27) for m > 0 and n > 0, and the corre-
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A.4 MATHEMATICA™ 7.0 program to compute the
ILHI coefficients

coeffILHI [mm_,nn_,aa_]:=
Module[{m=mm,n=nn,a=aa,\[Deltal,b, a0,al,bb,alnl,aldn2,
alnl,aln2,bbnl,bbn2,i,j,alml,alml,bbml,alm2,alm2,bbm2},
\[Delta] [k_]:=KroneckerDeltalk];
b=1/Sqrt[a~2-1];a0=0;a1=0;
bb=ConstantArray[0,{m+1,n+2}];
Which[
{m,n}=={0,0}, a0O=b;al=-2 b;bb={{b,0}},
{m,n}=={1,0}, a0=a b~3;al=-2 a b~3;
bb={{a b~3,0},{-a b~2,-b"2}},
{m,n}=={0,1}, a0=a b-1;al=-2 a b;
bb={{1+a b,0,0}},
{m,n}=={1,1}, a0=b~3;al=-2 b~3;
bb={{b"3,0,0},{-b"2,-a b~2,0}},
{m,n}=={1,2}, a0=a b~3-2 (a b-1);al=-2 a b~3-2 (-2 a b);
bb={{a b~3-2 (1+a b),0,0,0},{-a b~2,-b-2,0,0}},
m==0,
{a0n1,alni,bbni}=coeffILHI[0,n-1,a];{a0n2,a1n2,bbn2}=coeffILHI[0,n-2,a];
a0=2 a alOnl-a0n2;al=2 a alnl-aln2;
Do[bb[[1+0,1+j1]=
2 a bbn1[[1+0,1+j]1]1-bbn2[[1+0,1+j11,{j,0,n-2}1;
bb[[1+0,1+n-111=2 a bbnl1[[1+0,1+n-1]11+2,
m==1,
{a0n1,alni,bbni}=coeffILHI[1,n-1,a];{a0n2,a1n2,bbn2}=coeffILHI[1,n-2,a];
a0=2 a (n-1 )/(n-2) aOni-n/(n-2) aOn2;
al=2 a (n-1 )/(n-2) alnl-n/(n-2) aln2;
Dol[bb[[1+i,1+j]1]=
2 a (n-1 )/(n-2) bbnl[[1+i,1+j1]1-n/(n-2) bbn2[[1+i,1+j11,{i,0,1},{j,0,n-2}1;
bb[[140,14+n-1]]1=2 a (n-1 )/(n-2) bbni1[[1+0,1+n-1]];
bb[[1+1,1+n-1]1]1=2 a (n-1 )/(n-2) bbnl[[1+1,1+n-1]1]1+2 (n-1 )/(n-2),
m>=2,
{a0m1,alml,bbmi}=coeffILHI[m-1,n,a] ;{a0m2,alm2,bbm2}=coeffILHI [m-2,n,a];
al0=a b~2 (2m-1)alml1+b~2 (n~2-(m-1)"2)alm2;
al=a b~2 (2m-1)alml+b~2 (n~2-(m-1)"2)alm2;
Do[bb[[1+i,1+j]1]=
a b™2 (2m-1) bbm1[[1+i,1+j1]1+b"2 (n~2-(m-1)~2)bbm2[[1+i,1+j]1],{1,0,m-2},{j,0,n+1}]1;
Do[bb[[1+m-1,1+j1]=
a b*2 (2m-1) bbm1[[1+m-1,1+j1]1+b~2 (m+tn-1)\[Delta]l[j-nl,{j,0,n+1}]1;
If [n==0,
Do[bb[[1+m,1+j]1]=
-a b~2 \[Delta] [j-0]-b~2 \[Deltal [j-11,{j,0,n+1}],
Do[bb[[1+m,1+j1]=
-a b~2 \[Deltal [j-n]l-b~2 \[Deltal [j-(n-1)1,{j,0,n}11]1;
{a0,al,bb}];
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APPENDIX B

The Diagonal Distribution of Complex
Wishart Matrices

B.1 Proof of Proposition 2

The coefficients ¢ (ny,...,nx) can be obtained from the expansion of the CF in (2.4.5).

Specifically, the expansion

I—(I-WRW)U| "= Z > el o) [Ju (B.1.1)

n=0 (n=nq+--+ny) j=1

e

On (u1,u2,...,u))

has been used in the derivation of (2.4.9). The determinant in (B.1.1) can be expressed

as [34]

k
I-(I-WRW)U|=1+) D, (B.1.2)

j=1
where D; is the j-order polynomial defined in (2.4.15). Now, considering (B.1.2) and

making use of the binomial expansion, it is possible to write
I-I-WRW)U|? =) ( ) (—=1)" (Z Dj> . (B.1.3)
n=0 n j=1
Then, after applying the multinomial theorem [51, eq. 24.1.2] to (B.1.3) and further

simplifications the expansion can be rewritten as

o0

|I—(I—WRW)U|_p:ZM > H (B.1.4)

n=0 F(p) (n=l1+...+Lg) j=1

Finally, the expression (2.4.14) for the polynomial 6, (u1,us,...,u) with coefficients

c(ny,...,ny) is obtained by rearranging the terms of the expansion in (B.1.4).
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98 The Diagonal Distribution of Complex Wishart Matrices

B.2 MATHEMATICA™ 7.0 program for the coefficients
computation

Needs["Combinatorica‘"]
GetCoefs[R_, nDeg_, w_, Nmax_] := Module[{Pcoef, Vcoef},

(x INITIALIZATION %)

nVar = Length[R]; Nr = nDeg;

Pcoef = List[ConstantArray[0, nVar]]; Vcoef = List[1];

W = wxIdentityMatrix[nVar];

Rp = IdentityMatrix[nVar] - W.R.W;

Table[KSubsets[Range[nVar], jl, {j, nVarl}];

Table[A = Pos[[jl]; Table[Re[Det[Rp[[A[[il]l, AC[i111111, {i, Length[Al}], {j, nVarl}];

Pos
Val

(* AUX. ROUTINE: INTEGER SOLUTIONS OF 11 + 2 12 +...+ k 1k = n *)
Sol[K_] := Module[{r, 1},
Clear[n];
cond = Table[If[Apply[And, PossibleZeroQ[Val[[il]]1], n[i] == O,
n[i] >= 0], {i, 1, nVar}l;
r = Reduce[Join[{K == Sum[j n[jl, {j, nVar}]}, cond], Table[n[i], {i, nVar}], Integers];
1 = List[ToRules[r]];
Table[n[il, {i, nVar}] /. 11;

(x AUX. ROUTINE: COMPUTATION OF POLYNOMIAL Theta_n *)
Polynomial[N_] := Module[{poly = 0},
Y = Table[y[i], {i, nVar}];
If [w == 1, Dr[1] := 1;, Clear[Dr];];
Drlr_] := (-1)"r Sum[Val[[r]][[m]l] Product[Y[[Pos[[r]l][[ml]C[1111]1, {1, r}],
{m, Length[Val[[r]]11}];
intSol = Soll[N];
If [ArrayDepth[intSol] == 1, ,
poly = (Gamma[Nr])~-1 Sum[Gamma[Nr + Total[intSol[[m]]]]
Product [(-Dr[1])~intSol[[m]][[1]1]1/(intSol[[m]]1[[111)!, {1, nVar}],
{m, Length[intSol]1}111;

(* GET COEFFICIENTS c~, defined under (2.4.23), FOR n=1:Nmax *)
For[m = 1, m < Nmax + 1, m++,
polym = Polynomial[m]; Clear[a, p, tl;
If [Length[polym] == 0, ,
a = CoefficientRules[polym]; b = List[];
For[k = 1, k < Length[a] + 1, k++,
AppendTo[b, Sort[al[k]][[1]], Greater] -> al[k]1][[2]11]1;];
b = Sort[bl; p = b[[111[[11]; t = b[[111[[2]1];
AppendTo[b, ConstantArray[0, nVar] -> 1];
For[l = 2, 1 < Length[a] + 2, 1++,
If[b[[111[[1]1]1 == p, t = t + bL[1I]1[[2]1]1;,
AppendTo[Pcoef, pl;
AppendTo[Vcoef, t];
t = b[[11]1[[2]1]; p = bL[1I1[[11];1;1;1;]; {Pcoef, Vcoef}]



APPENDIX C

Derivations for the CDF of the n — u
Fading Distribution

C.1 Proof of Proposition 3

After making the change of variable z = zt* in (3.3.5), we can write

%_M _ p2\M +o0 L :
Y, (z,0) = 227ym (1 — %) / el 1 (2)dz, (C.1.1)
0

z?T (p)

where the sign of the upper integration limit is in accordance with the sign of . Then,
by making use of [18, eq. 5.7| we check that Y, (x,0) = 1. From this fact, and considering

the previous change of variable, we can express (3.3.5) as

_, 221/ (1 — 22)"

) T () (C.1.2)

*y 1 z
x/o e, (2)dz.

Y, (z,y)

Denoting p = xy* and ¢ = 1/x and with the help of [51, eq. 29.3.50], we can rearrange
the Laplace transform L[f (p);p,s] = fooo f (p) e P?dp of the integral in (C.1.2) in the
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following form:

o
—
C\

i

N

5
[y
Q)
)
n
t'\(
=

(2)dz; p, 8} =

2031 (1) 1 B
VT oos(s+q+ 1) (s+q—1)"
2#=aD(p) 1 1 _
N 1)u8<1+_>u <1+i>u (C.1.3)

q+1 q—

25T () 1 { (¢ —1)" }
VT (@ =D T (1 +2p)
X {—F (1:22/”} (1 - (—(q:l))) - (1 - (—(qs—m)’“.

Identifying |44, eq. 3.43.1.4] with (C.1.3) and substituting in (C.1.2) we obtain the desired

result.

C.2 Proof of Proposition 4

The result for an odd 2y is obtained after identifying the ILHI, introduced in Definition 1
(see Section 2.3.3), with the integral in (C.1.2) and taking into account the sign of z.
The result for an even 2y is again obtained working out the integral in (C.1.2). First,

[51, eq. 29.3.50] is used to represent the involved integral by an inverse Laplace transform

P
L {/0 z“_%e_quu_% (z)dz; p, s] =

202D (p) 1 /Eﬂ'oo e p
- s.
VToo2mj ) e s(s+q+ 1) (s+q—-1)"

Then, since p is a nonnegative integer in this case, we can use the well-known residue

(C.2.1)

theorem and, after some tedious but straightforward algebra, the desired expression is

obtained.



APPENDIX D

Incomplete Generalized MGF of the
Hoyt Fading Distribution

D.1 Incomplete generalized MGF

Let us focus on the following generalization of the MGF.

Definition 3 (Incomplete Generalized MGF). Let us consider a continuous random vari-
able (RV) X with PDF fx(x). The Incomplete Generalized MGF (IG-MGF) of X, if it
erists, is defined as

%m@o:[m"“m<>

1

wherer s € C, n is a nonnegative integer and ¢ € R with ¢ > 0.

Note that Definition 3 includes, as particular cases, several important statistical func-
tions associated to the RV X: Gx(0,0;() is the complementary cumulative distribution
function (CDF); Gx (0, s;0) is the MGF; Gx (0, s; () is the marginal MGF and Gx(n, s;0)

is the generalized MGF'. To facilitate the analysis the following concepts are introduced.

Definition 4 (Complementary IG- MGF) The complementary IG-MGF Gx(n,s;¢) of a
RV X s (if it exists) Gx(n,s;¢) = fo " e fx (v) dx

L The variable s is only evaluated along the real line, however the complex domain is assumed here, in
accordance with the usual definition of the MGF in the context of communications theory [1].
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The IG-MGF of squared Hoyt RVs has been found to be useful in the performance
analysis of certain communication systems subject to co-channel interference (see Chapter 4).
The next two sections are devoted to present original closed-form expressions for the
IG-MGF of either a single squared Hoyt RV (Section D.2) or the sum of squared Hoyt

variates (Section D.3).

D.2 Closed-form expression for IG-MGF of a squared
Hoyt RV

For convenience, we start by defining a normalized squared Hoyt variate. Then, in order
to obtain an expression for the IG-MGF, we will first derive a closed-form expression for
the generalized MGF, i.e., Gx(n, s;0), followed by an expression for the complementary

IG-MGF, and arriving at the final IG-MGF, which is obtained as the difference of the

two previous expressions.

Definition 5 (Normalized Squared Hoyt RV). For a given RV X = Y? with mean
E[X] = Qx, where Y is Hoyt distributed with parameter q, we define a ’normalized’

squared Hoyt RV as (X) = Ly

= 420y

Some useful properties of the distribution of a squared Hoyt RV regarding the existence

of its generalized MGF are summarized in the following Lemma.

Lemma 3. Let us consider a squared Hoyt RV X with mean E[X] = Qx and Hoyt
parameter q. Sufficient conditions for the existence of the statistical functions Gx(n, s; (),
Gx(n,s;:C), Gixy(n,s;¢) and Gixy(n,s;¢) are: n > 0 and N{s} < 12_‘1;2. In such a case,
the following equalities hold
4(]29)( " sq2 !
gX<n7 S3 C) = < 1 — q4> g<X> (TL, 41(]_;)4)(; 41]2—g%XC)
2q(n!) _

\ - ° ()" Py (a(s)al(s))

(

where a (s) = =5 — s, a(s) \/ﬁ and P, is the Legendre polynomial of degree n.

Proof. Since the integrands involving Gx (n, s;¢) and Q~<X> (n, s;¢) are bounded and con-
tinuous for n > 0, both exist under this assumption. Also, Gx(n, s; () exists if Gixy(n, s; ()

does and, considering [41, eq. 6.624-5], this occurs when n > 0 and R{s} < 12:’;2. The
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first equality in (D.2.1) is obtained by the change of variable (X) = 4 ox “ X and the
second equality is straightforward by [41, eq. 6.624-5] after some simple algebraic manip-
ulations. ]

Note that the second equality in (D.2.1) corresponds to the generalized MGF of
a squared Hoyt RV, i.e. Q~<X>(n, 5;¢) + Gixy(n, 5:¢) = Gxy(n,s;0). Now, we express
Q~<X> (n, s; () in closed-form by the following Proposition.

Proposition 5. Let us consider a squared Hoyt RV X with E[X] = Qx and Hoyt

parameter q. Then, if n > 0 and R{s} < 12:132, the complementary IG-MGF of (X)
s given by

G (n,5:€) = o5 { A4a (9
Q( mf\/T) (D.2.2)
Pl (et AGIISe?

where @ is the Marcum @ function, I, is the first order modified Bessel function and,
An(s), Bu(s), Ct(s) and D’(s) are obtained recursively in a finite number of steps as
follows:

(A (s) = ad?®,
Ao (s) = a, B (s) = —2aa?,
B (s) = —2a, C9(s) = ac,
n=20 0 B n=1 i 72
Cy (s) = q, Ci (s) = —aa’,
Dy (s) =0, Di(s) =0,
\ Di (s) = —a?,
n=?2

A, (s) = (2n — Daa’A,_, — (n — 1)?a*A,_s,
B, (s) = (2n — Daa*B,_1 — (n — 1)*’a*B,,_s,
(D.2.3)
[ (2n — 1)aa®Ct | — (n —1)%a%C"_,
for0<l=n—2,
Ct(s) =< (2n — 1)ad?C"= ! + (n — 1)a?
for{ =n—1,
—aa? for {=n,
((2n — aa’D! | — (n—1)%a*D!_,
for0<l=n—2,
(2n — )aa’D"~{ for { =n —1,

[ —a®  for{=n.

The functions a(s) and &(s) are defined as in Lemma 3.
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Proof. The result in this proposition can be obtained by simplifying the general equations
derived in [20]. Alternatively, a direct proof is carried out by induction over n whose
key steps are as follows. For n = 1 the identity [18, eq. 5.7] obtained by Agrest and
Maksimov is used. The case n = 2 is proved by considering a straightforward modification
of the Sonine identity [49, pp. 132] for I,(t), and then particularizing for » = 0 and
f(t) = exp(—at). Finally, the general case n = k > 2 follows from Luke’s recursive
formulas |50, pp. 120, eq. 5]. O

Finally, by taking Proposition 5 and Lemma 3 into account, we obtain a closed-form

expression for Gx(n, s; (), i.e., the IG-MGF of a squared Hoyt RV.

Corollary 2. Under the conditions of Lemma 3 and Proposition 5, the IG-MGF of the
squared Hoyt RV X is given by

42 \" [ 2q(n!) _ /4020 \ "
Gx(n,s; () = (1——q4> { 22 (41(1,25)
rCER)e(m) e
5 1s¢’Qx . 1-¢*
- g(X) (na 1q_q4X; 4l125%X C) } )

where Gixy(n, s;¢) is given in (D.2.2).

D.3 Closed-form expression for IG-MGF of the sum of
squared Hoyt variates

Let us focus on the following RV X = zL: Y?, where Y2, i = 1,..., L, are independent
and identically distributed (i.i.d.) squa;zcli Hoyt variates with parameter ¢ and mean
Q =E[Y?]. The RV X with mean Qx = L is the sum of L i.i.d. squared Hoyt variates
and its PDF is given by

_ ﬁ L (1 + q2) N a T C(1+¢®)’ (1-¢% z
fx ()= I'(L)q(1- q2)%QL 2 (QL) eXP ( 4¢? Q) [% < 4g? Q

where I' (+) is the gamma function and [, (+) is the v-th order modified Bessel function.

Now, in order to obtain the IG-MGF of X in closed-form, we start by deriving an
expression for the generalized MGF, i.e., Gx(n, s;0), followed by another expression for
the complementary IG-MGF, Gx(n,s;¢), and arriving at the final IG-MGF which is

written as the difference of the two previous expressions.
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Lemma 4. Let us consider a RV X with mean E[X| = Qx = L, which is the sum of
L i.1.d. squared Hoyt variates with mean €2 and Hoyt parameter q. Then, the following
expressions for the generalized MGF of X, Gx(n,s;0) = Gx(n, s; ()+Q~X(n, s; (), hold for
even and odd values of L. On the one hand, for even values of L, the generalized MGF
of X 1is given by

gxmﬁm):(ﬁ%%ggoé

= L_1+k (£—1-k+n)! (—1)* (—1)%

k=0 —1-— k:)!(;q_—f; (a1

(D.3.2)

. 2 2
- - - _ 4l _ P41
where < _ ) 15 the binomial coefficient, ¢y = 520 and co = L5~

On the other hand, for odd values of L, the generalized MGF of X 1is given by
ﬁ
) 9= (5374n) g=(L+2m) (1 — g2yt
<(1 +q2)>_n I'(L+n) p(L-12
(

1 1 n — (& Y
20 ) (g 1ys e e (@

Gx(n,s;0) = F(

|t~

(D.3.3)

<q2+1>2—4sq2Q

b . . . . —
where P, () is the associated Legendre polynomial [41, (8.7)], and c3 TN I,

Proof. The two expressions for Gx(n,s;0) = [;* a™e* fx (x)dx, with fx (x) given in
(D.3.1), are obtained after taking into account [41, eq. 8.467| and [41, eq. 6.624-5]
for the cases of even and odd values of L, respectively, and straightforward algebraic
manipulations. L

Now, we express Gy (n, s; ) in closed-form by the following Proposition.

Proposition 6. Let us consider a RV X with mean E[X] = Qx = L, which is the
sum of L i.i.d. squared Hoyt variates with mean 0 and Hoyt parameter q. Then, the
complementary IG-MGF of X is given by

Suinssty = Il 5 () (k).

—L L L
(7‘”‘”“‘1) e {§+k,§—i—n—k;L—i—n+1;(cl+s)§,(02+s)§ ;
n—k

M|l

(D.3.4)

where (-),, is the pochhammer symbol, @52) 1s the confluent Lauricella function, defined in

2 2
_ g +1 _ q°+1
(2.5.21), c1 = —{5q, and ca = — %5
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Proof. The expression for Gy (n, s; () is obtained on the basis of the following rearrange-
ment of its Laplace transform
. 1 1 d°
L [Gx(a, b;t);t, s] =L [taebtfx (t);s} =—(-1)°
s

s ds®

[L{fx(t);s=0]].  (D.3.5)

Then, L[fx (t);s — b] is replaced by the MGF of X evaluated at s — b, and after some
algebraic manipulations, we arrive at the following expression

s [éx(a,b; t);t, S} = fifﬁf (—1>a§ ( ; ) (_TL o 1)k (D.3.6)

=L _k =L _atk
—L b 2 b 2
2 a—k S S

with c¢; and ¢y as defined in Proposition 6. Finally, the expression for the IG-MGF of X
is obtained after identifying (D.3.6) with (2.3.22). O

Finally, by taking Proposition 6 and Lemma 4 into account, we obtain a closed-form

expression for Gx(n, s; (), i.e., the IG-MGF of the sum of L i.i.d. squared Hoyt variates.
Corollary 3. Under the conditions of Lemma 4 and Proposition 6, the IG-MGF of the
sum of L i.1.d. squared Hoyt RVs is given by

Gx(n,s;¢) = Gx(n, 5;0) — Gx(n, 5 ¢), (D.3.7)

where Gx(n,s;¢) is given in (D.3.4) and Gx(n,s;0) is given in (D.3.2) and (D.3.3) for
even and odd values of L, respectively.



APPENDIX E

Resumen en Castellano

E.1 Introduccién y motivacion

Los sistemas basados en multiples antenas han sido utilizados durante mucho tiempo
para mitigar los efectos de los desvanecimientos en comunicaciones inalambricas. Las
técnicas de diversidad de recepcion suelen aplicarse en sistemas con una sola antena
transmisora y multiples antenas receptoras, también conocidos como sistemas SIMO
(single-input multiple-output). Estas técnicas realizan una cierta combinacion de las
senales recibidas, de forma que se obtiene un cierto incremento de la relacion senal a
ruido (SNR, signal-to-noise power ratio) proporcionada por la diversidad espacial. La
estrategia de combinacion 6ptima en términos de maximizar la SNR a la salida del com-
binador es MRC (mazimum ratio combining), que requiere un conocimiento perfecto del
canal en el receptor. Otras estrategias de combinaciéon suboptimas, que dan lugar a re-
ceptores menos complejos, han sido propuestas en la bibliografia: equal gain combining
(EGC), donde las senales recibidas se suman, o selection combining (SC), donde se selec-
ciona la senal recibida con méxima SNR. Por otra parte, las estrategias del tipo Switched
Diversity tales como SSC (switch-and-stay combining) o SEC(switch-and-examine com-
bining) son mas simples de implementar que MRC, EGC, o SC y, por tanto, se utilizan
frecuentemente en receptores practicos limitados en cuanto a complejidad. Una descrip-

cién completa de estos sistemas puede encontrarse en |1, ch. 9.

107
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Sin embargo, el rendimiento de los sistemas SIMO se ve a menudo degradado por
ciertas limitaciones practicas o no-idealidades como son las interferencias co-canal o el
empleo de senalizacion no-ortogonal. Asi pues, incluir estas limitaciones en el analisis de
rendimiento de estos sistemas resulta especialmente interesante, especialmente desde el
punto de vista del diseno de sistemas practicos (reales). Por un lado, es bien conocido que
MRC es la técnica de combinacion 6ptima en ausencia de interferencias. Sin embargo,
determinar la combinacion 6ptima en presencia de senales interferentes resulta mucho mas
complicado, ya que requeriria informacion acerca de las interferencias que normalmente no
esta disponible. En la practica se emplea MRC aun en presencia de interferencias co-canal
y, por ello, es particularmente interesante analizar el rendimiento bajo esta limitacion.
Por otro lado, la modulacion y deteccion no-coherente, de complejidad reducida, suele
adoptarse en sistemas practicos de diversidad en recepcion (p.ej., SEC o SSC). En estos
casos, las senales transmitidas pueden ser no-ortogonales con el fin de reducir el ancho de
banda utilizado, produciéndose una cierta degradacion del rendimiento [3, ch. 5|. Esta

no-ortogonalidad puede verse como una limitaciéon practica de este tipo de sistemas.

Recientemente, las cada vez méas sofisticadas aplicaciones han propiciado la aparicion
de los sistemas MIMO (multiple-input multiple-output), que desempenian un papel funda-
mental para satisfacer la demanda de capacidad y cobertura [4-6]. Estos sistemas pueden
combinar el uso de técnicas de codificacion espacio-tiempo (STBC) en el transmisor y
técnicas de diversidad en recepcion, tales como SC o MRC [7-9]. Cuando se dispone
de informacion del canal en el transmisor, otros esquemas mas sofisticados pueden em-
plearse para mejorar el rendimiento. El sistema MIMO beamforming, también conocido
como MIMO MRC, maximiza la relacion senal a ruido aplicando los pesos MRC conjun-
tamente en el transmisor y en el receptor [10-12]. Sin embargo, el rendimiento de estos
sistemas se ve a menudo degradado por ciertas limitaciones practicas como la correlacion
entre antenas, que reduce la diversidad espacial, o el canal de retorno de capacidad limi-

tada, ante el cual suelen adoptarse esquemas beamforming basados en codebook.

El principal objetivo de esta tesis es abordar el analisis de rendimiento de diferentes
sistemas SIMO y MIMO en canales con desvanecimiento y en presencia de las condi-

ciones practicas (no-ideales) mencionadas. Las herramientas mateméticas existentes son
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en algunos casos insuficientes para llevar acabo dicho andlisis. En otros casos, las he-
rramientas mateméticas disponibles dan lugar a un anélisis muy limitado o a resultados
(expresiones) intratables desde el punto de vista matematico. A menudo, es dificil es-
tablecer conclusiones sobre el rendimiento del sistema a partir de estos resultados, cuya
evaluacion numeérica suele ser complicada. Asi pues, la motivacion de esta tesis es doble:
por un lado, encontrar y/o desarrollar nuevas herramientas mateméaticas que posibiliten
o simplifiquen el analisis de estos sistemas; por otro lado, analizar el rendimiento de estos
sistemas en términos de las medidas mas utilizadas, la probabilidad de outage (OP, out-
age probability) y la probabilidad de error de bit (BEP, bit error probability), tratando

de llegar a expresiones cerradas y exactas para estas medidas.

E.2 Andalisis de rendimiento de sistemas SIMO no-ideales

El anélisis de sistemas SIMO bajo las condiciones no-ideales mencionadas conlleva la
aparicion de ciertas integrales incompletas que recientemente han sido resueltas de forma
explicita en [20]. Estas integrales contienen en su integrando a las funciones de Bessel y
Marcum Q, y son conocidas como integrales de Lipschitz-Hankel incompletas (ILHIs) e

integrales incompletas de funciones Marcum Q (IIMQ), respectivamente.

En particular, este tipo de integrales aparecen en el analisis de la BEP para sistemas
Switched Diversity, tales como SSC o SEC, cuando se emplea detecciéon no-coherente o
diferencialmente coherente de senales no-ortogonales. Por otro lado, el mismo tipo de
integrales aparece en el analisis de la OP de sistemas MRC con interferencias co-canal
cuando se consideran canales Nakagami-¢ (Hoyt). Sin embargo, no existen expresiones
cerradas resultantes del analisis de estos sistemas debido a la ausencia de soluciones
explicitas para este tipo de integrales |21, 22]. Por ello, y con la motivacion de los
resultados recientemente obtenidos en [20] para estas integrales, nos hemos centrado en
la aplicacion de estos resultados al analisis de los sistemas mencionados. Las integrales
del tipo ILHI e TIMQ han sido presentadas en el Capitulo 2, donde se proporcionan las
expresiones explicitas para sus soluciones (véase la Seccion 2.3.3). Estas expresiones han
posibilitado la obtenciéon de determinadas funciones estadisticas para la caracterizacion

de canales con desvanecimientos Hoyt.
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Fading Channel
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Figure E.1: Modelo de sistema Switched Diversity.

En esta secciéon se presentan brevemente los sistemas considerados y los principales
resultados obtenidos en el analisis. En primer lugar se presenta el analisis en términos de
BEP de sistemas Switched Diversity que emplean senializacion no-ortogonal y deteccion
no-coherente en canales Nakagami-m. Posteriormente se analiza la probabilidad de outage

de sistemas MRC en presencia de interferencias co-canal en canales Hoyt.

E.2.1 Sistemas Switched Diversity con senalizacién no-ortogonal

El anélisis de esta seccion extiende los resultados obtenidos en [39], proporcionando una
generalizacion en 3 sentidos: primero, un nimero general de antenas L; segundo, se con-
sidera el modelo de canal Nakagami-m, mas general que el modelo Rayleigh; y tercero, el
analisis incluye otros esquemas de modulacion tales como DQPSK (differential quadrature

phase shift keying).
Modelo de sistema

Asumimos un sistema Switched Diversity con L antenas como el que se representa en la
Figura E.1. En concreto, nos centramos en un sistema con configuracion SEC. En este
caso, la funcion densidad de probabilidad (PDF) de la SNR instantanea a la salida del

combinador g viene dada por [1, eq. (9.341)]

[F, (o))" (2), 0< o < r

frs (@) = £ : (E.2.1)
SR () fy (@), 2= 9r

=0
donde f, y F, son la PDF y la CDF (cumulative distribution function) de la SNR instan-

tanea 7 en cada antena receptora, mientras que yr es el umbral de conmutacion definido.
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Table E.1: Parametros para distintas modulaciones no-coherentes y diferencialmente co-
herentes.

Orthogonal Nonorthogonal
Binary Signals Binary Signals* DPSK DQPSK

a 0 (1‘ 21‘”2)1 g (1- )1/2
b 1 <1+ 21p2)1 ? V2 <1 n )1/2
n 1 1 1

* donde 0 < p <1 es el médulo de la correlacion
entre las dos senales transmitidas.

Sl

— S‘H
)

Consideramos el modelo de desvanecimientos Nakagami-m para la senal transmitida. Asi,

F,(yr)y fy(z) en (E.2.1) vienen dadas por [1, table (9.5)] [41, eq. (8.352-2)]

Fy () =1 mz - (%) (£.2.2)

£y (x) = (%)m%e‘”ﬁ : (E.2.3)

donde % es la SNR media por simbolo en cada antena receptora.

Analisis de la probabilidad de error

Dada la BEP condicional P, (z) 2 pr {biterror |ys = x} y la PDF de la SNR a la salida

del combinador f,,, la BEP media para el sistema SEC considerado se calcula como

. /O " P @) fo (2) da (E.2.4)

La BEP condicional cuando se emplean modulaciones no-coherentes y diferencial-

mente coherentes puede expresarse como [56, eq. (4B.21)]

P, (z) = Q1 (av/z,by/x) — : Z ne—“2§b2x10 (abx), (E.2.5)

donde @) es la funcion Marcum Q de primer orden, I es la funcion de Bessel modificada

de orden cero, y a, b and 1 son parametros dependientes de la modulaciéon. Algunos casos
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de modulaciones de especial importancia y sus correspondientes parametros se especifican

en la Tabla E.1.

Sustituyendo (E.2.5) y (E.2.1) en (E.2.4) y, tras realizar algunas simplificaciones, se

obtiene la siguiente expresion genérica para la BEP media

pb = 0Lm (’yTa r?) |:Il (a'> ba ’7a m) - 1 _7_ IZ <a7 ba ’77 m):|
" (E.2.6)
—OL—-1m (7T7 ’7) |:t71 (7T7 a, ba ’77 m) - 1 _7_ 77\72 (,YTa a, ba ’7a m):| 3
donde o, (y7; %) son coeficientes conocidos, definidos como
e ) hemenr E27)
@ 0T = G 0 [T ()|
con F, (yr) dada en (E.2.2) y donde 7, Zy, J1, J> son integrales definidas por
( o0
T, (a,b,5,m) = / 2" eI, (av/z,by/x) dz
0
T, (a,b,5,m) = / mm_lef[%yl S ]IIO (abx) dx
0 (E.2.8)

T m
T (yria,0,%,m) £ / 2" e Q1 (av/E, by/) d
0

2 2
m _ a®+b
2+

2 ]x_fo (abx) dx

T
J2 (yri a, b,7,m) é/ 2" le”
0

Para completar el andlisis, falta obtener expresiones cerradas y exactas para Z;, Z,,
J1y Jo. Las integrales completas Z; y Z, aparecen frecuentemente en el anéalisis de
modulaciones no-coherentes y han sido estudiadas en [53, 54]. En [53| se proporciona
una expresion para Z; en términos de la funcion hipergeométrica de Gauss. Esta funcion
hipergeométrica puede expresarse a su vez en términos de los polinomios de Legendre,
sin mas que aplicar [51, eq. 15.4.10], y las relaciones [41, eq. 8.731-4] y [41, eq. 8.914-1].

De este modo, la soluciéon explicita de Z; puede escribirse como

_ N\
T3 (a,0,7,m) = (m = 1)} ()
1 (a,b,7,m) = (m =D
A
m— 4 m
et (55) (2=)

14+ —
A

262

(E.2.9)

donde ¢; £ a® + b? + 2%, & = 4“0#, y P,(+) es el polinomio de Legendre de grado n.
1
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Tras un simple re-escalado, Z, puede expresarse también en términos de los polinomios

de Legendre como [41, eq. 6.624-5]

Pui (ﬁ) . (E.2.10)

Las integrales J; and J> pertenecen a las familias de integrales [IMQ e ILHI, respecti-
vamente, cuyas definiciones y expresiones cerradas pueden encontrarse en la Secciéon 2.3.3.
En esa misma seccidon, se muestra el modo de expresar las ITIMQ en términos de las ILHI.
Asi pues, J; y J2 pueden ser expresadas en términos de la ILHI tras un cierto re-escalado

y algunas simplificaciones, quedando

J4
S\ m m—1 [ I
\71 (P)/T;aaba;yam) :(m—l)'<%) 1—e WWTQl (aﬁ’bﬁ) <’Y‘) ,_y%

+1 eon (abﬁ’T;L) - é]e <a57T§L)) )
24 0 (ab)* b NG a 0 Ve
(E.2.11)
y
T2 (vr;a,b,9,m) = %Iem_lo (ab’yT; i) : (E.2.12)
(ab)™ e NG

donde I , es la ILHI, cuya expresion explicita en términos de las funciones Marcum Q

y Bessel puede encontrarse en la Proposicion 1 de la Seccion 2.3.3.

Finalmente, la expresion de la BEP media se obtiene sustituyendo las expresiones
(E.2.9), (E.2.10), (E.2.11), y (E.2.12) para 7y, Zs, J1, y Jo, respectivamente, en (E.2.6),

resultando:
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A=ty [on-0(2)" s (3 £) 8 (758) (i)

s () - (1 G- 1)) " (ﬂ%@)] }

B (m—l)!< Cs )'?P < 1 )
1+n (ab)™ \1-—c I\ V-
_ m—1 ¢ ¢
i (17 [ SEN {1—e 21 lavin v Y o (2)
/=0
1 m! 1 b 1
5;7 (e“(alWT, \/c_g)_a €00 (ab’VT, \/6))}

_L;[ <ab L)]
1+n(ab)m €m—1,0 VT \/@ )

donde los coeficientes o, ,, ¢1 y ¢2 son los definidos anteriormente. Notese que (E.2.13)

(E.2.13)

es una expresion exacta y cerrada para la BEP media valida para cualquier esquema de

modulacion cuya BEP condicional se ajuste a la dada en (E.2.5).

Resultados numéricos

A continuacion se presentan algunos resultados numéricos de la evaluacion de la expresion
obtenida en (E.2.13) para la BEP media. Como caso particular para esta evaluacion, se ha
escogido el esquema de modulacion DQPSK (véase la Tabla E.1). Con el fin de comprobar

la validez de nuestros resultados, se han realizado distintas simulaciones Monte-Carlo.

La Figura E.2 representa la BEP media en funciéon de la SNR media por antena
receptora 7 para diferentes valores del parametro Nakagami m y del nimero de antenas
L. Para cada valor de 4 se ha considerado el umbral 6ptimo de conmutacion 7, que
minimiza la BEP y ha sido obtenido mediante técnicas numéricas de optimizaciéon. Las
curvas muestran que el rendimiento del sistema en el rango 107%—1073 est4 esencialmente
determinado por el producto de m y L, que puede interpretarse como una medida del
orden de diversidad. Los valores obtenidos de las simulaciones han sido representados en

la misma Figura E.2, confirmandose asi la validez de nuestra expresion analitica.
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Figure E.2: BEP media versus SNR media por antena para DQPSK empleando umbrales
de conmutaciéon 6ptimos.

E.2.2 Sistemas MRC con interferencias co-canal

La combinacién espacial en el receptor es una técnica que se emplea para combatir la
degradacion del rendimiento asociada a los desvanecimientos y a la presencia de interfe-
rencias co-canal (CCI, co-channel interferences). Como ya se ha introducido, la técnica
de combinacion MRC es 6ptima en cuanto a la SNR efectiva y, por ello, nos hemos cen-
trado en analizar las prestaciones de sistemas MRC en presencia de CCI. La probabilidad
de outage (OP) es una medida clave en sistemas con sefiales interferentes. Aunque la
OP ha sido analizada en distintos trabajos de la bibliografia, se encuentran pocos resul-
tados para canales Hoyt, que modelan condiciones de desvanecimiento mas severas que
los canales Rayleigh |63, 66]. Recientemente, se han proporcionado en [67| resultados
cerrados y exactos para la OP de un receptor con una tnica antena en canales Hoyt sin
interferencias. Por otro lado, muy pocos trabajos consideran el ruido en el anéalisis. El
analisis en [23] incluye el ruido y asume canales Nakagami-n (Rice) o Nakagami-m para

la senal deseada y canal Rayleigh para las senales interferentes.
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Fading Channel
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Figure E.3: Modelo de sistema MRC con interferencias co-canal.

En esta seccién se presenta brevemente el andlisis de la OP llevado a cabo para
sistemas MRC en canales Hoyt ante la presencia de CCI. Se ha obtenido una expresion

cerrada y exacta en el caso genérico de un receptor con L antenas.
Modelo de sistema

Consideramos un sistema con L antenas receptoras donde se aplica combinacion MRC en
el receptor. Se asume que la senal deseada en cada antena receptora estd contaminada
por M senales interferentes, como se muestra en la Figura E.3. Ademés, consideramos
en cada antena receptora la presencia de ruido aditivo blanco Gaussiano de media cero y
varianza o2. La sefial deseada y las interferencias, con potencias arbitrarias, pasan por un
canal con desvanecimientos y se emplea un receptor coherente que conoce perfectamente
el estado del canal. En cuanto al modelado de los desvanecimientos, adoptamos el modelo

de Hoyt para la senal deseada y Rayleigh para las interferencias.

Denotamos con hy = [hg,. .., hsL]T vy hy = [ha, ..., hiL]T los vectores de ganancia
compleja del canal para la senal deseada y la i-ésima senal interferente. Entonces, el

vector de la senal recibida en banda base y puede escribirse como

M
y =hb,+ > /Wihb +n, (E.2.14)
=1

donde W; es la potencia media del i-ésimo interferente en cada antena receptora, n es
el vector de ruido L-dimensional, y bs y b; con |bs| = |b;| = 1 son, respectivamente, los

simbolos transmitidos por el usuario deseado y por el i-ésimo usuario interferente.

En un receptor MRC, las senales recibidas en las distintas antenas se multiplican por
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las ganancias del canal asociado al usuario deseado, resultando tras la combinacion
M
rure =hl'y = [b[* b, + )~ /Wihhib; + hi'n. (E.2.15)

En el modelo considerado, la relacion senal a ruido méas interferencia (SINR) puede es-
cribirse como v = % [23], donde X = |h,|* = ZL: |han|” es la potencia efectiva de la
senal deseada a la salida del combinador, y Z es 1gzgotencia total de las senales interfe-
rentes. Notese que |hg,| es el modulo de la envolvente compleja del canal, que sigue una
distribucion de Hoyt. Asi pues, X esta distribuida como la suma de L variables Hoyt al
cuadrado ii.d. y la media de X, denotada por Wy viene dada por Wy = E[X]| = L,

donde €2 es la media de la envolvente del canal al cuadrado, es decir, ) = E [|hsn\2},

n=1,... L.

Considerando lo anterior, la PDF de X, fx, puede obtenerse a partir de la PDF de

la distribucion n — p ! (véase la Secciéon 3.3) como:

N L(1+¢? SRR
fx@ = Z 2 (az)
F'($)qe(1—¢») = QL (E.2.16)
22 4
exp (—580 2 ) 1o (S02)

donde I, es la funcion de Bessel modificada de primera especie y orden v-ésimo.

Analisis de la probabilidad de outage

Consideramos el total de interferentes M dividido en J grupos con n; interferentes cada
uno, donde todos los interferentes de un grupo tienen la misma potencia media W;. Bajo

esta consideracion, la OP puede calcularse como [23]

'700'2
Poutipr{%g/yo}:/ fX(ZE>dZE+
0

Py (E.2.17)
ni ni—j k o0 /W )kfl

Z Z Lij 1(k 'Wk’y / ale” 7o fy (z) dx,

i=1 j=1 k=0 (=0

!Como se muestra en la Seccion 3.3.2, la PDF de la suma de L variables Nakagami-¢q (Hoyt) se obtiene
directamente a partir de la PDF de la distribucién n — p fijando los valores p = % yn=q.
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donde Z es la potencia total de las senales interferentes, 7, es un umbral predefinido, o2
es la potencia media del ruido, E;; son ciertas constantes definidas en 23, eq. 6], y fx

es la PDF de la potencia de la senal deseada a la salida del combinador.

La OP en (E.2.17) aparece expresada en términos de ciertas integrales incompletas.
Con el fin de obtener una expresion cerrada, procedemos a resolver estas integrales. La
primera representa la OP en ausencia de interferencias y viene dada por la CDF de X.
Recientemente se ha obtenido una expresion para esta CDF en [37|. Haciendo uso de

[37, eq. 7], el primer término de (4.2.5) puede expresarse como

10 L—¢* (1+¢%) [Ly0?
dr=1-Y E.2.1
/0 fx (@) da % <1+q2’ 2 A (E-2.18)

J/

-~

P*

out

donde Y% es la integral de Yacoub, definida por (3.3.5) en la Seccion 3.3. Las expresiones
cerradas para la solucion de Y% pueden encontrarse en la Seccion 3.3, concretamente en
(3.3.8) and (3.3.9) para valores impares y pares de L, respectivamente. Para un niamero

par de antenas L, Y. viene dada en términos de los polinomios de Jacobi.
2

El segundo término de (E.2.17) representa el impacto de las interferencias en la pro-
babilidad de outage. Este término consiste en una combinacion lineal de la funciéon ge-
neradora de momentos generalizada incompleta, también llamada IG-MGF (incomplete
generalized moment generating function), Gx (-, -;-), definida en (3.1.5). En concreto, las

integrales en el segundo término de (E.2.17) pueden identificarse con la IG-MGF como

& __Z 1
le™7%W, dr = l,————:v,0% | . E.2.19
| e s G (170" (£.2.19)

Es importante recordar que fx es la PDF de la suma de variables Hoyt al cuadrado,
dada en (E.2.16), donde esencialmente aparece la funcion de Bessel modificada y la fun-
cion exponencial. Asi pues, la integral incompleta en (E.2.19) pertenece a la familia de
integrales ILHI (véase la Seccion 2.3.3). Basandonos en las soluciones explicitas para las
ILHI [20], que pueden encontrarse en la Seccion 2.3.3, se han derivado expresiones para

la IG-MGF Gx (-, ;). Estas expresiones estan incluidas en el Apéndice D.
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Figure E.4: OP en funcién de la SINR media para un receptor MRC con L antenas,
pardmetro Hoyt ¢ = 1/16, potencia de ruido o? = 1/10, y 3 interferentes con W, = 1/4,
Wy =W;3=1/8.

Finalmente, la OP para sistemas MRC en canales Hoyt con interferencias se obtiene

sustituyendo (E.2.18) y (E.2.19) en (E.2.17), resultando

1 — 2 1 2 L 2
Poi=1-Y, ¢ (1+4) [Lyo
1+ ¢? 2q QL

J ng; MNg— 2/W )
—|—Z ZE’]ZI —Z‘Wk gX( Wl7/70 )7

i=1 j=1 k=0 [=0

(E.2.20)

donde los coeficientes E; ; vienen dados por |23, eq. 6], v Gx (-, -, -) es la IG-MGF de la
suma de variables Hoyt al cuadrado, que se obtiene directamente del Corolario 3 en el
Apéndice D.3. Puede comprobarse que la OP en (E.2.20) esta expresada esencialmente
en términos de la funcion Lauricella confluente, definida en (2.3.21), y los polinomios de

Jacobi.
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Figure E.5: OP en funcion del nimero de interferentes con parametro Hoyt ¢ = 1/16,
potencia normalizada de la sefial deseada W, /v, = 1/4, potencia de ruido o2 = 1/200, e
igual potencia W; = 1/100 para todos los interferentes.

Resultados numéricos

A continuacion se muestran algunos resultados de la evaluacién numeérica de la expresion
para la OP obtenida en (E.2.20). La Figura E.4 representa la OP en funcion de la SINR

media, normalizada y expresada en decibelios como

Wi
101 )
o810 (’70 Z Wi + 7002>

para distintos valores del nimero de antenas L y parametro Hoyt ¢ = 1/16. En este

ejemplo se han considerado 3 sefiales interferentes con potencia media W; = 1/4 y
Wy = W3 = 1/8, y una potencia media de ruido 0® = 1/10. Los resultados de simulacion,

también representados en la Figura E.4, confirman la validez de la expresién obtenida.

Por otro lado, en la Figura E.5 se representa la OP en funcién del nimero de inter-
ferentes para el receptor MRC considerado con ¢ = 1/16 y distintos valores del nimero

de antenas L . En primer lugar se observa céomo el rendimiento se degrada de forma
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significativa a medida que el nimero de interferentes aumenta. Ademas, puede verse
que la degradacion de rendimiento asociada a la presencia de senales interferentes es

significativamente mayor cuanto mayor es el nimero de antenas L.

E.3 Andlisis de rendimiento de sistemas MIMO no-ideales

Las propiedades estadisticas de las matrices Wishart han sido utilizadas frecuentemente
para analizar el rendimiento de los sistemas MIMO. En concreto, los estadisticos de la
SNR efectiva en diferentes sistemas MIMO dependen de la distribucion de los elementos
de la diagonal de de una matriz Wishart compleja. Esta distribucion aparece cuando
el analisis de estos sistemas se realiza bajo determinadas condiciones practicas como la
correlacion espacial o el canal de retorno de capacidad limitada. Asi pues, en el segundo
bloque de esta tesis nos hemos centrado en estudiar la distribucion de los elementos de
la diagonal de las matrices Wishart complejas. En concreto, se han obtenido expresiones
originales para la PDF y la CDF conjunta de los elementos de la diagonal. A partir
de estas expresiones, se ha obtenido la distribucién del maximo de los elementos de la
diagonal. La Seccion 2.4 incluye los detalles acerca de estas derivaciones y resultados

estadisticos.

En esta seccion, las expresiones obtenidas para la distribucion del méximo de los
elementos de la diagonal de una matriz Wishart compleja son aplicadas al andlisis de
rendimiento de dos sistemas MIMO con diferentes condiciones practicas. En primer lugar,
se analiza la probabilidad de outage de sistemas MIMO que emplean selection combining
en el receptor (MIMO SC) considerando canales con correlacion espacial. Posteriormente,
se analizan las prestaciones de sistemas MIMO beamforming con un canal de retorno de
capacidad limitada, es decir, donde la técnica de beamforming aplicada en el transmisor

se basa en un conjunto predefinido de vectores o codebook.

E.3.1 Sistemas MIMO SC con correlaciéon espacial

La técnica selection combining (SC) consiste en seleccionar para la recepcion la antena que

experimenta la mayor SNR en cada instante. De ese modo, solo se necesita una cadena de
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Figure E.6: Modelo de sistema MIMO con selection combining.

radio frecuencia (RF), estableciéndose asi un compromiso entre el rendimiento del sistema
y la complejidad (coste) de los receptores. Los sistemas MIMO SC emplean la técnica
SC en el receptor y alguna otra técnica de diversidad, como por ejemplo codificacion

espacio-tiempo, en el transmisor.

Por otro lado, las senales recibidas en las diferentes antenas estan, en la practica,
espacialmente correladas debido a la insuficiente separacion fisica entre antenas o a la
geometria del entorno de propagacion. Cuando existe correlacion espacial se reduce la
diversidad espacial y, por tanto, el rendimiento de los sistemas MIMO se degrada de

forma significativa [13].

A continuacion se presenta el analisis de OP de sistemas MIMO SC en canales Rayleigh

con correlacion espacial arbitraria.

Modelo de sistema

Consideramos un sistema MIMO con Ny antenas transmisoras y Ng antenas receptoras
(véase la Figura E.6), donde todas las antenas se usan para la transmision y solo se
selecciona una antena receptora, la que maximiza la SNR instantéanea. El canal MIMO
con desvanecimientos se modela mediante la matriz aleatoria H, de dimensiones Ng X N7,

que se define de acuerdo al conocido modelo de correlacion espacial de Kronecker [76|
1 1
H = [h;,h,y, ..., hy, | = RiGR, (E.3.1)

donde Ry y Ry son las matrices de correlacion del transmisor y del receptor, respecti-

vamente, mientras que los elementos de G son variables aleatorias Gaussianas complejas
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i.i.d. con media cero y varianza unidad. Se asume que las antenas transmisoras se en-
cuentran lo suficientemente separadas como para que la correlacion en el transmisor sea
despreciable, es decir, Ry = I, de manera que la correlaciéon espacial tinicamente se debe
al extremo del receptor.

]T

Y

En este caso, los vectores-columna de la matriz del canal h; = [hyj, haj, ..., hyg;
para j =1,..., Ny, son procesos Gaussianos i.i.d. con media cero y matriz de covarianza
R, esto es, h; ~ CN(0,Rg). Notese que la matriz Sy, = ZjV:Tl h;h¥ sigue la distribucion
de Wishart compleja CWn,(Nr,Rg) y que los Ni elementos de su diagonal son las

normas al cuadrado de los vectores-fila de H.

La envolvente compleja en basa base de la senal recibida puede escribirse como

y = Hx + n, donde n es el vector de dimension Ng correspondiente al ruido blanco

aditivo, cuyos elementos son variables aleatorias Gaussianas complejas con media cero y
varianza o2. La sefial transmitida se denota con el vector-columna x y 1 tenci di

= y la potencia media

transmitida total estd normalizada a la unidad, es decir, E [XHX} = 1, y distribuida a

partes iguales entre todas las antenas. Bajo todas estas consideraciones, la SNR media

en cada una de las antenas receptoras viene dada por ¥ = a%
n

La técnica selection combining selecciona la antena receptora que maximiza la SNR
instantdnea SNR, [8]. En el sistema MIMO que se ha considerado, asumimos que el
estado del canal es conocido perfectamente por el receptor pero no esta disponible en el
transmisor, donde se aplica alguna técnica de diversidad como, por ejemplo, codificacion

espacio-tiempo ortogonal (OSTBC).
Analisis de la probabilidad de outage

La SNR instantanea a la salida del combinador viene dada por v = NiTZ, donde

Nt
Z = max Z|h”|2
7j=1

1<i<Np 4

es el maximo de las normas de los vectores-fila de la matriz del canal, es decir, el maximo
de los elementos de la diagonal de la matriz Wishart compleja S;,. Los estadisticos de

las matrices Wishart complejas han sido abordados en en el Capitulo 2, donde se ha
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obtenido un nuevo desarrollo en serie para la distribuciéon del méximo de los elementos
de la diagonal. Asi pues, la CDF de Z puede obtenerse a partir de la expresion (2.4.23)

como
Nr
n N
Z Z (Pz R J%R> 11 A (w?2), (E.3.2)
n=0 i=1 j=1 ©J
donde A% () son determinadas funciones delta, definidas en (2.4.13), s,, es el nimero de

posibles particiones enteras de n en Ny elementos, Pi(n) = {pgﬁ), cee pg}\),R} es la i-ésima

particion entera de n, i = 1, ..., s,, y los coeficientes ¢ (pgﬁ), e ,pﬁ\), ) son los correspon-
dientes a la serie (2.4.23). Estos coeficientes dependen de N y de la matriz de correlacion
Rpg, v pueden calcularse facilmente con el algoritmo proporcionado en el Apéndice B.2.
Es importante destacar que las funciones delta, definidas en (2.4.13), son béasicamente

una version escalada de los polinomios de Laguerre generalizados multiplicados por la

funcion exponencial.

Finalmente, la OP para un sistema MIMO SC con correlacion espacial viene dada por
Pous () £ Pr {7 < 70} = Pr {Z < NTE}
5

(n) = Ny ((W?Nr
—FZ( ) ZZ (pzlv"szNR)HApEZL;)( - )7

n=0 =1 7j=1

(E.3.3)

donde 7y es el umbral de outage y © £ % es la SNR media normalizada. Esta expresion
original y general para la OP es valida para cualquier matriz de correlacion compleja y
cualquier nimero de antenas receptoras. Recientemente, el mismo sistema considerado
aqui ha sido analizado en 8|, pero asumiendo en este caso un modelo de correlacion real
exponencial para Nr > 3. Este es un modelo valido s6lo cuando las antenas estan situadas
en un array lineal uniforme [77] y, por tanto, nuestro anélisis extiende los resultados en

|8] al caso general de correlacion arbitraria.

Resultados numéricos

Las expresiones analiticas obtenidas para sistemas MIMO SC con correlacién espacial
han sido evaluadas numéricamente. A continuacion se muestran algunos de los resultados

obtenidos de esta evaluacion.
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Figure E.7: CDF de Z, el maximo de las normas de los vectores-fila de la matriz del canal
H.

En primer lugar, la Figura E.7 muestra la CDF de Z, que es una version escalada de la
SNR a la salida del combinador. La expresion analitica (E.3.2) ha sido evaluada para dos
matrices de correlacion arbitrarias, Ry y Rs (véase la Tabla 5.1 en la Seccion 5.1), que
corresponden a Np = 4 y Ny = 6 antenas receptoras, respectivamente, w = 1, y distintos
valores de Np. El limite de truncamiento de la serie (E.3.2) se ha fijado a Nyu. = 8,
dando lugar a un total de 25 términos para Ny = 4 y 36 términos para Np = 6. Los
valores de simulacion Monte-Carlo de la CDF se han superpuesto a las curvas analiticas
en la Figura E.7, mostrando que ambos resultados coinciden casi perfectamente con pocos

términos de la serie.

Por otro lado, la OP del sistema MIMO SC con Ny = 4 se representa en la Figura E.8
para distintos valores de N y dos matrices de correlacion. En este caso, se compara el
escenario de correlacion alta propuesto en |78] (R3) con el escenario de correlacion baja
definido por la matriz arbitraria R;. Se puede ver que el escenario de correlacion alta
determinado por Rj conlleva un rendimiento significativamente peor que el correspon-
diente al escenario R,. Sin embargo, esta pérdida de prestaciones asociada a una mayor

correlacion espacial podria combatirse aumentando el nimero de antenas transmisoras.
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Figure E.8: OP en funcion de la SNR media normalizada para un sistema MIMO SC con
distintas configuraciones de antenas y correlaciéon espacial arbitraria.

E.3.2 Sistemas MIMO beamforming con canal de retorno de ca-
pacidad limitada

El sistema MIMO beamforming, también conocido como MIMO MRC, se basa en la
aplicacion de los pesos MRC de forma conjunta en el transmisor y en el receptor [10-12].
Sin embargo, el conocimiento total del estado del canal en el transmisor es algo a menudo
inviable debido a la limitacion de capacidad del canal de retorno. Como solucién practica,
se suele considerar un conjunto de vectores de precodificacion llamado codebook que esté
disponible en el transmisor y en el receptor. Asi, el receptor tnicamente informa al

transmisor, mediante un indice, del vector del codebook que optimiza la SNR.

A continuacion se presentan brevemente el sistema MIMO beamforming con canal de

retorno de capacidad limitada y los resultados del anélisis de prestaciones del mismo.
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Figure E.9: Modelo de sistema MIMO beamforming con canal de retorno de capacidad
limitada.

Modelo de sistema

Consideramos un sistema MIMO beamforming con Nr antenas transmisoras y Nr antenas
receptoras, donde se aplica beamforming basado en codebook en el transmisor y combi-
nacion MRC en el receptor (véase la Figura E.9). El canal MIMO se modela mediante
la matriz H de dimension Ng X Np, cuyos elementos son variables aleatorias Gaussianas
i.i.d. con media cero y varianza unidad. La técnica de beamforming aplicada en el trans-
misor se basa en el codebook definido por la matriz B = [by,bs,...,by], de donde se
extraen los L vectores-columna b;, i = 1,..., L, de dimensién Ny X 1 que se emplearian
para precodificar los simbolos transmitidos. Para cada realizacién del canal, el receptor
selecciona el vector de precodificacion del codebook que maximiza la SNR instantanea y
lo reporta al transmisor a través de un canal de retorno de capacidad limitada empleando

para ello log, (L) bits.

En este caso, la envolvente compleja de la senal recibida antes del procesado MRC
puede expresarse como y = Hbz + n, donde x es el simbolo transmitido, b es el vector

y n es el vector de ruido blanco, de dimension N, cuyos elementos son variables aleatorias

Gaussianas complejas con media cero y varianza 2. La potencia media transmitida total
. ) 2

se asume normalizada a la unidad, y consecuentemente, E[|z|*] = 1y ||b;]|” = 1, para

1=1,..., L. Asi, la SNR media en cada antena receptora viene dada por 5 = U%
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Analisis de la probabilidad de outage

Asumiendo la matriz del canal H perfectamente conocida en el receptor, la SNR instan-

téanea tras el procesado MRC puede expresarse como v = 77, con

Z = max ||Hb;|” —maXZ|hb|

1<i<L

donde {h;} son los vectores-fila de la matriz H. Se observa que Z es el maximo de
las normas v; = |[Hby||>, para i = 1,...,L, las cuales pueden ser identificadas como
los elementos de la diagonal de cierta matriz Wishart compleja. En concreto, v; son
los elementos de la diagonal de la matriz S,y = ZNR k;k, con k; = B”hf. Esta
matriz sigue la distribucion Wishart compleja CWp(Ng, BEB). De forma equivalente,
Z es el maximo de L variables chi-square centrales correladas con matriz de correlacion
subyacente dada por Ryy = BB, es decir, con correlacién determinada por la matriz

del codebook. Asi, la CDF de Z puede expresarse mediante el desarrollo en serie (2.4.23)

CcOmo

Sn

ZZ (pm---,m>HA5n> (E.3.5)

n=0 =1

donde A% () son determinadas funciones delta, definidas en (2.4.13), s, es el niimero de
posibles particiones enteras de n en L elementos, Pi(") = {pgﬁ), e ’ngL)} es la i-ésima
particion entera de n, ¢ = 1,...,s,, v los coeficientes ¢ (pgﬁ), e ,pi"ﬁ) son los correspon-
dientes a la serie (2.4.23). Estos coeficientes dependen de Ng y de la matriz Ry, y pueden

calcularse facilmente con el algoritmo proporcionado en el Apéndice B.2.

Finalmente, el resultado anterior permite obtener una expresion exacta para la OP

de un sistema MIMO beamforming basado en codebook,

Pyt () 2 Pr{y <y} = Pr{Z < %}
5

-r(3) - Sy (pzl,...,plL)HA(n)( )

n=0 =1

(E.3.6)

donde 7y es el umbral de outage y x £ % es la SNR media normalizada.
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Figure E.10: OP en funciéon de la SNR media normalizada para un sistema MIMO beam-
forming basado en codebook con diferentes configuraciones de antenas.

Resultados numéricos

La Figura E.10 muestra los resultados de rendimiento en términos de la OP para un
sistema MIMO beamforming basado en codebook. La OP ha sido evaluada para tres
casos con distinto niimero de antenas receptoras, Nz = 2,4,6, y dos configuraciones de
antenas transmisoras Ny = 2,4 con codebooks de 2 bits y 3 bits (Bo—rre y Bs_r7E)
respectivamente. Estos codebooks han sido escogidos de acuerdo a la especificacion de la
tecnologia LTE (long term evolution) [79], y pueden encontrarse en la Tabla 5.3 de la

Seccion 5.2.

E.4 Conclusiones y lineas futuras

En esta tesis se ha abordado el analisis del rendimiento de diferentes sistemas SIMO y
MIMO en canales con desvanecimientos bajo ciertas condiciones no ideales (practicas). Se
ha planteado como objetivo obtener expresiones cerradas y exactas para las dos medidas

de rendimiento més extendidas, la probabilidad de outage (OP) y la probabilidad de error
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de bit (BEP). Sin embargo, las herramientas matematicas existentes han sido en algunos
casos insuficientes para llevar a cabo dicho analisis. Por lo tanto, el desarrollo de nuevas
herramientas matematicas y/o funciones estadisticas ha sido una parte esencial de este

trabajo con el fin de analizar el rendimiento de los sistemas SIMO y MIMO.

En el contexto de los sistemas SIMO, la BEP y la OP han sido analizadas para
los siguientes esquemas de diversidad en recepcion y las condiciones practicas que se

especifican:

e Los sistemas Switched Diversity con senalizaciéon no ortogonal han sido analizados
en términos de BEP para diferentes formatos de modulacion no coherente en canales

Nakagami-m para un receptor genérico con L antenas.

e Los sistemas MRC han sido analizados en presencia de interferencias co-canal en
términos de OP para un receptor con L antenas en canales Nakagami-¢ (Hoyt).
Ademas, se han obtenido algunas expresiones simplificadas y aproximaciones en
el régimen de alta SINR para el caso de un receptor con una tnica antena. Este
andlisis ha motivado la derivacién de nuevas funciones estadisticas relacionadas con
la distribucion Hoyt. En concreto, la MGF generalizada incompleta (IG-MGF) de
la distribucion Hoyt ha sido obtenida en forma cerrada y aplicada al analisis de la

OP.

En el contexto de los sistemas MIMO, se ha observado que la SNR efectiva puede
caracterizarse de acuerdo a la distribucion de los elementos de la diagonal de una matriz
Wishart compleja. Dada la ausencia de resultados para esta distribucion en la bibliografia,
nos hemos centrado en su caracterizacion estadistica como paso previo y fundamental
para el analisis de rendimiento de sistemas MIMO. En concreto, se ha obtenido la PDF
conjunta de los elementos de la diagonal de una matriz Wishart compleja, que siguen
una determinada distribuciéon chi-cuadrado multivariable. La expresion de la PDF se
presenta en forma de una serie infinita que converge rapidamente y es facil de evaluar
numéricamente. Esta expresion se ha utilizado para obtener la distribucién del méaximo
de los elementos de la diagonal, la cual permite analizar el rendimiento de dos sistemas

MIMO bajo diferentes condiciones précticas:
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e En primer lugar, los resultados estadisticos obtenidos han sido aplicados al andlisis
de la OP de sistemas MIMO que emplean selection combining en canales Rayleigh

con correlacion espacial arbitraria.

e En segundo lugar, el mismo procedimiento y resultados estadisticos han sido apli-
cados al analisis de la OP de sistemas MIMO beamforming en presencia de un canal

de retorno de capacidad limitada.

Lineas futuras

Como se indico anteriormente, el anélisis del rendimiento de los sistemas MIMO en condi-
ciones no ideales ha motivado el desarrollo de nuevas herramientas matematicas, que
pueden aplicarse a otros problemas. Por lo tanto, una futura linea de trabajo interesante
puede ser la aplicacion de estas herramientas al anélisis y posterior diseno de nuevos

sistemas de comunicaciones.

Asimismo, las expresiones obtenidas en el analisis de la OP y la BEP de los distintos
sistemas SIMO y MIMO podrian aplicarse al diseno de este tipo de sistemas en las

mencionadas condiciones practicas.
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