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Abstract. If f and g are analytic functions in the unit disc D, then

f is said to be weakly subordinate to g, written f ≺w g, if there exist

analytic functions φ and ω : D → D, with φ an inner function, so that

f ◦φ = g◦ω. A class X of analytic functions in D is said to be stable if it

is closed under weak subordination, that is, if f ∈ X whenever f and g

are analytic functions in D with g ∈ X and f ≺w g. For 0 < p < ∞ and

α > −1, we let Ap
α denote the weighted Bergman space of all functions

f , analytic in D, such that f ∈ Lp
(
(1− |z|2)αdxdy

)
and the space of

Dirichlet type Dp
α consists of those f such that f ′ ∈ Ap

α. Among other

results, we prove that all the Bergman spaces Ap
α (0 < p < ∞, α > −1)

and all the Dp
α-spaces except the space D2

1 = H2 are non-stable classes

of analytic functions in D.

1. Introduction and first results.

We denote by D the unit disc {z ∈ C : |z| < 1} and by Hol(D) the space

of all analytic functions in D. As usual, Hp (0 < p ≤ ∞) are the classical

Hardy spaces of analytic functions in D (see [14] and [18]) and N is the

Nevanlinna class (see [14] and [24]). A function I, analytic in D, is said to

be an inner function if I ∈ H∞ and I has a radial limit I(eiθ) of modulus

one for almost every eiθ ∈ ∂D. We recall that an inner function I can be

factored in the form I = BS where B is a Blaschke product and S is a

singular inner function, that is, S is of the form

S(z) = exp

(
−

∫ 2π

0

eit + z

eit − z
dµ(t)

)
, z ∈ D,
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where, µ is a finite positive Borel measure on [0, 2π) that is singular with

respect to Lebesgue measure.

K. Stephenson introduced in [26] the notion of weak subordination: if

f and g are meromorphic functions in D, then f is said to be weakly

subordinate to g, written f ≺w g, if there exist analytic functions φ and

ω : D → D, with φ an inner function, so that f ◦ φ = g ◦ ω. If φ(z) ≡ z

and ω(0) = 0, we have the classical concept of subordination, and we shall

simply write f ≺ g. A class X of meromorphic functions in D is said to be

stable if it is closed under weak subordination, that is, if f ∈ X whenever

f ≺w g and g ∈ X.

Stephenson [25] proved in that the Hardy spaces Hp, 0 < p ≤ ∞, and the

Nevanlinna class N are stable classes, although this terminology was not

used there. Furthermore, K. Stephenson also proved in [26] that the space

BMOA is stable while the the Bloch space B and the space V MOA are

not stable.

We recall that the space BMOA consists of those functions f ∈ H1 whose

boundary values have bounded mean oscillation on ∂D and, V MOA is the

closed subspace of BMOA which consists of those f ∈ H1 whose boundary

values have vanishing mean oscillation on ∂D. Alternatively, V MOA is the

closure of the polynomials in BMOA. We mention [8], [18] and [19] for the

theory of the spaces BMOA and V MOA.

If f is an analytic function in D, then f is said to be a Bloch function if

‖f‖B
def
= |f(0)|+ sup

z∈D
(1− |z|2)|f ′(z)| < ∞.

The space of all Bloch functions is denoted by B. The little Bloch space

B0 consists of those f ∈ B such that lim|z|→1(1 − |z|2)|f ′(z)| = 0. Alterna-

tively, B0 is the closure of the polynomials in the Bloch norm. A very good

reference for the theory of Bloch functions is [4].

Stephenson’s arguments can be used to obtain the following improvement

of his results.



NON-STABLE CLASSES OF ANALYTIC FUNCTIONS 3

Theorem 1. Let X be a space of analytic functions in D which satisfies

any of the two following conditions:

(A) X contains the polynomials and there is some inner function I such

that I /∈ X.

(B) X 6= Hol(D) and B ⊂ X.

Then X is a non-stable class of analytic functions in D.

Proof. Suppose that X satisfies condition (A) and let I be an inner function

which does not belong to X. Take g(z) = φ(z) = z and ω(z) = I(z) (z ∈ D).

Then φ and ω are inner functions and I = I ◦ φ = g ◦ ω. Hence, I ≺w g,

g ∈ X and I /∈ X. Thus X is not stable.

Suppose now that X 6= Hol(D) and B ⊂ X. Let f be an analytic

function in D such that f /∈ X. Let E = {m + ni : m, n ∈ Z} and

F = {z ∈ D : f(z) ∈ E}. Since F is a countable subset of D, it has capacity

zero and therefore the universal covering map I from D onto D \ F is an

inner function (see, for instance, Chapter 2 of [11]). Set g = f ◦I. Then the

image of g is contained in C \E and, hence, it does not contain arbitrarily

large discs. Consequently, see [4], g is a Bloch function. Since B ⊂ X, we

have that g = f ◦ I ∈ X even though f /∈ X. Thus, X is not stable. �

In adition to V MOA, among other, the following well known spaces sat-

isfy condition (A) and, hence, are non-stable classes:

The little Bloch space B0, [4]; the spaces Qp and Qp,0, 0 < p < 1, ([6,

7, 16, 28]; the Besov spaces and Bp, 1 ≤ p < ∞, [5, 12, 29]; the Dirichlet

space D of those f analytic in D with finite Dirichlet integral.

If 0 < p < ∞ and α > −1, the weighted Bergman space Ap
α consists of

those f ∈ Hol(D) such that
∫

D(1− |z|)α|f(z)|p dA(z) < ∞. Here, dA(z) =

1
π
dx dy denotes the normalized Lebesgue area measure in D. We refer to

[15] and [21] for the theory of these spaces.

If ϕ : [0, 1) −→ [0,∞) is an increasing function with limr→1 ϕ(r) = ∞,

we define

(1) A(ϕ) = {f ∈ Hol(D) : |f(z)| = O (ϕ(|z|)) , as |z| → 1} ,
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(2) A0(ϕ) = {f ∈ Hol(D) : |f(z)| = o (ϕ(|z|)) , as |z| → 1} .

If f ∈ B then

|f(z)| = O

(
log

1

1− |z|

)
, as |z| → 1,

and then it follows that

(3) B ⊂ Ap
α, α > −1, 0 < p < ∞,

(4) B ⊂ A(ϕ), if log
1

1− r
= O (ϕ(r)), as r → 1,

and,

(5) B ⊂ A0(ϕ), if log
1

1− r
= o (ϕ(r)), as r → 1.

Using (3), (4), (5) and Theorem 1, we obtain the following result.

Corollary 1. (i) If α > −1 and 0 < p < ∞ then the weighted Bergman

space Ap
α is a non-stable class of analytic functions in D.

(ii) If ϕ : [0, 1) −→ [0,∞) is an increasing function with log 1
1−r

=

O (ϕ(r)), as r → 1, then the space A(ϕ) is a non-stable class of analytic

functions in D.

(iii) If ϕ : [0, 1) −→ [0,∞) is an increasing function with log 1
1−r

=

o (ϕ(r)), as r → 1, then the space A0(ϕ) is a non-stable class of analytic

functions in D.

We remark that part (iii) of Corollary 1 improves Example II in pp. 575-

576 of [26] which asserts that A0(ϕ) is not stable for ϕ(r) = exp
(

1+r
1−r

)
,

(0 < r < 1).

The next two sections will be devoted to the main purpose of this paper

which is finding other types of non-stable classes of analytic functions in

D. More precesily, we wish to study the possibility of finding a space X

of analytic functions in D which is a not stable and does not satisfy either

condition (A) or condition (B). In order to do so we shall consider spaces

of Dirichlet type.
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2. The spaces Dp
p−1.

For 0 < p < ∞, the space of Dirichlet type Dp
p−1 consists of all analytic

functions in D whose derivative belongs to Ap
p−1, that is,

(6) Dp
p−1 =

{
f ∈ Hol(D) :

∫
D
(1− |z|2)p−1|f ′(z)|p dA(z) < ∞

}
.

The spaces Dp
p−1 are closely related to the Hardy spaces. Indeed, a direct

calculation with power series shows that H2 = D2
1. A classical result of

Littlewood and Paley [22] (see also [23]) asserts that

(7) Hp ⊂ Dp
p−1, 2 ≤ p < ∞.

On the other hand, we have

(8) Dp
p−1 ⊂ Hp, 0 < p ≤ 2.

The inclusion (7) can be proved by Riesz-Thorin interpolation. The same

method gives (8) for 1 ≤ p ≤ 2, since the inclusion D1
0 ⊂ H1 is trivial.

Vinogradov ([27], Lemma 1.4) extended (8) to the range 0 < p ≤ 2. We

refer to [27], [13], [9] and [20] for distinct aspects of the theory of the spaces

Dp
p−1. In particular, we mention that using Proposition 2.1 of [10] (see also

Proposition A of [20]), we obtain the following result.

Proposition A. If f is given by a power series with Hadamard gaps,

f(z) =
∞∑

k=1

akz
nk (z ∈ ∆) with nk+1 ≥ λnk for all k (λ > 1),

then, for every p ∈ (0,∞),

f ∈ Dp
p−1 ⇐⇒

∞∑
k=1

|ak|p < ∞.

Since for Hadamard gap series we have, for 0 < p < ∞,

f ∈ Hp ⇐⇒
∞∑

k=1

|ak|2 < ∞,

we immediately deduce that Dp
p−1 6= Hp if p 6= 2.
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We remark also that if p 6= q then there is no relation of inclusion between

Dp
p−1 and Dq

q−1. However, it is easy to show (see Lemma 2 of [20]) that

(9) B ∩ Dp
p−1 ⊂ B ∩ D

q
q−1, 0 < p < q < ∞.

We can now prove the following result.

Theorem 2. If 0 < p < ∞ and p 6= 2, then Dp
p−1 is a non-stable class of

analytic functions in D.

Remark 1. Using (7), we see that if 2 < p < ∞, then Dp
p−1 contains all

the inner functions. On the other hand, if we take the lacunary power series

f(z) =
∞∑

k=1

z2k

, z ∈ D,

we have that f ∈ B, (see [4]), while Proposition (A) shows that f /∈ Dp
p−1.

Consequently, if 2 < p < ∞, the space Dp
p−1 is not stable and does not

satisfy either condition (A) or condition (B).

Proof of Theorem 2. Suppose first that 0 < p < 2. Then, using Theo-

rem 3.11 of [27], we see that there exists a Blaschke product B such that

B /∈ Dp
p−1, and then the fact that Dp

p−1 is not stable follows from Theorem 1.

Suppose now that 2 < p < ∞. Take f ∈ H2 \ Dp
p−1, (for example, take

f(z) = 1
(1−z)1/p , z ∈ D). Now we argue as in the proof of Theorem 1: We set

E = {m + ni : m,n ∈ Z} and F = {z ∈ D : f(z) ∈ E} and we let I be the

universal covering map from D onto D \ F . Since the set F is countable, I

is an inner function. The function g = f ◦ I is a Bloch function because its

image does not contain arbitrarily large discs. Also, g ∈ H2 because H2 is

closed under subordination. Thus, we have that g = f ◦I ∈ B∩H2 = B∩D2
1.

Using (9), we deduce that g = f ◦ I ∈ B ∩ Dp
p−1 even though f /∈ Dp

p−1.

Consequently, Dp
p−1 is not stable. This finishes the proof. �

Remark 2. If 2 < p < ∞ and g is the function constructed in the proof of

Theorem 2 then, bearing in mind that Hp is stable, we see that g ∈ Dp
p−1\Hp.

For these values of p, most of the known examples of functions in Dp
p−1 \Hp

are given by lacunary power series.
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3. The spaces Dp
α (0 < p < ∞, α > −1).

For 0 < p < ∞ and α > −1 the space of Dirichlet type Dp
α consists of all

functions f which are analytic in D and satisfy∫
D
(1− |z|2)α|f ′(z)|p dA(z) < ∞.

We have proved in Theorem 2 that if p 6= 2 then the spaces Dp
p−1 are not

stable. In this section we shall extend our work considering the spaces Dp
α

for all admissible values of p and α. We shall prove the following result.

Theorem 3. If 0 < p < ∞, α > −1 and (p, α) 6= (2, 1) then Dp
α is a

non-stable class of analytic functions in D.

In other words, Theorem 3 asserts that all the Dp
α-spaces (0 < p < ∞,

α > −1) except the space D2
1 = H2 are non-stable classes of analytic

functions in D.

Proof of Theorem 3. We shall distinguish several cases.

(a) If 0 < p < ∞, p 6= 2 and α = p − 1 then the result follows from

Theorem 2.

(b) If 0 < p < ∞ and α > p − 1 then it is well known that Dp
α = Ap

α−p

(see, e. g., Theorem 6 of [17]) and then the fact that Dp
α is not stable follows

using Corollary 1.

(c) Suppose now that 0 < p < 2 and −1 < α < p − 1. As noticed

above, Theorem 3.11 of [27] implies that there exists an inner function I

with I /∈ Dp
p−1. Since α < p− 1, Dp

α ⊂ Dp
p−1. Then we see that there is an

inner function I which does not belong to Dp
α. Now Theorem 1 yields that

Dp
α is not stable.

(d) Suppose now that 1 < p < ∞ and −1 < α ≤ p − 2. Notice that

the space Dp
p−2 is the Besov space Bp. Hence Dp

α ⊂ Bp. Now, there are

inner functions which do not belong to Bp. Indeed, Theorem 3.1 of [12]

asserts that the only inner functions in the space Bp are the finite Blaschke

products. Since Dp
α ⊂ Bp, the same is true for the space Dp

α. This implies

that Dp
α is not stable.
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It only remains to prove that Dp
α is not stable for 2 ≤ p < ∞ and

p − 2 < α < p − 1. Using again Theorem 1, this will follow from the

following result. �

Theorem 4. If 1 ≤ p < ∞ and p − 2 < α < p − 1, then there exists an

inner function I such that I /∈ Dp
α.

We need to introduce some notation and several results to prove Theo-

rem 4.

If I is an inner function, we shall write

(10) ∆(r, I) =
1

2π

∫ 2π

0

(
1− |I(reit)|2

)
dt.

The quantity ∆(r, I) plays a very important role to study the membership

of the derivative of an inner function in classical spaces of analytic functions

in D, (see [1], [2], [3]).

The following result is a special case of Theorem 6 of [2].

Theorem A. Suppose that α > −1, p > 1 + α and I is an inner function.

Then I ∈ Dp
α if and only if∫ 1

0

(1− r)α−p 1

2π

∫ 2π

0

(
1− |I(reit)|2

)p
dtdr < ∞.

Now, if µ is a finite positive Borel measure on [0, 2π], the modulus of

continuity ωµ of µ is defined by

ωµ(δ) = sup{µ ([θ, θ + δ)) : θ ∈ [0, 2π]}, 0 ≤ δ.

If 0 < β < 1 we let Sβ denote the class of all inner functions I whose singular

inner factor S is the singular inner function associated to a singular measure

µ whose modulus of continuity ωµ satisfies that ωµ(δ) = O(δβ), as δ → 0.

Ahern proved in Theorem 2.5 of [1] the following result.

Theorem B. Suppose that 0 < β < 1 and I ∈ Sβ. Then there exist a

constant ε > 0 and r0 ∈ (0, 1) such that

(11) ∆(r, I) ≥ ε(1− r)
1−β
2−β , r ∈ (r0, 1).
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Proof of Theorem 4. Take and fix p with 1 ≤ p < ∞. Since the spaces

Dp
α grow with α, it suffices to prove the theorem for those α such that

max{p− 2, p−2
2
} < α < p− 1. So, take such an α and set

(12) β = 2− p

1 + a
.

Observe that 0 < β < 1. Let I be an inner function with I ∈ Sβ. Using

Theorem B we see that there exist ε > 0 and r0 ∈ (0, 1) such that

(13) ∆(r, I) ≥ ε(1− r)
1−β
2−β , r ∈ (r0, 1).

Since p ≥ 1, we have that

1

2π

∫ 2π

0

(
1− |Iα(reit)|2

)p
dt

≥
(

1

2π

∫ 2π

0

(
1− |Iα(reit)|2

)
dt

)p

= ∆p(r, I), 0 < r < 1,

which, together with (13), implies∫ 1

r0

(1− r)α−p 1

2π

∫ 2π

0

(
1− |I(reit)|2

)p
dtdr

≥
∫ 1

r0

(1− r)α−p∆p(r, Iα) dr

≥ εp

∫ 1

r0

(1− r)α−p (1− r)
p(1−β)
2−β dr

= εp

∫ 1

r0

(1− r)−1 dr

= ∞.

(14)

Using Theorem A we deduce that I /∈ Dp
α. This finishes the proof. �
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