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ABSTRACT. If f and g are analytic functions in the unit disc D, then
f is said to be weakly subordinate to g, written f <" g, if there exist
analytic functions ¢ and w : D — D, with ¢ an inner function, so that
fop =gow. A class X of analytic functions in D is said to be stable if it
is closed under weak subordination, that is, if f € X whenever f and g
are analytic functions in D with g € X and f <" g. For 0 < p < oo and
a > —1, we let A? denote the weighted Bergman space of all functions
f, analytic in D, such that f € L? ((1 — |z|*)*dzdy) and the space of
Dirichlet type D? consists of those f such that f’ € AZ. Among other
results, we prove that all the Bergman spaces AP, (0 < p < oo, a > —1)
and all the DP-spaces except the space D? = H? are non-stable classes

of analytic functions in .

1. INTRODUCTION AND FIRST RESULTS.

We denote by D the unit disc {z € C: |z| < 1} and by Hol(D) the space
of all analytic functions in D. As usual, H? (0 < p < o0) are the classical
Hardy spaces of analytic functions in I (see [14] and [18]) and N is the
Nevanlinna class (see [14] and [24]). A function [, analytic in D, is said to
be an inner function if I € H* and [ has a radial limit /(¢*) of modulus
one for almost every e € dD. We recall that an inner function I can be
factored in the form I = BS where B is a Blaschke product and S is a
singular inner function, that is, S is of the form

2m it
S(z) = exp <—/ ¢ +2 du(t)) , z2€D,
0

et — z

Date: November 10, 2004.
The authors are partially supported by a grant from “El Ministerio de Educacién

y Ciencia, Spain” (MTN2004-00078) and by a grant from “La Junta de Andalucia”
(FQM-210).



2 D. GIRELA AND J. A. PELAEZ

where, p is a finite positive Borel measure on [0, 27) that is singular with
respect to Lebesgue measure.

K. Stephenson introduced in [26] the notion of weak subordination: if
f and g are meromorphic functions in D, then f is said to be weakly
subordinate to g, written f <" g, if there exist analytic functions ¢ and
w: D — D, with ¢ an inner function, so that fo¢ = gow. If ¢(z) = 2
and w(0) = 0, we have the classical concept of subordination, and we shall
simply write f < g. A class X of meromorphic functions in D is said to be
stable if it is closed under weak subordination, that is, if f € X whenever
f<"gandge X.

Stephenson [25] proved in that the Hardy spaces H?, 0 < p < oo, and the
Nevanlinna class N are stable classes, although this terminology was not
used there. Furthermore, K. Stephenson also proved in [26] that the space
BMOA is stable while the the Bloch space B and the space VMOA are
not stable.

We recall that the space BMOA consists of those functions f € H' whose
boundary values have bounded mean oscillation on 9D and, VMOA is the
closed subspace of BMOA which consists of those f € H! whose boundary
values have vanishing mean oscillation on JD. Alternatively, VMOA is the
closure of the polynomials in BMOA. We mention [8], [18] and [19] for the
theory of the spaces BMOA and VMOA.

If f is an analytic function in D, then f is said to be a Bloch function if
def
£l = 1£(O)] + sup(1 - =) f'(2)] < o0.

The space of all Bloch functions is denoted by B. The little Bloch space
By consists of those f € B such that lim, (1 — |z|*)|f'(z)| = 0. Alterna-
tively, By is the closure of the polynomials in the Bloch norm. A very good
reference for the theory of Bloch functions is [4].

Stephenson’s arguments can be used to obtain the following improvement

of his results.
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THEOREM 1. Let X be a space of analytic functions in D which satisfies
any of the two following conditions:

(A) X contains the polynomials and there is some inner function I such
that I ¢ X.

(B) X # Hol(D) and B C X.

Then X is a non-stable class of analytic functions in D.

Proof. Suppose that X satisfies condition (A) and let  be an inner function
which does not belong to X. Take g(z) = ¢(z) = zand w(z) = I(z) (z € D).
Then ¢ and w are inner functions and I = [ o ¢ = g ow. Hence, I <" g,
g€ X and I ¢ X. Thus X is not stable.

Suppose now that X # Hol(D) and B C X. Let f be an analytic
function in D such that f ¢ X. Let £ = {m 4+ ni : m,n € Z} and
F={zeD: f(z) € E}. Since F is a countable subset of D, it has capacity
zero and therefore the universal covering map I from D onto D\ F is an
inner function (see, for instance, Chapter 2 of [11]). Set g = fol. Then the
image of ¢ is contained in C \ E and, hence, it does not contain arbitrarily
large discs. Consequently, see [4], g is a Bloch function. Since B C X, we
have that g = f oI € X even though f ¢ X. Thus, X is not stable. OJ

In adition to VMOA, among other, the following well known spaces sat-
isfy condition (A) and, hence, are non-stable classes:

The little Bloch space By, [4]; the spaces (), and @Q,0, 0 < p < 1, (6,
7, 16, 28]; the Besov spaces and B?, 1 < p < oo, [5, 12, 29]; the Dirichlet
space D of those f analytic in D with finite Dirichlet integral.

If 0 < p<ooand a> —1, the weighted Bergman space A? consists of
those f € Hol(D) such that [ (1 — |z])*|f(2)[? dA(z) < oo. Here, dA(z) =
%dw dy denotes the normalized Lebesgue area measure in D. We refer to
[15] and [21] for the theory of these spaces.

If ¢ : [0,1) — [0,00) is an increasing function with lim,_,; ¢(r) = oo,

we define

(1) Alp) ={f € Hol(D) - [f(2)] = O(e(lz])), as [z =1},
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(2) Ao(p) ={f € Hol(D) : [f(z)] =o0(p(lz])), as|z] —1}.

If f € B then

1
11 =0 (s =) ws k- 1

and then it follows that

(3) BCcA, a>-1,0<p< oo,

(4) B C A(p), if log 1 i =0(p(r)), asr—1,
and,

(5) B C Ay(p), if log N i =o(p(r)), asr—1.

Using (3), (4), (5) and Theorem 1, we obtain the following result.

COROLLARY 1. (1) If @ > —1 and 0 < p < oo then the weighted Bergman
space AP is a non-stable class of analytic functions in D.

(it) If ¢ : [0,1) — [0,00) is an increasing function with log =~ =
O (¢(r)), as v — 1, then the space A(p) is a non-stable class of analytic
functions in D.

(iii) If ¢ : [0,1) — [0,00) is an increasing function with log 7 =
o(p(r)), as r — 1, then the space Ao(yp) is a non-stable class of analytic

functions in D.

We remark that part (iii) of Corollary 1 improves Example IT in pp. 575-
576 of [26] which asserts that Ap(p) is not stable for ¢(r) = exp (1),
0<r<1).

The next two sections will be devoted to the main purpose of this paper
which is finding other types of non-stable classes of analytic functions in
D. More precesily, we wish to study the possibility of finding a space X
of analytic functions in D which is a not stable and does not satisfy either
condition (A) or condition (B). In order to do so we shall consider spaces

of Dirichlet type.
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2. THE SPACES D, _,.

For 0 < p < oo, the space of Dirichlet type Dﬁ_l consists of all analytic

functions in D whose derivative belongs to A?_,, that is,

p—1

6) Dy, = {f e Hol(D) : /

D

(1= 21 ()P dA(=) < oo} |

The spaces szl are closely related to the Hardy spaces. Indeed, a direct
calculation with power series shows that H? = D?. A classical result of

Littlewood and Paley [22] (see also [23]) asserts that
(7) HP CcD;p ,, 2<p<oo.
On the other hand, we have

(8) DY CH, 0<p<2.

The inclusion (7) can be proved by Riesz-Thorin interpolation. The same
method gives (8) for 1 < p < 2, since the inclusion Dy C H' is trivial,
Vinogradov ([27], Lemma 1.4) extended (8) to the range 0 < p < 2. We
refer to [27], [13], [9] and [20] for distinct aspects of the theory of the spaces
D, _,. In particular, we mention that using Proposition 2.1 of [10] (see also

Proposition A of [20]), we obtain the following result.
PropPOSITION A. If f is given by a power series with Hadamard gaps,
f(z) = Zakz”’“ (z € A) with ngy1 > Ang for all k (A > 1),
k=1
then, for every p € (0,00),
FeEDE, = ) |uf <o
k=1
Since for Hadamard gap series we have, for 0 < p < oo,
feH = > |ay|* < o0,
k=1

we immediately deduce that D}, # H? if p # 2.
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We remark also that if p # ¢ then there is no relation of inclusion between

D, , and D] ;. However, it is easy to show (see Lemma 2 of [20]) that

(9) BND) ,cBND; ,, 0<p<q<oo.

We can now prove the following result.

THEOREM 2. If0 < p < o0 and p # 2, then ng 1s a non-stable class of

analytic functions in D.

REMARK 1. Using (7), we see that if 2 < p < oo, then D, _, contains all

the inner functions. On the other hand, if we take the lacunary power series

flz)=) 2" =z€eD,
k=1

we have that f € B, (see [4]), while Proposition (A) shows that f ¢ D},
Consequently, if 2 < p < oo, the space Dﬁq 15 not stable and does not
satisfy either condition (A) or condition (B).

Proof of Theorem 2. Suppose first that 0 < p < 2. Then, using Theo-
rem 3.11 of [27], we see that there exists a Blaschke product B such that
B ¢ D}, and then the fact that D}, is not stable follows from Theorem 1.

Suppose now that 2 < p < oco. Take f € H?\ D}, (for example, take
f(z)= m, z € D). Now we argue as in the proof of Theorem 1: We set
E={m+ni:mmnecZ}and F={z€D: f(z) € E} and we let I be the
universal covering map from D onto D \ F. Since the set F' is countable, [
is an inner function. The function g = f o I is a Bloch function because its
image does not contain arbitrarily large discs. Also, g € H? because H? is
closed under subordination. Thus, we have that g = fol € BNH? = BND3.
Using (9), we deduce that g = fol € BND,_ ;| even though f ¢ Dy,

Consequently, D£—1 is not stable. This finishes the proof. [J

REMARK 2. If2 < p < 00 and g is the function constructed in the proof of
Theorem 2 then, bearing in mind that H? is stable, we see that g € D) _,\ H?.
For these values of p, most of the known examples of functions in D) _; \ HP

are given by lacunary power series.
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3. THE SPACES D? (0 <p < oo, a > —1).

For 0 < p < oo and o > —1 the space of Dirichlet type D? consists of all

functions f which are analytic in D and satisfy

Ja=BRrIr P AR <o

We have proved in Theorem 2 that if p # 2 then the spaces D;I;—1 are not
stable. In this section we shall extend our work considering the spaces D?

for all admissible values of p and a. We shall prove the following result.

THEOREM 3. If 0 < p < o0, @ > —1 and (p,a) # (2,1) then D? is a

non-stable class of analytic functions in D.

In other words, Theorem 3 asserts that all the DP-spaces (0 < p < oo,
a > —1) except the space DI = H? are non-stable classes of analytic
functions in D.

Proof of Theorem 3. We shall distinguish several cases.

(a) If 0 < p < oo, p# 2and a = p— 1 then the result follows from
Theorem 2.

(b) If 0 < p < 0o and o > p — 1 then it is well known that DE, = A?
(see, e. g., Theorem 6 of [17]) and then the fact that DP is not stable follows
using Corollary 1.

(¢) Suppose now that 0 < p < 2 and —1 < a < p — 1. As noticed
above, Theorem 3.11 of [27] implies that there exists an inner function I
with [ ¢ D) ;. Since a < p—1, D5, C D, ;. Then we see that there is an
inner function I which does not belong to D?2. Now Theorem 1 yields that
D? is not stable.

(d) Suppose now that 1 < p < oo and —1 < a < p — 2. Notice that
the space DZ% is the Besov space BP. Hence D2 C BP. Now, there are
inner functions which do not belong to B?. Indeed, Theorem 3.1 of [12]
asserts that the only inner functions in the space BP are the finite Blaschke
products. Since D? C BP, the same is true for the space D?. This implies

that DP is not stable.
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It only remains to prove that D? is not stable for 2 < p < oo and
p—2 < a < p—1. Using again Theorem 1, this will follow from the

following result. [J

THEOREM 4. If 1 <p<ooandp—2 < a < p—1, then there exists an
inner function I such that I ¢ DP.

We need to introduce some notation and several results to prove Theo-
rem 4.

If I is an inner function, we shall write

(10) Ar,I) = %/0 ' (1— [I(re™)|?) dt.

The quantity A(r, ) plays a very important role to study the membership
of the derivative of an inner function in classical spaces of analytic functions
in D, (see [1], [2], [3).

The following result is a special case of Theorem 6 of [2].

THEOREM A. Suppose that o > —1, p > 1+ « and I is an inner function.
Then I € DP of and only if

1 1 2w )
/ (1-— r)ap—/ (1= I(re™)|?)? dtdr < oo.
0 21 Jo

Now, if 4 is a finite positive Borel measure on [0, 27|, the modulus of

continuity w,, of p is defined by
w,(6) =sup{p ([0,0 +9)):0 €[0,2x]}, 0<o.

If 0 < 3 < 1welet Sz denote the class of all inner functions / whose singular
inner factor S is the singular inner function associated to a singular measure
1 whose modulus of continuity w,, satisfies that w,(d) = O(6°), as § — 0.
Ahern proved in Theorem 2.5 of [1] the following result.

THEOREM B. Suppose that 0 < 3 < 1 and I € Sz. Then there exist a

constant € > 0 and ry € (0,1) such that

=

-8

(11) Alr,I) >e(l—r)>=6, 1€ (rol).
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Proof of Theorem 4. Take and fix p with 1 < p < oo. Since the spaces
DP grow with «, it suffices to prove the theorem for those o such that

max{p — 2, 252} < a < p — 1. So, take such an « and set

., D
(12) f=2-1—

Observe that 0 < 3 < 1. Let I be an inner function with / € Sg. Using
Theorem B we see that there exist ¢ > 0 and rg € (0, 1) such that

(13) Alr, 1) > e(1— )5, € (ro,1).
Since p > 1, we have that
1 (1 [La(re™) )" dt
2m Jo “
1 27 ) p
> <2—/ (1= [L(re")?) dt) = AP(r 1), O<r<l,
™ Jo

which, together with (13), implies

/1(1 — r)“‘p% /% (1= |I(re")?)? dtdr

0 0

> /1(1 — ) PAP(r, 1) dr

To

1 —
(14) > gp/ (1—r)?(1—r)>7 dr
o
1
= 8”/ (1—7r)"tar
To
= Q.

Using Theorem A we deduce that I ¢ DP. This finishes the proof. [J
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